

# JRC TECHNICAL REPORTS

# EURL-HM-23 Proficiency Test Report

Determination of total As, Cd, Pb, Hg, and inorganic As in palm kernel expeller

> Peter Dehouck, Ioannis Fiamegkos, Hakan Emteborg, Jean Charoud-Got, James Snell, Aneta Cizek-Stroh and Piotr Robouch

2016



EUR 28282 EN



This publication is a Technical report by the Joint Research Centre (JRC), the European Commission's science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication.

#### **Contact information**

Name: Piotr Robouch Address: Retieseweg 111 – 2440 Geel, Belgium Email: <u>piotr.robouch@ec.europa.eu</u>

JRC Science Hub https://ec.europa.eu/jrc

JRC103688

EUR 28282 EN

PDF ISBN 978-92-79-64421-4 ISSN 1831-9424 doi:10.2787/370477

Luxembourg: Publications Office of the European Union, 2016

© European Union, 2016

The reuse of the document is authorised, provided the source is acknowledged and the original meaning or message of the texts are not distorted. The European Commission shall not be held liable for any consequences stemming from the reuse.

How to cite: Pieter Dehouck, Ioannis Fiamegkos, Hakan Emteborg, Jean Charoud-Got, Jams Snell, Aneta Cizek-Stroh and Piotr Robouch; "*EURL-HM-23 Proficiency Test Report*", EUR 28282 EN, doi:10.2787/370477

All images © European Union 2016, except: Cover Page, margouillatphotos, photo ID:91449685, 2016. Source: istockphoto.com



# EURL-HM-23 Proficiency test report

# Determination of total As, Cd, Pb, Hg and inorganic As in palm kernel expeller

Pieter Dehouck, Ioannis Fiamegkos, Hakan Emteborg, Jean Charoud-Got, James Snell, Aneta Cizek-Stroh and Piotr Robouch

# Table of contents

| Executive summary                                                        | . 1 |
|--------------------------------------------------------------------------|-----|
| 1 Introduction                                                           | . 2 |
| 2 Scope                                                                  | . 2 |
| 3 Set up of the exercise                                                 | . 2 |
| 3.1 Time frame                                                           |     |
| 3.2 Confidentiality                                                      | . 2 |
| 3.3 Distribution                                                         |     |
| 3.4 Instructions to participants                                         | . 3 |
| 4 Test item                                                              | . 3 |
| 4.1 Preparation                                                          | . 3 |
| 4.2 Homogeneity and stability                                            | .4  |
| 5 Assigned values and corresponding uncertainties                        | .4  |
| 5.1 Assigned values                                                      | .4  |
| 5.2 Associated uncertainties                                             | .6  |
| 5.3 Standard deviation of the proficiency test assessment, $\sigma_{pt}$ | .7  |
| 6 Evaluation of results                                                  | . 7 |
| 6.1 Scores and evaluation criteria                                       | .7  |
| 6.2 General observations                                                 | .9  |
| 6.3 Laboratory results and scorings                                      | .9  |
| 6.3.1 Performances                                                       | .9  |
| 6.3.2 Uncertainties                                                      | 10  |
| 6.3.3 Compliance assessment                                              | 11  |
| 6.3.4 Additional information from the questionnaire                      | 12  |
| 7 Conclusion                                                             | 13  |
| Acknowledgements                                                         | 14  |
| Annexes                                                                  | 17  |
| Annex 1: List of abbreviations                                           | 18  |
| Annex 2: JRC web announcement                                            | 19  |
| Annex 3: Invitation letter to NRLs                                       | 20  |
| Annex 4: Test item accompanying letter                                   | 21  |
| Annex 5: Confirmation of receipt form                                    | 22  |
| Annex 6: Questionnaire                                                   | 23  |
| Annex 7: Homogeneity and stability results                               | 25  |
| Annex 8: Results for total As                                            | 26  |
| Annex 9: Results for Cd                                                  | 28  |
| Annex 10: Results for Pb                                                 | 30  |
| Annex 11: Results for Hg                                                 | 32  |
| Annex 12: Results for iAs                                                | 34  |
| Annex 13: Overview of performance versus technique                       | 36  |
| Annex 14: Conformity as expressed by the participants                    | 37  |
| Annex 15: Experimental details as reported by the participants           | 38  |

#### **Executive summary**

The European Union Reference Laboratory for Heavy Metals in Feed and Food (EURL-HM) organised a proficiency test (EURL-HM-23) for the determination of total As, Cd, Pb, Hg, and inorganic As (iAs) mass fractions in palm kernel expeller to support Directive 2002/32/EC on undesirable substances in animal feed. This PT was open only to National Reference Laboratories (NRLs).

The EURL-HM-23 test item was a palm kernel expeller spiked with As, Cd, Hg and Pb. The homogeneity and stability of the test item were evaluated and the assigned values were derived from the results reported by the selected expert laboratories.

Thirty four National Reference Laboratories from thirty countries (all EU member states plus Iceland and Norway) registered to the exercise and reported results.

Laboratory results were rated using z- and zeta ( $\zeta$ -) scores in accordance with ISO 13528:2015. The following relative standard deviations for proficiency assessment ( $\sigma_{pt}$ ) were set according to the modified Horwitz equation: 15% for total As and iAs; 16% for Cd; 17% for Pb and 22% for Hg.

More than 87% of the participating NRLs reported satisfactory results (according to the z-score) for total As, Cd, Pb and Hg, and more than 76% for iAs, thus confirming their ability in monitoring maximum levels set by the EU Directive 2002/32/EC.

Most of the laboratories provided realistic estimates of their measurement uncertainties.

## **1** Introduction

Palm kernel expeller (PKE) is a by-product from the crushing and expelling of oil from the kernel (seed) of palm tree fruits. Because of its medium-grade protein, high fibre, good level of residual oil and high palmitic acid, it is widely used in compound feeds for adult ruminant livestock such as dairy cow, beef cow and sheep [1],[2],[3].

The European Directive 2002/32/EC on undesirable substances in animal feed [4] set a maximum level for arsenic in PKE of 4 mg kg<sup>-1</sup> relative to a feed with a moisture content of 12 %. In 2011 several notifications were introduced in the the Rapid Alert System for Food and Feed (RASFF) related to high arsenic content in PKE to be imported into a Member State (https://webgate.ec.europa.eu/rasff-window/).

The European Union Reference Laboratory for Heavy Metals in Feed and Food (EURL-HM), hosted by the Joint Research Centre in Geel (JRC-Geel), organised the proficiency test (PT) EURL-HM-23 for the determination of total arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg) and inorganic Arsenic (iAs) mass fractions in PKE. This PT was agreed with the Directorate General for Health and Food Safety (DG SANTE) in the annual work programme 2016 of the EURL-HM.

This report summarises the outcome of this PT.

## 2 Scope

As stated in Regulation (EC) No 882/2004 [5] one of the core duties of EURLs is to organise interlaboratory comparisons for the benefit of NRLs.

The present PT aims to assess the performance of NRLs in the determination of total As, Cd, Pb, Hg and iAs mass fractions in a PKE dry powder.

In addition, participants were asked to evaluate the conformity of the analysed material according to the maximum levels (MLs) set in legislation.

The reported results were assessed following the administrative and logistic procedures of the JRC Unit in charge of the EURL-HM, which is accredited for the organisation of PTs according to ISO 17043:2010 [6].

This PT is identified as EURL-HM-23.

## **3** Set up of the exercise

#### 3.1 Time frame

The organisation of the EUR-HM-23 exercise was agreed upon by the NRL network at the 10<sup>th</sup> EURL-HM Workshop held in Brussels on September 28-29, 2015. The exercise was announced on the JRC webpage on March 18, 2016 (Annex 2) and an invitation letter was sent (via e-mail) to all NRLs of the network on April 4, 2016 (Annex 3). The registration deadline was set to April 29, 2016. Samples were sent to participants on May 12, 2016. Dispatch was monitored by the PT coordinator using the messenger's parcel tracking system on the internet. The deadline for reporting of results was set to June 30, 2016.

#### 3.2 Confidentiality

The procedures used for the organisation of PTs, are accredited according to ISO 17043:2010 [6] and guarantee that the identity of the participants and the information provided by them is treated as confidential.

## 3.3 Distribution

Each participant received:

- One bottle of the test item (approx. 20 g of material);
- The "Test item accompanying letter" (Annex 4); and
- A "Confirmation of receipt form" to be sent back to JRC-Geel after receipt of the test item (Annex 5).

### **3.4 Instructions to participants**

Detailed instructions were given to participants in the "Test item accompanying letter" mentioned above. Measurands were defined as "the mass fractions of total As, Cd, Pb, Hg and iAs in palm kernel expeller dry powder".

Participants were asked to perform two or three independent measurements, to report their calculated mean  $(x_i)$  and the associated expanded measurement uncertainty  $(U(x_i))$  together with the coverage factor (k) and analytical technique used for the analysis.

Results were to be reported relative to a feed with a moisture content of 12 % as required by Directive 2002/32/EC.

Upon specific request from DG SANTE, no instructions were provided by the EURL-HM to laboratories on how to perform the moisture corrections necessary for reporting, since official control laboratories are supposed to know the proper procedure.

Participants received an individual code to access the on-line reporting interface, to report their measurement results and to complete the related questionnaire. A dedicated questionnaire was used to gather additional information related to measurements and laboratories (Annex 6).

Participants were informed that the procedure used for the analysis should resemble as closely as possible their routine procedures for this type of matrix/analytes and mass fraction levels.

The laboratory codes were given randomly and communicated to the participants by e-mail.

## 4 Test item

#### 4.1 Preparation

The Belgian NRL (CODA-CERVA) kindly provided the starting material - 10 kg of PKE in granulated form - that was used for the preparation of the test items. The delivered material was directly stored at 4 °C until processing.

The material was first cryogenically milled using a Palla VM-KT vibrating mill from Humboldt-Wedag (Köln, Germany). After milling, the material was sieved over a 250  $\mu$ m stainless steel sieve. About 8.5 kg of the fine fraction was collected and stored at 4 °C.

About 4.9 kg was mixed in a Dynamix CM-200 (WAB, Basel, Switzerland) for one hour. The material was then spiked with As, Cd, Pb and Hg: 4840.6 g of powder were placed in a 60 L plastic drum to which 10 L of MilliQ water were added to make a homogeneous suspension. Then 1 L of spike solution was added to the suspension and was stirred for 30 min. The spiked material was freeze dried in a Martin Christ model Epsilon 2-100D freeze dryer (Osterode, Germany). The freeze dried palm kernel expeller powder was mixed in a Dynamix CM-200 for one hour.

Portions of 20 g were manually filled into 100 ml amber glass acid-washed bottles using acid washed plastic spoons under an extraction point. The bottles were closed with acid washed inserts and screw caps.

Each vial was identified with a unique number and the name of the PT exercise.

#### 4.2 Homogeneity and stability

Measurements for the homogeneity and stability studies were performed by ALS Scandinavia AB (Luleå, Sweden).

Inductively coupled plasma mass spectrometry (ICP-MS) was used after microwave digestion (0.3-0.5 g of sample in a mixture of  $HNO_3/H_2O_2$ ) to determine the mass fractions of total As, Cd, Pb and Hg.

The statistical treatment of data was performed by the EURL-HM.

Homogeneity was evaluated according to ISO 13528:2015 [7]. The test item proved to be adequately homogeneous for the investigated analytes.

The stability study confirmed that the material was stable and the uncertainty contribution due to stability was set to zero ( $u_{st} = 0$ ) for all analytes.

The contribution from homogeneity  $(u_{hom})$  to the standard uncertainty of the assigned value  $(u(x_{pt}))$  was calculated using SoftCRM [8]. The analytical results reported by the expert laboratory and the statistical evaluation of the homogeneity and stability studies are presented in Annex 7 and Table 1.

### **5** Assigned values and corresponding uncertainties

#### 5.1 Assigned values

The assigned values  $(x_{pt})$  of the five measurands (mass fractions of total As, Cd, Pb, Hg and iAs in palm kernel expeller *relative to a moisture content of 12 %*), were derived from the results reported by expert laboratories, all selected on the basis of their demonstrated measurement capabilities.

The following expert laboratories analysed one or more measurands:

- ALS Scandinavia AB (Luleå, Sweden);
- CSPA Centro de Salud Pública de Alicante (Alicante, Spain);
- SCK-CEN Studiecentrum voor Kernenergie (Mol, Belgium);
- UBA Umweltbundesamt GmbH (Wien, Austria);
- Institute for Chemistry, University of Graz (Graz, Austria)
- JRC-Geel, Directorate F Health, Consumers and Reference Materials (Geel, Belgium)
- Faculty of Chemistry, University of Barcelona (Barcelona, Spain)

Expert laboratories were asked to use the method of analysis of their choice and no further requirements were imposed regarding methodology. They were also requested to report their results together with the associated expanded measurement uncertainty and with a clear and detailed description on how their measurement uncertainty was calculated. Results were to be reported *relative to a feed with a moisture content of 12* % as required by Directive 2002/32/EC.

- ALS Scandinavia used inductively coupled plasma mass spectrometry (ICP-MS) after closed microwave digestion of the sample (approx. 0.3-0.5 g in closed Teflon containers) using HNO<sub>3</sub> and  $H_2O_2$ . Analyses were made according to the modified ISO 17294-1, 2 and modified US EPA Method 200.8 for the measurement of total As, Cd, Pb and Hg.
- CSPA used ICP-MS after microwave digestion of the sample (approx. 0.25 g in quartz digestion vessels) using  $HNO_3$  and  $H_2O_2$  for measuring total As, Cd and Pb. The measurement of Hg was performed by Direct Mercury Analyser (DMA).
- SCK-CEN applied instrumental neutron activation analysis ( $k_{0}$ -NAA) for the determination of total As, Cd and Hg mass fractions. Three samples of (approx. 350 mg) were transferred in standard high-density polyethylene vials and weighed. Samples were irradiated for seven hours in channel Y4 of the BR1 reactor under a thermal flux of 3  $10^{11}$  n s<sup>-1</sup> cm<sup>2</sup> together with several IRMM-530 (Al-0.1 % Au alloy) neutron flux monitors and two reference materials (SMELLS II and NIST 1633b 'Coal fly ash') used for validation. Three spectra of each sample were collected on a  $k_0$ -calibrated HPGe detector under repeatability conditions: 1 day, 2 days and 13-15 days after irradiation for the determination of As, Ca and finally Hg, respectively. Only an indicative value was reported for Hg.
- UBA used ICP-MS according to ISO 17294-2 for the determination of As, Cd and **Pb**. The measurement of Hg was done by Cold Vapour Atomic Absorption Spectrometry (CV-AAS) according to ISO 12846, while iAs was determined using HPLC-ICP-MS according to ISO 17294-2.
- The University of Graz determined total As in about 250 mg of the sample after microwave-assisted digestion with HNO<sub>3</sub> by ICP-MS using (i) helium as the collision cell gas to remove polyatomic interferences and (ii) <sup>74</sup>Ge and <sup>115</sup>In as internal standards. For iAs, samples of about 500 mg were heated with a solution of CF<sub>3</sub>COOH/H<sub>2</sub>O<sub>2</sub> (95 °C for 60 min) and analysed by HPLC-ICP-MS.
- JRC-Geel analysed total As by ICP-MS; Cd and Pb by ID-ICP-MS; and Hg by CV-AAS, applying the following experimental protocols:

Samples (0.25 to 0.5 g) were digested in a Milestone Ultraclave microwave digestion apparatus with (i) 5 mL concentrated nitric acid (for As) or with (ii) 5 mL concentrated nitric acid and 0.5 mL of concentrated hydrofluoric acid (for Cd, Hg and Pb).

Digests for As, Cd and Pb measurement were diluted in 2 % nitric acid solution, and for Pb measurement, about 1  $\mu$ g/L Tl (IRMM-649 isotopic certified reference material) was added.

As, Cd and Pb were measured on an Agilent 7500ce inductively coupled plasma mass spectrometer, using a He-filled collision cell for As measurement. Arsenic was measured by external calibration with 5 standards.

For isotope dilution measurements, samples were blended with IRMM-622 (<sup>111</sup>Cd enriched) and Inorganic Ventures (<sup>206</sup>Pb enriched) isotopic certified reference materials prior to sample digestion. For Cd isotope dilution measurements, the <sup>113</sup>Cd/<sup>111</sup>Cd ratio was measured using digests of an unspiked sample and tabulated natural isotopic abundances as reference. For Pb measurement, the Pb molar mass was measured in an unspiked sample using the Tl internal standard (IRMM-649) as reference, and the isotope dilution measurement used the <sup>206</sup>Pb/<sup>208</sup>Pb ratio, again using the Tl internal standard as reference.

Digests for Hg measurement were mixed with 1 ml of a 6 % potassium permanganate solution and a 20 % hydroxylamine solution is added until the solution is colourless. The digests were made up to about 35 mL before measurement. Hg was measured on an Analytik-Jena Zeenit 600 atomic absorption spectrometer fitted with a "Hydrea" cold-vapour generation system and Ir-coated graphite furnace for sample concentration. Sub-samples of 10 mL of digests were measured batchwise alongside 4 standards for external calibration.

 The University of Barcelona analysed iAs weighing about 0.2 g of test material in PTFE vessels and carrying out a microwave digestion with a HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> solution followed by an HPLC-ICP-MS analysis.

#### 5.2 Associated uncertainties

The associated standard uncertainties of the assigned values  $(u(x_{pl}))$  were calculated following the law of uncertainty propagation, combining the standard measurement uncertainty of the characterization  $(u_{char})$  with the standard uncertainty contributions from homogeneity  $(u_{hom})$  and stability  $(u_{sl})$ , in compliance with ISO Guide 35 [9].

$$u(x_{pt}) = \sqrt{u_{char}^2 + u_{hom}^2 + u_{stab}^2}$$

The uncertainty  $u_{char}$  is estimated according to the recommendations of ISO Guide 35 [9]:

$$u_{char} = \frac{s}{\sqrt{p}}$$

where "s" refers to the standard deviation of the mean values obtained by the expert laboratories and "p" refers to the number of expert laboratories.

#### Figure 1:

Assigned values for EURL-HM-23. Circles and error bars represent reported values by the retained expert laboratories  $(x_i \pm 2u_i)$ .

The solid line represents the assigned value  $(x_{pt})$  while the dashed lines represent the assigned range  $(x_{pt} \pm 2 u(x_{pt}))$ 

#### 5.3 Standard deviation of the proficiency test assessment, $\sigma_{pt}$

All the relative standard deviations for PT assessment ( $\sigma_{pt}$ , in mg kg<sup>-1</sup> and %) presented in Table 1 were calculated using the Horwitz equation modified by Thompson [10].

| Table 1: | Results and associated expanded measurement uncertainties (as) reported by                                          |
|----------|---------------------------------------------------------------------------------------------------------------------|
|          | expert laboratories; the assigned values $(x_{pt}, u(x_{pt}) \text{ and } U(x_{pt})(k=2))$ ; the standard           |
|          | uncertainties ( $u_{char}$ , $u_{st}$ and $u_{hom}$ ); and the standard deviation for PT assessment $\sigma_{pt}$ . |
|          | Values are expressed in mg kg <sup>-1</sup> relative to PKE with a moisture content of 12 %.                        |

|                          | tot-As           | Cd                | Pb                 | Hg                 | iAs             |
|--------------------------|------------------|-------------------|--------------------|--------------------|-----------------|
| Expert 1                 | $2.2 \pm 0.15$   | $1.4 \pm 0.095$   | $0.83 \pm 0.066$   | $0.046 \pm 0.0046$ | 2.0 ± 0.2       |
| Expert 2                 | 2.14 ± 0.21      | $1.21 \pm 0.12$   | 0.902 ± 0.09       | 0.0488 ± 0.0049    |                 |
| Expert 3                 | $2.28 \pm 0.103$ | $1.27 \pm 0.0521$ | $0.822 \pm 0.0127$ | 0.0484 ± 0.00227   |                 |
| Expert 4                 | 2.624 ± 0.121    | $1.589 \pm 0.247$ |                    |                    |                 |
| Expert 5                 | 2.28 ± 0.4       | $1.29 \pm 0.019$  | $0.8461 \pm 0.013$ | $0.0493 \pm 0.007$ |                 |
| Expert 6                 | 2.17 ± 0.1       |                   |                    |                    | 2.07 ± 0.12     |
| Expert 7                 |                  |                   |                    |                    | $1.97 \pm 0.16$ |
| $x_{pt}$                 | 2.28             | 1.35              | 0.850              | 0.0481             | 2.01            |
| <i>u</i> <sub>char</sub> | 0.072            | 0.067             | 0.018              | 0.00073            | 0.030           |
| $u_{hom}$                | 0.037            | 0.015             | 0.008              | 0.00080            | 0.032           |
| $u_{st}$                 | 0                | 0                 | 0                  | 0                  | 0               |
| $u(x_{pt})$              | 0.081            | 0.068             | 0.020              | 0.00109            | 0.044           |
| $U(x_{pt})^*$            | 0.16             | 0.14              | 0.039              | 0.0022             | 0.09            |
| $\sigma_{pt}$            | 0.34             | 0.22              | 0.145              | 0.0106             | 0.30            |
| $\sigma_{pt}$ (%)        | 15%              | 16%               | 17%                | 22%                | 15%             |
| $u(x_{pt})/\sigma_{pt}$  | 0.24             | 0.32              | 0.14               | 0.10               | 0.14            |

## 6 Evaluation of results

#### 6.1 Scores and evaluation criteria

Individual laboratory performance was expressed in terms of z- and  $\zeta$ -scores according to ISO 13528:2015 [7]:

$$z_{i} = \frac{x_{i} - x_{pt}}{\sigma_{pt}}$$
Eq. 1  
$$\zeta_{i} = \frac{x_{i} - x_{pt}}{\sqrt{u^{2}(x_{i}) + u^{2}(x_{pt})}}$$
Eq. 2

where:  $x_i$  is the measurement result reported by a participant;

- $u(x_i)$  is the standard measurement uncertainty reported by a participant;
- $x_{pt}$  is the assigned value;
- $u(x_{pt})$  is the standard measurement uncertainty of the assigned value;
- $\sigma_{pt}$  is the standard deviation for proficiency test assessment.

The interpretation of the *z*- and  $\zeta$ - scores is done according ISO 13528:2015 [7]:

| $ \text{score}  \le 2$ | satisfactory performance   | (green in Annexes 8-13,15)  |
|------------------------|----------------------------|-----------------------------|
| 2 <  score  < 3        | questionable performance   | (yellow in Annexes 8-13,15) |
| $ score  \ge 3$        | unsatisfactory performance | (red in Annexes 8-13,15)    |

The *z*-score compares the participant's deviation from the assigned value with the standard deviation for proficiency test assessment ( $\sigma_{pt}$ ) used as common quality criterion.

The  $\zeta$ -score states whether the laboratory's result agrees with the assigned value within the respective uncertainty. The denominator is the combined uncertainty of the assigned value  $u(x_{pt})$  and the measurement uncertainty as stated by the laboratory  $u(x_i)$ . The  $\zeta$ -score includes all parts of a measurement result, namely the expected value (assigned value), its measurement uncertainty in the unit of the result as well as the uncertainty of the reported values. An unsatisfactory  $\zeta$ -score can either be caused by an inappropriate estimation of the concentration, or of its measurement uncertainty, or both.

The standard measurement uncertainty of the laboratory  $u(x_i)$  was obtained by dividing the reported expanded measurement uncertainty by the reported coverage factor, k. When no uncertainty was reported, it was set to zero ( $u(x_i) = 0$ ). When k was not specified, the reported expanded measurement uncertainty was considered as the half-width of a rectangular distribution;  $u(x_i)$  was then calculated by dividing this half-width by  $\sqrt{3}$ , as recommended by Eurachem and CITAC [11].

Uncertainty estimation is not trivial, therefore an additional assessment was provided to each laboratory reporting measurement uncertainty, indicating how reasonable their measurement uncertainty estimation was.

The standard measurement uncertainty from the laboratory  $u(x_i)$  is most likely to fall in a range between a minimum and a maximum allowed uncertainty (Case "a":  $u_{min} \le u_{lab} \le u_{max}$ ).  $u_{min}$  is set to the standard uncertainties of the assigned values  $u(x_{pl})$ . It is unlikely that a laboratory carrying out the analysis on a routine basis would determine the measurand with a smaller measurement uncertainty than the expert laboratories chosen to establish the assigned value.  $u_{max}$  is set to the standard deviation accepted for the PT assessment ( $\sigma_{pl}$ ). Consequently, Case "a" becomes:  $u(x_{pl}) \le u(x_l) \le \sigma_{pl}$ .

If  $u(x_i)$  is smaller than  $u(x_{pt})$  (Case "b") the laboratory may have underestimated its measurement uncertainty. Such a statement has to be taken with care as each laboratory reported only measurement uncertainty, whereas the uncertainty associated with the assigned value also includes contributions for homogeneity and stability of the test item. If those are large, measurement uncertainties smaller than  $u_{ref}$  are possible and plausible.

If  $u(x_i)$  is larger than  $\sigma_{pt}$  (Case "c") the laboratory may have overestimated its measurement uncertainty. An evaluation of this statement can be made when looking at the difference between the reported value and the assigned value: if the difference is smaller than the expanded uncertainty  $U(x_{pt})$  then overestimation is likely. If the difference is larger but  $x_i$  agrees with  $x_{pt}$  within their respective expanded measurement uncertainties, then the measurement uncertainty is properly assessed resulting in a satisfactory performance expressed as a  $\zeta$ -score, though the corresponding performance, expressed as a *z*-score, may be questionable or unsatisfactory.

It should be pointed out that " $u_{max}$ " is a normative criterion when set by legislation.

#### 6.2 General observations

Thirty four NRLs from thirty countries registered to the exercise, covering all EU member states plus Iceland and Norway. All registered NRLs reported results. The participants having reported results are listed in the "Acknowledgment" section.

Thirty two (out of 34) laboratories reported results for As, Cd, Pb while thirty one laboratories for Hg. Only 21 results were reported for iAs (Table 2).

| <b>Table 2:</b> Overview of the number of reported results per measurand (out | of 34). |
|-------------------------------------------------------------------------------|---------|
|-------------------------------------------------------------------------------|---------|

|     | Reported Results | Comments                                                                           |
|-----|------------------|------------------------------------------------------------------------------------|
| As  | 32 (94%)         | No results from laboratories 020 and 034                                           |
| Cd  | 32 (94%)         | No results from laboratories 020 and 034                                           |
| Pb  | 32 (94%)         | Of which one "less than X" value;<br>No results from laboratories 020 and 034      |
| Hg  | 31 (91%)         | Of which one "less than X" value;<br>No results from laboratories 022, 034 and 036 |
| iAs | 21 (62%)         | No results from 13 laboratories                                                    |

#### 6.3 Laboratory results and scorings

#### **6.3.1 Performances**

Annexes 8 to 12 present the reported results as tables and graphs for each measurand, where NRLs are denoted as "0XX". The corresponding Kernel density plots, obtained using the software available from the Statistical Subcommittee of the Analytical Methods Committee of the UK Royal Society of Chemistry [12] are also included.

The laboratory performance for the "determination of total As, Cd, Pb Hg and iAs in PKE relative to 12 % moisture content" were assessed using the *z*- and  $\zeta$ -scores, since the ISO 13528 recommendation ( $u(x_{pt}) \leq 0.3 \sigma_{pt}$ ) was fulfilled for all measurands.

#### Total (As, Cd, Pb, Hg) and iAs

Figures 1 and 2 present the laboratory performances for total As, Cd, Pb and Hg, assessed by the z- and  $\zeta$ -scores. Most of the participants having reported results performed satisfactorily for these measurands: above 87% for the z-score and 77% for the  $\zeta$ -scores. Twenty three laboratories (out of 34) performed satisfactorily for the determination of the four measurands (total As, Cd, Pb and Hg). Similarly, most of the participants reporting for iAs performed satisfactorily for this measurand, with 76% of the z-scores and  $\zeta$ -scores  $\leq 2$ .

For As and Cd no direct correlations could be found between the analytical methods used by the laboratories and the quality of the reported results (see Annex 14).

Two unsatisfactory performances and a truncated value ("less than") were obtained for Pb applying AAS. This may be attributed to the relatively low level of Pb in the test item (0.85 mg kg<sup>-1</sup>) compared to the higher MRL for Pb in animal feed (10 mg kg<sup>-1</sup>). Annex 15

shows that for Pb LODs for AAS methods are generally higher than those for ICP-MS methods. Nevertheless, laboratory 003 may consider re-evaluating the high limit of quantification reported ("less than 1.8").

Similarly, two laboratories using CV-AAS reported the highest Hg results leading to zscores above 3. Two other results for Hg obtained by AAS were flagged as unsatisfactory and questionable.

#### Figure 2:

Overview of laboratory performance per measurand according to z-scores.

Corresponding number of laboratories indicated in the graph.

Satisfactory (green); Questionable (yellow); Unsatisfactory (orange)

#### Figure 3:

Overview of laboratory performance per measurand according to  $\zeta$ -scores.

Corresponding number of laboratories indicated in the graph.

Satisfactory (green); Questionable (yellow); Unsatisfactory (orange)

#### **Truncated values**

Two "less than X" values were reported, one for Pb and one for Cd. The limit values "X" reported by the laboratories usually correspond to the limits of quantification (LOQ) or limits of detection (LOD) of the applied methods. Those reporting "less than X" values were not included in the data evaluation. However, reported "less than X" values were compared with the corresponding  $x_{pt} - U(x_{pt})$ . If the reported limit value "X" is lower than the corresponding  $x_{pt} - U(x_{pt})$ , this statement is considered incorrect, since the laboratory should have detected the respective analyte. The two "less than X" values in this exercise were correct statements.

#### 6.3.2 Uncertainties

Figure 3 presents the uncertainty assessment per measurand. Most of the participants (above 70%) reported realistic measurement uncertainty estimates for Cd, Hg, Pb and iAs (case "a":  $u(x_{pt}) \le u(x_i) \le \sigma_{pt}$ ).

A lower number of realistic "case a" (59%) is obtained for total As. Of the 19% of underestimated "case b", three laboratories reported combined uncertainties ranging from 0.058 to 0.07 - to be compared to  $u(x_{pt}) = 0.08 \text{ mg kg}^{-1}$ . Similarly, of the 22% of "case c", four laboratories reported combined uncertainties ranging from 0.35 to 0.37 - to be compared to  $\sigma_{pt} = 0.34 \text{ mg kg}^{-1}$ .

#### Figure 4:

Review of uncertainties reported per measurand.

Corresponding number of laboratories indicated in the graph.

Case "a" (green):  $u(x_{pt}) \le u(x_i) \le \sigma_{pt}$ Case "b" (yellow)  $u(x_i) < u(x_{pt})$ ; Case "c" (blue)=  $u(x_i) > \sigma_{pt}$ 

#### 6.3.3 Compliance assessment

When comparing the maximum levels (MLs) - set in the European Directive 2002/32/EC for undesirable substances in animal feed - to the assigned ranges in the palm kernel expeller (Table 3), one concludes that the test item is non-compliant for cadmium (only) for which  $x_{pt} - U(x_{pt}) > ML$ .

**Table 3:**Maximum limits (MLs), assigned values and their associated expanded<br/>uncertainties. All values expressed in mg kg<sup>-1</sup>, relative to PKE with a moisture<br/>content of 12 %.

| Elements | $x_{pt} \pm U(x_{pt})$ | MLs |
|----------|------------------------|-----|
| As       | $2.28 \pm 0.16$        | 4   |
| Cd       | $1.35 \pm 0.14$        | 1   |
| Pb       | 0.85 ± 0.039           | 10  |
| Hg       | 0.048 ± 0.0022         | 0.1 |

Participants were requested to assess the compliance of the test item according to Directive 2002/32/EC, and provide proper justification to support their statement. In order to assess the consistency of the laboratory compliance statement, one must consider the following three components:

- 1) the laboratory compliance statement (Compliant or Non-Compliant)
- 2) the laboratory measurement results:
  - reported (or not) for the relevant analyte (Cd);
    - to be compared to the relevant ML:  $x_i U_i > ML$ ?
- 3) the laboratory justification (correct, incorrect or partially incorrect).

The answers received (Annex 14) are summarised in Table 4. Sixteen (out of 34) laboratories assessed correctly the test item to be non-compliant (47 % true non-compliant, TNC). Other four laboratories stated the material to be non-compliant while presenting partially incorrect justifications (12 % false non-compliant, FNC). Six laboratories assumed the material to be compliant (17 % true compliant, TC) due to either their low measurement results for Cd (cf. laboratories 003 and 036) or their large measurement uncertainty reported (cf. laboratories 004, 019, 005 and 013). Finally, four laboratories gave an inconsistent assessment (12 % false compliant, FC), while four other laboratories (12 %) did not provide any statement.

**Table 4:**Laboratory statements on the compliance assessment, laboratory measurement<br/>results for Cd compared to the ML, laboratory justifications (correct, incorrect or<br/>partially incorrect) and a categorisation of the laboratory compliance assessment<br/>into FC (false compliant), TC (true compliant), TNC (true non-compliant) and FNC<br/>(false non-compliant).

| Laboratory<br>Statement | Laboratory<br>Measurement | Laboratory<br>Justification | Category | Nr. of<br>labs | Comment                                                 |
|-------------------------|---------------------------|-----------------------------|----------|----------------|---------------------------------------------------------|
| Compliant               | $x_i - U_i > ML$          | Correct                     | FC       | 1              | 025: <i>x</i> <sub><i>i</i></sub> > ML                  |
|                         |                           | None                        |          | 2              |                                                         |
|                         | No Cd result              | None                        | FC       | 1              |                                                         |
|                         | $x_i - U_i \leq ML$       | None                        | TC       | 6              |                                                         |
| Non-Compliant           | $x_i - U_i > ML$          | Correct                     | TNC      | 16             |                                                         |
|                         |                           | Part. incorrect             | FNC      | 3              | 007: wrong ML(As);<br>012:wrong ML(Cd);<br>033: As & Hg |
|                         | $x_i - U_i \leq ML$       | Part. incorrect             |          | 1              | 008: <i>x</i> <sub><i>i</i></sub> > ML                  |
| No Assessment           |                           |                             |          | 4              |                                                         |

#### **6.3.4 Additional information from the questionnaire**

The questionnaire was answered by all 34 participants. Different approaches were used to evaluate measurement uncertainties (Table 4). The majority of the NRLs carry out an in-house validation in order to estimate the measurement uncertainty (19 out of 34). Twenty-five out of 34 usually report uncertainty to their customers.

Laboratories were asked to report the LODs of the methods used for the determination of the five measurands. Annex 14 presents LODs, the general experimental conditions and the techniques used for the determination of total As, Cd, Pb and Hg. Large discrepancies in reported LODs are observed even among laboratories using the same technique.

| Approach followed for uncertainty calculation              | Number of labs. |
|------------------------------------------------------------|-----------------|
| According to ISO-GUM                                       | 7               |
| According to ISO 21748                                     | 0               |
| Derived from a single-laboratory validation study          |                 |
| Determined as standard deviation of replicate measurements | 8               |
| Estimation based on judgment                               | 1               |
| Derived from inter-comparison data 8                       |                 |
| According to the NORDTEST guidelines                       |                 |
| Applying the Horwitz equation                              | 1               |

**Table 5:**Approaches used to estimate measurement uncertainties.<br/>Multiple selections were possible.

The reported recovery factors ranged from 80 to 113 % and two main approaches were used for the determination of recoveries: spiking and use of reference materials.

All of the NRLs stated that they have an ISO/IEC 17025 accreditation and 26 NRLs confirmed they are accredited for one or more of the investigated measurands in feed.

For some participants, the unsatisfactory performance could be linked to a lack of experience (evaluated as number of analyses per year) for this type of analysis.

## 7 Conclusion

The EURL-HM-23 PT was organised in 2016 to assess the analytical capabilities of the NRLs for the EU using a palm kernel expeller spiked with As, Cd, Pb and Hg as test item.

The overall performance of the participants in the determination of total As, Cd, Hg, Pb and iAs was satisfactory. This confirms the analytical capabilities of the NRLs to enforce the European Directive 2002/32/EC setting levels for undesirable substances in feed. However, 13 out 34 did not report results for iAs.

As for compliance assessment, only 47 % of the participants stated correctly (providing proper justification) that the test item was non-compliant according to the maximum level set by Directive 2002/32/EC for cadmium in palm kernel expeller. Other laboratories having reported satisfactory results should therefore improve their assessment procedure selecting relevant MLs and phrasing accurately their justification, or providing realistic (not over-estimated) measurement uncertainties.

Overall, NRLs reported good measurement uncertainty estimates, thus demonstrating the effectiveness of the various PTs and training courses organised by the EURL-HM in the past 10 years.

## Acknowledgements

The EURL-HM wishes to thank the Belgian NRL (CODA-CERVA) for providing the palm kernel expeller granulates later processed and used as test item for this proficiency test.

The authors wish to thank colleagues from the JRC-Geel site for their valuable contributions during the preparation of the proficiency test item.

The thirty four laboratories listed hereafter are kindly acknowledged for their participation in the PT.

| Organisation                                                                          | Country        |
|---------------------------------------------------------------------------------------|----------------|
| AGES GmbH                                                                             | Austria        |
| CODA-CERVA                                                                            | Belgium        |
| Central Laboratory for Chemical Testing and Control (CLCTC)                           | Bulgaria       |
| Croatian Veterinary Institute                                                         | Croatia        |
| Department of Agriculture                                                             | Cyprus         |
| State Veterinary Institute Olomouc                                                    | Czech Republic |
| Central Institute for Supervising and Testing in Agriculture (UKZUZ)                  | Czech Republic |
| Danish Veterinary and Food Administration                                             | Denmark        |
| Technical University Denmark (DTU) Food                                               | Denmark        |
| Agricultural Research Centre                                                          | Estonia        |
| Finnish Food Safety Authority Evira                                                   | Finland        |
| Laboratoire SCL de Bordeaux - NRL                                                     | France         |
| Federal Office for Consumer Protection and Food Safety (BVL)                          | Germany        |
| Regional Center Of Plant Protection And Quality Control Of Magnissia                  | Greece         |
| National Food Chain Office Food and Feed Safety                                       | Hungary        |
| National Food Chain Safety Office                                                     | Hungary        |
| Matis ohf                                                                             | Iceland        |
| The State Laboratory                                                                  | Ireland        |
| Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'aosta           | Italy          |
| Institute of Food Safety, Animal Health and Environment                               | Latvia         |
| National Food and Veterinary Risk Assessment Institute                                | Lithuania      |
| Laboratoire National de Santé                                                         | Luxembourg     |
| Public Health Laboratoy                                                               | Malta          |
| RIKILT                                                                                | Netherlands    |
| National Institute of Nutrition and Seafood Research (NIFES)                          | Norway         |
| National Veterinary Research Institute                                                | Poland         |
| Instituto Português do Mar e da Atmosfera (IPMA)                                      | Portugal       |
| Hygiene and Veterinary Public Health Institute                                        | Romania        |
| State veterinary and food institute Dolný Kubín, Veterinary and food institute Košice | Slovakia       |
| National Veterinary Institute                                                         | Slovenia       |
| National Laboratory of Health, Environment and Food (NLZOH)                           | Slovenia       |
| Laboratorio Arbitral Agroalimentario (MAGRAMA)                                        | Spain          |
| National Food Agency                                                                  | Sweden         |
| Fera Science Ltd                                                                      | United Kingdom |

#### References

- [1] Manufacturing tropical oil products, (2016). http://www.wilmar-international.com/ourbusiness/tropical-oils/manufacturing/tropical-oils-products/palm-kernel-expeller/.
- [2] Palm Kernel Expeller, (2016). http://www.kwalternativefeeds.co.uk/products/view-products/palm-kernel-expeller/.
- [3] T.T. Sue, Quality and Characteristics of Malaysian Palm Kernel Cakes/Expellers, (2001). http://palmoilis.mpob.gov.my/publications/POD/pod34-tang.pdf.
- [4] European Commission, DIRECTIVE 2002/32/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 7 May 2002 on undesirable substances in animal feed, Off. J. Eur. Communities. L 269 (2002) 1–15. doi:2004R0726 - v.7 of 05.06.2013.
- [5] Commission Regulation, (EC) No 882/2004 of the European Parliament and of the Council of 29 April 2004 on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules, Off. J. Eur. Union. L165/1 (2004).
- [6] ISO/IEC 17043 "Conformity assessment General requirements for proficiency testing", issued by ISO-Geneva (CH), International Organisation for Standardization, 2010.
- [7] ISO 13528:2015 "Statistical methods for use in proficiency testing by interlaboratory comparisons", issued by ISO-Geneva (CH), International Organisation for Standardization, 2015.
- [8] SoftCRM, (n.d.). http://www.eie.gr/iopc/softcrm/index.html.
- [9] ISO Guide 35 "Reference materials general and statistical principles for certification", issued by ISO-Geneva (CH), International Organisation for Standardization, 2006.
- [10] M. Thompson, Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing, Analyst. 125 (2000) 385–386. doi:10.1039/B000282H.
- [11] Eurachem/Citac, "Quantifying Uncertainty in Analytical Measurement," 2012. http://www.eurachem.org.
- [12] Analytical Methods Committee, Representing data distributions with kernel density estimates, AMC Tech. Br. 4 (2006) 2. http://www.rsc.org/images/brief4\_tcm18-25925.pdf.

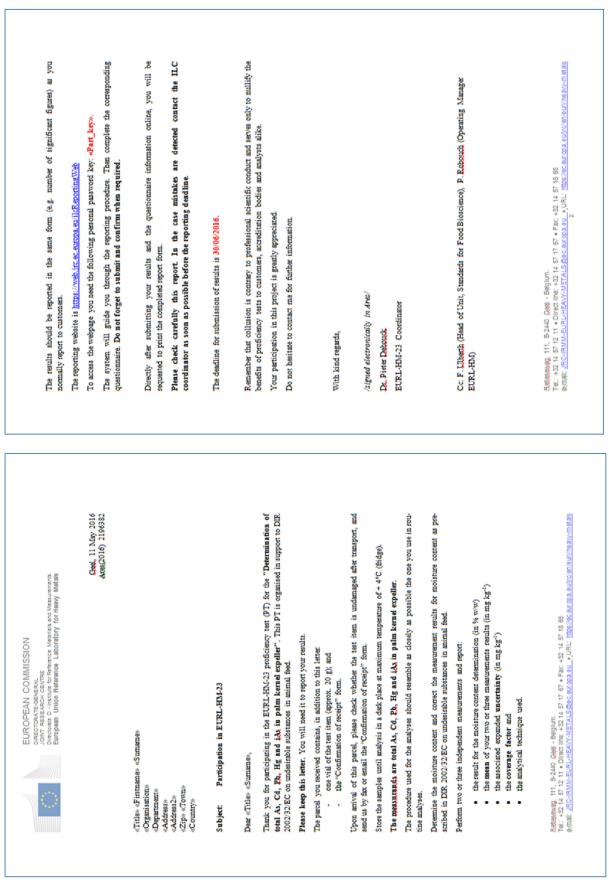
----- This is a blank page ------

Annexes

# Annex 1: List of abbreviations

| CV-AAS       | Cold Vapour Atomic Absorption Spectrometry                                                                                |
|--------------|---------------------------------------------------------------------------------------------------------------------------|
| DG SANTE     | Directorate General for Health and Food Safety                                                                            |
| DMA          | Direct Mercury Analyser (also called Elemental Mercury Analyzer, EMA)                                                     |
| ET-AAS       | Electro Thermal – Atomic Absorption Spectrometry<br>(also called Graphite Furnace Atomic Absorption Spectroscopy, GF-AAS) |
| GUM          | Guide for the Expression of Uncertainty in Measurement                                                                    |
| HG-AAS       | Hydride Generation – Atomic Absorption Spectrometry                                                                       |
| HPLC         | High Performance Liquid Chromatography                                                                                    |
| ICP-(Q)MS    | Inductively Coupled Plasma -(Quadrupole) Mass Spectrometry                                                                |
| ID-GC-ICP-MS | Isotope Dilution – Gas Chromatography – ICP-MS                                                                            |
| JRC          | Joint Research Centre                                                                                                     |
| LOD          | Limit of detection                                                                                                        |
| NRL          | National Reference Laboratory                                                                                             |
| PKE          | Palm Kernel Expeller                                                                                                      |
| PT           | Proficiency Test                                                                                                          |
| Z-ET-AAS     | Zeeman ET-AAS                                                                                                             |

## Annex 2: JRC web announcement


| European<br>Commission                                                                                                                 | 50111111222                                                                                                          | ARCH CENTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ropean Commission > EU Science Hub :                                                                                                   | Knowledge > Reference & mea                                                                                          | surement > Interlaboratory comparisons > EURL-HM-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| About us Research                                                                                                                      | Knowledge Workin                                                                                                     | g with us Procurement News & events Our Communities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                        |                                                                                                                      | 🖶 Print 🚱 Share 💦 RSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                        |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Knowledge                                                                                                                              | < Go back to the list                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Overview                                                                                                                               | EURL-HM-2                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Scientific tools & databases                                                                                                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Publications                                                                                                                           | Description                                                                                                          | Determination of total As, Cd, Pb, Hg, and iAs in palm kernel expeller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Reference & measurement                                                                                                                | Status                                                                                                               | Registration Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Selected publications                                                                                                                  | Year                                                                                                                 | 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Measurements matter ±                                                                                                                  | Туре                                                                                                                 | Proficiency Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| European Union Reference                                                                                                               | Participation                                                                                                        | Restricted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Laboratories                                                                                                                           | Contact                                                                                                              | JRC-IRMM-EURL-HEAVY-METALS@EC.EUROPA.EU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Interlaboratory comparisons<br>All comparisons F                                                                                       | IL category                                                                                                          | IMEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| IMEP IRI<br>NUSIMEP IRI<br>Other comparisons<br>Reference Materials (RM) IRI<br>Patents & technologies<br>Training<br>Photos<br>Videos | More                                                                                                                 | The EURL-HM-23 proficiency test (PT) focuses on the determination of the mass fraction of total arsenic, cadmium, lead, mercury and inorganic arsenic in palm kernel expeller. This PT is organised in support to DIR 2002/32/EC on undesirable substances in animal feed.<br>The main objective of this exercise is to assess the analytical capabilities of nominated National Reference Laboratories (NRLs) in the determination of the specific toxic trace elements in palm kernel expeller.<br>Participation in EURL-HM-23 is open <u>ONLY</u> to NRLs and obligatory for those having mandate for this type of analysis.<br><u>Participation is free of charge.</u><br><b>Test materials and analytes</b><br>The test material to be analysed is palm kernel expeller. Each participant will receive one test item. The measurands are total As, Cd, Pb, Hg and iAs in palm kernel expeller.<br><b>General outline of the exercise</b><br>Participants are requested to perform one to three independent analyses using the method of their choice, and to report the mean of their measurement results, the associated expanded e |
|                                                                                                                                        | Registration URL<br>Registration<br>deadline<br>Sample dispatch<br>Reporting of results<br>Report to<br>participants | Detailed instructions will be sent together with the test item. https://web.jrc.ec.europa.eu/ilcRegistrationWeb/registration/registration.do?sel Friday, 29 April 2016 First half of May 2016 Deadline 30 June 2016 November 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                        |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                        | Keywords<br>Reference                                                                                                | food/feed<br>EURL for heavy metals in feed and food                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                        | laboratories                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Mission

As the science and knowledge service of the European Commission, the Joint Research Centre's mission is to support EU policies with independent evidence throughout the whole policy cycle.

# **Annex 3: Invitation letter to NRLs**

| DIRECTOR<br>JOINT RESI<br>Directorate I | EAN COMMISSION<br>ATE-GENERAL<br>EARCH CENTRE<br>D - Institute for Reference Materials and Measurements<br>Jnion Reference Laboratory for Heavy Metals |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Geel, 4 April 2016                                                                                                                                     |
| (sent by e-mail)                        |                                                                                                                                                        |
| Subject: Invitation to participate in   | n EURL-HM-23                                                                                                                                           |
| Dear National Reference Laboratory      | representative,                                                                                                                                        |
|                                         | you to participate in the proficiency test EURL-HM-23 for<br>, Pb, Hg and iAs in palm kernel expeller".                                                |
|                                         | 882/2004 it is your duty as NRL to participate in PTs<br>old a mandate for this type of matrix.                                                        |
| Your participation is free of charge.   |                                                                                                                                                        |
| Please register using the following lin | nk                                                                                                                                                     |
|                                         | trationWeb/registration/registration.do?selComparison=1641                                                                                             |
|                                         | on online, check carefully the generated registration form. In contact the ILC coordinator as soon as possible before the                              |
| The deadline for registration is April  | 1 29, 2016.                                                                                                                                            |
| Samples will be sent to participants of | luring the first half of May 2016.                                                                                                                     |
| The deadline for submission of result   | ts is June 30, 2016.                                                                                                                                   |
| Do not hesitate to contact us, in case  | of questions/doubts,                                                                                                                                   |
| Yours sincerely                         |                                                                                                                                                        |
| /signed electronically in Ares/         | /signed electronically in Ares/                                                                                                                        |
| Dr. Pieter Dehouck                      | Dr. Piotr Robouch                                                                                                                                      |
| EURL-HM-23 Coordinator                  | Operating Manager EURL-HM                                                                                                                              |
| Cc: Franz Ulberth (Head of Unit SFE     | 3)                                                                                                                                                     |
|                                         |                                                                                                                                                        |



#### Annex 4: Test item accompanying letter

# Annex 5: Confirmation of receipt form

|                                                                                                                      | UROPEAN COMMISSION<br>RECTORATE-GENERAL<br>INT RESEARCH CENTRE<br>rectorate D - Institute for Reference Materials and Measurements<br>ropean Union Reference Laboratory for Heavy Metails |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| «Title» «Firstname» «Surna<br>«Organisation»<br>«Department»<br>«Address»<br>«Address2»<br>«Zip» «Town»<br>«Country» | Geel, 11 May 2016<br>Ares(2016) 2196382<br>ame»                                                                                                                                           |
| Subject: "Confirmation a<br>EURL-HM-23 - 1                                                                           | receipt" form<br>Heavy Metals in Palm Kernel Expeller                                                                                                                                     |
| Please return this form at yo                                                                                        | our earliest convenience, to confirm that the package arrived<br>aged, mention it under "Remarks" and contact us as soon as                                                               |
| Date of package arrival                                                                                              |                                                                                                                                                                                           |
| -<br>Remarks                                                                                                         |                                                                                                                                                                                           |
|                                                                                                                      |                                                                                                                                                                                           |
| -                                                                                                                    |                                                                                                                                                                                           |
| Signature                                                                                                            |                                                                                                                                                                                           |
|                                                                                                                      |                                                                                                                                                                                           |
| Thank you for returning th                                                                                           | his form by email to:                                                                                                                                                                     |
| Dr. Pieter Debouck                                                                                                   |                                                                                                                                                                                           |
| EURL-HM-23 Coordinato:                                                                                               | r<br>L-HEAVY-METALS@ec.europa.eu                                                                                                                                                          |

#### **Annex 6: Questionnaire**

1. Did you use a standard method for analysis?

○ a) Yes ○ b) No

1.1. If "Yes", specify which one.

2. Which digestion type, acid mixture, temperature and time did you use? [For the digestion type use: 1 for Dry ashing, 2 for Open wet, 3 for Open microwave, 4 for Closed microwave, 5 for Pressure bomb, if "other" specify the method]

Which digestion type, acid mixture, temperature and time did you use?

| Questions/Response<br>table | As | Cd | РЬ | Hg |
|-----------------------------|----|----|----|----|
| Digestion type              |    |    |    |    |
| Acid mixture                |    |    |    |    |
| Temperature                 |    |    |    |    |
| Time                        |    |    |    |    |

3. Describe briefly the analytical method used for the determination of iAs.

4. Which recovery factors and LODs did you determine?

Recovery factors and LODs

| Questions/Response<br>table | As | iAs | сd | РЬ | Hg |
|-----------------------------|----|-----|----|----|----|
| Recovery %                  |    |     |    |    |    |
| LODs (mg/kg)                |    |     |    |    |    |

#### 5. How did you determine the recovery factor?

□ a) Adding a known amount of the same analyte to be measured (spiking)

b) Using a certified reference material

🗌 c) Other

5.1. If "Other" please specify.

6. Describe the method applied for the water content determination.

7. Did you use a certified reference material for this analysis?

○ a) Yes ○ b) No

7.1. If "Yes", specify which one.

8. Additional remarks/comments regarding the method of analysis (specify the analyte concerned).

9. How did you estimate your measurement uncertainty? (multiple answers are possible)

a) Uncertainty budget (ISO GUM)

□ b) Known uncertainty of the standard method

□ c) Uncertainty of the method (in-house validation)

d) Measurement of replicates (precision)

e) Estimation based on judgement

□ f) From interlaboratory comparison data

g) Other

9.1. If "Other", please specify.

10. Do you usually provide an uncertainty statement to your customers for this type of analysis?

O a) Yes

O b) No

11. Considering your results, is the investigated test item compliant according to DIR 2002/32/EC on undesirable substances in animal feed?

○ a) Yes ○ b) No

11.1. If not compliant, specify why?

12. Which quality system does your laboratory have?

□ a) ISO 17025 □ b) ISO 9001 □ c) Other

🗌 d) None

12.1. If "Other", please specify.

13. Are you accredited for the determination of these analytes in feed?

| Questions/ Response table | 1.<br>As | 2.<br>Cd | 3.<br>Pb | 4.<br>Hg | 5.<br>iAs | Infe |
|---------------------------|----------|----------|----------|----------|-----------|------|
| Accredited for:           |          |          |          |          |           |      |

14. How many analyses of this type does your laboratory perform on a regular basis? (samples per year)

| Questions/ Response table | 01-<br>50 | 051-<br>250 | 251-<br>1000 | ><br>1000 | Never | Info |
|---------------------------|-----------|-------------|--------------|-----------|-------|------|
| As                        |           |             |              |           |       |      |
| СЧ                        |           |             |              |           |       |      |
| РЬ                        |           |             |              |           |       |      |
| Hg                        |           |             |              |           |       |      |
| iAs                       |           |             |              |           |       |      |

#### 15. Do you have any comments? Please let us know.

### **Annex 7: Homogeneity and stability results**

|                             | A    | ls   | C    | d    | Pb   |      | H      | Hg     |  |
|-----------------------------|------|------|------|------|------|------|--------|--------|--|
| Bottle ID                   | R1   | R2   | R1   | R2   | R1   | R2   | R1     | R2     |  |
| 125                         | 2.58 | 2.40 | 1.46 | 1.38 | 0.90 | 0.91 | 0.0544 | 0.0532 |  |
| 23                          | 2.59 | 2.58 | 1.48 | 1.38 | 0.94 | 0.90 | 0.0570 | 0.0557 |  |
| 83                          | 2.56 | 2.47 | 1.41 | 1.39 | 0.88 | 0.91 | 0.0547 | 0.0525 |  |
| 149                         | 2.58 | 2.40 | 1.40 | 1.36 | 0.90 | 0.88 | 0.0575 | 0.0522 |  |
| 5                           | 2.43 | 2.47 | 1.42 | 1.39 | 0.92 | 0.90 | 0.0552 | 0.0551 |  |
| 67                          | 2.44 | 2.56 | 1.40 | 1.41 | 0.90 | 0.90 | 0.0547 | 0.0532 |  |
| 162                         | 2.59 | 2.44 | 1.37 | 1.36 | 0.89 | 0.91 | 0.0531 | 0.0538 |  |
| 59                          | 2.40 | 2.53 | 1.37 | 1.37 | 0.89 | 0.89 | 0.0507 | 0.0523 |  |
| 119                         | 2.51 | 2.46 | 1.39 | 1.40 | 0.89 | 0.88 | 0.0530 | 0.0519 |  |
| 182                         | 2.51 | 2.45 | 1.41 | 1.40 | 0.93 | 0.88 | 0.0542 | 0.0549 |  |
| Mean                        | 2.   | 50   | 1.   | 1.40 |      | 0.90 |        | 0.0540 |  |
| Sp                          | 0.   | 34   | 0.   | 22   | 0.14 |      | 0.0    | 106    |  |
| 0.3* s <sub>p</sub>         | 0.   | 10   | 0.   | 06   | 0.   | 04   | 0.0    | 032    |  |
| Critical value              | 0.   | 03   | 0.   | 01   | 0.   | 00   | 0.0    | 000    |  |
| S <sub>x</sub>              | 0.   | 04   | 0.   | 02   | 0.   | 01   | 0.0    | 014    |  |
| Sw                          | 0.08 |      | 0.   | 03   | 0.   | 02   | 0.0    | 015    |  |
| Ss                          | 0.00 |      | 0.   | 0.00 |      | 0.00 |        | 0.0009 |  |
| $s_s \le 0.3 * \sigma_{pt}$ | pas  | sed  | pas  | sed  | pas  | sed  | pas    | sed    |  |

#### **7.1 Homogeneity study** (all values in mg kg<sup>-1</sup>)

Where:

 $\begin{array}{l} \sigma_{pt} \text{ is the standard deviation for the PT assessment,} \\ s_{x} \text{ is the standard deviation of the sample averages,} \\ s_{w} \text{ is the within-sample standard deviation,} \end{array}$ 

 $s_s$  is the between-sample standard deviation,

| Time | 0 w    | 3 w    | 5 w    | 8 w    | Slope<br>significance<br>(a) | Assessment |
|------|--------|--------|--------|--------|------------------------------|------------|
| As   | 2.18   | 2.11   | 2.25   | 2.17   |                              |            |
|      | 2.20   | 2.27   | 2.14   | 2.12   | No                           | Stable     |
| Cd   | 1.21   | 1.19   | 1.19   | 1.24   |                              |            |
|      | 1.24   | 1.21   | 1.19   | 1.16   | No                           | Stable     |
| Pb   | 0.879  | 0.823  | 0.832  | 0.855  |                              |            |
|      | 0.830  | 0.798  | 0.782  | 0.792  | No                           | Stable     |
| Hg   | 0.0452 | 0.0480 | 0.0464 | 0.0489 |                              |            |
|      | 0.0487 | 0.0499 | 0.0476 | 0.0458 | No                           | Stable     |

#### 7.2 Stability study (at 60°C, all values in mg kg<sup>-1</sup>)

(a) Slope of the linear regression significantly different from "0" at a 95 % level

### Annex 8: Results for total As

Assigned values:  $x_{pt} = 2.28$ ;  $U(x_{pt}) = 0.16$  (k=2) and  $\sigma_{pt} = 0.34$ ; all values in mg kg<sup>-1</sup>, relative to a feed with a moisture content of 12 %

| Lab Code | X <sub>i</sub> | U(x <sub>i</sub> ) | k <sup>a</sup> | technique | u(x <sub>i</sub> ) | z-score <sup>b</sup> | ζ-score | uncert. <sup>c</sup> |
|----------|----------------|--------------------|----------------|-----------|--------------------|----------------------|---------|----------------------|
| 001      | 2.31           | 0.13               | 2              | ICP-MS    | 0.065              | 0.08                 | 0.27    | b                    |
| 002      | 1.96           | 0.14               | 2              | ICP-MS    | 0.07               | -0.94                | -3.01   | b                    |
| 003      | 2.2            | 0.5                | 2              | AAS       | 0.25               | -0.24                | -0.31   | а                    |
| 004      | 2.3            | 1.2                | 2              | AAS       | 0.6                | 0.05                 | 0.03    | С                    |
| 005      | 2.29           | 0.46               | 2              | ICP-MS    | 0.23               | 0.02                 | 0.03    | а                    |
| 007      | 2.180          | 0.327              | 2              | ICP-MS    | 0.1635             | -0.30                | -0.56   | а                    |
| 008      | 1.991          | 0.37829            | 2              | ICP-MS    | 0.189145           | -0.85                | -1.42   | а                    |
| 009      | 2.03           | 0.47               | 2              | ICP-MS    | 0.235              | -0.74                | -1.02   | а                    |
| 010      | 1.99           | 0.55               | 2              | HG-AAS    | 0.275              | -0.85                | -1.02   | а                    |
| 011      | 2.22           | 0.46               | 2              | ICP-MS    | 0.23               | -0.18                | -0.26   | а                    |
| 012      | 2.4            | 0.7                | 2              | ICP-OES   | 0.35               | 0.34                 | 0.33    | с                    |
| 013      | 2.241          | 0.403              | 2              | AAS       | 0.2015             | -0.12                | -0.19   | а                    |
| 014      | 2.251          | 0.116              | 2              | ICP-MS    | 0.058              | -0.09                | -0.31   | b                    |
| 015      | 2.10           | 0.34               | 2              | ICP-MS    | 0.17               | -0.53                | -0.97   | а                    |
| 016      | 2.4            | 0.96               | 2              | ICP-MS    | 0.48               | 0.34                 | 0.24    | с                    |
| 017      | 1.47           | 0.06               | 2              | AAS       | 0.03               | -2.37                | -9.41   | b                    |
| 018      | 3.6            | 1.1                | 3              | ICP-MS    | 0.366667           | 3.85                 | 3.51    | с                    |
| 019      | 2.1            | 0.47               | 2              | AAS       | 0.235              | -0.53                | -0.73   | а                    |
| 020      |                |                    |                |           |                    |                      |         |                      |
| 021      | 2.4            | 0.5                | 2              | ICP-MS    | 0.25               | 0.34                 | 0.45    | а                    |
| 022      | 2.0            |                    | √3             | AAS       | 0                  | -0.82                | -3.49   | b                    |
| 023      | 2.06           | 0.37               | 2              | ICP-MS    | 0.185              | -0.65                | -1.10   | а                    |
| 024      | 2.29           | 0.44               | 2              | AAS       | 0.22               | 0.02                 | 0.03    | а                    |
| 025      | 2.021          | 0.303              | 2              | AAS       | 0.1515             | -0.76                | -1.52   | а                    |
| 026      | 2.285          | 0.274              | 2              | ICP-MS    | 0.137              | 0.01                 | 0.02    | а                    |
| 027      | 2.50           | 0.63               | √3             | ICP-MS    | 0.363731           | 0.64                 | 0.58    | с                    |
| 028      | 2.274          | 0.455              | 2              | ICP-MS    | 0.2275             | -0.02                | -0.03   | а                    |
| 029      | 3.10           | 0.78               | 2              | ICP-MS    | 0.39               | 2.39                 | 2.05    | с                    |
| 030      | 2.271          | 0.393              | 2              | ICP-MS    | 0.1965             | -0.03                | -0.05   | а                    |
| 031      | 2.2            | 0.37               | 2              | ICP-MS    | 0.185              | -0.24                | -0.41   | а                    |
| 032      | 2.20           | 0.50               | 2              | ICP-MS    | 0.25               | -0.24                | -0.31   | а                    |
| 033      | 2.29           | 0.11               | 2              | ICP-MS    | 0.055              | 0.02                 | 0.08    | b                    |
| 034      |                |                    |                |           |                    |                      |         |                      |
| 036      | 1.7            | 0.7                | 2              | ICP-MS    | 0.35               | -1.70                | -1.62   | С                    |

<sup>a</sup> v3 is set by the ILC coordinator when no coverage factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with k=v3,

<sup>b</sup>score evaluation colours: <mark>satisfactory</mark>, questionable, unsatisfactory,

### Annex 9: Results for Cd

Assigned values:  $x_{pt} = 1.35$ ;  $U(x_{pt}) = 0.14$  (k=2); and  $\sigma_{pt} = 0.22$ ; all values in mg kg<sup>-1</sup>, relative to a feed with a moisture content of 12 %

| Lab Code | X <sub>i</sub> | U(x <sub>i</sub> ) | k <sup>a</sup> | technique | u(x <sub>i</sub> ) | z-score <sup>b</sup> | ζ-score | uncert. <sup>c</sup> |
|----------|----------------|--------------------|----------------|-----------|--------------------|----------------------|---------|----------------------|
| 001      | 1.4            | 0.1                | 2              | ICP-MS    | 0.05               | 0.22                 | 0.57    | b                    |
| 002      | 1.24           | 0.07               | 2              | ICP-MS    | 0.035              | -0.52                | -1.46   | b                    |
| 003      | 1.1            | 0.2                | 2              | AAS       | 0.1                | -1.16                | -2.08   | а                    |
| 004      | 1.3            | 0.6                | 2              | AAS       | 0.3                | -0.24                | -0.17   | С                    |
| 005      | 1.32           | 0.34               | 2              | ICP-MS    | 0.17               | -0.15                | -0.17   | а                    |
| 007      | 1.250          | 0.187              | 2              | ICP-MS    | 0.0935             | -0.47                | -0.88   | а                    |
| 008      | 1.213          | 0.23047            | 2              | ICP-MS    | 0.115235           | -0.64                | -1.04   | а                    |
| 009      | 1.29           | 0.19               | 2              | ICP-MS    | 0.095              | -0.29                | -0.53   | а                    |
| 010      | 1.47           | 0.26               | 2              | AAS       | 0.13               | 0.55                 | 0.80    | а                    |
| 011      | 1.45           | 0.24               | 2              | ICP-MS    | 0.12               | 0.45                 | 0.71    | а                    |
| 012      | 1.4            | 0.3                | 2              | ICP-OES   | 0.15               | 0.22                 | 0.29    | а                    |
| 013      | 1.403          | 0.421              | 2              | AAS       | 0.2105             | 0.24                 | 0.23    | а                    |
| 014      | 1.305          | 0.040              | 2              | ICP-MS    | 0.02               | -0.22                | -0.66   | b                    |
| 015      | 1.26           | 0.21               | 2              | ICP-MS    | 0.105              | -0.42                | -0.73   | а                    |
| 016      | 1.4            | 0.56               | 2              | ICP-MS    | 0.28               | 0.22                 | 0.17    | с                    |
| 017      | 1.50           | 0.12               | 2              | AAS       | 0.06               | 0.69                 | 1.63    | b                    |
| 018      | 1.4            | 0.3                | 3              | ICP-MS    | 0.1                | 0.22                 | 0.40    | а                    |
| 019      | 1.3            | 0.54               | 2              | AAS       | 0.27               | -0.24                | -0.19   | с                    |
| 020      |                |                    |                |           |                    |                      |         |                      |
| 021      | 1.5            | 0.3                | 2              | ICP-MS    | 0.15               | 0.69                 | 0.90    | а                    |
| 022      | 1.49           |                    | √3             | AAS       | 0                  | 0.64                 | 2.02    | b                    |
| 023      | 1.30           | 0.23               | 2              | ICP-MS    | 0.115              | -0.24                | -0.39   | а                    |
| 024      | 1.26           | 0.19               | 2              | AAS       | 0.095              | -0.42                | -0.78   | а                    |
| 025      | 1.414          | 0.283              | 2              | AAS       | 0.1415             | 0.29                 | 0.40    | а                    |
| 026      | 1.433          | 0.201              | 2              | ICP-MS    | 0.1005             | 0.38                 | 0.67    | а                    |
| 027      | 1.45           | 0.36               | √3             | ICP-MS    | 0.207846           | 0.45                 | 0.45    | а                    |
| 028      | 1.411          | 0.282              | 2              | ICP-MS    | 0.141              | 0.27                 | 0.38    | а                    |
| 029      | 1.55           | 0.39               | 2              | ICP-MS    | 0.195              | 0.92                 | 0.96    | а                    |
| 030      | 1.303          | 0.275              | 2              | ICP-MS    | 0.1375             | -0.23                | -0.32   | а                    |
| 031      | 1.3            | 0.22               | 2              | ICP-MS    | 0.11               | -0.24                | -0.40   | а                    |
| 032      | 1.33           | 0.25               | 2              | ICP-MS    | 0.125              | -0.10                | -0.15   | а                    |
| 033      | 1.38           | 0.07               | 2              | ICP-MS    | 0.035              | 0.13                 | 0.37    | b                    |
| 034      |                |                    |                |           |                    |                      |         |                      |
| 036      | 1.1            | 0.4                | 2              | ICP-MS    | 0.2                | -1.16                | -1.19   | а                    |

<sup>a</sup> V3 is set by the ILC coordinator when no coverage factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with k=V3,

<sup>b</sup>score evaluation colours: <mark>satisfactory</mark>, questionable, unsatisfactory,

### Annex 10: Results for Pb

Assigned values: :  $x_{pt} = 0.850$ ;  $U(x_{pt}) = 0.039$  (k=2); and  $\sigma_{pt} = 0.145$ ; all values in mg kg<sup>-1</sup>, relative to a feed with a moisture content of 12 %

| Lab Code | X <sub>i</sub> | U(x <sub>i</sub> ) | k <sup>a</sup> | technique | u(x <sub>i</sub> ) | z-score <sup>b</sup> | ζ-score | uncert. <sup>c</sup> |
|----------|----------------|--------------------|----------------|-----------|--------------------|----------------------|---------|----------------------|
| 001      | 0.84           | 0.08               | 2              | ICP-MS    | 0.04               | -0.07                | -0.22   | а                    |
| 002      | 0.893          | 0.054              | 2              | ICP-MS    | 0.027              | 0.30                 | 1.29    | а                    |
| 003      | < 1.8          |                    |                | AAS       |                    |                      |         |                      |
| 004      | 0.8            | 0.3                | 2              | AAS       | 0.15               | -0.35                | -0.33   | С                    |
| 005      | 0.85           | 0.24               | 2              | ICP-MS    | 0.12               | 0.00                 | 0.00    | а                    |
| 007      | 0.914          | 0.137              | 2              | ICP-MS    | 0.0685             | 0.44                 | 0.90    | а                    |
| 008      | 0.876          | 0.1752             | 2              | ICP-MS    | 0.0876             | 0.18                 | 0.29    | а                    |
| 009      | 0.879          | 0.167              | 2              | ICP-MS    | 0.0835             | 0.20                 | 0.34    | а                    |
| 010      | 1.39           | 0.19               | 2              | AAS       | 0.095              | 3.74                 | 5.57    | а                    |
| 011      | 0.828          | 0.132              | 2              | ICP-MS    | 0.066              | -0.15                | -0.32   | а                    |
| 012      | 1.1            | 0.3                | 2              | ICP-OES   | 0.15               | 1.73                 | 1.65    | с                    |
| 013      | 0.891          | 0.267              | 2              | AAS       | 0.1335             | 0.28                 | 0.30    | а                    |
| 014      | 0.858          | 0.036              | 2              | ICP-MS    | 0.018              | 0.06                 | 0.30    | b                    |
| 015      | 0.79           | 0.10               | 2              | ICP-MS    | 0.05               | -0.42                | -1.12   | а                    |
| 016      | 0.93           | 0.47               | 2              | ICP-MS    | 0.235              | 0.55                 | 0.34    | с                    |
| 017      | 1.39           | 0.06               | 2              |           | 0.03               | 3.74                 | 15.07   | а                    |
| 018      | 0.98           | 0.2                | 3              | ICP-MS    | 0.066667           | 0.90                 | 1.87    | а                    |
| 019      | 0.84           | 0.25               | 2              | AAS       | 0.125              | -0.07                | -0.08   | а                    |
| 020      |                |                    |                |           |                    |                      |         |                      |
| 021      | 0.88           | 0.19               | 2              | ICP-MS    | 0.095              | 0.21                 | 0.31    | а                    |
| 022      | 1.5            |                    | √3             | AAS       | 0                  | 4.50                 | 33.16   | b                    |
| 023      | 0.848          | 0.170              | 2              | ICP-MS    | 0.085              | -0.01                | -0.02   | а                    |
| 024      | 0.93           | 0.15               | 2              | AAS       | 0.075              | 0.55                 | 1.03    | а                    |
| 025      | 0.583          | 0.117              | 2              | AAS       | 0.0585             | -1.85                | -4.33   | а                    |
| 026      | 0.864          | 0.137              | 2              | ICP-MS    | 0.0685             | 0.10                 | 0.20    | а                    |
| 027      | 0.94           | 0.24               | √3             | ICP-MS    | 0.138564           | 0.62                 | 0.64    | а                    |
| 028      | 0.988          | 0.198              | 2              | ICP-MS    | 0.099              | 0.96                 | 1.37    | а                    |
| 029      | 0.985          | 0.246              | 2              | ICP-MS    | 0.123              | 0.93                 | 1.08    | а                    |
| 030      | 0.720          | 0.209              | 2              | ICP-MS    | 0.1045             | -0.90                | -1.22   | а                    |
| 031      | 0.79           | 0.18               | 2              | ICP-MS    | 0.09               | -0.42                | -0.65   | а                    |
| 032      | 0.818          | 0.204              | 2              | ICP-MS    | 0.102              | -0.22                | -0.31   | а                    |
| 033      | 0.828          | 0.041              | 2              | ICP-MS    | 0.0205             | -0.15                | -0.78   | а                    |
| 034      |                |                    |                |           |                    |                      |         |                      |
| 036      | 0.87           | 0.28               | 2              | ICP-MS    | 0.14               | 0.14                 | 0.14    | а                    |

<sup>a</sup> V3 is set by the ILC coordinator when no coverage factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with k=V3,

<sup>b</sup>score evaluation colours: <mark>satisfactory</mark>, questionable, unsatisfactory,

## Annex 11: Results for Hg

Assigned values:  $x_{pt} = 0.0481$ ;  $U(x_{pt}) = 0.0022$  (k=2); and  $\sigma_{pt} = 0.0106$ ; all values in mg kg<sup>-1</sup>, relative to a feed with a moisture content of 12 %

| Lab Code | X <sub>i</sub> | U(x <sub>i</sub> ) | k <sup>a</sup> | technique | u(x;)    | z-score <sup>b</sup> | ζ-score | uncert. <sup>c</sup> |
|----------|----------------|--------------------|----------------|-----------|----------|----------------------|---------|----------------------|
| 001      | 0.059          | 0.006              | 2              | ICP-MS    | 0.003    | 1.03                 | 3.41    | а                    |
| 002      | 0.052          | 0.005              | 2              | DMA       | 0.0025   | 0.37                 | 1.43    | а                    |
| 003      | 0.052          | 0.008              | 2              | AAS       | 0.004    | 0.37                 | 0.94    | а                    |
| 004      | 0.07           | 0.02               | 2              | AAS       | 0.01     | 2.07                 | 2.18    | а                    |
| 005      | 0.052          | 0.015              | 2              | ICP-MS    | 0.0075   | 0.37                 | 0.51    | а                    |
| 007      | 0.052          | 0.013              | 2              | AMA-254   | 0.0065   | 0.37                 | 0.59    | а                    |
| 008      | 0.051          | 0.00255            | 2              | AMA-254   | 0.001275 | 0.27                 | 1.72    | а                    |
| 009      | 0.0483         | 0.0126             | 2              | ICP-MS    | 0.0063   | 0.02                 | 0.03    | а                    |
| 010      | 0.093          | 0.012              | 2              | CV-AAS    | 0.006    | 4.24                 | 7.36    | а                    |
| 011      | 0.051          | 0.015              | 2              | ICP-MS    | 0.0075   | 0.27                 | 0.38    | а                    |
| 012      | 0.046          | 0.004              | 2              | AMA-254   | 0.002    | -0.20                | -0.92   | а                    |
| 013      | 0.068          | 0.008              | 2              | AAS       | 0.004    | 1.88                 | 4.80    | а                    |
| 014      | 0.052          | 0.008              | 2              | ICP-MS    | 0.004    | 0.37                 | 0.94    | а                    |
| 015      | 0.045          | 0.007              | 2              | ICP-MS    | 0.0035   | -0.29                | -0.84   | а                    |
| 016      | 0.058          | 0.023              | 2              | ICP-MS    | 0.0115   | 0.93                 | 0.86    | с                    |
| 017      | 0.082          | 0.004              | 2              | AAS       | 0.002    | 3.20                 | 14.85   | а                    |
| 018      | 0.0490         | 0.0010             | 3              | DMA       | 0.000333 | 0.08                 | 0.78    | b                    |
| 019      | 0.048          | 0.01               | 2              | AAS       | 0.005    | -0.01                | -0.02   | а                    |
| 020      | 0.0543         | 0.00217            | 2              | AMA-254   | 0.001085 | 0.58                 | 4.01    | b                    |
| 021      | 0.056          | 0.012              | 2              | DMA       | 0.006    | 0.75                 | 1.30    | а                    |
| 022      |                |                    |                |           |          |                      |         |                      |
| 023      | 0.0495         | 0.0104             | 2              | AAS       | 0.0052   | 0.13                 | 0.26    | а                    |
| 024      | 0.054          | 0.014              | 2              | HG-CVAAS  | 0.007    | 0.56                 | 0.83    | а                    |
| 025      | 0.064          | 0.016              | 2              | AAS       | 0.008    | 1.50                 | 1.97    | а                    |
| 026      | 0.0596         | 0.0137             | 2              | ICP-MS    | 0.00685  | 1.08                 | 1.66    | а                    |
| 027      | < 0.08         |                    |                | ICP-MS    |          |                      |         |                      |
| 028      | 0.057          | 0.011              | 2              | ICP-MS    | 0.0055   | 0.84                 | 1.59    | а                    |
| 029      | 0.06           | 0.015              | 2              | ICP-MS    | 0.0075   | 1.12                 | 1.57    | а                    |
| 030      | 0.0392         | 0.010              | 2              | DMA       | 0.005    | -0.84                | -1.74   | а                    |
| 031      | 0.053          | 0.011              | 2              | DMA       | 0.0055   | 0.46                 | 0.87    | а                    |
| 032      | 0.0471         | 0.0118             | 2              | ICP-MS    | 0.0059   | -0.09                | -0.17   | а                    |
| 033      | 0.110          | 0.006              | 2              | CV-AAS    | 0.003    | 5.84                 | 19.37   | а                    |
| 034      |                |                    |                |           |          |                      |         |                      |
| 036      |                |                    |                |           |          |                      |         |                      |

<sup>a</sup> V3 is set by the ILC coordinator when no coverage factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with k=V3,

<sup>b</sup>score evaluation colours: <mark>satisfactory</mark>, questionable, unsatisfactory,

### Annex 12: Results for iAs

Assigned values:  $x_{pt} = 2.01$ ;  $U(x_{pt}) = 0.09$  (k=2); and  $\sigma_{pt} = 0.30$ ; all values in mg kg<sup>-1</sup>, relative to a feedingstuffs with a moisture content of 12 %

| Lab Code | X <sub>i</sub> | U(x <sub>i</sub> ) | ka | technique   | u(x <sub>i</sub> ) | z-score <sup>b</sup> | ζ-score | uncert. <sup>c</sup> |
|----------|----------------|--------------------|----|-------------|--------------------|----------------------|---------|----------------------|
| 001      | 2.09           | 0.17               | 2  | HPLC-ICPMS  | 0.085              | 0.25                 | 0.80    | а                    |
| 002      | 1.96           | 0.16               | 2  | HPLC-ICP-MS | 0.08               | -0.18                | -0.58   | а                    |
| 003      |                |                    |    |             |                    |                      |         |                      |
| 004      | 2.1            | 0.5                | 2  | AAS         | 0.25               | 0.29                 | 0.34    | а                    |
| 005      | 0.086          | 0.015              | 2  | HPLC-ICP-MS | 0.0075             | -6.38                | -43.40  | b                    |
| 007      | 2.169          | 0.325              | 2  | HPLC-ICP-MS | 0.1625             | 0.52                 | 0.92    | а                    |
| 008      |                |                    |    |             |                    |                      |         |                      |
| 009      | 1.9            | 0.6                | 2  | AAS         | 0.3                | -0.38                | -0.37   | а                    |
| 010      |                |                    |    |             |                    |                      |         |                      |
| 011      |                |                    |    |             |                    |                      |         |                      |
| 012      |                |                    |    |             |                    |                      |         |                      |
| 013      | 1.321          | 0.33               | 2  | HPLC-ICP-MS | 0.165              | -2.29                | -4.06   | а                    |
| 014      | 2.021          | 0.05               | 2  | HG-AAS      | 0.025              | 0.03                 | 0.15    | b                    |
| 015      | 1.98           | 0.45               | 2  | ICP-MS      | 0.225              | -0.11                | -0.15   | а                    |
| 016      | 2.7            | 1.08               | 2  | HPLC-ICP-MS | 0.54               | 2.27                 | 1.27    | с                    |
| 017      |                |                    |    |             |                    |                      |         |                      |
| 018      | 3.3            |                    | √3 | ICP-MS      | 0                  | 4.26                 | 29.40   | b                    |
| 019      | 2.1            | 0.68               | 2  | HPLC-ICP-MS | 0.34               | 0.29                 | 0.25    | с                    |
| 020      |                |                    |    |             |                    |                      |         |                      |
| 021      | 2.2            | 0.4                | 2  | HPLC-ICP-MS | 0.2                | 0.62                 | 0.91    | а                    |
| 022      |                |                    |    |             |                    |                      |         |                      |
| 023      | 2.01           | 0.44               | 2  | ICP-MS      | 0.22               | -0.01                | -0.01   | а                    |
| 024      | 1.08           |                    | √3 | AAS         | 0                  | -3.09                | -21.33  | b                    |
| 025      | 2.083          | 0.312              | 2  | AAS         | 0.156              | 0.23                 | 0.43    | а                    |
| 026      | 1.885          | 0.339              | 2  | ICP-MS      | 0.1695             | -0.42                | -0.73   | а                    |
| 027      |                |                    |    |             |                    |                      |         |                      |
| 028      |                |                    |    |             |                    |                      |         |                      |
| 029      |                |                    |    |             |                    |                      |         |                      |
| 030      |                |                    |    |             |                    |                      |         |                      |
| 031      | 2.2            | 0.37               | 2  | HPLC-ICP-MS | 0.185              | 0.62                 | 0.98    | а                    |
| 032      | 2.24           | 0.56               | 2  | ICP-MS      | 0.28               | 0.75                 | 0.80    | а                    |
| 033      |                |                    |    |             |                    |                      |         |                      |
| 034      | 2.43           | 0.24               | 2  | HPLC-ICP-MS | 0.12               | 1.38                 | 3.26    | а                    |
| 036      | 1.6            | 0.5                | 2  | LC-ICP-MS   | 0.25               | -1.37                | -1.63   | а                    |

<sup>a</sup> V3 is set by the ILC coordinator when no coverage factor k is reported. The reported uncertainty was assumed to have a rectangular distribution with k=V3,

<sup>b</sup>score evaluation colours: <mark>satisfactory</mark>, questionable, unsatisfactory,

## Annex 13: Overview of performance versus technique

| Lab | total As | Cd      | Pb      | Hg       | iAs         |
|-----|----------|---------|---------|----------|-------------|
| 001 | ICP-MS   | ICP-MS  | ICP-MS  | ICP-MS   | HPLC-ICP-MS |
| 002 | ICP-MS   | ICP-MS  | ICP-MS  | DMA      | HPLC-ICP-MS |
| 003 | AAS      | AAS     |         | AAS      |             |
| 004 | AAS      | AAS     | AAS     | AAS      | AAS         |
| 005 | ICP-MS   | ICP-MS  | ICP-MS  | ICP-MS   | HPLC-ICP-MS |
| 007 | ICP-MS   | ICP-MS  | ICP-MS  | AMA 254  | HPLC-ICP-MS |
| 008 | ICP-MS   | ICP-MS  | ICP-MS  | AMA 254  |             |
| 009 | ICP-MS   | ICP-MS  | ICP-MS  | ICP-MS   | AAS         |
| 010 | HG-AAS   | AAS     | AAS     | CV-AAS   |             |
| 011 | ICP-MS   | ICP-MS  | ICP-MS  | ICP-MS   |             |
| 012 | ICP-OES  | ICP-OES | ICP-OES | AMA254   |             |
| 013 | AAS      | AAS     | AAS     | AAS      | HPLC-ICP-MS |
| 014 | ICP-MS   | ICP-MS  | ICP-MS  | ICP-MS   | HG–AAS      |
| 015 | ICP-MS   | ICP-MS  | ICP-MS  | ICP-MS   | ICP-MS      |
| 016 | ICP-MS   | ICP-MS  | ICP-MS  | ICP-MS   | HPLC-ICP-MS |
| 017 | AAS      | AAS     |         | AAS      |             |
| 018 | ICP-MS   | ICP-MS  | ICP-MS  | DMA      | ICP-MS      |
| 019 | AAS      | AAS     | AAS     | AAS      | HPLC-ICPMS  |
| 020 |          |         |         | AMA-254  |             |
| 021 | ICP-MS   | ICP-MS  | ICP-MS  | DMA      | HPLC-ICP-MS |
| 022 | AAS      | AAS     | AAS     |          |             |
| 023 | ICP-MS   | ICP-MS  | ICP-MS  | AAS      | ICP-MS      |
| 024 | AAS      | AAS     | AAS     | HG-CVAAS | AAS         |
| 025 | AAS      | AAS     | AAS     | AAS      | AAS         |
| 026 | ICP-MS   | ICP-MS  | ICP-MS  | ICP-MS   | ICP-MS      |
| 027 | ICP-MS   | ICP-MS  | ICP-MS  |          |             |
| 028 | ICP-MS   | ICP-MS  | ICP-MS  | ICP-MS   |             |
| 029 | ICP-MS   | ICP-MS  | ICP-MS  | ICP-MS   |             |
| 030 | ICP-MS   | ICP-MS  | ICP-MS  | DMA      |             |
| 031 | ICP-MS   | ICP-MS  | ICP-MS  | DMA      | HPLC-ICP-MS |
| 032 | ICP-MS   | ICP-MS  | ICP-MS  | ICP-MS   | ICP-MS      |
| 033 | ICP-MS   | ICP-MS  | ICP-MS  | CV-AAS   |             |
| 034 |          |         |         |          | HPLC-ICP-MS |
| 036 | ICP-MS   | ICP-MS  | ICP-MS  |          | LC-ICP-MS   |

Z-Score evaluation colours: satisfactory, questionable, unsatisfactory.

## Annex 14: Conformity as expressed by the participants.

| Lab | Comply | If not compliant, specify why. <sup>a</sup>                                                                                                                                                           | $x_i - U_i^b$ | Eval. <sup>c</sup> |
|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|
| 001 | Yes    |                                                                                                                                                                                                       | > ML          | FC                 |
| 002 | No     | Result of Cd exceeds the maximum level (ML) as laid down in DIR 2002/32/EC for "Feed materials of vegetable origin".<br>Results of As, iAs, Pb and Hg do not exceed the MLs.                          | > ML          | TNC                |
| 003 | Yes    |                                                                                                                                                                                                       | < ML          | TC                 |
| 004 | Yes    |                                                                                                                                                                                                       | < ML          | TC                 |
| 005 | Yes    |                                                                                                                                                                                                       | < ML          | TC                 |
| 007 | No     | because of exceeding ML for Cd (feed materials of vegetable origin 1 ppm)<br>and exceeding ML for inorg. As (2ppm/88 % dry mass)                                                                      | > ML          | FNC                |
| 008 | No     | Cd is more than 1 mg/kg                                                                                                                                                                               | < ML          | FNC                |
| 009 | No     | Cd is above MRL (1,0 mg/kg)                                                                                                                                                                           | > ML          | TNC                |
| 010 | No     | For Cd the maximum level is 1 mg/Kg in feed materials of vegetable origin                                                                                                                             | > ML          | TNC                |
| 011 | No     | The content of cadmium (minus measurement uncertainty) is higher than maximum permitted content.                                                                                                      | > ML          | TNC                |
| 012 | No     | Cd exceeds allowed maximum content (0.5 mg/kg 12 % moisture)                                                                                                                                          | > ML          | FNC                |
| 013 | Yes    |                                                                                                                                                                                                       | < ML          | TC                 |
| 014 | No     | Cd content is higher than 1 mg/kg                                                                                                                                                                     | > ML          | TNC                |
| 015 | No     | Cd: Reg.value 1mg/kg. Our result 1.05mg/kg (after UM subtracted)                                                                                                                                      | > ML          | TNC                |
| 016 | ?      |                                                                                                                                                                                                       | < ML          |                    |
| 017 | No     | Not compliant for Cd                                                                                                                                                                                  | > ML          | TNC                |
| 018 | ?      |                                                                                                                                                                                                       | > ML          |                    |
| 019 | Yes    |                                                                                                                                                                                                       | < ML          | TC                 |
| 020 | Yes    | (Note authors: No Cd results)                                                                                                                                                                         | nd            | FC                 |
| 021 | No     | Cd concentration: 1.456 mg/kg - 0.288 mg/kg = 1.168 mg/kg > 1 mg/kg (the maximum level for Cd in feed materials of vegetable origin)                                                                  | > ML          | TNC                |
| 022 | No     | Out of limits for Cd                                                                                                                                                                                  | > ML          | TNC                |
| 023 | No     | Cd content value exceeds the maximum allowed                                                                                                                                                          | > ML          | TNC                |
| 024 | No     | Cd content is over the maximum level (1mg/Kg)                                                                                                                                                         | > ML          | TNC                |
| 025 | Yes    | The Cd content is over 1 mg/kg                                                                                                                                                                        | > ML          | FC                 |
| 026 | No     | ML for Cadmium for plant ingredient is 1mg/kg, which is violated even after substracting the measurement uncertainty                                                                                  | > ML          | TNC                |
| 027 | No     | Non compliant for Cd                                                                                                                                                                                  | > ML          | TNC                |
| 028 | ?      |                                                                                                                                                                                                       | > ML          |                    |
| 029 | Yes    |                                                                                                                                                                                                       | > ML          | FC                 |
| 030 | No     | Because concentration of Cd is above limit of 1 mg/kg (calculating Measurement Uncertainty )                                                                                                          | > ML          | TNC                |
| 031 | No     | The concentration of cadmium in the sample (after subtracting the uncertainty) is above 1 mg/Kg, which, according to regulation 574/2011 is the maximum limit for Feed materials of vegetable origin. | > ML          | TNC                |
| 032 | No     | Cd-level above ML ( 1 mg/kg)                                                                                                                                                                          | > ML          | TNC                |
| 033 | No     | As, Cd, Hg are more then limit                                                                                                                                                                        | > ML          | FNC                |
| 034 | ?      | No MLs for iAs in palm kernel expeller (Note Authors: no Cd results)                                                                                                                                  | nd            |                    |
| 036 | Yes    |                                                                                                                                                                                                       | < ML          | TC                 |

<sup>a</sup> Wrong justifications are marked in yellow.
 <sup>b</sup> Maximum Level for Cd in palm kernel expeller set by DIR 2002/32/EC: ML = 1 mg kg<sup>-1</sup>
 <sup>c</sup> TNC: True Non-Compliant, TC: True Compliant, FNC: False Non-Compliant, FC: False Compliant.

## Annex 15: Experimental details (as reported by the participants)

| Lab  |           | Digestion |              | Temperature    | Time       | Recovery | LODs     |
|------|-----------|-----------|--------------|----------------|------------|----------|----------|
| Code | Measurand | type      | Acid mixture | (°C)           | (min)      | %        | (mg/kg)  |
| 001  | As        | CMW       | HNO3         | 166            | 54         | 104      | 0,005    |
| 001  | Cd        | CMW       | HNO3         | 166            | 54         | 104      | 0,002    |
| 001  | Pb        | CMW       | HNO3         | 166            | 54         | 97       | 0,003    |
| 001  | Hg        | CMW       | HNO3         | 166            | 54         | 95       | 0,001    |
| 002  | As        | CMW       | HNO3/H2O2    | 150C/180       | 20/10      | 108      | 0.0009   |
| 002  | Cd        | CMW       | HNO3/H2O2    | 150C/180       | 20/10      | 90       | 0.0003   |
| 002  | Pb        | CMW       | HNO3/H2O2    | 150C/180       | 20/10      | 111      | 0.004    |
| 002  | Hg        | no dig.   | -            | -              | -          | 101      | 0.0002   |
| 003  | As        | CMW       | HNO3/H202/HF | 200            | 28         | 91.76    | 0.18     |
| 003  | Cd        | CMW       | HNO3/H202/HF | 200            | 28         | 98.21    | 0.075    |
| 003  | Pb        | CMW       | HNO3/H202/HF | 200            | 28         | 88.75    | 0.50     |
| 003  | Hg        |           |              |                |            | 94.12    | 0.010    |
| 004  | As        | Dry Ash   | HNO3         | 445            | 24 h       | 96       | 0.063    |
| 004  | Cd        | OWD       | HNO3/H2O2    | 170            | 1 h        | 88       | 0.01     |
| 004  | Pb        | OWD       | HNO3/H2O2    | 170            | 1 h        | 100      | 0.05     |
| 004  | Hg        | CMW       | HNO3/H2O2    | 170            | 20         | 112      | 0.025    |
| 005  | As        | CMW       | HNO3/HCI     | 220            | 25         | 100      | 0,01     |
| 005  | Cd        | CMW       | HNO3/HCI     | 220            | 25         | 100      | 0,003    |
| 005  | Pb        | CMW       | HNO3/HCI     | 220            | 25         | 100      | 0,004    |
| 005  | Hg        | CMW       | HNO3/HCI     | 220            | 25         | 100      | 0,019    |
| 007  | As        | OMW       | HNO3         | 200            | 10         | 98-102   | 0,006    |
| 007  | Cd        | OMW       | HNO3         | 200            | 10         | 98-102   | 0,006    |
| 007  | Pb        | OMW       | HNO3         | 200            | 10         | 98-102   | 0,09     |
|      |           |           |              | dry combustion | 270s temp. |          |          |
| 007  | Hg        | no dig.   | no acids     | in oxygen      | programe   | 98-102   | 0,0006   |
| 008  | As        | CMW       | HNO3/H2O2    | max.190        | 51         | 102      | 0.00231  |
| 008  | Cd        | CMW       | HNO3/H2O2    | max.190        | 51         | 89       | 0.00160  |
| 008  | Pb        | CMW       | HNO3/H2O2    | max.190        | 51         | 102      | 0.00135  |
| 008  | Hg        | Dry Ash   |              |                |            | 102      | 0.000146 |
| 009  | As        | CMW       | HNO3/H2O2    | 200            | 60         | 88       | 0,1      |
| 009  | Cd        | CMW       | HNO3/H2O2    | 200            | 60         | 95       | 0,01     |
| 009  | Pb        | CMW       | HNO3/H2O2    | 200            | 60         | 95       | 0,01     |
| 009  | Hg        | CMW       | HNO3/H2O2    | 200            | 60         |          | 0,01     |
| 010  | As        | Dry Ash   | HNO3/HCI     | 450            | 12 h       | 102      | 0.100    |
| 010  | Cd        | Dry Ash   | HNO3/HCI     | 450            | 24 h       | 94.2     | 0.07     |
| 010  | Pb        | Dry Ash   | HNO3/HCI     | 450            | 24 h       | 100      | 0.5      |
| 010  | Hg        | CMW       | HNO3         | 180            | 50         | 98       | 0.003    |
| 011  | As        | CMW       | HNO3/H2O2    | 200            | 20         | 100      | 0.008    |
| 011  | Cd        | CMW       | HNO3/H2O2    | 200            | 20         | 89       | 0.002    |
| 011  | Pb        | CMW       | HNO3/H2O2    | 200            | 20         | 100      | 0.005    |
| 011  | Hg        | CMW       | HNO3/H2O2    | 200            | 20         | 84       | 0.008    |
| 012  | As        | CMW       | HNO3/H2O2    | 100-200        | 22         | 93       | 0,5      |
| 012  | Cd        | CMW       | HNO3/H2O2    | 100-200        | 22         | 92       | 0,1      |
| 012  | Pb        | CMW       | HNO3/H2O2    | 100-200        | 22         | 83       | 0,5      |
| 012  | Hg        | none      | none         | 200-650        | 3          |          |          |
| 013  | As        | Dry Ash   |              | 550            | 24 h       | 89       | 0.002    |
| 013  | Cd        | Dry Ash   |              | 450            | 24 h       | 93       | 0.001    |
| 013  | Pb        | Dry Ash   |              | 450            | 24h        | 94       | 0.002    |
| 040  |           | Pressure  |              |                | 2          |          | 0.001    |
| 013  | Hg        | bomb      |              | -              | 3          |          | 0.001    |

| Lab  |           | Digestion        |              | Temperature | Time               | Recovery | LODs    |
|------|-----------|------------------|--------------|-------------|--------------------|----------|---------|
| Code | Measurand | type             | Acid mixture | (°C)        | (min)              | %        | (mg/kg) |
| 014  | As        | CMW              | HNO3/H2O2    | 180         | 30                 | 104      | 0,010   |
| 014  | Cd        | CMW              | HNO3/H2O2    | 180         | 30 min             | 102      | 0,002   |
| 014  | Pb        | CMW              | HNO3/H2O2    | 180         | 30 min             | 100      | 0,005   |
| 014  | Hg        | CMW              | HNO3/H2O2    | 180         | 30 min             | 101      | 0,010   |
| 015  | As        | CMW              | HNO3/HCI     | 240         | 15                 | 100      | 0.003   |
| 015  | Cd        | CMW              | HNO3/HCI     | 240         | 15                 | 102      | 0.08    |
| 015  | Pb        | CMW              | HNO3/HCI     | 240         | 15                 | 110      | 0.02    |
| 015  | Hg        | CMW              | HNO3, HCl    | 240         | 15                 | 113      | 0.002   |
| 016  | As        | CMW              | HNO3         |             |                    |          | 0,01    |
| 016  | Cd        | CMW              | HNO3         |             |                    |          | 0,005   |
| 016  | Pb        | CMW              | HNO3         |             |                    |          | 0,03    |
| 016  | Hg        | CMW              | HNO3         |             |                    |          | 0,005   |
| 017  | As        | CMW              | HNO3/H2O2    | 185         | 15                 | 97.3     | 0.06    |
| 017  | Cd        | CMW              | HNO3/H2O2    | 185         | 15                 | 96.6     | 0.01    |
| 017  | Pb        | CMW              | HNO3/H2O2    | 185         | 15                 | 99.6     | 0.07    |
| 017  | Hg        | CMW              | HNO3/H2O2    | 185         | 15                 | 100.8    | 0.01    |
| 018  | As        | MW               | HNO3/H2O2    | 180         | 10                 |          | 1       |
| 018  | Cd        | MW               | HNO3/H2O2    | 180         | 10                 |          | 0.5     |
| 018  | Pb        | MW               | HNO3/H2O2    | 180         | 10                 |          | 0.1     |
| 018  | Hg        |                  |              |             |                    |          | 0.005   |
| 019  | As        | CMW              | HNO3         | 210         | 30                 |          | 0.03    |
| 019  | Cd        | CMW              | HNO3         | 210         | 30                 |          | 0.004   |
| 019  | Pb        | CMW              | HNO3         | 210         | 30                 |          | 0.02    |
| 019  | Hg        | CMW              | HNO3         | 210         | 30                 |          | 0.01    |
| 020  | As        |                  |              |             |                    |          |         |
| 020  | Cd        |                  |              |             |                    |          |         |
| 020  | Pb        |                  |              |             |                    |          |         |
| 020  | Hg        |                  |              |             |                    | 95.8     | 0.00042 |
| 021  | As        | CMW              | HNO3         | 180         | 30                 | 110      | 0.0006  |
| 021  | Cd        | CMW              | HNO3         | 180         | 30                 | 103.5    | 0.0017  |
| 021  | Pb        | CMW              | HNO3         | 180         | 30                 | 99.7     | 0.0048  |
| 021  | Hg        |                  |              |             |                    | 105      | 0.0002  |
| 022  | As        | CMW              | HNO3/H2O2    | 200         | 40                 | 80       | 0.08    |
| 022  | Cd        | CMW              | HNO3/H2O2    | 200         | 40                 | 85       | 0.1     |
| 022  | Pb        | CMW              | HNO3/H2O2    | 200         | 40                 | 90       | 0.05    |
| 022  | Hg        |                  | HNO3/H2O2    | 200         | 40                 |          |         |
| 023  | As        | CMW              | HNO/H2O2     | 200         | 20                 | 101      | 0.020   |
| 023  | Cd        | CMW              | HNO/H2O2     | 200         | 20                 | 102      | 0.005   |
| 023  | Pb        | CMW              | HNO/H2O2     | 200         | 20                 | 96       | 0.020   |
| 023  | Hg        | Dry Ash          | -            | 850         | 150 s              | 103      | 0.005   |
|      |           | Pressure         |              |             | Ramp/hold          |          |         |
| 024  | As        | bomb             | HNO3/H2O2    | 180         | 20/20              | 80-110   | 0.067   |
| 024  | Cd        | Pressure         |              | 100         | Ramp/hold          | 00.110   | 0.0022  |
| 024  | Cd        | bomb<br>Pressure | HNO3/H2O2    | 180         | 20/20<br>Ramp/hold | 80-110   | 0.0033  |
| 024  | Pb        | bomb             | HNO3/H2O2    | 180         | 20/20              | 80-110   | 0.010   |
|      |           | Pressure         |              |             | Ramp/hold          |          |         |
| 024  | Hg        | bomb             | HNO3/H2O2    | 180         | 20/20              | 80-110   | 0.016   |
| 025  | As        | CMW              | HNO3/H2O2    | 200         | 20                 | 98       | 0.04    |
| 025  | Cd        | CMW              | HNO3/H2O2    | 200         | 20                 | 110      | 0.04    |
| 025  | Pb        | CMW              | HNO3/H2O2    | 200         | 20                 | 90       | 0.04    |
| 025  | Hg        | CMW              | HNO3/H2O2    | 200         | 20                 | 92       | 0.04    |

| Lab<br>Code | Measurand | Digestion   | Acid mixture | Temperature<br>(°C) | Time<br>(min) | Recovery<br>% | LODs             |
|-------------|-----------|-------------|--------------|---------------------|---------------|---------------|------------------|
| 026         | As        | type<br>CMW | HNO3         | 220                 | 20            | 102           | (mg/kg)<br>0.013 |
| 020         | Cd        | CMW         | HNO3         | 220                 | 20            | 102           | 0.013            |
| 026         | Pb        | CMW         | HNO3         | 220                 | 20            | 100           | 0.0014           |
| 020         | Hg        | CMW         | HNO3         | 220                 | 20            | 102           | 0.000            |
| 020         | As        | MW          | HNO3         | 200                 | 30            | 105           | 0.003            |
| 027         | Cd        | MW          | HNO3         | 200                 | 30            | 111           | 0.03             |
| 027         | Pb        | MW          | HNO3         | 200                 | 30            | 107           | 0.02             |
| 027         | Hg        | MW          | HNO3         | 200                 | 30            | 107           | 0.08             |
| 028         | As        | CMW         | HN03/H202    | 200                 | 8             | 105           | 0,002            |
| 028         | Cd        | CMW         | HN03/H202    | 200                 | 8             |               | 0,002            |
| 028         | Pb        | CMW         | HN03/H202    | 200                 | 8             |               | 0,02             |
| 028         | Hg        | CMW         | HN03/H202    | 200                 | 8             |               | 0,02             |
| 020         | As        | CMW         | HN03/H202    | 230                 | 50            |               | 0,05             |
| 029         | Cd        | CMW         | HN03/H202    | 230                 | 50            |               | 0.01             |
| 029         | Pb        | CMW         | HN03/H202    | 230                 | 50            |               | 0.01             |
| 029         | Hg        | CMW         | HN03/H202    | 230                 | 50            |               | 0.02             |
| 030         | As        | CMW         | HN03/H202    | 210                 | 30            | 98,81         | 10               |
| 030         | Cd        | CMW         | HN03/H202    | 210                 | 30            | 98,81         | 10               |
| 030         | Pb        | CMW         | HN03/H202    | 210                 | 30            | 99,45         | 10               |
| 030         | Hg        | -           | -            | -                   |               | 96            | 10               |
| 031         | As        | CMW         | HNO3/H2O2    | 200                 | 40            | 97            | 0.020            |
| 031         | Cd        | CMW         | HNO3/H2O2    | 200                 | 40            | 94            | 0.004            |
| 031         | Pb        | CMW         | HNO3/H2O2    | 200                 | 40            | 95            | 0.006            |
| 031         | Hg        |             | 11103/11202  | 200                 | 10            | 102           | 0.010            |
| 032         | As        | CMW         | HNO3         | 230                 | 20            | 100           | 0,025            |
| 032         | Cd        | CMW         | HNO3         | 230                 | 20            | 100           | 0,006            |
| 032         | Pb        | CMW         | HNO3         | 230                 | 20            | 100           | 0,02             |
| 032         | Hg        | CMW         | HNO3         | 230                 | 20            | 100           | 0,013            |
| 033         | As        | CMW         | HNO3/H2O2    | 180°C               | 30.           | 100           | 0.005            |
| 033         | Cd        | CMW         | HNO3/H2O2    | 180°C               | 30.           | 100           | 0.005            |
| 033         | Pb        | CMW         | HNO3/H2O2    | 180°C               | 30.           | 100           | 0.010            |
| 033         | Hg        | OWD         | HNO3/H2SO4   | 200°C               | 15 min.       | 100           | 0.005            |
| 034         | As        |             |              |                     |               |               |                  |
| 034         | Cd        |             |              |                     |               |               |                  |
| 034         | Pb        |             |              |                     |               |               |                  |
| 034         | Hg        |             |              |                     |               |               |                  |
| 036         | As        | CMW         | HNO3         | 200                 | 20            | 100           | 0.2              |
| 036         | Cd        | CMW         | HNO3         | 200                 | 20            | 100           | 0.05             |
| 036         | Pb        | CMW         | HNO3         | 200                 | 20            | 100           | 0.05             |
| 036         | Hg        |             |              |                     |               | 100           | 0.015            |

CMW: closed microwave digestion; OWD: open wave digestion

# *Europe Direct is a service to help you find answers to your questions about the European Union.*

Freephone number (\*):

## 00 800 6 7 8 9 10 11

(\*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you).

More information on the European Union is available on the internet (<u>http://europa.eu</u>).

#### HOW TO OBTAIN EU PUBLICATIONS

#### **Free publications:**

- one copy: via EU Bookshop (<u>http://bookshop.europa.eu</u>);
- more than one copy or posters/maps: from the European Union's representations (<u>http://ec.europa.eu/represent\_en.htm</u>); from the delegations in non-EU countries (<u>http://eeas.europa.eu/delegations/index\_en.htm</u>); by contacting the Europe Direct service (<u>http://europa.eu/europedirect/index\_en.htm</u>) or calling 00 800 6 7 8 9 10 11 (freephone number from anywhere in the EU) (\*).

(\*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you).

#### **Priced publications:**

• via EU Bookshop (<u>http://bookshop.europa.eu</u>).

## **JRC** Mission

As the science and knowledge service of the European Commission, the Joint Research Centre's mission is to support EU policies with independent evidence throughout the whole policy cycle.



#### EU Science Hub ec.europa.eu/jrc

- 9 @EU\_ScienceHub
- f EU Science Hub Joint Research Centre
- in Joint Research Centre
- EU Science Hub



doi:10.2787/370477 ISBN 978-92-79-64421-4