
 

 

 

Juan Aparicio 

Javier Barbero 

Magdalena Kapelko 

Jesús T. Pastor 

José L. Zofío   

 

A new Malmquist-Luenberger 

Index Approach 

Environmental Productivity Change 
in World Air Emissions 

2016 

EUR 28246 EN 

 

 



This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and 

knowledge service. It aims to provide evidence-based scientific support to the European policy-making process. 

The scientific output expressed does not imply a policy position of the European Commission. Neither the 

European Commission nor any person acting on behalf of the Commission is responsible for the use which might 

be made of this publication. 

Contact information  

Name: Javier Barbero Jiménez 

Address: Joint Research Centre, Edificio Expo. c/ Inca Garcilaso, 3. E-41092 Seville (Spain) 

E-mail: Javier.BARBERO-JIMENEZ@ec.europa.eu  

Tel.: +34 954488723 

JRC Science Hub 

https://ec.europa.eu/jrc 

JRC104083 

EUR 28246 EN 

PDF ISBN 978-92-79-63966-1 ISSN 1831-9424 doi:10.2791/173984 

Luxembourg: Publications Office of the European Union, 2016 

© European Union, 2016 

Reproduction is authorised provided the source is acknowledged. 

How to cite: Aparicio J; Barbero Jimenez J; Kapelko M; Pastor J; Zofío J. Environmental Productivity Change 
in World Air Emissions: A new Malmquist-Luenberger Index Approach. EUR 28246 EN. doi:10.2791/173984. 

(Luxembourg): Publications Office of the European Union; 2016

All images © European Union 2016 



1 

Environmental Productivity Change in World Air Emissions: A new 

Malmquist-Luenberger Index Approach 

Juan Aparicioa, Javier Barberob, Magdalena Kapelkoc, Jesús T. Pastora and José L. Zofíod 

a Center of Operations Research (CIO), Universidad Miguel Hernández de Elche, E-03202 Elche, 

Alicante, Spain. 

b European Commission, Joint Research Centre (JRC), Directorate B – Growth and Innovation, 

Territorial Development Unit, Edificio Expo, C/ Inca Garcilaso 3, E-41092 Seville/Spain. 

c Institute of Applied Mathematics, Department of Logistics, Wrocław University of Economics, 

Wrocław, Poland. 

d Departamento de Análisis Económico: Teoría Económica e Historia Económica. Universidad 

Autónoma de Madrid, E-28049 Madrid, Spain. 

Abstract 

Over the last twenty years an increasing number of studies have relied on the standard 

definition of the Malmquist-Luenberger index proposed by Chung et al. (1997) [J. 

Environ. Manage., 51, 229-240], to assess environmental sensitive productivity change. 

While recent contributions have shown that it suffers from relevant drawbacks related to 

inconsistencies and infeasibilities, no one has studied systematically the performance of 

the original model, and to what extent the existing results are unreliable. We introduce 

the optimization techniques that implement the model by Aparicio et al. (2013) [Eur. J. 

Oper. Res., 229(3), 738-742] solving these problems, and using a country level database 

on air pollutants systematically compare the results obtained with both approaches. Over 

the 1995-2007 period environmental productivity stagnation prevails across developed 

and developing countries, and while increasing technical progress takes place in the later 

years, it is offset by declining efficiency. Results show also that inconsistencies and 

infeasibilities in the original model are increasing in the number of undesirable outputs 

included, reaching remarkable values that seriously question the reliability of results, and 

compromise any environmental policy recommendation based on them. 

Keywords: Malmquist-Luenberger Index, Technical Change, Data Envelopment 

Analysis, Computational Analysis. 

JEL Classification: C61; D24; O47; Q53. 
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1. Introduction

The study of environmentally sensitive productivity change accounting for 

undesirable outputs such as those considered in environmental studies have grown 

exponentially in recent years. The asymmetric modelling of outputs when measuring 

efficiency and productivity change depending on their nature, increasing those that are 

market oriented while reducing those that are detrimental to the environment—resulting 

in negative externalities, was initiated in the Malmquist-Luenberger productivity index 

context by Chung et al. (1997) —hereafter denoted CFG. Mirroring the definition of the 

Malmquist index proposed by Färe et al. (1994) based on Shephard’s (1953) input or 

output distance functions, these authors introduced the Malmquist–Luenberger index—

hereafter denoted ML—exploiting the flexibility of the directional distance function—

Chambers et al. (1996). They also followed its traditional Malmquist counterpart so as to 

identify the sources of productivity change, by decomposing the ML index into two 

mutually exclusive components interpreted in terms of efficiency change and technical 

change. 

The ML literature draws from previous contributions on how to model undesirable 

(or bad) outputs when calculating efficiency. Most particularly, if the axioms underlying 

the production technology and their Data Envelopment Analysis (DEA) approximations 

should reflect their strong or weak disposability, and eventually, if they should be 

modeled as outputs or as if they were inputs. But in this latter case an infinite amount of 

undesirable outputs could be produced with limited inputs, which is an untenable 

assumption as discussed in the following methodological section. For many years there 

has been an ongoing debate on this issue in the framework of radial environmental 

efficiency measurement, although it seamlessly extends to other non-radial measures such 

as the directional distance function making up the ML index. While this debate revolves 
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around technological axioms and is mainly theoretical, the alternative models had been 

ultimately put to the test in empirical studies.1  

With respect to the definition of the standard ML index, Aparicio et al (2013)—

hereafter APZ—have shown that the original technological postulates underlying the 

definition of the directional distance function by Chambers et al. (1996), result in 

inconsistencies related to the numerical interpretation of its technical change component, 

which eventually plagues the ML index itself.  Specifically, these authors show that this 

component may not measure the actual shift in the production possibility set properly. 

For example, environmentally friendly technical progress by which the same amount of 

desirable outputs is produced with less undesirable outputs, is measured numerically with 

an index lower than one, indicating technological regress—and viz.. Consequently the 

numerical value of the technical change index in empirical applications will yield 

erroneous results, which in turn support misguided policy recommendations. Ultimately, 

Aparicio et al.’s (2013) findings question the validity of the standard approach as an 

empirical tool for environmental productivity measurement. A suspicion that is 

corroborated in this study by the existence of a remarkable number of inconsistencies that 

result in wrong interpretations. To overcome this theoretical drawback, these authors 

redefine the technological axioms by assuming a new postulate that ensures that 

production possibility sets are nested over time, while limiting the amount of undesirable 

outputs that can be produced by a―finite amount―of observed inputs.  

Although the new approach solves the inconsistency issue, the ML index still 

suffers from one more weakness related to the infeasibility of the cross period directional 

distance functions conforming the technical change component. Nevertheless, as shown 

                                                 
1 See, for example, the exchange between Hailu and Veeman (2001), Färe and Grosskopf (2003) and Hailu 

(2003) in the Am. J. Agric. Econ., and Seiford and Zhu (2002), Färe and Grosskopf (2004) and Seiford and 

Zhu (2005) in the Eur. J. Oper. Res..  
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in our empirical application, while infeasibilities are pervasive in the standard approach, 

they diminish by several orders of magnitude in the APZ model, becoming negligible and 

showing one more advantage of the new theoretical framework. Indeed, Aparicio et al.’s 

(2013) objective was to mend the original approach in the most parsimonious manner, 

thereby preventing the existence of inconsistencies and reducing infeasibility issues. 

As the popularity of the standard approach is unquestionable given the number of 

empirical applications that rely on this methodology, it is mandatory to assess the 

reliability of the results through systematic numerical simulations and model definitions, 

and compare its performance with respect to the new approach. Since it was introduced, 

many empirical studies have adopted the Chung’s et al. (1997) theoretical framework—

hereafter CFG, while relying on Data Envelopment Analysis techniques to approximate 

the production technology. Among these, and focusing on the fields of energy, industrial 

and environmental economics, we can highlight Färe et al. (2001) and Weber and 

Domazlicky (2001) in manufacturing industries, Kumar (2006) and Yörük and Zaim 

(2005) for OECD countries, Kumar and Managi (2010b) for electric generating plants, 

etc. Table 1 summarizes the most relevant contributions to leading journals in the field of 

environmental economics and management that use the standard ML index, including the 

number of observations (countries, firms,…) and period studied; the included desirable 

outputs, undesirable outputs and inputs; as well as their main findings regarding 

environmentally friendly or detrimental productivity change, as well as its efficiency and 

technical sources.2  

                                                 
2 The list of studies was elaborated following these steps: First, using the ISI Web of Knowledge, we 

searched for contributions citing the CFG approach, finding 458 hits; secondly, among these we identified 

32 papers actually using it (but excluding those that proposed some extension of standard ML index). 

Thirdly, we selected those studies that have been published in relevant journals in the field of environmental 

economics and management, reaching the 19 contributions summarized in Table 1.       



5 

 

Table 1. Review of selected environmental economics and management literature studies applying the standard CFG approach. 

Publication 
Sector and/or Country 

(Time period) 
Desirable outputs Undesirable outputs Inputs 

Main results 

MLEFFCH MLTECH ML 

Boyd et al. 

(2002) 

US firms in container 

glass industry (1987-

1990) 

1.Value of 

shipment 

1. NOx  1.Capital 

2.Stock 

3.Labour  

4.Cost of energy 

5.Cost of materials 

1987/1988: increase  

1988/1989: decrease  

1989/1990: increase  

1987-1990: 

increase  

1987-1990: increase 

Chen and 

Golley (2014) 

38 China industrial 

sectors (1980–2010) 

1.Value added 1.Energy-induced 

emissions 

1.Capital 

2.Labor 

3.Energy 

1.0036* 1.0158* 1.0146* 

Domazlicky 

and Weber 

(2004) 

48 US states chemical 

industry (1988-1993) 

1.Value added 1.Toxic air emissions 

2.Toxic water 

emissions 

3.Toxic land emissions 

4.Toxic underground 

emissions 

1.Labor 

2.Capital 

1.0481* 1.0499* 1.0351* 

He et al. (2013) 50 China firms in iron 

and steel industry 

(2006-2008) 

1.Value added 1.Waste water  

2.Waste gas 

3.Solid waste 

1.Net fixed assets 

2.Employees  

3.Energy 

0.8930 1.3420 1.1980 

Krautzberger 

and Wetzel 

(2012) 

17 European countries 

commercial transport 

sector (1995-2006) 

1.GDP 1.CO2 1.Intermediate inputs 

2.Capital stock 

3.Employees 

0.9349 

 

1.0564 

 

0.9872 

 

Kumar (2006) 41 countries (1971–

1992) 

1.GDP 1.CO2 1.Labor,  

2.Capital,  

3.Energy consumption 

0.9997 

 

1.0006 

 

1.0002 

 

Kumar and 

Khanna (2009) 

38 countries (1971-

1992) 

1.GDP 1.CO2 1.Labor 

2.Capital 

3.Energy consumption 

0.9680* 1.0889* 1.0534* 

Kumar and 

Managi 

(2010a) 

51 countries (1971-

2000) 

1.GDP 

2.Income per 

capita 

1.CO2 

2.SO2 

1.Capital 

2.Labor 

3.Energy use 

0.9939* 1.0185* 1.0052* 

Kumar and 

Managi 

(2010b) 

50 US electric 

generating plants 

(1995-2007) 

1.Electricity 

output 

1.SO2 

1.NOx 

1.Heat 

2.Labor 

3.Capital 

1.0217* 1.0822* 1.0931* 

Li and Lin 

(2016a) 

28 China 

manufacturing sectors 

(2006-2010) 

1.Gross industrial 

output value 

 

1.CO2 

 

1.Capital stock 

2.Labor 

3.Energy consumption 

1.0002 

 

1.0270 

 

1.0272 

 

Li and Lin 

(2016b) 

30 China provinces 

(1997-2012) 

1.Gross region 

product 

1.CO2 

 

1.Capital 

2.Labor 

3.Energy 

1.0093 

 

1.0253 

 

1.0340 
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Managi et al. 

(2005) 

406 oil and gas 

production fields in 

Gulf Mexico in the 

USA (1968-1995) 

1.Oil production 

2.Gas production 

1.Water pollution 

2. Oil spill 

1.No of platforms 

2.Avg platform size 

3(4).No of exploration 

(development) wells 

5(6).Avg drilling 

distance for 

exploratory 

(development) wells  

7.Produced water 

8.Environmental 

compliance cost 

- 1.4800 1.6500 

Oh and 

Heshmati 

(2010) 

26 OECD 

countries (1970–2003) 

1.GDP 1.CO2 1.Labor 

2.Capital 

1.0005 0.9938 0.9941 

Oh (2010) 46 countries (1993 and 

2003) 

 

1.GDP 1.CO2 

 

1.Labor 

2.Capital 

3.Energy consumption 

0.9992 

 

1.0053 

 

1.0043 

 

Piot-Lepetit 

and Le Moing 

(2007) 

320 French pig farms 

(1996-2001) 

1.Gross output 

 

1.Nitrogen surplus 

 

1.Land  

2.Livestock population  

3.No of workers 

4.Variable expenses 

1996/1997: increase 

1997/1998: decrease 

1998/1999: increase 

1999/2000: increase 

2000/2001: decrease 

1996/1997: 

decrease 

1997/1998: 

decrease 

1998/1999: increase 

1999/2000: increase 

2000/2001: increase 

1996/1997: decrease 

1997/1998: decrease 

1998/1999: increase 

1999/2000: increase 

2000/2001: increase 

Wang at al. 

(2013) 

28 China provinces 

(2005-2010) 

1.Provincial GDP  

 

1.CO2 1.Capital stock  

2.Labor  

3.Energy consumption 

0.9600 

 

1.0444 

 

1.0027 

 

Yu et al. 

(2016) 

16 China provinces 

pulp and paper industry 

(2010 and 2013) 

1.Total industrial 

output value 

1.Wastewater 

emissions 

2.Ammonia nitrogen 

1.Water consumption 1.2930 0.9410 1.2170 

Zhang (2015) 8 China cities (2001-

2009) 

1.GDP 1.CO2 1.Capital 

2.Labor 

3.Energy 

0.9980 0.9910 0.9900 

Zhang et al. 

(2011) 

30 China provinces 

(1989-2008) 

1.GDP 

 

1.SO2 1.Labor 

2.Capital 

0.9976 1.0270 1.0246 

Notes: MLEFFCH = Efficiency change; MLTECH = Technical change; ML = Productivity change. 

 *Average calculated from reported results.  

Although Oh and Heshmati (2010), and Oh (2010) propose an extension of M-L index, we include these studies in the table as they report also the results of the standard M-L index. Wang at al. 

(2013) and Mangi et al. (2005) additionally report also the results of other models, but we restrict ourselves to the model that takes into account both desirable and undesirable outputs. Managi et 

al. (2005) do not report the results for efficiency change. Boyd et al. (2002) and Piot-Lepetit and Le Moing (2007) do not report the exact values for indices. 

Source: own elaboration 
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In general, most of the studies consider only few individual pollutants in the 

analysis. Besides data reliability and availability, it is well known that as the number of 

decision variables increases with respect to the number of observations, the 

discriminatory power of DEA in terms of efficiency decreases. In terms of the ML index, 

and given the limited number of observations—particularly at the country level—studies 

tend to select the most relevant undesirable outputs based on the damage they cause to 

the environment. It turns out nevertheless that the number of inconsistencies and 

infeasibilities associated to the standard approach increase with the number of variables—

undesirable outputs in particular. Therefore, we find the contradiction that limiting the 

number of available variables in the calculation of the ML index so as to increase DEA’s 

discriminatory power yields biased results with respect to the real figures. But if these 

variables were to be included in the model, results would be unreliable given the 

increasing number of inconstancies and infeasibilities.  

Acknowledging the possibility to incorporate more pollutants into the analysis to 

better represent environmental productivity change and study the previous trade-off, in 

this study we solve successive models with increasing number of undesirable outputs 

under the standard CFG and new APZ approaches for a sample of 39 developed and 

developing countries committed to environmentally friendly policies. In total we solve 

up to 16.380 linear programs per round by exhausting all feasible combinations of 

undesirable outputs. We choose environmental performance with respect to air pollution 

mainly because of its relevance and the volume of empirical research exploring this issue. 

It is undoubtedly one of the most pressing environmental concerns, drawing increasing 

attention given the ongoing debate around its effects on global warming, soil 

acidification, and ozone depletion, as well as the existing international agreements on its 

limits and abatement programs; e.g., from the 1997 Kyoto Protocol extending the 1992 
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United Nations Framework Convention on Climate Change (UNFCCC), to the most 

recent December 2015 Paris agreement between 195 countries adopting the first-ever 

universal, legally binding global climate deal.  

The paper unfolds as follows. In the next section we discuss the standard and new 

approaches recalling the axioms underlying the production technology, the definition of 

the directional distance function as a measure of environmental efficiency, and the 

inconsistency issue that affects the original ML definition. We also show how these two 

approaches can be operationalized by approximating both technologies through Data 

Envelopment Analysis, introduce the mathematical programs corresponding to the new 

one. Section 3 starts out presenting the dataset on domestic production, air pollutants and 

inputs that have been collected for a comprehensive set of developed and developing 

countries. Afterwards we report and compare the results that are obtained using the 

standard and new approaches. For this purpose a model with two undesirable outputs is 

initially chosen as benchmark for comparison purposes. Also, a systematic discussion of 

the inconsistency and infeasibility issues regarding the ML index and its components is 

presented. Subsequently we perform sensitivity and robustness checks by increasing the 

number of undesirable outputs and solving the corresponding linear programs. Section 4 

draws relevant methodological and computational conclusions. 

 

2. The Malmquist-Luenberger productivity index 

 

2.1 The standard approach: CFG 

In this section we briefly introduce the definition and main features of the 

Malmquist-Luenberger productivity index introduced by Chung et al. (1997) constituting 

the standard CFG approach. To this end, we first need to introduce some concepts and 

notation. 
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Formally, let us denote the desirable (good) outputs by y  M

 , the undesirable 

(bad) outputs by b  I

 , while inputs are denoted by x  N

 . Then, the production 

technology can be represented by way of the following output correspondence P: N

  

P(x)  M+I ,  ( ) ( , ) : can produce ( , )P x y b x y b . 

Given 
Nx R , we assume the usual technological axioms, that is, (A1): 

 0M I P x  ; (A2):  P x  is compact; (A3) if x x  , then    P x P x ; (A4) 

( , ) ( )y b P x  and 0 1   imply ( , ) ( )y b P x   ; (A5) if ( , ) ( )y b P x  and 0Ib  , then 

0My  ; and (A6) ( , ) ( )y b P x  and 'y y  imply ( ', ) ( )y b P x  (see Färe et al., 2007). 

Axiom A2 is particularly important since it implies that the undesirable outputs are 

treated as real outputs and not as inputs. Compactness implies boundedness and, 

consequently, in words, A2 says that finite inputs can only produce finite (good and bad) 

outputs. As anticipated in the introduction, this is in contrast to the strand of literature that 

adheres to the input interpretation of undesirable outputs for empirical convenience and 

simplicity. Without further axiomatic qualifications this implies that, for example, a ton 

of coal could be used to produce a finite quantity of electricity and an infinite quantity of 

CO2 (e.g., Hailu and Veeman, 2000, 2001). 

The ML index used to measure productivity change is based on the directional 

distance function (Chambers et al. 1996, 1998)3, which seeks the largest feasible increase 

in desirable outputs compatible with a simultaneous reduction in undesirable outputs (see 

Chung et al., 1997): 

                                                 
3 Luenberger (1992, 1995) introduced the concept of benefit function as a representation of the amount that 

an individual is willing to trade, in terms of a specific reference commodity bundle g, for the opportunity 

to move from a consumption bundle to a utility threshold. Luenberger also defined a so-called shortage 

function (Luenberger, 1992, p. 242, Definition 4.1), which basically measures the distance in the direction 

of a vector g of a production plan from the boundary of the production possibility set. In recent times, 

Chambers et al. (1996, 1998) redefined the benefit function and the shortage function as efficiency 

measures, introducing to this end the so-called directional distance function. 
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  ( , , ; ) sup : ( , ) ( )oD x y b g y b g P x    , (1)
 

where g is the directional vector setting the particular orientation in which outputs are 

scaled. A standard choice of orientation corresponds to the observed values of the 

desirable and undesirable outputs: g = (y, b), with the latter expressed in negative values, 

thereby allowing for their reduction.4 

In the context of Data Envelopment Analysis (DEA), the directional distance 

function (1) can be determined from the mathematical formulation of a linear output 

production set ( )P x  that satisfies axioms A1-A6, and that is defined in terms of K  

observations. In this respect, we assume that for each period of time t  there are 1,...,k K  

observations of inputs and (good and bad) outputs, denoted as  , ,t t t

k k kx y b . From this 

sample, it is possible to construct the output production set ( )tP x  (see Chung et al., 1997): 

  

1

1

1

, 1,...,

, 1,...,
( ) , :

, 1,...,

0, 1,...,



 



 
  

 
 

  
   
 
  
 
   







K
t

k km m

k

K
t t

k ki it t M I
k

K
t t

k kn n

k

n

z y y m M

z b b i I
P x y b R R

z x x n N

z k K

. (2)
 

 

From (2), the directional output distance function can be computed as follows: 

 

                                                 
4 See Figure 1 in Chung et al. (1997) for a graphical illustration of the directional distance function in a 

setting with good and bad outputs. 
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0 0 0 0 0

0 0

1

0 0

1

0

1

( , , ; , ) (3.1)

. .

, 1,..., (3.2)

, 1,..., (3.3)

, 1,..., (3.4)

0, 1,..., (3.5)

t t t t t
o

K
t t t

k km m m

k

K
t t t

k ki i i

k

K
t t

k kn n

k

n

D x y b y b Max

s t

z y y y m M

z b b b i I

z x x n N

z k K













 

  

  

 

 







    (3) 

 

We now turn to the definition of the ML index and its decomposition. Following 

Färe et al. (2001), the index based on period s technology is: 

 

 
 

 1 1 1 1 1

1 , , ; ,
, , 1

1 , , ; ,

s t t t t t

os

s t t t t t

o

D x y b y b
ML s t t

D x y b y b    

 
  

 
 (4) 

 

Note that the definition of the Malmquist–Luenberger index is such that when the 

direction g is (y, b) rather than (y, b), it coincides with the standard Malmquist index. 

However, since the direction (y, b) is not suitable for dealing with the production of bad 

outputs, the direction (y, b) must be used instead and, consequently, the values of the 

ML index will differ from those of the standard Malmquist index. 

The ML index may be decomposed into efficiency change and technical change in 

periods t and t+1 as follows: 

 

 
 

 
 
 

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 , , ; , 1 , , ; ,

1 , , ; , 1 , , ; ,

     

          

   
 

   

t t

t t t t t t t t t t t t

o ot

t t t t t t t t t t t t

o o

MLEFFCH MLTECH

D x y b y b D x y b y b
ML

D x y b y b D x y b y b
, (5) 
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 

 
 
 

1 1

1

1

1 1 1 1 1 1

1 , , ; , 1 , , ; ,

1 , , ; , 1 , , ; ,

 





     

   
 

   

t t

t t t t t t t t t t t t

o ot

t t t t t t t t t t t t

o o

MLEFFCH MLTECH

D x y b y b D x y b y b
ML

D x y b y b D x y b y b
. (6) 

 

To avoid the use of an arbitrary reference technology, the geometric mean of the 

two based period indices is considered, thereby defining  
1 2

1 1  t t t

tML ML ML . 
1t

tML  

credits producers for simultaneously increasing good outputs and reducing the production 

of bad outputs. Also, from (5) and (6), 
1t

tML  can be decomposed into the same two 

components, accounting for efficiency change and technical change. Noting that 

1t tMLEFFCH MLEFFCH  , one obtains the following breakdown: 

 

 
 

 
1

1

1 2
1 1

1 1 1 1 1 1

1 , , ; ,

1 , , ; ,
t
t

t
t

t t t t t t

ot t t

t t t t t t t

o
MLTECH

MLEFFCH

D x y b y b
ML MLTECH MLTECH

D x y b y b




 

     

 
    

 
. (7) 

 

Following the literature, any improvement in productivity, efficiency and technical 

change corresponds to values greater than one. On the contrary, values less than one 

indicate regress. In particular, Färe et al. (2001; 391) interpret the values of the technical 

change component of the ML index as: “Shifts of the production possibilities frontier in 

the direction of ‘more goods and fewer bads’ results in the value of the 
1t

tMLTECH 
 

index exceeding unity. If the 
1t

tMLTECH 
index equals unity, this indicates that there was 

no shift in the production possibilities frontier. Finally, an 
1t

tMLTECH 
index value of 

less than unity indicates a shift of the production possibilities frontier in the direction of 

‘fewer goods and more bads’”. Additionally, Kumar (2006; 284-285) states that “If 

technical change enables more production of good and less production of bad output, then 
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1t

tMLTECH > 1, whereas if 
1t

tMLTECH <1, there has been a shift in the frontier in the 

direction of fewer good outputs and more bad outputs”. 

2.2 The inconsistency of the standard ML index  

In this subsection we briefly revise the drawback of the ML index related to the 

existence of inconsistent results for the technical change term 
1t

tMLTECH 
, which 

seriously compromise the reliability of the analyses based on the standard approach. We 

also discuss a second weakness related to the existence of infeasible solutions when 

solving for the cross period distance functions conforming the same term. 

With respect to the first shortcoming, Aparicio et al. (2013) showed that the 

interpretation of the technical change component in terms of production frontier shifts 

can be inconsistent with its numerical value. These authors illustrated this problem 

through a numerical example, showing that this measure does not correctly measure the 

actual shift in the production possibility set. Environmentally friendly technical progress 

was found in the example since the observed shift was in the direction of ‘more goods 

and fewer bads’. However, this progress was mistakenly associated with a value of 

MLTECH < 1, indicating unreal technological regress. Let us briefly reproduce at this 

point the simple numerical example used by these authors. 

Consider two observations, A and B in t and t+1 time periods, which use an equal 

amount of a single input (x) to produce one good output (y) and one bad output (b): 

At=(1,7,2), Bt=(1,5,5), At+1=(1,8,1) and Bt+1=(1,5.5,3). The corresponding output 

production sets are illustrated in Figure 1.  

Focusing the analysis on unit B, we see that this observation is efficient in periods 

t and t+1, and therefore  , , ; ,t t t t t t

o B B B B BD x y b y b  =  1 1 1 1 1 1, , ; ,t t t t t t

o B B B B BD x y b y b       = 0, 
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resulting in 
1t

tMLEFFCH 
 = 1, and any improvement or decrease in productivity must be 

exclusively consequence of technological progress or regress. 

 

Figure 1. The inconsistency of the standard approach. 

 

Continuing with the example, we calculate the technical change component for 

the ML index based on period t as the reference technology. In this way, we obtain 

tMLTECH    
 
 

1 1 1 1 1 1

1 1 1 1 1

1 , , ; ,

1 , , ; ,

t t t t t t

o B B B B B

t t t t t t

o B B B B B

D x y b y b

D x y b y b

     

    

 

 
   1, since  1 1 1 1 1 1, , ; ,t t t t t t

o B B B B BD x y b y b       

0  and  1 1 1 1 1, , ; , 0t t t t t t

o B B B B BD x y b y b      . This value suggests that B has experienced 

technological regress, i.e., a shift in the direction of ‘fewer goods and more bads’ 

following, for example, Färe et al. (2001) and Kumar (2006). However, the actual change 

is exactly in the opposite direction, i.e., ‘more goods and fewer bads’, for both unit B and 

for the overall technology in general. This is the inconsistency that we wanted to show 

and that allows to claim that the ML index can yield wrong results. 

As for the infeasibility weakness, it is relatively well-known since it is inherited 

from the directional distance function. It is recognized that ‘mixed period’ directional 
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distance functions, which reflect the distance of a data point in time period t relative to 

the technology of period t+1 or vice versa, may yield infeasible results (Briec and 

Kerstens, 2009). 5 Additionally, Briec and Kerstens (2009) showed that infeasibilities can 

also occur even in single period (contemporaneous) calculations when the output 

directional vector is non-zero and the number of inputs is larger than or equal to two, or 

the directional input vector is not of full dimension whenever the output direction is null. 

In empirical studies, it is normally observed that a small fraction of the linear programs 

calculating the distance functions are unfeasible. However, how serious is this weakness 

deserves to be studied in terms of the frequency of this result. In our context,  in terms of 

the number of outputs that are considered in the model, as we explore in the empirical 

application. 

2.3 Overcoming inconsistencies and infeasibilities: The APZ approach 

Abiding by the principle of parsimony, Aparicio et al. (2013) searched for a new 

definition of the technology that would solve the inconsistency issue while reducing the 

likelihood of infeasible solutions in the DEA approach. Ideally, and given the popularity 

of the standard approach, such solution would preserve from a theoretical perspective the 

analytical framework of the ML index based on the directional distance function, while 

from an empirical perspective should not increase the complexity of the mathematical 

programming, or result in additional computational burdens. They finally proposed a 

solution based on a new postulate on the environmental technology that complements 

those usually accepted in the related literature (i.e., axioms A1-A6 in Section 2.1). 

                                                 
5 Considering the example, note that if one attempts to calculate the technical change component resorting 

to the period t+1 technology as reference, the numerator of 1tMLTECH   is undetermined since no R   

exists for B such that      1, ,t t t t t

B B B By b y b P x    . Therefore, this simple example also illustrates the 

possibility of infeasible results. 
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Therefore, it builds upon the existing axioms by qualifying the production technology, 

while preventing the inconsistency and infeasibility issues.    

Given Nx  , let   : N Ib x    be a correspondence representing the upper 

bound for the generation of each considered bad output from the input vector x . In this 

way, given x , if the vector  ,y b  is feasible, then  b b x . The new postulate states that 

if x  can produce outputs  ,y b , then it is feasible to produce more contaminants up to a 

certain limit,  b x : 

(A7) If    ,y b P x  and  b b b x  , then    ,y b P x  . 

For the simple numerical example utilized above, where At+1>At and Bt+1>Bt, i.e. 

unit A uses the same quantity of inputs to produce more good outputs and less bad outputs 

in period t+1 than unit A in period t, and the same for unit B, the effects of taking into 

account the new postulate are depicted in Figure 2. Note that, in contrast to Figure 1, in 

Figure 2 the environmental technologies are nested6. Note also that the maximum limit 

permitted for polluting was defined as      1

1
, 1

maxt t s

k
k K

s t t

b x b x b

 
 

  . 

In the context of nested technologies, like in Figure 2, we now analyze what 

happens with respect to 
 
 

1 1 1 1 1 1

1 1 1 1 1

1 , , ; ,

1 , , ; ,

t t t t t t

ot

t t t t t t

o

D x y b y b
MLTECH

D x y b y b

     

    

 


 
. The relationship 

   1t tP x P x  implies that    1 1 1 1 1 1 1 1 1 1 1, , ; , , , ; ,t t t t t t t t t t t t

o oD x y b y b D x y b y b              and, 

consequently, 1tMLTECH  . The same can be shown for 1tMLTECH  . In this way, by (6), 

we finally have that 1 1t

tMLTECH   , as desired.  

 

                                                 
6 Two papers that support the use of nested technologies in the measurement of productivity change are 

Tulkens and Vanden Eeckaut (1995) and Shestalova (2003) but, in this case, in the traditional context of 

the Malmquist index. 
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Figure 2. The new approach solving the inconsistency of the ML index

 

 

As regards the infeasibility problem, we show in this paper that assuming the new 

postulate minimizes, although not avoids, this weakness of the ML index. In particular, 

in the simple numerical example, the technical change component can be determined for 

unit B without problems of this type, since in Figure 2 R   for B such that 

     1, ,t t t t t

B B B By b y b P x    . This contrasts to what happened with the same unit when 

1tMLTECH   is computed under the standard approach as illustrated in Figure 1. 

2.4 The Data Envelopment Analysis formulation 

The new methodology introduced by Aparicio et al. (2013) remains to be 

operationalized as these authors did not show how it can be mathematically implemented, 

nor applied to real data. In this subsection, in the framework of DEA, we present the 

expression of the production possibility set under axioms A1-A7 and introduce the 

optimization program that must be solved to determine the directional distance function 

defined on this set. 
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The output production set ( )tP x  in (2) is modified as follows to satisfy additionally 

postulate A7: 

    

 

1

1

1

, 1,...,

, 1,...,

, :

, 1,...,

, 1,...,

0, 1,...,

K
t

k km m

k

K
t

k ki i

k
t t M I

K
t t

k kn n

k

t t

i i

n

z y y m M

z b b i I

P x y b R R

z x x n N

b b x i I

z k K





 



 
  

 
 

  
 

   
  
 
 

  
   






. (8) 

 

Proposition 1. Let 
t Nx R , 

t I

kb R  for all 1,...,k K  and    
1

: maxt t t

i ki
k K

b x b
 

 , 

1,...,i I . Then  t tP x  meets A1-A7. 

Proof. (A1) Defining 0, 1,...,nz k K  , we have that  0 t t

M I P x   for any 

t Nx R . (A2) From 
1

K
t t

k kn n

k

z x x


  we have that 
1
min

t

n
k tn N

kn

x
z

x 

 
  

 
 for all 1,...,k K . Then, 

1
1 1

min , 1,...,
tK K

t tn
m k km kmtn N

k k kn

x
y z y y m M

x 
 

  
     

  
  . Additionally,  t t

ib b x , 1,...,i I . 

Consequently,  t tP x  is bounded. Moreover,  t tP x  is a polyhedral set and, hence, it is 

closed. As a result,  t tP x  is compact. (A3) Let t tx x  and let    , t ty b P x . Then 

0kz  , 1,...,k K , such that  , ,y b z  satisfies the constraints in (8). So, we have that 

1

, 1,...,
K

t t t

k kn n n

k

z x x x n N


   . Consequently,    , t ty b P x , which implies that 

   t t t tP x P x . (A4) Let    , t ty b P x  and 0 1  . Then 0kz  , 1,...,k K , such 

that  , ,y b z  satisfies the constraints in (8). In this way,  , ,y b z    also meets the 



19 

 

constraints in (8) and, consequently,    , t ty b P x   . (A5) Let    , t ty b P x  with 

0Ib  . By the constraints 
1

, 1,...,
K

t

k ki i

k

z b b i I


  , we have that 0, 1,...,nz k K  , since 

by hypothesis 
t I

kb R  for all 1,...,k K . Finally, from 
1

, 1,...,
K

t

k km m

k

z y y m M


  , and 

My R  we have that 0My  . (A6) Let y y  and    , t ty b P x . Then 0kz  , 

1,...,k K , such that  , ,y b z  satisfies the constraints in (8). It is easy to prove that 

 , ,y b z  also satisfies the same constraints since 
1

, 1,...,
K

t

k km m m

k

z y y y m M


   , and, 

therefore,    , t ty b P x . (A7) Given 0kz  , 1,...,k K , such that  , ,y b z  satisfies the 

constraints in (8), we have that    , t ty b P x   with  tb b b x   since 

1

, 1,...,
K

t

k ki i i

k

z b b b i I


   , and   , 1,...,t t

i ib b x i I   . ■ 

From (8), it is possible to define the directional output distance function in (1) 

under the satisfaction of the new postulate. In particular, we show how this distance can 

be calculated for observations of period h, h=t, t+1, with respect to the frontier of 

technology sP , s=t,t+1. 

 

0 0 0 0 0

0 0
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0 0
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0
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0 0 0

( , , ; , ) (9.1)
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  (9) 
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In contrast to model (3), constraint (3.3) is transformed into an inequality and (9.5) 

is added to the model in order to bound the maximum pollution associated with the 

potential projection benchmark. Specifically, the inequality related to (9.3) denotes that 

this constraint is really an input-type restriction. Therefore, model (9) can be seen as a 

bridge between the two previously mentioned approaches in the literature for dealing with 

good and bad outputs. Indeed model (9) forces the undesirable outputs projection to be 

greater or equal than the benchmark frontier combination—adopting the rationale 

underlying input modeling, but upper bounding the feasible values. This bound prevents 

that from finite input it is possible to produce infinite pollutants, which is the situation if 

the bad outputs are dealt with as usual inputs. 

 

3 Data and results  

 

3.1. Data and sources  

The data used in this study comes from World Input-Output Database (WIOD) (Timmer 

et al., 2015). This database is a result of the project financed by the European Union (EU) 

that aims to develop databases, accounting frameworks and models in order to explain 

some of the tradeoffs between worldwide socioeconomic and environmental factors. 

WIOD contains annual time series of input-output and environmental variables for 40 

countries covering the period from 1995 to 2011. Because of the lack of input-output data 

for some countries and years, the final database used in this study contains a balanced 

panel of 39 countries for the period 1995-2007. 7 The countries analyzed include 27 EU 

countries: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, 

Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, 

Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, 

                                                 
7 In particular, the data on capital was very limited after 2007. We also needed to exclude Taiwan from the 

dataset because of the lack of data on Purchasing Power Parity for this country.  
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Sweden and the UK, and 12 other major countries in the world: Australia, Brazil, Canada, 

China, Indonesia, India, Japan, Korea, Mexico, Russia, Turkey and United States.           

 The DEA model used in this study includes one desirable output, two inputs and 

seven undesirable outputs. The desirable output corresponds to gross value added. The 

two inputs are number of employees (further referred to as labor) and gross capital stock. 

The undesirable outputs are the main air pollutants emissions that cause three 

environmental hazards related to global warming, acidification, and tropospheric ozone 

formation. These main air pollutants emissions are formed by two groups: (1) main 

greenhouse gases: carbon dioxide CO2, methane CH4, nitrous oxide N2O, and (2) other 

main air pollutants that are not greenhouse gases: nitrogen oxides NOX, sulphur oxides 

SOX, ammonia NH3, and non-methane volatile organic compound NMVOC. While in the 

empirical analysis we explore all combinations of these pollutants, we choose two of them 

for our reference model: CO2 and NOX. CO2 is the main greenhouse gas that causes global 

warming, while NOX is responsible for smog, acid rain and tropospheric ozone, being 

particularly dangerous to humans.   

All variables in monetary units (that is gross value added and capital stock) are 

compiled from WIOD in local currencies and in current prices. On one hand, to facilitate 

cross-country comparisons these variables are adjusted by the Purchasing Power Parity 

(PPP) of the local currency to the US dollar, obtained from the World Bank. On the other, 

to enable comparisons across periods, these variables are deflated to constant prices of 

the year 1995 using country-specific price indices as reported by WIOD.  

Table 2 shows the descriptive statistics for the input-output data, aggregated 

across countries. While in the empirical results we analyze all years in the 1995-2007 

period, we choose the initial years (1995 and 1996), middle years (2000 and 2001) and 

final years (2006 and 2007) as reference for detailed analyses. Therefore, the data on 
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descriptive statistics in Table 2 is presented for these years. From the table, it is clear that 

average gross value added systematically increased along the period. Regarding inputs, 

on average, the labor increased, while capital initially decreased between 1995 and 1996 

and then increased between 2000 and 2001, and 2006 and 2007, with an overall increasing 

trend observed between 1995 and 2007. The average values for air pollutants follow 

diverging trends. The emissions of CO2, CH4, and NH3 systematically increased over the 

years. NOX and N2O emissions increased between 1995 and 1996, then between 2000 and 

2001; N2O continued to increase while NOX decreased, and finally between 2006 and 

2007 N2O decreased while NOX increased.  SOX emissions were decreasing between 1995 

and 1996, and 2000 and 2001, while they finally increased between 2006 and 2007. 

Overall, the trend for emissions of NOX, N2O and SOX was increasing between 1995 and 

2007. The only variable that systematically decreased, on average, are emissions of 

NMVOC. The data in Table 2 also shows the large values of standard deviations relatively 

to their respective means, hence a relative variation in the sample.  
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Table 2. Descriptive statistics for input-output data. 
Year Variable Mean Std. dev. Min. Max. 

1995 Gross value added (millions of  PPP)  686,253.53 1,279,484.99 5,058.14 7,421,307.33 

 CO2 (kilotonnes) 460,636.57 930,467.07 2,188.13 4,953,562.45 

 NOX (tonnes) 1,978,321.32 4,041,603.20 12,846.73 22,831,722.76 

 SOX (tonnes) 2,003,458.16 4,539,153.12 7,922.61 23,556,746.58 

 CH4 (tonnes) 4,700,829.14 9,651,495.17 9,273.47 45,286,442.20 

 N2O (tonnes) 174,426.62 323,105.54 143.42 1,567,921.37 

 NH3 (tonnes) 485,048.18 967,269.11 854.35 5,442,662.04 

 NMVOC (tonnes) 2,176,422.67 4,108,955.91 7,968.99 19,586,083.47 

 Labour (thousand) 46,022.54 122,778.93 138.87 680,650.00 

 Capital (millions of  PPP) 2,203,607.98 3,598,642.36 16,431.69 18,820,738.92 
  

    

1996 Gross value added  686,286.66 1,335,601.21 4,866.75 7,730,078.42 

 CO2 471,576.46 951,895.59 2,240.78 5,083,435.38 

 NOX  1,992,477.21 4,063,781.13 12,637.13 22,897,280.36 

 SOX  1,984,641.12 4,546,819.59 6,708.82 23,679,088.94 

 CH4  4,708,135.86 9,714,490.04 9,509.88 46,016,614.24 

 N2O  177,468.82 333,245.97 131.11 1,632,111.86 

 NH3  493,864.75 1,004,855.15 882.18 5,689,107.52 

 NMVOC 2,125,670.68 3,932,284.81 7,968.99 17,251,889.20 

 Labour 46,671.24 124,913.67 139.49 689,500.00 

 Capital 2,181,879.51 3,712,337.20 15,777.09 19,498,613.65 
  

    

2000 Gross value added  756,656.52 1,608,892.39 1,461.88 9,215,202.31 

 CO2 492,175.58 1,005,168.82 2,320.39 5,514,270.26 

 NOX  1,951,070.60 3,866,781.83 8,374.46 21,059,372.34 

 SOX  1,787,754.71 3,984,392.41 1,535.43 20,239,383.54 

 CH4  4,564,497.76 9,356,762.74 4,834.22 43,620,314.31 

 N2O  170,495.54 327,719.02 140.39 1,618,908.95 

 NH3  496,430.69 1,006,818.29 1,816.02 5,594,203.70 

 NMVOC 2,084,779.51 3,827,823.53 3,096.31 16,788,208.81 

 Labour 49,138.15 131,072.63 145.53 720,850.00 

 Capital 2,346,676.97 4,387,850.01 7,326.73 23,387,726.47 
      

2001 Gross value added  776,671.60 1,652,629.91 1,463.77 9,388,564.60 

 CO2 495,623.09 1,002,302.13 2,437.62 5,466,773.01 

 NOX  1,928,598.40 3,730,947.74 9,105.28 19,917,643.37 

 SOX  1,774,729.74 3,940,051.08 1,549.01 20,141,167.74 

 CH4  4,589,226.10 9,441,084.38 5,057.59 43,978,120.89 

 N2O  171,421.25 333,492.77 136.48 1,638,270.08 

 NH3  502,356.52 1,026,454.66 1,823.23 5,686,233.82 

 NMVOC 2,082,803.09 3,843,465.41 3,134.55 16,946,994.51 

 Labour 49,861.03 133,470.15 148.52 730,250.00 

 Capital 4,561,993.48 2,417,593.70 7,176.93 24,337,515.19 
      

2006 Gross value added  945,564.39 2,018,858.10 1,686.56 10,800,042.32 

 CO2 577,106.55 1,219,914.21 2,634.57 5,524,517.08 

 NOX  2,078,251.77 4,089,787.65 11,696.16 19,353,454.94 

 SOX  1,987,082.35 5,605,053.22 1,545.55 32,981,245.81 

 CH4  5,111,910.63 11,429,000.42 5,426.04 58,888,765.24 

 N2O  180,032.54 371,686.69 128.75 1,946,832.83 

 NH3  547,716.45 1,208,896.26 1,596.46 6,857,957.67 

 NMVOC 2,140,119.45 4,184,685.79 3,517.95 20,568,570.76 

 Labour 52,800.66 141,138.14 154.19 764,000.00 

 Capital 2,830,231.08 5,457,198.48 7,797.18 29,027,701.09 
      

2007 Gross value added  987,118.81 2,098,971.74 1,690.66 11,033,197.31 

 CO2 597,620.24 1,283,481.75 2,693.49 5,962,552.39 

 NOX  2,101,036.66 4,194,824.52 11,566.63 20,589,660.91 

 SOX  2,037,660.41 5,920,675.42 1,312.46 35,194,456.64 

 CH4  5,169,666.63 11,714,306.90 5,143.63 61,036,665.45 

 N2O  179,524.49 377,934.53 133.81 1,991,630.72 

 NH3  552,819.37 1,234,504.54 1,692.26 7,028,573.20 

 NMVOC 2,133,170.72 4,249,305.41 3,269.60 21,162,541.46 

 Labour 53,034.90 141,092.65 159.11 769,900.00 

 Capital 2,928,664.64 5,659,777.43 7,837.54 30,191,130.26 

Source: World Input-Output Database (WIOD) and own elaboration.
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3.2. Environmental productivity change: Comparing the standard and new approaches. 

  

 In this section we study the main trends in environmental productivity change of 

developed and developing countries, and discuss the consequences of adopting the 

standard approach by Chung, et al. (1997), CFG, in terms of the emerging inconsistencies 

and infeasibilities that do not only cast doubts on its reliability, but also greatly reduces 

the set of results. These results are confronted with those attained relying on the new 

approach by Aparicio, et al. (2013), APZ, solving both problems (3) and (9). As 

anticipated, while we systematically explore all existing combinations of the seven 

undesirable outputs included in our database, we initially choose a reference model with 

two relevant air pollutants: CO2 and NOX, and for illustration purposes focus on the 

interannual productivity change of the initial years 1996/1995, the middle years 

corresponding to 2001/2000, and the last years 2007/2006. Table 3 displays the 

Malmquist-Luenberger index (ML)―eq. (7), as well as its decomposition into its 

technical efficiency change (MLEFFCH), and technical change (MLTECH) components 

computed using both the CFG and APZ approaches.  

The productivity indices’ calculations have been performed using the DEA 

Toolbox developed by Álvarez et al. (2016) in the MATLAB environment.8 The linear 

optimization problems are solved using the dual-simplex algorithm with the optimality 

tolerance and constraint tolerance set to 10-10 and 10-7, respectively. Infeasibilities 

correspond to those cases in which the optimization program returns ‘No feasible point 

was found’ as exit flag. Infeasibilities plaguing the CFG approach are reported with a 

dash punctuation mark, with relevant frequencies in the technical change and productivity 

indices. As we report in the following section, a complete computational analysis reveals 

                                                 
8 Data Envelopment Analysis Toolbox is available as free software, under the GNU General Public License 

version 3, and can be downloaded from http://www.deatoolbox.com, with all the supplementary material: 

Manual, source code, examples and data. 

http://www.deatoolbox.com/
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an increasing and monotonic relationship between the frequency of infeasibilities in the 

CFG approach and the number of undesirable outputs. 

Taking as reference feasible results only―particularly in the CFG where about 

one third of the calculations go unsolved, and leaving aside countries whose unitary 

values report unchanging indices, the values of the ML index resulting from applying both 

approaches show that in the initial 1996/1995 period the majority of countries in the 

sample experience a decline in environmental productivity (18 and 22, respectively), due 

to efficiency losses as well as technical regress (exceptions are Greece, Korea, Portugal, 

etc.)―Table 3. However, the results reveal that the APZ approach reports more countries 

experiencing technical regress compared to the CFG approach (24 vs 16). These findings 

change in the middle 2001/2000 period with regard to the environmental technical change 

index MLTECH, as most countries exhibit technical progress according to APZ (22), 

while CFG shows that there is an even number of countries experiencing technical 

progress and regress (14). As a result, and taking into account that in this period there are 

similar patterns for environmental efficiency change MLEFFCH in both approaches (i.e., 

there are more countries with efficiency decline than regress), the previous technical 

change patterns translate in to the ML index. Turning to the last period 2007/2006 results, 

we observe that an overwhelming majority of countries experience technical progress 

MLTECH (37 and 27), while many of them exhibit declining efficiency (29 and 18). As 

technical change increases, while efficiency sharply declines for most countries, the gap 

between leading and lagging countries widens; i.e., the catching up speed of most of 

countries is slower than that of the frontier technology advancement. As a result, while in 

2007/2006 the majority of countries experience improving environmental productivity, it 

is driven by technical progress for most of countries. To sum up, although many of the 

patterns of environmental productivity change and its components are similar in the CFG 
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and APZ approaches, in some periods we find relevant dissimilarities with regard to the 

technical change index MLTECH. Dissimilarities that are further confirmed by the 

inconsistency results discussed thereafter.        

Indeed, inconsistencies reflecting conflicting results with the CFG approach, 

wrongly measuring either decreasing or increasing productivity and technical change, 

with the APZ approach yields opposite trends (i.e., < 1 vs. > 1 and viz.), are highlighted 

in bold. Results include several inconsistencies where technical change MLTECH has 

decreased or increased when computed using the CFG approach, and the opposite when 

the APZ model is considered. It is worth remarking that the inconsistencies detected in 

the technical change component carry over to the ML index itself, but since the technical 

efficiency change term MLEFFCH may also differ between the two approaches due to 

the alternative definitions of the production possibilities sets, such difference in their 

values may compensate the technical change inconsistencies. An example of the former 

case is India in the initial 1997/1996 period.  Its inconsistent MLTECH index under the 

CFG approach is 0.9462 reflecting technical regress, while its value is 1.0074 under APZ.  

Reinforcing the difference in the final ML index, its efficiency change MLEFFCH values 

are also opposite to each other: 0.9837 and 1.0139. As a result the CFG approach reflects 

productivity decline to the tune of 0.9308, while the APZ model accurately reflects 

productivity growth: 1.0214. An example of the latter case with the technical change 

inconsistency of the CFG model not passing to the ML is Poland, whose efficiency change 

components counterbalance the conflicting technical change differential, with both ML 

indices finally reflecting productivity growth.  
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Table 3. Malmquist-Luenberger results: ML, MLTEC and MLTC. CFG and APZ models. Selected years.  
 

Period 1996/1995 2001/2000 2007/2006 

Index ML MLTEC MLTC ML MLTEC MLTC ML MLTEC MLTC 

Country CFG APZ CFG APZ CFG APZ CFG APZ CFG APZ CFG APZ CFG APZ CFG APZ CFG APZ 

Australia − 1.0196 1.0000 1.0177 − 1.0018 − 1.0113 1.0000 1.0143 − 0.9970 0.9876 0.9781 0.9704 0.9692 1.0178 1.0091 

Austria 0.9673 0.9842 1.0000 1.0000 0.9673 0.9842 0.9723 0.9690 0.9740 0.9369 0.9982 1.0343 1.0224 1.0238 0.9758 0.9763 1.0478 1.0487 

Belgium − 1.0103 1.0000 0.9973 − 1.0131 − 0.9995 1.0000 0.9997 − 0.9998 − 1.0026 1.0000 0.9846 − 1.0183 

Bulgaria 0.8868 0.8808 0.8875 0.8853 0.9992 0.9950 − 0.9999 1.0000 1.0001 − 0.9998 1.0048 1.0005 1.0018 0.9997 1.0029 1.0008 

Brazil − 0.9140 1.0000 1.0000 − 0.9140 − 0.9734 1.0000 0.9834 − 0.9898 1.0029 0.9925 0.9326 0.9588 1.0754 1.0351 

Canada 1.0017 1.0015 0.9849 0.9853 1.0171 1.0164 1.0063 1.0068 1.0032 1.0059 1.0031 1.0009 0.9950 0.9984 0.9837 0.9911 1.0115 1.0074 

China 1.0386 1.0396 1.0726 1.0413 0.9684 0.9983 1.0437 1.0439 1.0000 1.0000 1.0437 1.0439 1.0786 − 1.0000 1.0000 1.0786 − 

Cyprus 0.9863 0.9862 0.9959 0.9958 0.9903 0.9904 1.0338 1.0280 1.0208 1.0210 1.0128 1.0069 1.0134 1.0127 0.9859 0.9929 1.0279 1.0199 

Czech Republic 0.9840 0.9830 0.9849 0.9885 0.9991 0.9944 0.9876 0.9963 0.9743 0.9859 1.0137 1.0105 1.0501 1.0190 1.0037 0.9977 1.0463 1.0213 

Germany − 1.0140 1.0000 1.0079 − 1.0061 − 1.0193 1.0000 0.9888 − 1.0308 − 1.0434 1.0000 0.9968 − 1.0468 

Denmark − 0.9713 0.9725 0.9705 − 1.0008 − 0.9898 1.0000 1.0015 − 0.9883 − 0.9886 1.0000 0.9725 − 1.0166 

Spain 1.0187 1.0166 1.0313 1.0182 0.9877 0.9984 1.0062 1.0064 0.9995 1.0017 1.0068 1.0047 1.0045 1.0029 0.9670 0.9701 1.0388 1.0338 

Estonia − 0.9614 1.0000 0.9657 − 0.9956 − 0.9936 1.0000 0.9915 − 1.0022 − 0.9729 1.0000 0.9600 − 1.0134 

Finland 0.9981 1.0070 0.9944 0.9998 1.0038 1.0072 0.9914 0.9944 1.0005 1.0014 0.9909 0.9930 1.0445 1.0389 1.0346 1.0301 1.0096 1.0085 

France 0.9961 1.0010 1.0000 1.0000 0.9961 1.0010 1.0159 1.0201 1.0385 1.0291 0.9782 0.9912 1.0251 1.0262 0.9663 0.9677 1.0608 1.0604 

United Kingdom 1.0124 1.0035 1.0040 1.0191 1.0083 0.9847 0.9932 0.9925 0.9951 1.0032 0.9981 0.9893 1.0118 1.0080 0.9981 0.9932 1.0137 1.0149 

Greece 0.9774 0.9767 0.9519 0.9703 1.0268 1.0066 0.9915 0.9947 0.9889 0.9937 1.0026 1.0010 0.9193 0.9622 0.9009 0.9494 1.0204 1.0135 

Hungary 0.9523 0.9523 0.9645 0.9645 0.9873 0.9873 1.0130 1.0064 0.9973 0.9963 1.0157 1.0102 0.9828 0.9890 0.9687 0.9736 1.0146 1.0158 

Indonesia 1.0157 0.9946 1.0000 1.0000 1.0157 0.9946 0.8806 1.0189 1.0000 0.9988 0.8806 1.0201 − 1.0044 1.0000 0.9749 − 1.0303 

India 0.9308 1.0214 0.9837 1.0139 0.9462 1.0074 0.9969 1.0003 1.0000 0.9871 0.9969 1.0134 0.9829 0.9907 1.0018 0.9755 0.9811 1.0157 

Ireland 1.0666 1.0329 1.0000 1.0003 1.0666 1.0326 − 0.9794 1.0000 0.9978 − 0.9815 0.9835 0.9968 0.9551 0.9750 1.0297 1.0224 

Italy 0.9929 0.9929 0.9945 0.9933 0.9985 0.9996 1.0130 1.0072 0.9902 0.9961 1.0231 1.0111 1.0081 1.0072 0.9872 0.9777 1.0211 1.0302 

Japan 1.0259 1.0266 1.0328 1.0338 0.9934 0.9931 1.0064 1.0149 0.9801 0.9839 1.0269 1.0315 1.0562 1.0449 1.0427 1.0287 1.0129 1.0158 

Korea 0.9927 0.9929 0.9889 0.9910 1.0038 1.0019 1.0037 1.0029 1.0002 1.0014 1.0035 1.0015 1.0211 1.0175 1.0096 1.0052 1.0114 1.0123 

Lithuania 0.9909 0.9649 0.9861 0.9736 1.0049 0.9911 1.0102 1.0215 1.0172 1.0255 0.9931 0.9961 0.9840 0.9849 0.9617 0.9651 1.0231 1.0204 

Luembourg − 0.9958 1.0000 1.0000 − 0.9958 0.9976 1.0030 1.0000 1.0000 0.9976 1.0030 1.0274 1.0408 1.0000 1.0000 1.0274 1.0408 

Latvia 0.9775 0.9759 0.9743 0.9776 1.0033 0.9982 1.0368 1.0220 1.0924 1.0363 0.9491 0.9862 0.9780 0.9791 0.9899 0.9742 0.9879 1.0050 

Mexico 0.9093 0.9095 0.9337 0.9333 0.9739 0.9745 0.9800 0.9940 1.0036 0.9958 0.9764 0.9982 0.9952 0.9999 1.0090 0.9832 0.9863 1.0170 

Malta 0.9469 0.9720 0.9824 0.9827 0.9639 0.9892 0.9530 0.9554 0.9436 0.9492 1.0099 1.0065 1.0254 1.0214 1.0119 1.0053 1.0133 1.0161 

Netherlands 1.0116 1.0109 1.0003 1.0006 1.0113 1.0103 1.0107 1.0006 0.9927 0.9921 1.0182 1.0086 1.0050 1.0111 0.9839 0.9871 1.0215 1.0243 

Poland 1.0005 1.0117 0.9948 1.0231 1.0057 0.9889 1.1340 0.9825 1.1455 0.9937 0.9900 0.9887 1.0709 1.0267 0.9787 1.0178 1.0943 1.0087 

Portugal 0.9976 0.9868 1.0078 1.0020 0.9899 0.9848 0.9815 0.9801 0.9859 0.9876 0.9956 0.9924 1.0231 1.0200 0.9903 0.9917 1.0331 1.0285 

Romania 1.0122 0.9224 0.9996 0.9273 1.0126 0.9947 0.9939 1.0240 0.9905 0.9937 1.0034 1.0305 − 1.0011 1.0000 0.9956 − 1.0055 

Russia − 0.9111 1.0000 0.9452 − 0.9639 − 1.0285 1.0000 1.0000 − 1.0285 − 1.0143 1.0000 0.9270 − 1.0942 

Slovak Republic 1.1442 1.0806 1.1262 1.0806 1.0160 1.0000 1.0482 1.0141 1.0277 1.0088 1.0200 1.0053 1.0160 1.0500 0.9666 1.0325 1.0510 1.0169 

Slovenia 0.9727 0.9729 1.0000 0.9999 0.9727 0.9730 0.9741 0.9727 0.9883 0.9864 0.9857 0.9861 1.0425 0.9975 1.0035 0.9919 1.0389 1.0056 

Sweden 0.9741 1.0010 1.0000 1.0000 0.9741 1.0010 0.9814 0.9885 1.0000 1.0000 0.9814 0.9885 1.0078 1.0088 1.0000 1.0000 1.0078 1.0088 

Turkey − 0.9803 1.0000 0.9901 − 0.9901 − 0.9369 1.0000 0.9077 − 1.0322 − 0.9988 1.0000 0.9128 − 1.0942 

United States − − 1.0000 1.0000 − − − − 1.0000 1.0000 − − − 0.9977 1.0000 1.0000 − 0.9977 

Source: Own elaboration. 
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3.3. Numerical results: Sensitivity and robustness of results to different number of 

undesirable outputs. 

  

 To study systematically how the number of undesirable outputs included in the 

model drives inconsistencies and infeasibilities in the technical change component of the 

Malmquist-Luenberger index (MLTECH), we perform a series of simulations using all 

possible combinations in the number of undesirable outputs across all time periods 

available in the sample. We solve the CFG and APZ models for each combination of 

undesirable outputs increasing the number of undesirable outputs, which totalizes 127 

combinations. As for the time periods, we compute the model for each pair of years 

between 1995 and 2007. Table 4 shows the combinations for each number of undesirable 

outputs included in the model, the time periods available, the product of these two, and 

the total number of problems solved, which correspond to solving all combinations of air 

pollutants for the 39 countries across all time periods, bringing the total to 59,436 linear 

programs, LPs, solved. 

 

Table 4. Combinations and LPs solved 

# Undesirable 

Outputs 

Combinations 

(a) 

Periods 

(b) 

Comb. x 

Periods 

(a)·(b) 

LPs 

Solved 

1 7 12 84 3,276 

2 21 12 252 9,828 

3 35 12 420 16,380 

4 35 12 420 16,380 

5 21 12 252 9,828 

6 7 12 84 3,276 

7 1 12 12 468 

TOTAL: 127 84 1,524 59,436 

Source: Own elaboration 

 

  

The comparison of results between both models are shown in Figure 3. Firstly, the 

average number of infeasibilities for the total of the 39 countries when computing the 

technical change component MLTECH with the CFG model is presented in the first (left) 
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bar. Secondly, the average number of inconsistencies that emerge when comparing it to 

that of the APZ model is presented in the second (right) bar. Results are striking and 

challenge the conclusions obtained in previous studies, which normally include one or 

two undesirable outputs at most, as the average number of infeasibilities increases quite 

rapidly from about 2 infeasible solutions out of 39 with one undesirable output, to over 

30 in the model with all available undesirable outputs. Indeed there is a monotonic causal 

relationship between these variables. As for the inconsistencies, their number also 

increases with the number of undesirable outputs, but finally falls beyond four 

undesirable outputs because the  prevalence of infeasibilities is so high that the number 

of inconsistencies in the remaining solutions ought to decrease. 

 

Figure 3. Number of CFG infeasibilities and inconsistencies in the technical change index. 
 

 
 

Precisely to gain better knowledge of the inconsistencies that emerge in the ML 

index and its components as the number of undesirable outputs increases, Figure 4 depicts 

the average percentage of inconsistencies over all feasible solutions, rather than over all 

possible combinations as in Figure 3; i.e., considering only solutions that do not return 

infeasibilities in the computation of the technical change component. For MLTECH 

results now confirm that when considering only feasible solutions, the number of 

inconsistencies is also monotonically increasing in the number of undesirable outputs. 
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Consequently, both the number of inconsistencies and infeasibilities increase with the 

number of undesirable outputs included in the model, and presenting non-negligible 

frequencies around 30% for five or more undesirable outputs. More worryingly, the 

combination of both infeasibilities and inconsistencies practically prevents any analysis 

when the number of undesirable outputs exceeds five, questioning the whole approach 

since those pollutants are normally available to the researcher, but are omitted in the 

existing empirical applications. 

As for the technical efficiency change index, the frequency of inconsistencies in 

MLEFFCH exhibits a non-monotonic relationship, with an inverted-u-shape, suggesting 

that the differences in the own-period DEA production possibilities sets corresponding to 

the CFG and APZ models reduce with the number of facets−as opposed to the 

intertemporal cross-period frontiers involved in the calculation of the technical change 

index MLTECH. The combined effect of both types of inconsistencies on the productivity 

index ML is also presented in Figure 4. Its frequency ranges between both indices in 

which it decomposes, reflecting that they tend to counterbalance each other; e.g., as the 

previously referred Polish case in Table 3 for the 1996/1995 period. 

 

Figure 4. Average percentage of inconsistencies over feasible solutions. 
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As the APZ greatly reduces the number of infeasibilities but does not rule out its 

existence, Table 4 compares their number when calculating the technical change 

component MLTECH for each number of undesirable outputs. While it is worth 

remarking that there are not infeasibilities when computing the technical efficiency 

change component MLEFFCH, those affecting MLTECH translate into the Malmquist-

Luenberger index, so we only report results on the latter. Table 5 also displays the number 

of inconsistencies in the ML index as well as its decomposition into the MLEFFCH and 

MLTECH indices. Results show that the number of infeasibilities in the APZ approach is 

one order of magnitude smaller than in CFG approach (and two orders of magnitude 

smaller over four undesirable outputs). It is remarkable that the number of infeasibilities 

with four undesirable outputs is 9,856 out of 16,380 LPs solved. Consequently, the APZ 

model greatly reduces the number of infeasibilities making the analysis viable when the 

number of undesirable outputs exceeds two, while ensuring the correctness of the 

technical change measure MLTECH, and unmasking the large number of inconsistent 

results that are obtained with the standard approach.    

 

Table 5. Number of infeasibilities and inconsistencies 

 

Undesirable 

Ouputs 

Problems 

Solved 

ML Infeasibilities  CFG Inconsistencies 

CFG APZ Any ML MLEFFCH MLTECH 

1 3,276 193 61 240 53 177 106 

2 9,828 2,062 177 2,205 603 1,001 887 

3 16,380 6,626 284 6,856 1,445 2,366 1,850 

4 16,380 9,856 278 10,084 1,180 2,300 1,597 

5 9,828 7,367 162 7,507 437 1,145 708 

6 3,276 2,783 52 2,831 84 318 139 

7 468 425 7 432 7 34 13 

TOTAL: 59,436 29,312 1,021 30,155 3,809 7,341 5,300 

Source: Own elaboration 
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Table 6 summarizes previous results showing the percentage of infeasibilities and 

inconsistencies for each number of undesirable outputs, as well as the percentage of 

inconsistencies over the feasible solutions. These results suggests that results obtained in 

environmental productivity studies using the standard approach−as those reviewed in the 

introduction−should be cautiously reassessed, and reinforces the need to shift to newer 

proposals such as the APZ approach that solves the inconsistency problems.  

 

Table 6. Percentage of infeasibilities and inconsistencies 

 

Undesirable 

Outputs 

% Infeasibilities ML % CFG Inconsistencies 
% CFG Inconsistencies 

over feasibles 

CFG APZ Any ML MLEFFCH MLTECH ML MLEFFCH MLTECH 

1 5.89 1.86 7.33 1.62 5.40 3.24 1.75 5.40 3.49 

2 20.98 1.80 22.44 6.14 10.19 9.03 7.91 10.19 11.64 

3 40.45 1.73 41.86 8.82 14.44 11.29 15.17 14.44 19.42 

4 60.17 1.70 61.56 7.20 14.04 9.75 18.74 14.04 25.37 

5 74.96 1.65 76.38 4.45 11.65 7.20 18.83 11.65 30.50 

6 84.95 1.59 86.42 2.56 9.71 4.24 18.88 9.71 31.24 

7 90.81 1.50 92.31 1.50 7.26 2.78 19.44 7.26 36.11 

Source: Own elaboration 

 

 

Finally, we determine whether the distributions of the productivity indices 

obtained with the standard and new approaches differ significantly for the whole sample 

by comparing their distributions. As solving each model under both approaches yields 

paired samples, we rely on the Wilcoxon rank-signed test and the t-test, thereby testing 

whether the medians and means of both distributions are equal, respectively. We also 

perform the Spearman test whose null hypothesis is the existence of correlation in the 

rankings of both distributions. As the distributional assumptions and degrees of freedom 

underlying these tests require a minimum size (e.g., normality and calculation of p-

values), we perform the test for those models returning at least twenty feasible results, 

which rules out of the comparison all combinations with more than four undesirable 
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outputs, whose high number of infeasibilities prevents reliable testing below that 

threshold.  

Table 7 presents the results for all models and the number of combinations that 

have been tested. While for the Malmquist-Luenberger index itself ML, both models are 

equivalent, this is not the case for the sources of productivity change, both the efficiency 

change and the technical change components. Indeed, for MLEFFCH the maximum 

percentage of distributional differences is as high as 46.15% when considering the 

Wilcoxon test for four undesirable outputs, while it reaches 12,11% for MLTECH in the 

case of three undesirable outputs. Results are similar in the case of the t-test and Spearman 

test, with statistical disparities between distributions increasing with the number of 

undesirable outputs―i.e., different means for t-tests, while for the Spearman tests results 

show the percentage of the pairwise combinations whose rankings are statistically 

uncorrelated. These results confirm that the new characterization of the production 

technology preventing technical change inconsistencies, modifies the production 

possibility set significantly, as there are not only differences at the individual level, with 

countries exhibiting inconsistencies with the standard approach, but also at the sample 

level. More interestingly, the difference in the production possibility sets seems to affect 

most the efficiency change distributions. As we contend that the efficiency change values 

associated to the new model are reliable since the measurement of productivity and its 

decomposition does not suffer from the inconsistencies that plague the standard approach, 

these results question once again the interpretation of the sources contributing to 

productivity change in empirical applications. Indeed, not only individual results are into 

question, but also those corresponding to whole samples, whenever they are feasible.  
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Table 7. Comparing distributions: Wilcoxon, t-tests and Spearman  

 

Nº Undesirable 

Outputs 
Comb. ML MLEFFCH MLTECH 

 ML 

 (%) 

MLEFFCH  

(%) 

MLTECH  

(%) 

 

Wilcoxon        

1 84 0 0 0 0.00 0.00 0.00 

2 252 0 23 14 0.00 9.13 5.56 

3 380 0 88 46 0.00 23.16 12.11 

4 26 0 12 2 0.00 46.15 7.69 

T-tests        

1 84 0 0 0 0.00 0.00 0.00 

2 252 0 14 11 0.00 5.56 4.37 

3 380 0 43 30 0.00 11.32 7.89 

4 26 0 5 2 0.00 19.23 7.69 

Spearman        

1 84 0 0 0 0.00 0.00 0.00 

2 252 0 0 3 0.00 0.00 1.19 

3 380 5 44 65 1.32 11.58 17.11 

4 26 0 7 10 0.00 26.92 38.46 

Notes: 5% confidence level. 

Source: Own elaboration 

 

 

 

4. Conclusions 

 

The standard definition of the Malmquist-Luenberger index introduced by Chung 

et al. (1997) is prone to inconsistencies that severely challenge the validity of empirical 

results, and may result in misleading industrial, energy, or transportation policies aimed 

at reducing undesirable outputs production though investments in environmentally 

friendly technological change―e.g., it may induce inefficient overinvestment levels 

when the technical change index signals technical regress, while the opposite is actually 

happening.  

While the inconsistency of the standard ML index has been known since 2013, 

practitioners are still using it as the pervasiveness of the inconsistencies is generally 

unknown, and regardless the number of infeasibilities that prevent obtaining results for 

many observations. Indeed, recent publications and ongoing contributions suggest that 

both authors and reviewers seem to be generally unaware of the problem, or simply 
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disregard it under the impression that the presence of inconsistencies is very unlikely, 

affecting only a few observations. 

This paper shows quite the opposite. Relying on the new approach proposed by 

Aparicio et al. (2013), who solve the inconsistency problem by changing the technology 

axioms the minimum necessary (thereby retaining the directional distance function 

definition, nature, and interpretability of the Malmquist-Luenberger index), we show how 

to render it operational using Data Envelopment Analysis techniques, and subsequently 

study the severity of these problems in a systematic way through computational analyses.  

Using data for 39 countries over a thirteen years period―from 1995 to 2007―on 

gross value added, labor, capital, and 7 air pollutants, the research strategy is as follow. 

First a benchmark model including two relevant pollutants: CO2 and NOx, is solved under 

the standard and new approaches. General productivity trends associated to each approach 

are presented, as well as the relevant frequency of both inconsistencies and infeasibilities. 

We show how these inconsistencies in the technical change component MLTECH may 

result in opposite productivity trends, as they carry on to the ML indices themselves. Also, 

an unexpected result emerges. As the production possibility sets in both approaches differ 

due to the new axiom limiting undesirable outputs’ production, technical efficiency 

indices MLEFFCH can also exhibit opposite trends depending on the approach.   

Subsequently, an analysis of the pervasiveness and sensitivity of these results to 

different number of undesirable outputs is performed. Increasing the number of 

undesirable outputs in the model reveals the limits of the standard approach, with the 

number of infeasibilities and inconsistencies increasing rapidly. In the model including 

all 7 undesirable outputs, one third of the runs are infeasible, seriously hampering the 

representativeness and robustness of the results, while the number of inconsistencies over 

the feasible solutions also increases to a similar value.    
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We therefore make a precautionary call to researchers to avoid the use of the 

standard approach and adopt the new model―or devise one of their own―that does not 

suffer from these drawbacks. To this end, and since the linear programs associated to the 

new model are now available in a DEA package for the MATLAB environment―Álvarez 

et al. (2016), which can be readily accessed and adapted by practitioners, we believe the 

present contribution allows them to avoid the problems discussed here. 
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