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ABSTRACT 

A spent cartridge case exhibits characteristic markings (firearm fingerprint) that can be used to 
identify the type and possibly make of weapon in which the cartridge was fired. This report details 
research into the use of discriminant analysis for the purpose of matching spent rim-fire cartridge cases 
to specific make and model firearms. The discrimination and classification are based on several scalar 
shape parameters for the two-dimensional silhouette of the firing pin (FP) impression-- shape factor 
calculated from the second order moment of inertia, G factor calculated from the distance transform, 
and the P2A factor- as well as the distance between the centre of the cartridge case and the centroid 
of the FP impression, and the orientation of the principal centroidal axes associated with the FP 
impression. Classification results for two case studies are detailed: (i) 3 different make/model weapons 
producing different shaped FP impressions, and (ii) 5 different make/model weapons each producing a 
rectangular FP impression. 

Keywords - Ballistics, Class characteristics, Discriminant analysis, Image matching, Shape 
descriptors 



Image Matching of Firearm Fingerprints 

1. INTRODUCTION 

"The Federal Bureau of Investigation (FBI) defines firearms identification as 'the study by which a 
bullet1, cartridge case or shotshell casing may be identified as having been fired by a particular weapon 
to the exclusion of all other weapons.' " (Giannelli, 1991, p. 196). Firearms identification is more 
commonly known as ballistics - a misnomer because ballistics is the study of projectile motion. There 
are typically three types of weapons encountered in ballistics: rifles, handguns, and shotguns. The 
evidence associated with a firearm used to commit a felony includes: powder residues, fingerprints, 
blood, trajectory (true ballistics), bullets (projectiles), and cartridge cases. "Typically, the most 
definitive evidence obtained from material associated with firearms is not intrinsic to the firearm per se. 
It arises rather from the interaction of the firearm with components of the cartridge" (Heye & Thornton, 
1994, p. 83). Figure 1 is a sketch of an unfired cartridge case. "Cartridge cases are generally made of 
brass. Several different shapes--straight, tapered, or bottleneck-are manufactured. The type of rim 
may also differ--e.g., rimmed, semirimmed, rimless, belted, or rebated (rim diameter is less than case 
diameter)" (Giannelli, 1991, p. 199). Rifles and handguns are generally classified according to their 
calibre2. The cartridges used in these weapons comprise the case, bullet (inserted into the mouth of the 
case), propellant (powder), and percussion priming mixture. They are generally of two types: rim-fire 
and centre-fire. 

The rim-fire cartridge is simply a short tube of copper [nowadays cartridges are typically made 
from brass], closed at one end, having a charge of powder in it, and carrying a bullet in the 
open end. The closed end is formed into a flat head, with a hollow rim, and inside this rim 
there is a layer of percussion priming mixture. When the gun is fired, the firing pin, or the 
hammer nose, as the case may be, strikes this hollow rim, and mashes a small portion of it, 
crushing the mixture at this point, and causing it to ignite and fire the charge. (Hatcher, 1946, 
p. 67) .... While the rim-fire cartridge still enjoys enormous popularity in the .22 caliber, it has 
been superseded in practically every other caliber by the later type known as the center-fire 
cartridge. This is a brass cartridge with a thick, heavy head, containing a percussion cap, or 
primer, pressed into a circular recess in the center. (p. 69). 

head- ~ mouili 

~.~\....._ ___ __..r 
rim 

Figure 1. Sketch showing the parts of an unfired cartridge case. 

Using a comparison microscope a forensic scientist can compare evidence bullets or cartridge cases with 
those obtained from test firings either from the evidence firearm or from an array of test weapons. 
When there is no evidence firearm the expert can only infer the make or type of weapon from which the 
projectiles or cases came. If the firearm is available then the expert may be able to infer whether or not 
they came from that particular weapon. "It may frequently happen that in a crime of violence with 
firearms the bullet may not be recovered; it may pass entirely through the victim and be lost" (Hatcher, 
1946, p. 259). Even when a bullet is recovered its condition often precludes the positive identification of 
the type or specific firearm from which it was fired - the bullet may be too mutilated, or too little of the 
bullet may have been recovered. If the firearm used to commit a crime is an automatic weapon then 
investigators are likely to find the empty cartridges (cases) expelled by the gun. "In many cases, also, 
the repeating ... rifle may be fired two or more times in the commission of a crime, or if it is fired only 
once, the chances are that the criminal will reload at once, unconsciously causing the gun to eject the 

1 The term bullet is sometimes used in place of the term cartridge. Herein, bullet means projectile. 
2 The diameter of the bore (inside surface of the barrel) expressed in either hundredths or thousandths of 
an inch (e.g .. 22 and .243), or in millimetres (e.g. 9 mm). 
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empty cartridge" (Hatcher, 1946, p. 259). A cartridge case recovered from the scene of the crime is then 
most valuable. 

2. CARTRIDGE CASE /DENT/FICA TION 

Figure 2 is a sketch of a revolver showing a cartridge in position ready for firing. A recovered 
cartridge case has several prominent class characteristics including: the initials of the manufacturer 
stamped on its head, its type and calibre, extractor3 hook marks (particularly in the case of automatic 
arms), ejector4 mark (which has a fixed relation to the position of the extractor mark), and the shape of 
the firing pin impression (in the case of rim-fire cartridges). "It is a well-known fact that at the moment 
when a cartridge is fired, the empty shell is hurled violently against the breech face, as a result of the 
recoil. The primer and shell [cartridge case] head receive certain imprints from the breech face . . . . 
These impressions vary considerably in their nature, and may be of great value in determining the type 
or even the particular make of weapon used" (Mathews, 1962, p. 311). Breech faces can to some degree 
be classified according to the characteristic patterned markings they possess. This is "because each 
manufacturer has a certain procedure for the production of a certain model of arm [which produces the 
characteristic markings], which may differ from that used by some or all other manufacturers, and 
because he follows this procedure fairly consistently, possibly in his different models" (Mathews, 1962, 
p. 28). In the case of centre-fire cartridges the primer is made of a softer material, e.g. copper, than the 
brass of the shell itself. The primer therefore is able to take a better impression of the breech face than 
the rest of the cartridge case head. The rim-fire cartridge case on the other hand 

takes a good impression showing the shape of the firing pin, but it does not often take a clear 
impression of the fine file marks and other irregular scratches on the breech block, which form 
the ''finger-prints" of the gun; hence when an empty rim-fire cartridge is found at the scene of 
a shooting, it is often easy to say what type of arm was used; but it is seldom possible to identify 
a rim-fire cartridge to a definite individual gun by the impression of the file marks it left on the 
head, as is so often done in the case of a center-fire cartridge. (Hatcher, 1946, p. 68). 

breech 6 face 

Figure 2. Cut-away of a revolver (Smith & Wesson .38/44) showing a cartridge 
in position ready for firing (Adapted from Hatcher, 1946, p. 49). 

3 "The extractor is the mechanism that withdraws the cartridge case from the chamber after the firearm 
has been fired" (Giannelli, 1991, p. 204) 
4 "The ejector is the mechanism that throws or 'kicks out' the cartridge case from the firearm after it has 
been fired" (Giannelli, 1991, p.204). In some weapons the firing pin acts as the ejector. 
5 Rifling are the parallel spiral grooves cut into the bore of modern rifles and hand guns and designed to 
impart a spin on the projectile as it passes through. 
6 The breech is the end of the bore into which the cartridge is inserted. 
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To establish that a recovered cartridge case was fired in a specific firearm the unique markings 
(striations and impressed marks) imparted on the case head by the firing pin and the breech face, as well 
as the impressed chamber marks on the side of the case, need to be examined microscopically. These 
markings are those unique to that particular weapon; they are not even exhibited on cartridge cases fired 
in exactly the same type of weapon produced by the same manufacturer. "By utilizing these individual 
characteristics, 'causal identity' is established, that is, the markings on both evidence and test case were 
caused by the same event, namely, the interaction of that firearm with the cartridge case" (Heye & 
Thornton, 1994, p. 84). Collectively the class characteristics and the individual features on a fired 
cartridge case constitute a firearm fingerprint. 

Forensic laboratories around the world still use comparison microscopes to examine and compare 
markings on cartridge cases. This is true even of the FBI; they began using comparison microscopes in 
1925 (Kaplan, 1993, p. 54). Consequently cartridge case comparisons are very labour intensive. In 
Police Ballistics Units around Australia, this very fact prohibits the routine checking of catalogued 
exhibits (e.g. from unsolved shootings) against those obtained from weapons that come into the 
possession of the Police (Lawrence, 1993, p. 1). Moreover these exhibits are not routinely circulated 
around the country. There is clearly a need for a national computerised image storage and comparison 
system. 

3. EXISTING COMPUTER SYSTEMS AND ONGOING RESEARCH 

A Canadian company, Walsh Automation, has developed a commercial hardware/software system, 
called Bulletproof, that can acquire and store images of projectiles and brass cartridge cases, and 
automatically search the image database for particular striations on projectiles (but not impressed 
markings or striations on cartridge cases). Lawrence (1993, p. 4) stated that the system would cost 
around $540,000 US per participating Australian state. The cost and inherent limitations (particularly 
with respect to cartridge cases) of the system prohibit its use in Australia. The Australian Institute of 
Security and Applied Technology (AISAT), in conjunction with the Western Australian Police, have 
developed a prototype database called FIREBALL (Smith, Cross, & Variyan, 1995). It is modelled after 
the FBI's general rifling characteristics file (GRC) but with the added capability of storing and 
retrieving images of cartridge case heads, and of interactively obtaining position metrics for the firing
pin impression, ejector mark, and extractor mark. However, like Bulletproof, the system has no facility 
to perform image matching of breech face marks, firing-pin impressions, or the like. 

An inherent problem with digital images of cartridge cases obtained using light stereo microscopy is 
that depth information of features, such as the firing pin impression, must be inferred from the shadows 
induced by the light source. Moreover the position of the source relative to the case dramatically 
influences the amount of detail that can be seen. This has led research teams in other countries to 
investigate alternative methods for determining an accurate description of the morphology of the head of 
a cartridge case. In Germany ultrasound is being investigated as a means of obtaining depth information 
at points on the head of a cartridge case (Senior Constable P. Lawrence, personal communication, June, 
1994). In the USA the Air Gage Company and the Industrial Technology Institute have been contracted 
by the FBI to integrate their product CADEYES into the Drugfire7 database system. CADEYES uses 
moire inteiferometry to obtain "depth information at each point in the image of the object [cartridge 
case] being measured" (Kaplan, 1993, p. 54). Other researchers have reported on more novel and 
specialised techniques for cartridge case identification. For example Fatuzzo and Puglishi (1992) made 
a study of the characteristic markings produced on cartridge cases fired in weapons with delayed 
blowback action (the advantages of the delayed blowback mechanism include: simplicity of the bolt 
assembly, fewer parts, fast automatic cycle, lack of violent jerking, and economy and strength). Another 
example is the research reported by Heye and Thornton (1994) into compositional matching of cartridge 
cases using atomic absorption spectrometry. The method is used to determine the concentrations of 
nickel, iron, and lead in brass cartridge cases. However not only is the technique very specialised but it 
also interferes with the evidence cartridge case(s). 

7 Drugfire is "a database driven multimedia image-analysis management system" (Kaplan, 1993, p. 56). 
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4. AISA T RESEARCH 

The aim of this research is to utilise existing comparison microscopes (fitted with adaptors for both 
still and video cameras) in conjunction with a computer and custom imaging software to perform 
automated/semi-automated matching of rim-fire cartridge case images stored in a database. Whilst 
images acquired in this manner are dependent on the orientation of the light source this need not be an 
issue when dealing with gross features such as the shape of the firing pin impression and the relative 
positions of the ejector and extractor marks. For fine detail such as breech face marks, chamber marks, 
and feed marks however, orientation is significant. In the former case a video camera and frame
grabber are sufficient to obtain a digital image of the head of a cartridge case. In the latter case, high 
resolution imaging and several captures per case are necessary to obtain adequate detail. 

In this report we describe a pilot study that focused on several scalar parameters associated with the 
firing pin impression on spent rim-fire8 cartridge cases, for the purpose of identifying the make/model 
firearms in which each was fired. "The size, shape, and location of the firing pin impression is of value 
in determining the make of arm used" (Mathews, 1962, p. 22). For the study, images of rim-fire 
cartridge case heads were captured using a conventional stereo light microscope and a video camera and 
frame-grabber. These images provided sufficient detail so that the shape of the firing pin impression 
and on occasion its location relative to the ejector mark were discernible. Using custom software, 
incorporating a graphics user interface (GUI), the outlines of the firing pin impressions were traced and 
quantified (using scalar feature parameters). Discriminant analysis was then used to discriminate and 
classify the cartridge case images according to the specific make/model weapon in which each cartridge 
was fired. We specifically report on the details and results for two case studies: (i) 3 different 
make/model weapons producing different shaped FP impressions, and (ii) 5 different make/model 
weapons each producing a rectangular FP impression. 

4.1. Characterising shape 
"Shape is an elusive property, difficult to define without being vague" (Danielsson, 1978, p. 292). In 

the field of image processing there exist a wide variety of shape descriptors; these are either single, 
dimensionless, and scale independent parameters called shape factors, or coding schemes that in some 
way characterise the boundary of an object. Reviews of shape coding techniques and shape descriptors 
can be found in Pavlidis (1978) and more recently in Marshall (1989). Shape descriptors fall into two 
categories: 

(i) internal- based on the area within the boundary of an object, and 
(ii) external- based on the boundary itself. 

Furthermore, they can be classified as either scalar transform or space domain. A well known shape 
factor is P2A defined: 

p2 
P2A =--,where P = perimeter, and A= area, 

41tA 

which is equal to 1 for a circle. It is an example of an internal scalar transform descriptor (to calculate 
the perimeter it is not necessary to determine or track the boundary - e.g. Crofton's formula (see 
Mehnert, 1994a, p. 89)). Examples of internal space domain transforms are the medial axis transform 
and the morphological skeleton (see Serra, 1982, pp. 382-387). Chain coding is an example of an 
external space domain technique. Chain coding techniques (see Gonzalez & Wintz, 1987, chapter 8) 
involve tracking the boundary of an object, pixel by pixel. For images digitised on a square grid, either 
4- or 8-connectivity can be used to code the boundary. For a given pixel, and proceeding in either a 
clockwise or anticlockwise direction, the next 8-connected (resp. 4-connected) boundary pixel must 
necessarily be in one of 8 (resp. 4) adjacent positions. Thus if each direction is given a unique code, 
then as the boundary is traversed, a chain of codes is established. Fourier shape descriptors (Krzyzak, 

8 It is interesting to note that in Western Australia, at least, the majority of firearms involved in 
shootings are .22 rifles and shotguns. 
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Leung, & Suen, 1988) are examples of external scalar transforms. They are derived from a 
normalisation of the Fourier coefficients obtained from the Fourier transformation of a lD or 2D 
representation of the object boundary (Marshall, 1989, p. 284). Scale change and change in orientation 
of shapes manifest themselves as simple transformations of the Fourier coefficients. Figure 3 is a 
compendium of shape descriptors, most of which are reviewed in Marshall (1989) and Pavlidis (1978). 

Shape Descriptors 

Internal External 

~ ~ 
Scalar Spare Domain 

I I 
'··r·= ,,T_ .. 

P2Ameasure Skeleton Polar representation Chain coding 

Danielsson's G measure Medial axis transform Rectangular representation Hough transform 

Moments of area Decomposition into convex subsets Tangential representation Scale-space registration 

2D Fourier transforms Curvature representation Curvature primal sketch 

Chord distribution Fourier shape descriptors Nanna! contour distance 

Ray parameters Stochastic methods 

Beading energy 

Figure 3. A compendium of shape descriptors. 

4.2. Discriminant analysis and classification 
Discriminant analysis and classification are techniques of multivariate statistics "concerned with 

separating distinct sets of objects (or observations) and with allocating new objects (observations) to 
previously defined groups" (Johnson & Wichern, 1988, p. 470). R. A. Fisher provided the first modern 
treatment of separatory problems. In the discussion that follows Fisher's original methods for separation 
and classification are described. This is followed by a discussion of the minimum total probability of 
misclassification rule for normal populations - a generalisation of Fisher's methods when specifically 
dealing with multivariate normal populations. 

Fisher's original approach to dealing with two populations is as follows. Let 1t1 and 1t2 denote the 

two populations; e.g. Winchester 9422 X'IR repeating rifles and Ruger 10/22 self loading rifles. 
Separation and classification is done on the basis of measurements on several random variables 

X'= [XI' x2' ... ' xp]. A single realisation (observation) of values is denoted x' = [XI' x2' ... ' xp]. 
The two populations can be described by their respective probability density functions J; (X) and 

fz ( x). Fisher's method involves taking a linear combination of the multivariate observations X so that 

they are transformed into univariate observations y . The chosen linear combination is the one that best 

separates the y values derived from each population. This is achieved by determining the linear 

combination that maximises the squared distance between the mean of the Y values for 1t1 and the 

mean of the Y values for 1t2 relative to the variability of the Y values. The linear combination that 

satisfies this requirement, assuming that both populations have the same covariance matrix L , is called 
Fisher's linear discriminant function: 

Y = £' X = ( - )' 1:-1X 
(lxl) (lxp) (pxl) J.ll Jl2 ' 

(1) 

Australian Institute of Security and Applied Technology, Edith Cowan University 

6 



Image Matching of Firearm Fingerprints 7 

where J11 = E(XIn1), J12 = E(XIn2). and 1: = E(X- J.L 1 )(X- J1 1 )' = E(X- J1 2)(X- J1 2 )'. 

In practice one has n1 observations of the random variable X for 1t1 and n2 observations for 1t2 from 

which the sample mean vectors XI' x2' and the sample (pooled) covariance matrix spooled are 

calculated (see Johnson & Wichern, 1988, p. 474). These are then substituted for J.LpJ12 , and 1:, 
respectively, in (1) to give Fisher's sample linear discriminant function: 

The midpoint between the two univariate sample means y1 = P'x1 and y2 = P'x2 is given by: 

and leads to the following classification rule for a new observation x0 : 

allocate to 1t1 if Yo = P'xo ;;:: m otherwise allocate to 1t2 . 

Fisher also devised a generalisation of his two population discriminant method for dealing with 
several populations. The method once again requires that all the populations have a common covariance 
matrix. Moreover this covariance matrix must be of full rank9; i.e. it must be invertible. As before no 
assumption about the distributions of the populations needs to be made. The method involves finding the 
linear combinations that maximise "the variability between the groups of Y-values relative to the 
common variability within groups" (Johnson & Wichern, 1988, p. 515) subject to certain constraints. 
The first discriminant is the maximising linear combination for which there are no constraints. The 
second discriminant is the maxtffilsmg linear combination subject to the constraint 

cov( f:X,., .e;x) = 0. This continues such that f~X maximises the variability ratio subject to 

cov( f~X, t;x,) = 0, for all i < k. In practice one calculates the sample discriminants RX which are 

then used as the basis for a classification rule (see Johnson & Wichern ,1988, p. 524). 

When the populations do not have the same covariance matrix Fisher's method is not valid. 
However if the populations are multivariate normal then the total minimum probability of 
misclassification rule can be used for discrimination and classification. This rule is based on the 
calculation of quadratic discriminant scores: 

where L; is the covariance matrix for the i-th population, 11:;1 is its determinant, and P; is the prior 

probability for population i (these probabilities can be used to reflect relative occurrences for each 
population; e.g. that certain weapons are more frequently used to commit crimes). The allocation rule 
for g populations is then: 

allocate X to 1t k if the quadratic discriminant score df (X) = max { d1Q (X), df (X), ... , df (X)} 

fori= 1,2, ... ,g. 

9 "If not, we let P = [ e1,. .. , eq] be the eigenvectors of 1: corresponding to nonzero eigenvalues 

[ A
1

, ••• , Aq]. Then we replace X by P'X, which has a full rank covariance matrix P'l:P" (Johnson 

& Wichern, 1988, p. 514). 
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In practice the estimates JF(x)=-+In!S;I-+(x-i;)'S~I(x-xJ+Inp;, where the S;are the 

sample covariance matrices, are used. If the L; are all equal the term-finiL;I in (2) is a constant 

and the expression simplifies (for allocatory purposes) to: 

-t(x- J.!; )' L-I(x- J.!;) +In P;· (3) 

In fact (3) can be simplified further, because allocation is based on relative magnitudes, to give the 
expression: 

(4) 

called the linear discriminant score. In practice one uses the estimates 

d,... ( ) -~s-I 1 -~s-I - I 
i X = X; pooiedx- 2 X; pooiedxi + n P;. When the prior probabilities are all equal, i.e. 

PI = p2 = ... = p g = i, the term In P; in ( 4) is a constant and allocation based on the linear 

discriminant scores is equivalent to allocation based on Fisher's linear discriminant function. Moreover 
an examination of expression (3) shows that the only remaining variable term (ignoring the coefficient 

-+) is (X- f.!;)' L-I (X- f.!;). This is the expression for the squared Mahalanobis distance between 

X and the i-th population mean f.!;· Thus Fisher's procedure equates to assigning an observation x to 

the closest population. More generally classification based on linear discriminant scores equates to 
assigning an observation X to the closest group taking into account a distance penalty In P;. 

To summarise, Fisher's linear discriminants can be used for classification when all of the 
populations have the same covariance matrix, regardless of their respective distributions. However 
studies have shown "that there are nonnormal cases where Fisher's linear classification function 
performs poorly even though the population covariance matrices are the same" (Johnson & Wichern, 
1988, p. 493). If in addition to covariance homogeneity the populations are also multivariate normal 
then classification can be performed using linear discriminant scores. If additionally the prior 
probabilities are all equal then classification based on Fisher's linear discriminants is equivalent to 
classification based on linear discriminant scores. Finally if the populations are multivariate normal but 
have different covariance matrices then classification can be performed using quadratic discriminant 
scores. It is important to keep in mind though that "classification with quadratic functions is rather 
awkward in more than two dimensions and can lead to some strange results. This is particularly true 
when the data are not (essentially) multivariate normal" (Johnson & Wichern, 1988, p. 493). 

4.3. Case study 1: three different shaped FP impressions 
To be able to evaluate the effectiveness of a particular set of feature parameters (variables) in 

discriminating between different FP impressions it is necessary to 

(i) obtain images of multiple cartridge cases fired from the same weapon, and 
(ii) obtain images of multiple cartridge cases fired from different weapons but of the same make and 
model. 

In this regard, with the cooperation of the Forensic Ballistics Unit of the Western Australian Police, a 
total of 36 fired 0.22 calibre rim-fire cartridge cases were obtained for study. Table 1 lists the numbers 
of cartridges fired in each of three different make/model weapons. In the case of the Ruger 10/22, 10 
rounds were recovered from one weapon and another 3 rounds each from two other Ruger 10/22 rifles. 
The data set comprises three different shapes of FP impression (see Appendix A). 
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Table 1. Data set comprisinR three different shaped FP impressions. 

Make Model Type Calibre Single Weapon Multiple Weapons 

Ruger 10/22 SLR 22LR 10 rounds 2 x 3 rounds 
Winchester 9422 XTR RR 22LR 10 rounds N/A 
Enna-Werke EM1.22 SLR 22LR 10 rounds N/A 

Note: SLR = self loadmg nfle, RR = repeatmg nfle, and LR=long nfle. 

4.3.1. Image acquisition, tracing, and measurement 
Images of the cartridge case heads were captured using a PC and frarne-grabberlO, in conjunction 

with a Citoval stereo trinocular microscope fitted with a monochrome video camera II and a fibre optic 
ring light source (see Figure 4). Images were acquired at a spatial resolution of 768H x 512V pixels and 
grey-scale resolution of 8-bits per pixel (see Figure 5). Each cartridge case was orientated so that the FP 
impression was approximately located at 12 o'clock. 

video camera 

microscope 

ring light source 

cartridge case 

Figure 4. Imaging system. 

on-screen image 
of cartridge case 
head 

PC and 
frame-grabber 

A custom program--hereinafter referred to as TREASURE12 (from the words: trace and measure)
was used to obtain. several metrics pertaining to each cartridge case and in particular the FP impression. 
TREASURE displays images of cartridge case heads (normally or as a photographic negative) on-screen 
and permits the user to trace the outline of the firing pin impression. Tracing is initiated by double
clicking the left mouse button. This produces an anchor point from which a rubber-banded line is 
drawn to the current mouse position. A single click of the left button produces a new anchor point. 
Thus the boundary of the impression is approximated by a number of straight line segments. A final 
double-click of the left button closes the traced contour and initiates measurement. All measurements 
are logged to a ASCII file and the traced boundary is also saved (see Figure 6). TREASURE 
automatically locates the centroid of the FP impression when a new image is loaded. The underlying 
algorithm is similar to that developed for the GUI in FIREBALL. The algorithm comprises a 
calculation of the maximum value of the morphological gradient, thresholding, binary erosion, and 
calculation of the centroid. Details of the dilation and erosion operations can be found in Mehnert, 
Cross, Smith, and Chia (1995, p. 34). The algorithm is as follows: 

IO Model DT2855 QuickCapture, Data Translation Incorporated, Marlboro, MA, USA. 
II Model TC354X, Burle Industries Incorporated, Lancaster, PA, USA. 
I2 Written in ANSI C for ffiM's OS/2 2.x operating system. Written by Andrew Mehnert, 1995. All 
rights reserved. 
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(1) Let f(x, y) be the function describing the grey-level surface of the image; i.e. the value of f 

at (x, y) represents a brightness value in the range [0,255]. Find the maximum value, t , of 

the morphological gradient of f viz. 

(
JE9B-f0B) t=max 

(x,y) 2 ' 

where B is a 3x3 cross-shaped structuring element. 

(2) Obtain the threshold set T = { ( x, y )jJ( x, y) ;::: t}. 

(3) Erode the threshold set: T' = T 0 B. 

(4) Determine the mean of the x coordinates and the mean of the y coordinates for T' thus 

obtaining the centroid (:X, y). 

The images in Appendix A and Appendix C reveal that the boundary of a FP impression is not 
always well defined. Often the boundaries are pitted, blurred, broken, or are ambiguous because of 
double strike or brightness flare. The following procedure was adopted for all tracing: 

(i) view the image as both a (photographic) positive and negative and decide which is clearer to 
trace; 

(ii) using the centre of the impression as a reference point, the boundary constitutes the first 
enclosing border; 

(iii) in the case of double strike, trace the most distinct single impression-do not merge boundaries. 
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(a) 

firing pin impression 

(b) 

Figure 5. Head of a cartridge case fired in a Ruger 10/22 self loading rifle: (a) digitised light 
micrograph; (b) 3D perspective view-DIMPAL (Mehnert, 1994b) command: 
swface( byte( sqrt( image) *4 ), 8) 
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Traced FP impression. 

Bounding circle, 
centred on the 
centroid of the 
cartridge case head. 

Circle, centred on the 
centroid of the 
cartridge case head 
and passing through 
the centroid of the FP 
impression. 

Figure 6. Image (negative) of the head of a rim-fire cartridge case traced using TREASURE. 

After tracing, TREASURE calculates the following: 

(i) centroid of the FP impression (.X, y) where X=_!_ Jf X dA and y = _!_ Jf y dA ; 
A R A R 

y 

' 

' 

FP impression 

X 
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(ii) distance, D, from the centroid of the FP impression to the centroid of the cartridge case 
head; 

(iii)angle of orientation, <)> , of the centroid-to-centroid line; 

FP impression cartridge case head 

(iv)the moments of inertia (, = Jf /dA, IY = Jf x2dA, and product of inertia 
R R 

Pxy = J J xy dA about the centroid of the FP impression; 
R 

2Pxv 
(v) the angle of orientation of the principal centroidal axes viz. tan 28 = - · 

IX-/}' 

y 

I 
I 
I 
I 
I 

1 
principal centroidal axis 

I 
I 
I 

f FP impression 
I 

X 
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(vi)the first and second order moments of inertia I= fJ r dA and / 0 = fJ r2 dA , where 

R R 

r 2 = x 2 + i, about the centroid of the FP impression; 

y 

FP impression 

X 

(vii)Danielsson (1978) measure Jf w dA where w is the shortest distance to the boundary; 
R 

FP impression 

dA 

(viii)Area A and perimeter P. 

mEASURE generates a distance transform, using the chamfer 5-7 metric, for the silhouette of the 
traced FP impression and uses this to calculate Danielsson's measure. The chamfer 5-7 metric is an 
approximation to 5 times true Euclidean distance (see Borgefors, 1986). 

4.3.2. Selection of variables for discrimination and classification 
From the set of mEASURE measurements for a single cartridge case the following set of shape 

factors (normalised to be unity for a disk) can be calculated: 

p2 91t.f2 
CP2A = -- (P2A shape factor), cmoml = --3- (based on first order moment), 

41tA 4A 
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2~ A 
cmom2 = --2- (based on second order moment), and CG = - ? (Danielsson's G shape 

A 9n(df 

factor) where d = _!_ Jf w dA. 
A R 

These factors are rotation and size invariant. Another such parameter is the acute angle of intersection 
between the centroid-to-centroid line and the principal centroidal axis given by 

tan<j>- tanS 
tan a= . 

l+tan<j>tane 

Unfortunately the function tan is not continuous so that it is not possible to attach a sign to a . As a 
consequence a denotes only the closeness of the principal axis to the centroid-to-centroid line and not 
its relative direction. Given that all of the images captured for this study were captured under exactly 
the same conditions, the length of the centroid-to-centroid line can also be considered to be a rotationally 
and scale invariant parameter. More generally, to guarantee scale invariance, the ratio of centroid-to
centroid length to the radius of the cartridge case head should be used. 

4.3.3. Results 
The MINITAB (1993) statistical package was used to analyse the data collected for the exhibits (3 

weapons x 10 rounds) in Table 1 - hereinafter referred to as data set 1. MINITAB implements 
discrimination and classification based on either linear discriminant scores (covariance homogeneity) or 
quadratic discriminant scores (Jack of covariance homogeneity). Appendix B is an edited Jog file of a 
MINITAB session for data set 1 Each feature parameter corresponds to a MINITAB worksheet column 
as shown in Table 2. 

Table 2 MIN/TAB column names 
MINITAB COLUMN NAME FEATURE PARAMETER 
CENTDIST D 
CENTANG 

<1> 

PRINCANG e 
MOMENT I J 
MOMENT2 Io 
MEANDIST d 
AREA A 
PERIM p 
MOMISHAP cmoml 

MOM2SHAP cmom2 

P2A CP2A 

G CG 
ANGDIFF a 

The column entitled FIREARM contains the integers 1, 2, and 3 representing respectively the Ruger, 
Winchester, and Erma-Werke rifles. The correlation matrix for the shape factors indicates that they are 
highly correlated and indeed the factors cmoml and cmom2 are very highly correlated (1.00 to two 

decimal places). Dotplots for the variables CENTDIST, G, and ANGDIFF for each firearm give an 
indication of the separatory characteristics of these variables. In addition the dotplots indicate that the 
variables are approximately normally distributed. The DISCRIM command was used to perform linear 
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discriminant analysis- under the assumptions of multivariate normality and covariance homogeneity. 
The subcommand XV AL invokes cross-validation (Lachenbruch' s holdout procedure): 

Denote the set of observations belonging to group (firearm) one TC 1 , to group two rc
2

, and to 

group three TC3 . 

1. Start with the TC1 group of observations. Omit a single observation and derive a classification 

rule based on the remaining TC1 observations, and the TC 2 and rc3 observations. 

2. Classify the holdout observation using this classification rule. 

3. Repeat steps 1 and 2 until all TC1 observations have been classified. 

4. Repeat steps 1 to 3 for the TC2 and then the TC3 observations. 

Cross-validation compensates for the bias introduced by using the same observations to construct and 
evaluate the classification rule. Appendix B shows the results of discrimination and classification using 

just a single shape factor: first CG, then cmom2~• and finally CP2A. Clearly these shape factors alone 

can discriminate between the three different shaped FP impressions. Next Appendix B shows the results 
of discrimination and classification using just a . This time only 90% of the observations are correctly 
classified. Three of the Erma-Werke observations are misclassified. This is not surprising as the shape 
of the FP impression is circular and for a perfect circle there are infinitely many principal centroidal 
axes. The results of discrimination and classification using just D follow. Once again there are 
misclassifications. Next Appendix B shows the results of discrimination and classification using both 
a and D . This time there are no misclassifications. Thus for data set I classification and 
discrimination on the basis of shape alone or on both location and orientation is sufficient. Figure 7 is a 

plot of the ordered triples ( D, a, CG) for all of the observations. Three clusters of points are clearly 

seen. Next Appendix B shows the results of discrimination and classification using CG, cmom2, CP2A, 

a, D. A plot of the first three principal components13, which account for 99.8% of the variability 
exhibited by all of the variables, is shown in Figure 8. An examination of the squared distances between 
groups output for each DISCRIM command in Appendix B shows that this last combination of variables 
provides the best separation. 

Winchester 

Ruger 

Enna-Werke 

Figure 7. Plot of the triples ( D, a, CG) for data set 1. 

13 Principal components analysis is a multivariate technique primarily concerned with data reduction. 
Several variables are replaced by a smaller number of principal components--each of which is a 
particular linear combination of the original variables-that account for most of the original variablity. 
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Figure 8. Plot of the first three principal 
components for data set 1. 

Finally Appendix B shows the classification results for the 6 rounds obtained from the two additional 
Ruger 10/22 SLRs. These rounds, though not used in the construction of the classification function, 
were unambiguously classified as having been fired in a Ruger 10/22 SLR. 

4.4. Case study 2: five different make/model rifles; all rectangular FPs 
For the previous case study each make/model weapon produced a distinctly different shaped FP 

impression. Thus discrimination and classification based solely on shape was adequate. For this case 
study 150 spent 0.22 calibre cartridge cases, 30 rounds from each of five different make/model rifles, 
were obtained for study (see Table 3). The rifles were chosen because they all produce rectangular 
shaped FP impressions. As before TREASURE was used to trace and measure the captured images of 
the cartridge case heads. Unfortunately the quality of two of the images, one of a Fast Deer case and the 
other of a Glenfield case, was so poor that they could not be traced (see Appendix C). It was decided to 
use 29 cases from each weapon to construct a classification rule and to use the remaining 3 
images--AR7, JW-20, and Armi Jaeger-to test it. 

Table 3. Data set comprising five rectangular shaped FP impressions. 

Make/Model Calibre Serial Number No. Cases 

ColtAR7 22LR A28092 29 rounds 
JW-20 (China) 22LR 230492 29 rounds 
Armi Jaeger (Italy) 22LR 19690 29 rounds 
Fast Deer (China) 22LR 840158 29 rounds 
Glenfield Model 60 (Marlin) 22LR 22433098 29 rounds 

4.4.1. Selection of variables for discrimination and classification 
Hereinafter the measurements obtained for the exhibits listed in Table 3 are referred to as data set 2. 

Appendix Dis an edited log file of a MINITAB session for data set 2. Each worksheet column name 
has the same meaning as for the previous case study with the exception of the ANGDIFF and FIREARM 
columns. Here the ANGDIFF column is defined to be the values a = <j>- 8. As each weapon produces 

a rectangular FP imprc;!ssion that is taller than wide the major principal centroidal axis is always 
vertically aligned. Consequently the signed angular difference between the orientation of the centroid-to-
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centroid line and the major principal centroidal axis conveys more information than the magnitude of 
the acute angle of intersection alone (used for data set 1). The FIREARM column contains the integers 
I, 2, 3, 4, and 5 representing respectively the Colt AR7, JW-20, Armi Jaeger, Fast Deer, and Glenfield 
Model 60 rifles. Given the reasonably large size of data set 2 it was feasible to assess multivariate 
normality. To begin with each variable was assessed for univariate normality. For each weapon and 
each variable this involved ordering the observations, calculating their standard normal quantiles, and 
calculating the Pearson product moment correlation coefficient between the ordered scores and standard 
normal quantiles. Using MINITAB this procedure reduces to 

MTB > NSCORES Cl ClOO 
MTB > CORR Cl ClOO 

where Cl contains the observations on a single variable for a single weapon and CIOO is used to hold 
the standard normal quantiles. Table 4 lists the correlation coefficients for a selection of variables. 
Each correlation coefficient r is used in the following test of normality: 

H0 : Observations are from a normal distribution. 

H A: Observations are not from a normal distribution. 

If r > rc then do not reject H0 and conclude that the observations are from a normal 

distribution, otherwise reject H0 and conclude that the observations are not from a 

normal distribution. 

For a test of normality at the 5% level of significance and for samples of size n=29 the critical value is 
rc = 0.964 (see Johnson & Wichern, 1988, p. 151). The shaded entries in Table 4 represent 

observations on a variable for a specific rifle that failed this test of normality. 

Table 4. Correlation between ordered observations and standard normal quantiles for each variable 
and each rifle. 

ColtAR7 JW-20 Arrni Jaeger Fast Deer Glenfield 60 
CENTDIST 0.997 0.991 0.987 <,. 0333 .· .. .. , 

0.946 
MOMENT2 0.984 >...... 'tv,:-J~.t , \ i 0.968 ,· .. 0;924<••'•·. 0.979 
MEANDIST 0.975 ~··ii •o\95.5····.\ .•.•.•. o:956>>'·.·•··•···· •• 

0;959······ . 0.904 
AREA 0.986 rx.·· .. ············0.941 ;·····< 0.965 .> .. >0.936 ... 0.972 
PERIM 0.987 0.930•'.•.············.· 0.994 •. 0.958······ 0.979 
MOM2SHAP · ···· <o:956 > 0.990 0;899 / 0.986 0.990 
P2A 0.987 0.984 0.988 0.983 0.990 
G 0.969 0.974 0.985 0.988 0.989 
ANGDIFF 0.978 0.988 0.995 0.984 0.988 

Note: shaded cells are values below the critical value of 0.964 for a.=0.05 and n=29. 

Thus it is only the variables P2A, G, and ANGDIFF that exhibit univariate normality for each weapon. 
Next these variables were examined pairwise for bivariate normality. For each pair in turn and for each 
weapon a chi-square plot (Johnson & Wichern, 1988, p. 153) was constructed. This is a plot of the 

ordered squared generalised distances dJ = (x j -X)' s-l (X j- X), j = 1,2, ... ,n against percentiles 

of the x; distribution, where XI' x2' ••• ' xn are the bivariate observations. "Although these distances 

are not independent or exactly chi-square distributed, it is helpful to plot them as if they were . . .. The 
plot should resemble a straight line. A systematic curved pattern suggests lack of normality. One or two 
points far to the right of the line indicate large distances, or outlying observations, that merit further 
attention" (Johnson & Wichern, 1988, p. 152 ). The 15 chi-square plots (5 weapons and 3 different 
pairings of variables) are shown in Appendix E. Appendix F contains the listings of the MINITAB 
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macros written to generate these plots. Some of the plots exhibit non-linear behaviour at their extremes 
and there is evidence of outliers. However there is sufficient linearity to conclude that the triple 

( C P2A, CG, a) is approximately multivariate normal. Though it is possible to extend the chi-square 

plot to check for higher order multivariate normality "for practical work it is usually sufficient to 
investigate the univariate and bivariate distributions" (Johnson & Wichern, 1988, p. 151). 

4.4.2. Results 
Appendix D shows the dotplots for the variables P2A, G, ANGDIFF, and AREA and then the output 

from the DISCRIM command using cross-validation (Lachenbruch's holdout procedure) and quadratic 
discriminant scores. Johnson and Wichern (1988, p. 513) state that "if doubt exists as to the 
appropriateness of a linear or quadratic rule, both rules can be constructed and their error rates 
examined using Lachenbruch's holdout procedure". Indeed for data set 2 the quadratic rule gave better 

results than the linear rule - for the triple ( C P2A, CG, a) 89% of all observations are classified 

correctly for the quadratic rule as opposed to 85.5% for the linear rule (not shown in Appendix D). 
These variables describe only the shape and orientation of the FP impressions. Intuitively one would 
expect that by including a variable that measures the relative size of the FP impressions the quality of 
classification could be improved. Referring again to Table 4 candidate variables are MOMENT2, 
MEANDIST, and AREA. MEANDIST is most definitely non-normal. This leaves only MOMENT2 
and AREA. Both variables failed the normality test for the JW-20 and the Fast Deer. AREA did 
however achieve higher correlations for these two weapons than did MOMENT2. The correlations are 
still very high and so it is perhaps reasonable to assume normality for AREA, concluding that the 
apparent lack of normality is a consequence of bias introduced during tracing. Appendix D shows the 
results of quadratic discrimination using the variables CP2A, CG, a, and A. Indeed the quality of 

classification has been improved, now 92.4% of the observations are correctly classified. Figure 9 is a 
plot of the first three principal components for the variables C P2A, CG, a, and A. 

Figure 9. Plot of the first three principal components for the 

variables CP2A, CG, a, and A. 
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Finally Appendix D shows the classification results for the three leftover rounds: AR7, JW-20, and Armi 

Jaeger. Using the quadratic classification rule based on the triple ( CPZA, C0 , a) the three rounds were 

correctly classified. 

4.5. Discussion 
The two case studies demonstrate that discriminant analysis using a set of feature parameters that 

describe the size, shape, and orientation of the FP impression can be used to classify an arbitrary spent 
cartridge case to a specific make and model of weapon. The traditional P2A shape factor and 
Danielsson's G factor appear to have good separatory properties even when dealing with FP impressions 
all of the same shape. The orientation of the major principal centroidal axis relative to the centroid-to
centroid line also has good separatory properties. Area, or more generally the area of the FP impression 
relative to the area of the head of the cartridge case, also appears to be a useful separatory variable. 
However, in general, it may be of little value because "the size, and to some extent the shape, of a firing 
pin impression will depend on the depth of the penetration of the pin. Frequently a cartridge at the 
moment of firing is not seated firmly against the shoulder of the chamber, and 'normal' depth of 
penetration will not be achieved" (Mathews, 1962, p. 24). In poorly manufactured or well used firearms 
the firing pin may not always strike in exactly the same place. Thus it is not surprising that the 
centroid-to-centroid distance turned out to be a rather poor separatory variable; in particular it exhibited 
complete lack of normality for the Fast Deer. Some other shape factors that are worthy of investigation 
include: (i) aspect ratio: ratio of the lengths of the major and minor principal centroidal axes, and (ii) 
the mean, standard deviation, etc. of a chosen set of normalised ray parameters (see Barker, Vuori, 

Hegedus, & Myers, 1992). The shape factors Co' cmoml 'cmom2' and CP2A are based on the 2D 

planar shape (silhouette) of the FP impression and do not take into account the grey-level dimension. It 

is possible to extend the general silhouette moments Mpq = JJ xpyq dxdy (refer to section 4.3.1. for 

which it can be seen that lx = M02 , IY = M20 , and Pxy = M 11 ) to grey level moments 

Gpqr = Jf xpyq[f(x,y)]' dxdy (Savini, 1988, p. 147) where f(x,y) is the grey level surface of the 

FP impression . This leads to the possibility of defining shape descriptors based on the moment set 

{ Gpqr} that embody the 3D morphology of the FP impression. 

Several further case studies are warranted. The results for case study 1 suggest that the within group 
(make/model) variability is negligible compared to the between group variability. However data set 1 is 
far too small to make any statistically significant conclusion. Mathews (1973) stated in relation to the 
photographic compilations in Mathews (1962, 1973) "that there was frequently a considerable variation 
in the shape, dimensions, and character of firing pin impressions made by different specimens of hand 
guns of the same make and model" (p. 613). Thus a new data set needs to be compiled comprising 
measurements on spent cartridge cases from each of several different make/model rifles and such that 
for each make/model several physically different weapons are used. For example data set 2 could be 
enlarged to include four independent rifles of each make/model. This would lead to a sample of 
5x4x30=600 cartridge cases. A classification rule would then be constructed and using Lachenbruch's 
holdout procedure the proportion of correct classifications determined. Alternatively the data set could 
be divided into two separate sets, one to be used to construct the classification rule, and the other to 
evaluate its performance. Another case study is required to examine the variability introduced by using 
ammunition from different manufacturers. "Copper from different sources may have different degrees of 
hardness due to impurities. Furthermore, the depth of the penetration [of the firing pin] depends on the 
thickness of the metal in the head of the shell, and this may vary from manufacturer to manufacturer" 
(Mathews, 1962, p. 25). 

It was mentioned earlier that the positions of the ejector and extractor marks, relative to the FP 
impression, can be of value in determining the make/model of firearm. Indeed it would be desirable to 
use these additional variables for discriminant analysis. Unfortunately, though, extractors and ejectors 
seldom leave identifiable marks on rim-fire cases (Mathews, 1973, p. 614); this means of course that one 
is even less likely to see such marks in a digitised (sampled) micrograph of the head of a cartridge case. 
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In any case "these marks are of secondary significance because unfired cartridges are frequently removed 
by means of the extractor and ejector, thus possibly producing an initial set of marks which have no 
relation to those put on later at the time of firing" (Mathews, 1973, p. 615). 

For the two case studies continuous variables were used for discriminant analysis. However it might 
be useful to use some qualitative (e.g. aspect: taller than wide, or wider than tall) or categorical (e.g. 
shape: circular, rectangular, ... ) variables. Unfortunately multivariate normality is then no longer a 
sensible assumption. If it is reasonable to assume covariance matrix homogeneity for the populations 
then Fisher's procedure can be used; because there is no requirement of multivariate normality. 
"Computer simulation experiments . . . indicate that Fisher's linear discriminant function can perform 
poorly or satisfactorily depending upon the correlations between the qualitative and continuous 
variables" (Johnson & Wichern, 1988, p. 527). Ultimately though, as with any proposed classification 
method, performance should be evaluated using test data. 

5. SUMMARY AND CONCLUSION 

The case studies described in this report demonstrate that scale and rotation invariant feature 
parameters relating to the shape, size, and orientation of the FP impression can be used to identify a 
fired 0.22 rim-fire cartridge case to a specific make/model weapon. Further research is needed to assess 
the performance of discriminant analysis, using the aforementioned feature parameters, when dealing 
with more than one firearm of a specific make and model. It must be acknowledged that "manufacturers 
frequently deliberately change the shape, size, and even the type of firing pin used on a particular 
model" (Mathews, 1973, p. 614). Effectively this introduces subgroups for make/model firearms 
according to the serial number (reflecting the various production lots). For large numbers of 
make/model firearms it is likely that the observations for some will cluster together in discriminant 
space. The consequence of this is that the classification of a new observation then equates to identifying 
a hit list of possible weapons in which the evidence cartridge case may have been fired. 

On completion of the additional studies, and experiments with other shape factors, a final set of 
feature parameters will have been determined. The next step will be to implement the classifier in 
custom software. The software will need to be able to acquire images from a frame-grabber, permit the 
user to trace the FP impression, and to classify a new observation based on a classification rule. In 
practice new make/model/lot firearms that come into the possession of a Forensic Ballistics Unit would 
be test fired and the exhibit cases traced and their measurements forwarded to a central body responsible 
for periodically updating the classifier. When investigators recover a spent case at the scene of a crime 
the classifier would be used to determine the possible make/model/lot of firearm from which it 
originated. It would even be possible to expand the classifier to provide on-screen viewing of evidence 
and hit-list cartridge cases. 

Classification based on discriminant scores involves assigning a new observation to the closest group 
(make/model) based on either a linear or quadratic distance function. Alternatives to discriminant 
analysis for classification include neural networks and expert systems. Neural networks offer the ability 
to classify or recognise an input pattern even when that pattern is slightly distorted; i.e. they possess a 
certain noise immunity (Kung, 1993, p. 8). A neural network processing/retrieval system comprises two 
subsystems: feature extraction, and a neural network. In the case of FP impressions a geometric 
representation such as chain coding, Fourier coefficients, or a set of feature parameters constitutes the 
output from the feature extractor. For classification applications neural networks based on either a 
supervised or unsupervised learning model are appropriate. In the former case the network is trained 
using many pairs of input/output training patterns, and in the latter the network is trained using only the 
set of input patterns (the network must adapt based on previous patterns). The specific neural network 
model chosen and its specific design are application dependent. One of the disadvantages of using a 
neural network is that "most neural network algorithms are computationally intensive and iterative in 
nature" (Kung, 1993, p. 14). In addition problems can arise in relation to the training of the network 
(Phillips, Millar, & Smith, 1993, p. 1): 
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(i) for non-linear networks the back-propagation algorithm is often used to train the network; 
unfortunately the algorithm is liable to become trapped in local minima in the energy 
function (analogous to the discriminant function/rule); 

(ii) training may be difficult to control; overtraining and redundancy are possible; 
(iii) non-linear and multi-layer networks are generally slow to learn. 

An expert system could be developed that classifies a new observation based on a classification tree and 
a set of intelligent rules (hierarchical classification). At the top of the tree all observations are 
considered as one group. This group is then split into several subgroups on the basis of some rule. For 
example the classifier might classify the shape of the FP impression to one of the basic types shown in 
Figure 10. Then for each of these new groups another rule or set of rules are used to further subdivide; 
e.g. aspect ratio. A hypothetical classification tree is shown in Figure 11. 

CIDUO 
bar rectangular circular 

OG 
semi -circular U shaped 

Figure 10. A simple shape classification for the most common shapes of FP impression. 
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Figure 11. Hypothetical classification tree. 
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centroid line 
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' ' ', 

In spite of the difficulties and uncertainties associated with the study of different types of rim-fire FP 
impressions the fact remains that the morphology, size, and orientation of the FP impression is of great 
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aid in determining the make and model of firearm in which the evidence cartridge was fired. The 
inherent variability of FP impressions made by several specimens of the same make and model weapon 
renders identification based on precision measurements unsatisfactory. Thus scale and rotation 
invariant feature parameters must be used. Discriminant analysis using a set of such feature parameters 
offers the potential for classifying an evidence cartridge case to a specific make and model weapon. 
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APPENDIX A 

Case Study 1: Micrographs 

Erma-Werke EM1.22 
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Ruger 10/22 
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Winchester 9422 XTR 
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MTB > INFO 

Column 
C1 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
C10 
Cll 
C12 
C13 
C14 

Name 
CENTDIST 
CENTANG 
PRINCANG 
MOMENT1 
MOMENT2 
MEANDIST 
AREA 
PERIM 
MOM1SHAP 
MOM2SHAP 
P2A 
G 
ANGDIFF 
FIREARM 

Count 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

APPENDIXB 

Case Study 1 Results 

MTB >LET C13=ABS(ATAN((TAN(C2)-TAN(C3))/(1+TAN(C2)*TAN(C3)))) 

MTB > CORR C9-C12 

MOM1SHAP MOM2SHAP 
MOM2 SHAP 1. 0 0 0 
P2A 0.991 0.992 
G 0.991 0.995 

MTB > DOTPLOT I CEN'l'DIST I ; 

SUBC> BY 'FIREARM'. 

FIREARM 
1 

P2A 

0.993 

-------+---------+---------+---------+---------+---------CENTDIST 
FIREARM 
2 

FIREARM 
3 

-------+---------+---------+---------+---------+---------CENTDIST 

-------+---------+---------+---------+---------+---------CENTDIST 
174.0 180.0 186.0 192.0 198.0 204.0 

MTB > DOT PLOT I G I ; 

SUBC> BY I FIREARM I • 

FIREARM 
1 

FIREARM 
2 

FIREARM 
3 

+---------+---------+---------+---------+---------+-------G 

+---------+---------+---------+---------+---------+-------G 

+---------+---------+---------+---------+---------+-------G 
0.90 1.05 1.20 1.35 1.50 1.65 

MTB > DOTPLOT 'ANGDIFF'; 
SUBC> BY I FIREARM I • 

FIREARM 
1 

FIREARM 
2 

FIREARM 
3 

+---------+---------+---------+---------+---------+-------ANGDIFF 

+---------+---------+---------+---------+---------+-------ANGDIFF 

+---------+---------+---------+---------+---------+-------ANGDIFF 
0.00 0.30 0.60 0.90 1.20 1.50 
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MTB > DXSCRXM 'FXREARM' USXNG 'G'; 
SUBC> XVJ\.L. 

Linear Discriminant Analysis for FIREARM 

Group 
Count 

1 
10 

2 
10 

3 
10 

Summary of Classification with Cross-validation 

Put into . . . . True Group .... 
Group 1 2 3 
1 10 0 0 
2 0 10 0 
3 0 0 10 
Total N 10 10 10 
N Correct 10 10 10 
Proport. 1. 00 1.00 1.00 

N = 30 N Correct 30 Prop. Correct 

Squared Distance Between Groups 
1 2 3 

1 0.000 84.942 96.117 
2 84.942 0.000 361.773 
3 96.117 3 61.773 0.000 

Linear Discriminant Function 
3 

-410.9 
839.8 

for Group 
1 2 

Constant -740.1 -1137.1 
G 1127.0 1397.0 

MTB > DXSCRXM 'FIREARM' USING 'MOM2SHAP'; 
SUBC> XVAL. 

Linear Discriminant Analysis for FIREARM 

Group 
Count 

1 
10 

2 
10 

3 
10 

Summary of Classification with Cross-validation 

Put into . . . . True Group .... 
Group 1 2 3 
1 10 0 0 
2 0 10 0 
3 0 0 10 
Total N 10 10 10 
N Correct 10 10 10 
Proport. 1. 00 1. 00 1.00 

N = 30 N Correct 30 Prop. Correct 

Squared Distance Between Groups 
1 2 3 

1 0.000 112.567 63.353 
2 112.567 0.000 344.816 
3 63.353 344.816 0.000 

Linear Discriminant Function 
3 

-815.4 
1601.7 

for Group 
1 2 

Constant -1168.5 -1737.7 
MOM2SHAP 1917.4 2338.2 

MTB > DISCRIM 'FXREARM' USXNG 'P2A'; 
SUBC> XVAL. 

Linear Discriminant Analysis for FIREARM 

Group 
Count 

1 
10 

2 
10 

3 
10 

Summary of Classification with Cross-validation 

Put into .... True Group .... 
Group 1 2 3 
1 10 0 0 
2 0 10 0 
3 0 0 10 
Total N 10 10 10 
N Correct 10 10 10 
Proport. 1. 00 1. 00 1.00 

N = 30 N Correct 30 Prop. Correct 

1.000 

1.000 

1.000 

Australian Institute of Security and Applied Technology, Edith Cowan University 

30 



Image Matching of Firearm Fingerprints 

Squared Distance Between Groups 
1 2 3 

1 0.000 82.193 58.856 
2 82.193 0.000 280.154 
3 58.856 280.154 0.000 

Linear Discriminant Function 
3 

-372.8 
889.9 

for Group 
1 2 

Constant -611.7 -969.9 
P2A 1140.0 1435.5 

MTB > DISCRXM 'FIREARM' USING 'ANGDIFF'; 
SUBC> XVAL. 

Linear Discriminant Analysis for FIREARM 

Group 
Count 

1 
10 

2 
10 

3 
10 

Summary of Classification with Cross-validation 

Put into . . . . True Group .... 
Group 1 2 3 
1 10 0 3 
2 0 10 0 
3 0 0 7 
Total N 10 10 10 
N Correct 10 10 7 
Proport. 1. 00 1.00 0.70 

N = 30 N Correct 27 Prop. Correct 

Squared Distance Between Groups 
1 2 3 

1 0.00 1269.47 4.67 
2 1269.47 0.00 1120.18 
3 4.67 1120.18 0.00 

Linear Discriminant Function for Group 
1 2 3 

Constant -680.30 -0.79 -602.95 
ANGDIFF 874.36 29.79 823.15 

Summary of Misclassified Observations 

Observtn True Fred X-val Group 
Group Group Group 

21 ** 3 1 1 1 
2 
3 

27 ** 3 1 1 1 
2 
3 

30 ** 3 1 1 1 
2 
3 

MTB > DISCRIM 'FIREARM' USING 'CENTDIST 1 ; 

SUBC> XVAL. 

Linear Discriminant Analysis for FIREARM 

Group 
Count 

Summary 

Put into 
Group 
1 
2 
3 
Total N 

of 

1 
10 

2 
10 

Classification 

3 
10 

with Cross-validation 

. . . . True Group .... 
1 2 3 

10 0 0 
0 7 4 
0 3 6 

10 10 10 
N Correct 10 7 6 
Proport. 1.00 0.70 0.60 

N = 30 N Correct 23 Prop. Correct 

Squared Distance Between Groups 
1 2 3 

1 0.0000 36.3770 50.1078 
2 36.3770 0.0000 1. 0970 
3 50.1078 1.0970 0.0000 

Linear Discriminant Function for Group 
1 2 3 

Constant -2543.9 -2131.9 -2064.0 

0.900 

Squared Distance Probability 
Fred X-val Fred X-val 
0.06 0.07 0.86 0.93 

1252.37 1421.56 0.00 0.00 
3.69 5.16 0.14 0.07 
0.13 0.15 0.82 0.89 

1243.72 1381.28 0.00 0.00 
3.23 4.43 0.18 0.11 
0.08 0.09 0.85 0.92 

1248.99 1405.40 0.00 0.00 
3.50 4.87 0.15 0.08 

0.767 
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CENTDIST 25.8 23.6 23.2 

MTB > DXSCRIM 'FXREARM' USING 'CENTDIST' 'ANGDIFF'; 
SUBC> XVAL. 

Linear Discriminant Analysis for FIREARM 

Group 
Count 

Summary 

Put into 
Group 
1 
2 
3 
Total N 

of 

N Correct 
Proport. 

1 
10 

2 
10 

3 
10 

Classification with Cross-validation 

.... True Group .... 
1 2 3 

10 0 0 
0 10 0 
0 0 10 

10 10 10 
10 10 10 

1.00 1. 00 1. 00 

N = 30 N Correct 30 Prop. Correct 1.000 

Squared 

1 
2 
3 

Constant 
CENTDIST 
ANGDIFF 

Distance Between Groups 
1 2 

0.00 1269.54 
1269.54 0.00 

50.96 1170.19 

Linear Discriminant 
1 2 

-2848.3 -2186.4 
24.2 24.3 

594.2 -251.5 

3 
50.96 

1170.19 
0.00 

Function 
3 

-2346.0 
21.7 

571.9 

for Group 

MTB > DISCRIM 'FIREARM' USING 'G' 'P2A' 'MOM2SHAP' 'CENTDIST' 'ANGDIFF'; 
SUBC> XVAL. 

Linear Discriminant Analysis for FIREARM 

Group 
Count 

Summary 

Put into 
Group 
1 
2 
3 
Total N 

of 

N Correct 
Proport. 

1 
10 

2 
10 

3 
10 

Classification with Cross-validation 

. . . . True Group .... 
1 2 3 

10 0 0 
0 10 0 
0 0 10 

10 10 10 
10 10 10 

1.00 1. 00 1. 00 

N = 30 N Correct 30 Prop. Correct 1.000 

Squared Distance Between Groups 
1 2 3 

1 o.oo 1713.11 205.42 
2 1713.11 0.00 1508.63 
3 205.42 1508.63 0.00 

Linear Discriminant Function 
3 

-3748.3 

for Group 

Constant 
G 
P2A 
MOM2SHAP 
CENTDIST 
ANGDIFF 

1 2 
-4343.3 -4712.3 
-3461.1 -6268. 9 

919.2 1542.9 
5758.6 9193.0 

22.1 21.6 
548.9 -445.8 

-4733.5 
1052.5 
6990.7 

19.8 
416.3 

MTB > PCA 'G' 'P2A' 'MOM2SHAP' 'CENTDIST' 'ANGDIFF'; 
SUBC> SCORES C20-C24. 

Eigenanalysis of the Correlation Matrix 

Eigenvalue 3.7692 1.2023 0.0198 0.0081 
Proportion 0.754 0.240 0.004 0.002 
Cumulative 0.754 0.994 0.998 1.000 

Variable PCl PC2 PC3 PC4 
G 0.506 -0.166 0.337 -0.286 
P2A 0.510 -0.111 0.171 0. 825 
MOM2SHAP 0.512 -0.080 0.219 -0.483 
CENTDIST -0.016 -0.910 -0.413 -0.030 
ANGDIFF -0.471 -0.354 0.799 0.061 

0.0006 
0.000 
1. 000 

PCS 
0.722 

-0.135 
-0.671 
-0.017 
-0.101 
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M'l.'B > D:ISCR:IM 'F:IREARM' USING 'G' 'P2A' 'MOM2SHAP' 'CEN'l'DIST' 'ANGD:IFF'; 
Stl'BC> PREDICT 1.25060 0.99325 1.11699 190 1.51576 
Stl'BC> PREDICT 1.31604 1.07971 1.20991 204 1.56262 
Stl'BC> PRED:ICT 1.22935 1. 03063 1.14456 198 1.55416 
Stl'BC> PRED:ICT 1.48998 1.08413 1.33957 210 1.53726 
Stl'BC> PRED:ICT 1.40464 1.09985 1.28092 203 1.54185 
Stl'BC> PREDICT 1.42976 1.10056 1.30827 206 1.53122. 

Prediction for Test Observations 

Set number 1 

Observation Pred. Group From Group Sqrd Distnc Probability 
1 1 

1 110.739 1.000 
2 2182.722 0.000 
3 382.890 0.000 

Set number 2 

Observation Pred. Group From Group Sqrd Distnc Probability 
1 1 

1 9.220 1.000 
2 1811.061 0.000 
3 274.253 0.000 

Set number 3 

Observation Pred. Group From Group Sqrd Distnc Probability 
1 1 

1 10.977 1.000 
2 1812.747 0.000 
3 199.024 0.000 

Set number 4 

Observation Pred. Group From Group Sqrd Distnc Probability 
1 1 

1 81.754 1. 000 
2 1920.299 0.000 
3 490.263 0.000 

Set number 5 

Observation Pred. Group From Group Sqrd Distnc Probability 
1 1 

1 14.948 1.000 
2 1759.022 0.000 
3 314.867 0.000 

Set number 6 

Observation Pred. Group From Group Sqrd Distnc Probability 
1 1 

1 26.260 1.000 
2 1704.769 0.000 
3 333.833 0.000 
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APPEND/XC 

Case Study 2: Sample Micrographs 

Case Study 2: Discarded Micrographs 
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APPENDIXD 

Case Study 2 Results 

M'l'B > J:Nli'O 

Column 
Cl 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
ClO 
Cll 
Cl2 
Cl3 
Cl4 

Name 
CENTDIST 
CENTANG 
PRINCANG 
MOMENT! 
MOMENT2 
MEANDIST 
AREA 
PERIM 
MOMlSHAP 
MOM2SHAP 
P2A 
G 
ANGDIFF 
FIREARM 

Count 
145 
145 
145 
145 
145 
145 
145 
145 
145 
145 
145 
145 
145 
145 

M'l'B > LET C13•C2-C3 

M'l'B > DOTPLOT I P2A I ; 

SOBC> BY 'FJ:REARM'. 

FIREARM 
1 

FIREARM 
2 

FIREARM 
3 

FIREARM 
4 

FIREARM 
5 

-----+---------+---------+---------+---------+---------+-P2A 

••• 0 • • 
• • • • • 0 0 ••• 

-----+---------+---------+---------+---------+---------+-P2A 

-----+---------+---------+---------+---------+---------+-P2A 

-----+---------+---------+---------+---------+---------+-P2A 

. . . . . . . .. 
• • • • • • • • • 0 •• 0 •• •• 

-----+---------+---------+---------+---------+---------+-P2A 
1.00 1.10 1.20 1.30 1.40 1.50 

M'l'B > DOT PLOT I G I ; 

SUBC> BY 'FJ:REARM'. 

FIREARM 
1 

FIREARM 
2 

FIREARM 
3 

FIREARM 
4 

FIREARM 
5 

-+---------+---------+---------+---------+---------+-----G 

•••• 0 • •• . . . . . . . . . . . . 
-+---------+---------+---------+---------+---------+-----G 

-+---------+---------+---------+---------+---------+-----G 

• • • 0. • • • • . . . . . . . . . . . . . . . . 
-+---------+---------+---------+---------+---------+-----G 

. . . . . 
••••••••••••••• 0 • 

-+---------+---------+---------+---------+---------+-----G 
1.08 1.20 1.32 1.44 1.56 1.68 

MTB > DOTPLOT 'ANGDJ:FF'; 
StJBC> BY I FJ:REARM I • 

FIREARM 
1 

FIREARM 
2 

FIREARM 
3 

-------+---------+---------+---------+---------+---------ANGDIFF 

-------+---------+---------+---------+---------+---------ANGDIFF 

-------+---------+---------+---------+---------+---------ANGDIFF 
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FIREARM 
4 

-------+---------+---------+---------+---------+---------ANGDIFF 

FIREARM 
5 

:. :::::: .. 
-------+---------+---------+---------+---------+---------ANGDIFF 

-0.24 -0.12 0.00 0.12 0.24 0.36 

M'l'B > DOTI?LO'l' I AREA I ; 

SOBC> BY 1 FXREARM 1
• 

FIREARM 
1 

FIREARM 
2 

FIREARM 
3 

FIREARM 
4 

FIREARM 
5 

-+---------+---------+---------+---------+---------+-----AREA 

-+---------+---------+-------~-+---------+---------+-----AREA 

-+---------+---------+---------+---------+---------+-----AREA 

-+---------+---------+---------+---------+---------+-----AREA 

-+---------+---------+---------+---------+---------+-----AREA 
3200 4800 6400 8000 9600 11200 

M'l'B > DXSCRXM 1 FXREARM 1 USXNG 1 1?2.11. 1 IGI 1 ANGDXFF 1 ; 

SOBC> QUADRATXC; 
SOBC> XVAL. 

Quadratic Discriminant Analysis for FIREARM 

Group 1 2 3 4 
Count 29 29 29 29 

Summary of Classification with Cross-validation 

Put into . . . . True Group .... 
Group 1 2 3 4 
1 29 1 0 1 
2 0 22 0 1 
3 0 0 28 2 
4 0 3 1 25 
5 0 3 0 0 
Total N 29 29 29 29 
N Correct 29 22 28 25 
Proport. 1.00 0.76 0.97 0.86 

N = 145 N Correct 129 Prop. Correct 

From 
Group 
1 
2 
3 
4 
5 

Generalized 
1 

-19.30 
0.51 

41.88 
15.04 
17.57 

Squared Distance 
2 3 

5.48 16.11 
-19.19 45.50 
25.40 -18.94 
-8.22 3.23 

-12.83 68.37 

Summary of Misclassified Observations 

to Group 
4 

1.17 
-11.13 
-3.51 

-18.75 
-7.06 

5 
29 

5 
0 
3 
0 
1 

25 
29 
25 

0.86 

0.890 

5 
93.73 
-9.21 
15.84 

-11.75 
-19.21 

Observtn True 
Group 

2 

Fred 
Group 

4 

X-val 
Group 

4 

Group Squared Distance Probability 
Pred X-val Fred X-val 

33 ** 1 5.18 5.18 0.00 0.00 
2 -15.23 -14.44 0.23 0.17 
3 14.98 14.98 0.00 0.00 
4 -17.37 -17.37 0.68 0.74 
5 -13.16 -13 .16 0.08 0.09 

37 ** 2 5 5 1 12.86 12.86 0.00 0.00 
2 -15.90 -15.33 0. 21 0.17 
3 62.50 62.50 0.00 0.00 
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4 -8.74 -8.74 0.01 0.01 
5 -18.53 -18.53 0.78 0.83 

44 ** 2 5 5 1 8.21 8.:21 0.00 0.00 
2 -16.50 -16.09 0.38 0.33 
3 49.32 49.32 0.00 0.00 
4 -10.87 -10.87 0.02 0.02 
5 -17.43 -17.43 0.60 0.65 

47 ** 2 5 5 1 11.40 11.40 0.00 0.00 
2 -16.09 -15.59 0.31 0.26 
3 71.62 71.62 0.00 0.00 
4 -5.96 -5.96 0.00 0.00 
5 -17.71 -17.71 0. 69 0.74 

51 ** 2 4 4 1 5.43 5.43 0.00 0.00 
2 -13.51 -11.88 0.20 0.10 
3 14.45 14.45 0.00 0.00 
4 -15.98 -15.98 0.68 0.76 
5 -12.58 -12.58 0.12 0.14 

57 ** 2 4 4 1 -8.89 -8.89 0.05 0.06 
2 -13.34 -11.60 0.44 0.24 
3 2.57 2.57 0.00 0.00 
4 -13.68 -13.68 0.52 0.69 
5 11.46 11.46 0.00 0.00 

58 ** 2 1 1 1 -13.28 -13.28 0.54 0.74 
2 -12.83 -10.75 0.43 0.21 
3 19.50 19.50 0.00 0.00 
4 -7.80 -7.80 0.03 0.05 
5 21.64 21.64 0.00 0.00 

87 ** 3 3 4 1 20.90 20.90 0.00 0.00 
2 3.20 3.20 0.00 0.00 
3 -12.41 -10.20 0.56 0.29 
4 -11.97 -11.97 0.44 0. 71 
5 4.29 4.29 0.00 0.00 

99 ** 4 3 3 1 10.16 10.16 0.00 0.00 
2 2.84 2.84 0.00 0.00 
3 -17.21 -17.21 0.92 0.97 
4 -12.27 -10.10 0.08 0.03 
5 13.83 13.83 0.00 0.00 

101 ** 4 1 1 1 -13.45 -13.45 0.84 0.96 
2 -6.34 -6.34 0.02 0.03 
3 10.21 10.21 0.00 0.00 
4 -9.74 -5.07 0.13 0.01 
5 45.91 45.91 0.00 0.00 

103 ** 4 2 2 1 -6.25 -6.25 0.01 0.01 
2 -16.62 -16.62 0.95 0.99 
3 27.55 27.55 0.00 0.00 
4 -10.63 -6.99 0.05 0.01 
5 -1.02 -1.02 0.00 0.00 

104 ** 4 3 3 1 12.23 12.23 0.00 0.00 
2 0.46 0.46 0.00 0.00 
3 -15.71 -15.71 0.64 0.74 
4 -14.52 -13.63 0.36 0.26 
5 5.09 5.09 0.00 0.00 

120 ** 5 2 2 1 7.20 7.20 0.00 0.00 
2 -16.67 -16.67 0.50 0.55 
3 56.76 56.76 0.00 0.00 
4 -8.66 -8.66 0.01 0.01 
5 -16.63 -16.25 0.49 0.44 

122 ** 5 2 2 1 10.14 10.14 0.00 0.00 
2 -16.06 -16.06 0.37 0.40 
3 31.11 31.11 0.00 0.00 
4 -15.46 -15.46 0.27 0.30 
5 -15.98 -15.44 0.36 0.30 

123 ** 5 4 4 1 20.04 20.04 0.00 0.00 
2 -2.86 -2.86 0.00 0.01 
3 16.74 16.74 0.00 0.00 
4 -12.59 -12.59 0.52 0.79 
5 -12.38 -9.94 0.47 0.21 

125 ** 5 2 2 1 16.55 16.55 0.00 0.00 
2 -16.75 -16.75 0.67 0.75 
3 80.86 80.86 0.00 0.00 
4 -3.83 -3.83 0.00 0.00 
5 -15.32 -14.56 0.33 0.25 

M'l'B > DXSCRJ:M 'f!XREARM' USJ:NG 1 P2A' 'G' 'ANGDJ:FF' '.A.REA I J 
SUBC> QUADRA'l'J:C; 
SUBC> XVAL. 

Quadratic Discriminant Analysis for FIREARM 

Group 1 2 3 4 5 
Count 29 29 29 29 29 
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Summary of Classification with Cross-validation 

Put into . . . . True Group .... 
Group 1 2 3 4 5 
1 29 1 0 0 0 
2 0 23 0 2 2 
3 0 0 29 0 0 
4 0 3 0 27 1 
5 0 2 0 0 26 
Total N 29 29 29 29 . 29 
N Correct 29 23 29 27 26 
Proport. 1. 00 0.79 1.00 0.93 0.90 

N = 145 N Correct 134 Prop. Correct 0.924 

From Generalized Squared Distance to Group 
Group 1 2 3 4 5 
1 -9.49 23.48 152.20 37.78 113.13 
2 154.00 -6.17 132.75 1. 32 3.09 
3 2374.15 89.51 -6.13 122.24 160.70 
4 144.90 4.80 90.44 -6.51 0.54 
5 192.78 0.46 153.88 5.79 -7.23 

Summary of Misclassified Observations 

Observtn True Pred X-val Group Squared Distance Probability 
Group Group Group Pred x-val Pred X-val 

32 ** 2 2 1 1 27.02 27.02 0.00 1.00 
2 10.72 39.55 1.00 0.00 
3 289.84 289.84 0.00 0.00 
4 48.17 48.17 0.00 0.00 
5 41.59 41.59 0.00 0.00 

33 ** 2 4 4 1 3 9. 712 39.712 0.00 0.00 
2 -0.799 0.688 0.43 0.26 
3 128.752 128.752 0.00 0.00 
4 -1.283 -1.283 0.54 0.70 
5 4.681 4.681 0.03 0.04 

37 ** 2 5 5 1 258.602 258.602 0.00 0.00 
2 -2.092 -1.221 0.12 0.08 
3 138.605 138.605 0.00 0.00 
4 4.970 4.970 0.00 0.00 
5 -6.149 -6.149 0.88 0.92 

47 ** 2 5 5 1 121.015 121.015 0.00 0.00 
2 -3.034 -2.478 0.33 0.28 
3 168.881 168.881 0.00 0.00 
4 6.521 6.521 0.00 0.00 
5 -4.398 -4.398 0.66 0.72 

51 ** 2 4 4 1 112.927 112.927 0.00 0.00 
2 -0.490 1.178 0.15 0.07 
3 106.844 106.844 0.00 0.00 
4 -3.650 -3.650 0. 71 0.77 
5 -0.512 -0.512 0.15 0.16 

57 ** 2 4 4 1 103.772 103.772 0.00 0.00 
2 -0.310 1.470 0.46 0.26 
3 92.836 92. 83 6 0.00 0.00 
4 -0.640 -0.640 0.54 0.74 
5 23.459 23.459 0.00 0.00 

101 ** 4 4 2 1 560.761 560.761 0.00 0.00 
2 11.752 11.752 0.09 0.99 
3 55.892 55.892 0.00 0.00 
4 7.121 21.369 0.91 0.01 
5 75.563 75.563 0.00 0.00 

103 ** 4 2 2 1 271.267 271.267 0.00 0.00 
2 -2.123 -2.123 0.93 0.99 
3 97.633 97.633 0.00 0.00 
4 2.969 8.301 0.07 0.01 
5 15.039 15.039 0.00 0.00 

123 ** 5 4 4 1 84.752 84.752 0.00 0.00 
2 10.255 10.255 0.00 0.00 
3 117.186 117.186 0.00 0.00 
4 -0.132 -0.132 0.51 0.81 
5 -0.017 2.780 0.48 0.19 

125 ** 5 2 2 1 236.040 236.040 0.00 0.00 
2 -3.586 -3.586 0.56 0.67 
3 160.957 160.957 0.00 0.00 
4 8.568 8.568 0.00 0.00 
5 -3.097 -2.204 0.44 0.33 

140 ** 5 2 2 1 689.277 689.277 0.00 0.00 
2 8.947 8.947 0.64 0.99 
3 85.835 85. 83 5 0.00 0.00 
4 17.568 17.568 0.01 0.01 
5 10.185 42.497 0. 35 0.00 
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M'l'B > 
SUBC> 
SUBC> 
SUBC> 
SUBC> 
SUBC> 

DXSCRXM 'FIREARM' USING 'P2A' 'G' 'ANGDIFF'; 
QUADRATIC; 
XVAL; 
PREDICT 1.18646 
PREDICT 1.26710 
PREDXCT 1. 03272 

1.39296 
1.44252 
1.11863 

Prediction for Test Observations 

Set nwnber 1 

0.176795; 
0.030980; 

-0.123141. 

Observation Pred. Group From Group Sqrd Distnc Probability 
1 1 

Set nwnber 2 

1 
2 
3 
4 
5 

-18.695 
5.256 

25.301 
0.160 

93.141 

1. 000 
0.000 
0.000 
0.000 
0.000 

Observation Pred. Group From Group Sqrd Distnc Probability 
1 2 

Set nwnber 3 

1 
2 
3 
4 
5 

-1.834 
-18.827 

32.795 
-13.360 

-8.627 

0.000 
0.933 
0.000 
0.061 
0.006 

Observation Pred. Group From Group Sqrd Distnc Probability 
1 3 

1 
2 
3 
4 
5 

66.272 
47.233 

-17.583 
5.371 

29.685 

0.000 
0.000 
1. 000 
0.000 
0.000 
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APPENDIXE 

ColtAR7 

Chi-square Plot for P2A and G 
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Chi-square Plot for P2A and ANGDIFF 
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JW-20 

Chi-square Plot for P2A and G 
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Anni Jaeger 

Chi-square Plot for P2A and G 
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Chi-square Plot for P2A and ANGDIFF 
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Chi-square Plot for G and ANGDIFF 
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Fast Deer 

Chi-square Plot for P2A and G 
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Marlin 

Chi-square Plot for P2A and G 
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Chi-square Plot for P2A and ANGDIFF 
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APPENDIXF 

MINITAB macros for the chi-square plots 
(written by Andrew Mehnert) 

MACRO: chiplot.mtb 
USAGE: • K1 is the column number for the observations on the first variable 

• K2 is the column number for the observations on the second variable 

• K3 is the column number of the column used to store the square distances d] 
• column (K3 + 1) is used to store the X~ percentiles 

• column (K3 + 2) is used to store the ordered distances d(~) 

no echo 
note Calculating the squared generalised distances 
name ck3 'd-sq' 
let k4=count(ckl) 
let k5=1 
let k6=mean(ckl) 
let k7=mean(ck2) 
covariance ckl ck2 ml 
invert ml ml 
execute 'chidist' k4 
note Calculating the chi-square percentiles 
execute 'chiperc' 
note Generating the chi-square plot 
execute 'gamplot' 
end 

MACRO: chidist.mtb 
NOTES: • called by macro chiplot.mtb 

• C100 is used as work area 
• K5 is used as a counter that counts from 1 ton (number of observations) 

let cl00(l)=ckl(k5)-k6 
let cl00(2)=ck2(k5)-k7 
copy clOD m2 
transpose m2 m3 
multiply m3 ml m4 
multiply m4 m2 clOD 
let ck3(k5)=cl00(1) 
let k5=k5+1 
end 

MACRO: chiperc.mtb 
NOTES: • called by macro chiplot.mtb 

• calculates the x; percentiles; i.e. x; e:-!) (n of them) 

let k3=k3+1 
name ck3 'Chi-sq%' 
set ck3 
l:k4 
let ck3=(ck3-0.5)/k4 
invcdf ck3 ck3; 
chisquare 2. 
end 
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MACRO: chiperc.mtb 
NOTES: o called by macro chiplot.mtb 

o sorts the the d] into ascending order to give d(~) 

0 plots the x; percentiles against the ordered distances 

let k3-k3+1 
name ck3 'd-sq ord' 
sort 'd-sq' 'd-sq ord' 
plot 'Chi-sq%'*'d-sq ord'; 
symbol; 
type 6; 
size 0.5; 
Title "Chi-square Plot"; 
TFont 1; 
Axis 1; 
Label "Ordered distances"; 
Axis 2; 
Label "Chi-square percentiles". 
end 
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