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Multi-parametric programming has proven to be an invaluable tool for optimisation under uncertainty. Despite the theo-
retical developments in this area, the ability to handle uncertain parameters on the left-hand side remains limited and
as a result, hybrid, or approximate solution strategies have been proposed in the literature. In this work, a new algo-
rithm is introduced for the exact solution of multi-parametric linear programming problems with simultaneous variations
in the objective function’s coefficients, the right-hand side and the left-hand side of the constraints. The proposed meth-
odology is based on the analytical solution of the system of equations derived from the first order Karush–Kuhn–Tucker
conditions for general linear programming problems using symbolic manipulation. Emphasis is given on the ability of
the proposed methodology to handle efficiently the LHS uncertainty by computing exactly the corresponding nonconvex
critical regions while numerical studies underline further the advantages of the proposed methodology, when compared
to existing algorithms. VC 2017 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American

Institute of Chemical Engineers AIChE J, 00: 000–000, 2017
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Introduction

Despite the constantly growing computational power deci-

sion makers have at hand, the need for systematic treatment of

uncertainty has always been of paramount importance, espe-

cially under the ever-changing market conditions that the

industries have to face. Uncertainty arises inevitably from the

type of the models used to simulate the systems under exami-

nation; for example, variability in inputs and measurements,

changes in the system’s properties, fluctuations in prices,

demand, availability of equipment, and so forth. Failing to

take into consideration uncertainty can be crucial for the opti-

mal operation of the system as the realisation of uncertainty

can render an optimal solution or strategy into suboptimal or

even infeasible. To deal with the presence of uncertainty, sev-

eral methodologies such as stochastic programming, robust

optimisation, fuzzy mathematical programming, chance con-

strained programming and so forth have been proposed through-

out the years.1 Within the stochastic programming framework,2

the decision maker typically takes some actions before the reali-

sation of uncertainty (here and now) while at subsequent steps

(after the uncertainty has been revealed) takes corrective actions

to handle the uncertainty (resource/wait and see). Based on
whether the uncertainty occurs in one step or multiple, that is,
over a number of time periods, the stochastic program is
referred to as either “two-stage stochastic” or “multi-stage
stochastic,” respectively, and the cost of initial and recourse
actions is minimised. The main assumption in stochastic pro-
gramming is the availability of statistical data about the uncer-
tain parameters providing either discrete or continuous
probability distributions which the uncertain parameters follow.
Another popular strategy to deal with uncertainty is robust opti-
misation3,4 which typically aims to make the underlying optimi-
sation problem feasible in face of any possible realisation of the
uncertain parameters. Robust optimisation, leads to more com-
putationally tractable problems when compared to stochastic
programming at the expense of generally more conservative
solutions. Robust optimisation converts the original optimisa-
tion problem to its “robust-counterpart” and several methodolo-
gies have been proposed in the literature. Soyster5 initially
proposed a worst-case formulation for linear programming
problems but is considered to be too conservative as the result-
ing robust solution tends to overestimate the extend of uncer-
tainty. Bertsimas and Sim6 proposed a more flexible
formulation, while preserving the linear form of the problem,
with the introduction of a “budget parameter” as a measure of
conservatism. Based on their approach, any uncertain parameter
can either be at its nominal or worst-case value but the total
number of uncertain parameters that can take their worst value
is controlled by the budget parameter. Another difference
between stochastic programming and robust optimisation is that
in the latter, the uncertainty is assumed to lie within a
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prespecified set, the so called “uncertainty-set,” and no informa-
tion about probabilistic distributions is required.4

Apart from the aforementioned methodologies, sensitivity

analysis, and multi-parametric programming (mp-P) form also
two popular alternatives to study how optimal solutions

depend on uncertain parameters. Despite the fact that both
approaches make use of information derived by a postoptimal

analysis, sensitivity analysis differs from parametric program-

ming on the range of the uncertainty as it provides information
about the effect on the optimal solution only around a specific

neighborhood of the uncertain parameters. On the contrary,

multi-parametric programming offers the unique advantage of
explicitly providing information about the dependence of the opti-

mal solution on the uncertain parameters throughout the entire

range of variability without the need of exhaustive enumera-
tion.7–9 The general notion of mp-P can be summarised as fol-

lows: given an optimisation problem with uncertain parameters

compute the optimal solutions as explicit functions of the parame-
ters together with the regions of the parametric space, also known

as critical regions (CRs), where each solution remains optimal;
this way the need for repetitive solution of the optimisation prob-

lem, whenever uncertainty occurs, is replaced by simple and com-

putationally efficient function evaluations based on a
precomputed “multi-parametric map”. Mathematically this can

be expressed by the following general mp-P for the linear cases:

General mp-P

zðhÞ5min
x;y

cTðhÞx1dTðhÞy

Subject to : AðhÞx1WðhÞy � b1FðhÞ

x 2 X¢fx 2 Rnx j xmin
k � xk � xmax

k ; k51; . . . ; nxg

y 2 f0; 1gny

h 2 H¢fh 2 Rnh j hmin
l � hl � hmax

l ; l51; . . . ; nhg

(1)

where h denotes the vector of uncertain parameters and
belongs to the bounded set H, x is the vector optimisation vari-

ables and belongs to the bounded set X; c 2 Rnx ; d 2 Rny ,

AðhÞ 2 Rm3nx ; WðhÞ 2 Rm3ny , b 2 Rm; F 2 Rm3nh are vector
and matrices of appropriate dimensions. Problem (1), refers to

the general class of linear mp-P problems where the optimisa-

tion variables are continuous and integer. According to the
nature of the functions of the original optimisation problem

different strategies can be used to compute the optimal

parametric solutions and the corresponding CRs; in Table 3

summary of multi-parametric programming algorithms is

presented.
For the case of (multi-)parametric linear programming

(mp-LP) problems, extended research work can be found in

the literature that has treated systematically RHS-OFC uncer-

tainty (see Table 1 for Abbreviations and Table 2 for Nomen-

clature). Early on after Dantzig presented the Simplex

algorithm for the solution of LPs, Gass and Saaty10–12 in 1954

and 1955 presented their works on parametric programming

for perturbations in the OFC. Later,12 they generalised their

approach for n-parametric perturbations in the OFC and

proved that the CRs of such case are convex. Gal and

Nedoma,13 in their seminal paper, presented for the first time a

systematic way for the treatment of mp-LPs with OFC and/or

RHS uncertainty based on the simplex method and finding the

associated parametric optimal basis. In Gal,14 a method for

simultaneous variations in the OFC and RHS (also known as

“RIM”) of the constraint matrix was proposed and the result-

ing problem is an RIM-mp-LP. Yu and Zeleny,15 based on

advances from the multicriteria simplex method, presented

two algorithms for the solution of mp-LPs. The first one was

an indirect algebraic method which locates the set of nondomi-

nated extreme points while the second one was a direct geo-

metric decomposition method. An alternative procedure for

mp-LPs with RHS uncertainty can be found in Schechter16

where the author dualises the LP and then enumerates all the

extreme points of the dual so as to compute the “irredundant”

piecewise representation of zðhÞ and the corresponding CRs.

Almost 20 years later, Borelli et al.17 presented a geometric

based algorithm for mp-LPs with RHS uncertainty, where

rather than examining different optimal bases of the mp-LP, a

direct exploration of the parametric space is used and this way

Table 1. Abbreviations Index

OFC Objective function’s coefficient
RHS Right-hand side
LHS Left-hand side
mp-P Multi-parametric programming
CR Critical region
mp-LP Multi-parametric linear programming
mp-QP Multi-parametric quadratic programming
mp-NLP Multi-parametric nonlinear programming
mp-MILP Multi-parametric mixed integer linear programming
mp-MIQP Multi-parametric mixed integer

quadratic programming
mp-MINLP Multi-parametric mixed integer

nonlinear programming
RIM-mp-LP Multi-parametric linear programming with

OFC and RHS uncertainty
CAD Cylindrical algebraic decomposition

Table 2. Nomenclature

Indices

k Optimisation variables
l Uncertain parameters
j Inequality constraints
Sets

X Set of continuous optimisation variables
H Set of uncertain parameters
Symbols

adjð�Þ Adjugate of a square matrix
detð�Þ Determinant of a square matrix
lengthð�Þ Operator that returns the length of a list-object
LIST List of candidate solutions
Parameters

nx Dimensionality of optimisation variables
nh Dimensionality of uncertain parameters
m Dimensionality inequality constraints
h Uncertain parameters
cðhÞ Perturbed objective function’s coefficients
AðhÞ Perturbed constraint matrix
FðhÞ Right-hand side matrix of perturbations
Decision variables

zðhÞ Explicit expression of objective value
xðhÞ Explicit expression of continuous variables
kðhÞ Explicit expression of lagrange multipliers

Table 3. Overview of mp-P Algorithms

mp-LP 13,15–18
mp-QP 39–41
mp-NLP 42–47
mp-MILP 23,24,38,48–52
mp-MIQP 53,54
mp-MINLP 29,55–57
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degenerate mp-LPs can be handled efficiently. Another
approach for the approximate solution of mp-LPs with RHS
uncertainty can be found in Fillipi.18 Jones and Morari19 pro-

posed an algorithm for multi-parametric linear complementary
problems, for the case that parameters appear linearly in the
objective function and the RHS of the constraints. In their
approach, lexicographic perturbation was used to handle

degeneracy in mp-LPs while the exploration of the parametric
space is done along the geometric lines. In general, all the
aforementioned algorithms are closely related to the simplex

method for the solution of the original LPs and their common
denominator is the search for “optimal basis invariancy”
through one way or another. Interior point (IP) algorithms
have attracted a significant amount of interest from researchers

for the solution of LPs and as a result new theoretical advances
emerged. For mp-LPs, IP based algorithms do not seek for
“optimal basis invariancy” but “support set invariancy” and

“optimal partition invariancy.”20,21 A thorough introduction to
multi-parametric linear programming and the issues arising
from degeneracy is presented in the excellent book of Gal.22

Despite the aforementioned research work in the field of mp-
P, the case of mp-P problems with LHS uncertainty has

received so far limited attention mainly because of the computa-
tional complexity of the resulting optimisation problem; this is
because of the nonconvex terms that arise between the uncertain

entries of the technology matrix and the optimisation variables,
while solving the underlying parametric optimisation problem.
A simplex based algorithm for the case of single parameter per-
turbations in one column or one row of the technology matrix

can be found in Gal.22 Li and Ierapetritou23 proposed a method-
ology for the solution of the general mp-MILPs with simulta-
neous LHS, RHS, and OFC uncertainty. When LHS uncertainty

was considered, the authors used discretisation of the parametric
space and projection algorithms. The underlying mp-LP algo-
rithm was solved based on the optimality conditions of LP and
identifying basic and nonbasic variables at every instance of the

parametric space. Finally, in order to examine if they had cov-
ered the original (generally) nonconvex CR, evenly distributed
points from the parametric space were sampled to check the
validity of the results; it can be understood that results from this

framework are heavily influenced from the level of discretisa-
tion of the parametric space as well as the choice of the projec-
tion algorithm and cannot guarantee the validity of the resulting

explicit solutions. A framework for the global solutions of the
general mp-MILPs, within prespecified tolerance of �-optimal-
ity, was presented by Wittmann-Hohlbein and Pistikopoulos24

within which the authors considered also LHS uncertainty. The

authors exploited the structure of the mp-LP with LHS uncer-
tainty subproblem, where they identified the bilinear terms from
the multiplication of the uncertain parameters with the optimi-

sation variables and used McCormick relaxations to transform
the LHS into approximate RHS uncertainty. Their approach
included a spatial branch and bound routine on the optimisation
variables and the uncertain parameters. As noted by the authors,

the quality of the results by implementing this algorithm, is
depended on the partitioning scheme for the uncertain parame-
ters but that results in higher computational times and number

of CRs examined. This approach does not provide the exact
solution for the case of LHS uncertainty. The same authors25

proposed a two-stage approach to handle the global uncertainty
in mp-MILPs in which the conventional “worst case” robust

counterpart was used for the LHS uncertainty while the result-
ing partially robust mp-MILP was then solved in a decomposed

fashion through iterations between master MINLPs (solved to

global optimality) and slave mp-LPs. Recently,26 an algorithm

for the systematic treatment of LHS single-parameter uncer-

tainty in LPs was presented. The authors identified that the

problem includes at its core the inversion of parametric matrices

and the computational complexities arising by this fact. To han-

dle this issue, a two stage algorithm was devised that uses the

Flavell-Salkin27 approximate method to find the location of

breakpoints in the parametric intervals and the Woodbury for-

mula28 for the correctness of the result.
In this work, motivated by the continuously increasing

demand for efficient and effective decision making we propose

an algorithm for the explicit solution of general mp-LPs when

global uncertainty is considered. The idea of the proposed algo-

rithm is two-fold: at first the Karush–Kuhn–Tucker (KKT) sys-

tem of the original LP problem is formulated and solved

analytically using Groebner Bases theory within a computa-

tional environment that allows symbolic manipulations, result-

ing in the complete map of candidate solutions (including

infeasible, local, and global parametric optima); next, the opti-

mality and feasibility conditions are used so as to evaluate the

candidate solutions and a comparison procedure is followed so

as to keep only the global parametric optimal solutions of the

problem. A salient feature of the proposed algorithm is its abil-

ity to compute the exact globally optimal parametric solutions

together with the corresponding nonconvex CRs.
The remainder of the article is organised as follows: in

Methodology section, the proposed general framework for

global uncertainty in mp-LPs is introduced along with two the-

orems for the characterisation of the explicit solutions and the

critical regions. In the Case Studies section, we illustrate the

applicability of the proposed algorithm through a number of

case studies together with comparison of already proposed

methodologies. In the Discussion section, based on the case

studies examined a short discussion is conducted on topics

related to the computational behavior of the proposed algo-

rithm. Finally, in the last section of the article, the main contri-

butions of this work are summarised and future research

directions are drawn.

Methodology

Global uncertainty in general mp-LPs

The main idea of the proposed algorithm is to use the KKT

optimality conditions so as to create a square system of equa-

tions and solve this system analytically using symbolic manip-

ulation software and computer algebra principles. At the core

of the proposed algorithm, Groebner Bases theory is found

because of its ability to solve systems of simultaneous equa-

tions analytically as shown in our latest work.29

Consider the general mp-LP problem with uncertain entries

on the OFC, the LHS and the RHS of the constraints, that is,

global uncertainty, given by (2)

mp2LPglobal

zðhÞ5 minx cTðhÞx

subject to : AðhÞx � b1FðhÞ

x 2 X¢fx 2 Rnx j xmin
k � xk � xmax

k ; k51; . . . ; nxg

h 2 H¢fh 2 Rnh j hmin
l � hl � hmax

l ; l51; . . . ; nhg

8>>>>><>>>>>:
(2)

The solution of problem (2), over the parametric range speci-

fied by the set H, provides the optimisers, that is, xðhÞ5arg

AIChE Journal 2017 Vol. 00, No. 00 Published on behalf of the AIChE DOI 10.1002/aic 3



min
x

cTðhÞx and the optimal value, that is, zðhÞ, as explicit

functions of the uncertain parameters along with the corre-

sponding CRs where each solution remains optimal.
The first-order KKT conditions for problem (2) are formu-

lated as follows

ðP1Þ

rxLðx; hÞ50

kjð
Xk51

nx

aj;kðhÞ2bj2
Xnh

l51

fj;lðhÞÞ50; 8j51; . . . ;m

8>><>>:
where Lðx; hÞ5cTðhÞx 1

Pm
j51 kjð

Pnx

k51 aj;kðhÞxk2bj2
Pnh

l51 fj;lðhÞÞ
is the Lagrange function of problem (2). The total number of
equation is given by: no: of equations5nx1m, which is suffi-

cient to compute analytically the Lagrange multipliers and the

optimisation variables in terms of the uncertain parameters h,

using Groebner Bases theory. Solving the system of equations
analytically, we compute the optimisation variables (xðhÞ) and

the Lagrange multipliers (kðhÞ) as functions of the problem’s

uncertain parameters, that is, h. Substituting the explicit func-
tions back in the inequality constraints given by Eq. 3 and 4

the feasibility and optimality of the candidate solutions is eval-

uated. Note that Eq. 3 refers to the non-negativity of the
Lagrange multipliers, which are now parametric in h. Equation

4 refers to the negativity of the inequality constraints, gð�Þ,
which after the substitution of the explicit expression of the
optimisers (xðhÞ) are now parametric inequalities.

kjðhÞ � 0; j51; . . . ;m ) optimality conditions (3)

gjðhÞ � 0; j51; . . . ;m ) feasibility conditions (4)

DEFINITION. (Candidate solution of mp-LP global) Within the
context of this work, a solution of problem (2) is said to be candi-
date if it satisfies the system of equations given by (P1). Note that
the candidate solutions are composed of the optimisers (xðhÞ)
and the Lagrange multipliers (kðhÞ) which are explicit functions
of the uncertain parameters. Some of the candidate solutions
may be infeasible if the conditions (3) or (4) are violated 8h 2 H
and global/local parametric optima for some h 2 H otherwise.

Substituting a candidate solution into Eqs. 3 and 4, results

in a set of parametric inequality constraints that form the
Critical Region (CR) of the candidate feasible solution.

DEFINITION. (Critical region of mp-LP under global uncer-

tainty) In the context of this work and given the nature of the
problem and the symbolic character of the proposed algo-
rithm, we consider as CRs the regions of the parametric space
where conditions (3) and (4) are satisfied for a specific candi-
date solution. A CR is defined uniquely by a specific set of
active/inactive constraints and may not be continuous.

After the final feasible explicit solutions are computed along

with their corresponding CRs, because of the nonconvex nature of

the parametric problem under study, there might be some CRs

that share the same part of the parametric space (overlapping
CRs). To provide at the end the globally optimal explicit set of

solutions, that is, explicit solutions that do not overlap, a compar-

ison procedure has to be followed. The main challenge, is that
the CRs involved are in general nonconvex and can be discon-

tinuous as well. From a computational point of view, the tool

employed within the comparison procedure is Cylindrical Alge-
braic Decomposition (CAD). Briefly, the main steps of the com-

parison procedure include the identification of the common

overlap of the corresponding CRs. After the overlap is identi-
fied, the explicit solution which is dominant is kept, while from
the other one the corresponding region of parametric space is
removed. The comparison procedure along with the computa-
tional steps are discussed in greater detail in Appendix.

REMARK. Another major difficulty in the global solution
of general mp-LPs arises from the ability to invert para-
metric matrices when LHS uncertainty is considered.26

This difficulty, is because typically for the solution of gen-
eral mp-LPs, one would have to solve, at least for initiali-
sation, an NLP (with the uncertain parameters treated as
free variables, thus resulting in bilinear terms), locate a
feasible point, perform the required sensitivity calculations
and then perturb until the entire parametric space is cov-
ered. In this work, we do not visit the optimal parametric
bases; on the contrary, we solve the problem analytically
and the entire parametric space is explored implicitly
through the proposed algorithm and thus we do not have
to perform inversion of parametric matrices. Because of
that we alleviate the corresponding computational burden
that would otherwise be prohibitive for the application on
large scale problems.

Figure 1. Outline of the proposed algorithm for mp-LP
under global uncertainty.
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In Algorithm (3), the main steps of the proposed method-
ology are described. While in Figure 1, the outline of the
algorithm is given.

In Algorithm 1, steps (1)–(6) account for the formulation
of the problem, where an empty LIST is initiated for the
storage of the candidate solutions that result from the step
(4) of the algorithm. In the case that the problem is not
infeasible, that is, step (7), the candidate solutions are added
to the LIST. As mentioned earlier in the manuscript, each
candidate solution corresponds to a triplet fxðhÞ; zðhÞ; kðhÞg
and so, the LIST will have a length equal to the number of
candidate solutions computed from step (4) based on the
Groebner Bases calculations. At steps (9)–(18), the first
major loop of the algorithm initiates for each of the candi-
date solutions where the corresponding CAD is computed
based on the primal and dual feasibility conditions; if the
CAD is empty, that is, there is no h 2 H such that the pri-
mal and dual feasibility conditions are met, the correspond-
ing CR of the candidate solution is empty [steps (12) and
(13)] and candidate solution is removed from further consid-
eration; otherwise, the CAD provides the mathematical
expression of the CR where the candidate solution is feasible
[steps (14) and (15)]. Once the CRs for the remaining candi-
date feasible solutions have been computed, the second loop
of the algorithm begins where overlapping CRs are identified
[step (19)] and the comparison procedure as explained in
Appendix is followed; note that again this step involves
CAD calculations. The algorithm finally terminates and
returns the final list of explicit solutions along with the cor-
responding CRs, that is, F .

THEOREM 1. (Optimal explicit solution of global mp-LP)
Let h be a vector of uncertain parameters and AðhÞ5Anom

1A�h be affine mappings with respect to h, where Anom is

the nominal part of the constraint matrix. Let also strict
complementary slackness hold for each value of theta. When
global uncertainty is considered in multi-parametric linear
programming problems; the optimisers (xðhÞ) and the
Lagrange multipliers (kðhÞ), are piecewise fractional polyno-

mial functions of the uncertain parameters, that is, h.
Proof. The Lagrangian and its gradient for problem (2)

are given in (5) and (6)

L5cTðhÞ x1
Xm

i51

kiðAiðhÞx2bi2FiðhÞÞ (5)

rxL5cTðhÞ1
Xm

i51

kiAiðhÞ5cTðhÞ1kTAðhÞ (6)

where ki; AiðhÞ; bi; FiðhÞ correspond to the elements associ-

ated with the ith row of problem (2) and rx is the Nabla
operator in the vector of optimisation variables. Because
problem (2) is linear, the gradient of the Lagrange function
with respect to the optimisation variables is an expression
explicit in k and h, that is, rxL5f ðk; hÞ. The first-order

KKT conditions for problem (2) are as follows

rxL5cTðhÞ1kTAðhÞ50 (7)

kiðAiðhÞx2bi2FiðhÞÞ50; 8i51; . . . ;m (8)

Algorithm 1. Algorithm for global mp-LPs

Input: mp-LP problem
Output: F
1: ðxðhÞ; kðhÞ; zðhÞÞ  ðvoid; void; 1Þ
2: LIST 1
3: Formulate the Lagrangian of problem ð2Þ
4: Solve problem ðP1Þ using symbolic manipulation software for ðxðhÞ; zðhÞ; kðhÞÞ
5: if problem ðP1Þ is infeasible then :
6: F51
7: else :
8: Add ðxðhÞ; zðhÞ; kðhÞÞ to LIST
9: while j � lengthðLISTÞ do :
10: for j51;m :
11: Substitute xjðhÞ; kjðhÞ in inequalities ð3Þ2ð4Þ
12: if inequalities ð3Þ2ð4Þ are violated 8 h 2 H :
13: CRj¢1 and ðxjðhÞ; kjðhÞÞ is infeasible solution
14: else CRj¢fh 2 Hjkj;jðhÞ � 0 � gjðxjðhÞÞ � 0g
15: Add element ðxjðhÞ; zjðhÞ; CRjÞ toF
16: end if

17: end for

18: end while

19: for each CRj check CRj \ CRj0 :
20: if CRx

j \ CRx0
j0ðj06¼jÞ 6¼1 then :

21: Perform dominance criterion according to Appendix A
22: end if

23: end for

24: end if

25: returnF

AIChE Journal 2017 Vol. 00, No. 00 Published on behalf of the AIChE DOI 10.1002/aic 5



Let �k; A
^

ðhÞ; �b; F
^

denote the Lagrange multipliers, technol-
ogy matrix, RHS elements respectively corresponding to
active constraints, that is, the constraints for which the corre-
sponding Lagrange multipliers are non-zero, based on the
strict complimentary slackness assumption.

For active constraints eq. 7 becomes

cTðhÞ1�k
T
A
^

ðhÞ50 (9)

Note that for the case of active constraints, A
^

ðhÞ is a square
matrix of nx dimension and thus can be inverted under the
assumption that the determinant of the matrix is non-zero.
To this end, assume that there exist h such that the determi-
nant is non-zero and therefore A

^

ðhÞ is invertible. Using the
Cramer’s rule30 the inverse of the parametric matrix can be
expressed as follows

A
^ 21

ðhÞ5 adjðA
^

ðhÞÞ
detðA

^

ðhÞÞ
(10)

where adjð�Þ and detð�Þ denote the adjugate and the determi-
nant of a matrix, respectively.

Solving Eq. 9 and using Cramer’s rule, that is, Eq. 10, for
�k we get

k
^

i52ciðhÞ
detð �AiðhÞÞ
detðA

^

ðhÞÞ
(11)

which proves that the kðhÞ is a fractional polynomial func-
tion of h. The continuity of kðhÞ will be commented on in
Theorem 2.

Notice that in the above formula the term detðA
^

iðhÞÞ
refers to the determinant of the A matrix if we substitute the
ith column with the RHS of the corresponding equation [Eq.
9] which in our case is: 2cTðhÞ. �

COROLLARY. The expressions of both the numerator
and the denominator in Eq. 11 are polynomial in aijðhÞ;

i; j51; . . . ;m, where aijðhÞ are the perturbed elements of the
corresponding matrices. It follows that the fraction of two
polynomials results in a fractional polynomial function.

From Eq. 8 and because of the assumption for strict com-
plementary slackness for the active constraints

A
^

ðhÞx2b2FðhÞ ¼ 0! x ¼ A
^ 21

ðhÞðbþ F
^

ðhÞÞ

! xiðhÞ ¼ ðb
^

i þ F
^

iðhÞÞ
det ðAiðhÞÞ
det ðA

^

ðhÞÞ

(12)

which proves that the optimiser xðhÞ is a fractional polyno-
mial function of h. W

REMARK. Within the proof of the theorem an assumption
about the invertibility of the A

^

ðhÞ matrix was made. For the
inverse to exist, detðA

^

ðhÞÞ 6¼ 0 which practically means
excluding roots of the polynomial obtained by requiring
detðA

^

ðhÞÞ50.
Before moving on to Theorem 2 it is important to provide

the definition of “semi-algebraic sets.”
DEFINITION. (Semi-Algebraic Sets)31 Let R X½ � denote the

ring of polynomials in nx indeterminates with real coeffi-
cients. A subset S of Rnx is called semi-algebraic if it can be
constructed by finitely many applications of the union, inter-
section and complementation operations, starting from sets
of the form

fx 2 Rnx j gðxÞ � 0g; where g 2 R X½ �

Alternatively, it can be said that a semi-algebraic set of Rnx

is defined by Boolean operations (conjunctions, disjunctions,
and negations) of conditional expressions involving a finite
number of polynomials.

REMARK. In this work, we consider semi-algebraic sets as
a generalisation of the an arbitrary set defined by a number
of equations/inequalities. Notice, that for the special case
that the functions gðxÞ are linear the aforementioned

Table 4. Candidate Solutions of Example 1

No. of Candidate
Solution x1 x2 x3 x4 k1 k2 k3 k4 k5 k6

1 0 5 22 0 17 25 28227h 0 0 215
2 0 0 21

2

5

2

2 5

2

ð6h21Þ
2

15

2

0 0

3 0 21

5

0 2

5

1

2

5

2

ð9h24Þ
2

0 23 0

4 21

12h
0 0 89h116

21h14

5ð2h21Þ
2ðh21Þ

5

2

0 5ð9h24Þ
2ðh21Þ

126h
12h

0

5 5

4h11

0 89h116

21h14

0 14h11

4h11

7h13

4h11

0 27h18

4h11

0 126h
12h

6 4

21h14

89h116

21h14

0 0 20ð3h21Þ
21h14

10ð3h12Þ
21h14

0 0
2

2ð27h18Þ
21h14

5ð9h24Þ
2ðh21Þ

7 0 0 0 47

2

0 5

2

5ð2h21Þ
2

2
5

2

24 0

8 0 47

11

0 0 0 30

11

20ð3h21Þ
11

0
2

34

11

5

11
9 0 0 47

4

0 0 7

2

ð14h11Þ
2

17

2

0 2

10 47

2h13

0 0 0 0 10

2h13

0
2

20ð3h21Þ
2h13

2
2ð14h11Þ

2h13

1210h
2h13

11 0 21

5

0 0 6 0 22ð3h12Þ 0 22 25

12 0 0 21

2

0 7 0 27h23 5 0 25

13 0 0 0 0 0 0 210 230 214 25
14 21

12h
0 0 0 10

12h
0 0 10ð3h12Þ

12h
2ð7h13Þ

12h
25
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definition describes a polyhedron. The reason semi-algebraic
sets are introduced thus, is the ability to describe both con-
vex and nonconvex sets that may be discontinuous as is
shown later on in the work in Example 4.

PROPOSITION. Semi-algebraic sets of Rnx can be written as
a finite union of semi-algebraic sets of the form31

fx 2 RnX j f1ðxÞ5 . . . 5fxðxÞ50; g1ðxÞ > 0; . . . ; gmðxÞ > 0g

where f1 . . . ; fx; g1; . . . ; gm are in g 2 R X½ �.
For the proof of the proposition the interested reader is

referred to the book of Bochnak et al.31

THEOREM 2. (Critical regions of the global mp-LP) The
critical regions of an multi-parametric linear programming
problem, when global uncertainty is considered, are semi-
algebraic sets defined by fractional polynomial functions and
are not necessarily convex nor continuous. Within a CR the
corresponding optimiser is continuous but not necessarily
continuous in the original parametric space, H.

A CR is the region of parametric space where each para-
metric solution remains optimal. Having said that the generic
definition of a CR would be as follows

CR5fh 2 Hj �kðhÞ � 0 � fgðxÞ � 0g (13)

where �kðhÞ is the vector of Lagrange multipliers of the
active constraints and fgðxÞ is the vector of inactive con-
straints. Substituting Eq. 11 and 12 in Eq. 13 leads to

CR5fh 2 Hj2ciðhÞ
detð �AiðhÞÞ
detðA

^

ðhÞÞ

� 0 � ~AiðhÞðb
^

i1F
^

iðhÞÞ
detðA

^

iðhÞÞ
detðA

^

ðhÞÞ
2~bi2~FiðhÞ � 0g (14)

Note that based on Theorem 1 the Lagrange multipliers are

fractional polynomial functions of h and the vector of inac-

tive constraints form a set of fractional polynomial inequal-

ities of h and thus the CRs are semi-algebraic sets defined

by fractional polynomial functions and are not necessarily

convex. As mentioned in Theorem 1, for the inverse of the

parametric matrix to exist, the determinant of the paramet-

ric matrix corresponding to the active constraints should be

non-zero. Based on the definition of semi-algebraic sets,

such condition can be expressed in the definition of a CR

and thus: the optimiser and the Lagrange multipliers are

continuous within the corresponding CR but not necessarily

continuous over the entire parametric space H. W

Case studies

In this section, six problems are presented to illustrate the

generality as well as the advantages of the proposed methodol-

ogy over the ones that have been proposed so far in the litera-

ture. First, two small linear parametric problems with LHS

uncertainty from Gal22 and Khalipour and Karimi26 are exam-

ined, then a mp-LP with LHS uncertainty is solved so as to

illustrate the exact computation of the nonconvex CRs that

arise from the LHS uncertainty. The fourth example is solved

to illustrate the discontinuous nature of the underlying para-

metric optimisation problem. Next, we present an mp-LP with

global uncertainty (LHS, RHS, OFC) to underline the general-

ity of the proposed methodology and finally the proposed

methodology is applied on a the optimisation of a thermal

cracker under global uncertainty.
REMARK. In this work, the analytical solution and the

comparison procedure employed was performed in Mathe-
matica 10. In general, this can be done in any symbolic

Table 5. Candidate Solutions of Example 3

Solution No. x1 x2 k1 k2 k3 k4 k5

1 20833:3

h120:153

16666:7ðh120:5Þ
h120:153

6:375

h120:153

0 12:375230h1

0:1532h1

0 0

2 60000ðh221:2Þ
h221:8

2
10000

h221:8

0 2183:6

h221:8

54281h2

1:82h2

0 0

3 30000ðh220:366Þ
h1h220:275

15000220000:h1

0:2752h1h2

6:75210:125h2

0:2752h1h2

108h1244:55

h1h220:275

0 0 0

4 0 16666.7 6:75210:125h2

0:2752h1h2

0 30 25.1 0

5 60000 0 0 0 81 0 18.3
6 0 0 0 0 0 28.1 210
7 0 20000

h1

0 108

h2

0 5:4

h2

28:1
0

8 40000 0 0 162 0 0 210
9 0 54545.5 24.5455 0 0 19:64h128:1 0
10 30000

h1

0 10:125

h1

0 0 0 4:45

h1

210:8

Table 6. Final Results of Example 1

Solution
No. x1 x2 x3 x4 zðhÞ CR

1
2

21

h21

0 0 89h116

2ðh21Þ
5ð89h268Þ

2ðh21Þ
h 2 ð21;2 16

89
�

2 47

2h13

0 0 0 470

2h13
h 2 ½2 16

89
;2

1

14
�

3 5

4h11

0 89h116

2ð4h11Þ
0 623h1162

4h11
h 2 ½2 1

14
;
1

6
�

4 0 21

5

0 2

5

319

2
h 2 ½1

6
;11Þ
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manipulation platform such as Maple, MuPAD in Matlab or
SymPy using Python programming language to name a few.
Because of that, the scale of the problems that the proposed
algorithm can cope with is highly dependent on the platform
that is used but given the current state of the art in symbolic
manipulation software the proposed algorithm can solve
problems of small to medium scale.

EXAMPLE 1. (Parametric linear LHS with unbounded
parameter) To validate the proposed methodology the pre-
sent example from Gal22 was examined which involves an
unbounded single parameter in the first row of technology
matrix. The corresponding parametric problem is given by
Eq. 15–19

zðhÞ5 max
x

10x1130x2114x315x4 (15)

Subject to

ð12hÞx115x212x3 � 21 (16)

ð3 1 2hÞx1111x214x312x4 � 47 (17)

xi � 0; 8i51; . . . ; 4 (18)

h 2 R (19)

Following the proposed algorithm 14 candidate solutions are
computed and given in Table 4.

As shown in Table 4, from the 14 candidate solutions the
first, third, seventh, eight, 11th–14th violate the non-
negativity of the Lagrange multipliers and are subsequently
discarded. After the 13th step of the proposed algorithm
where the evaluation of the non-negativity of the Lagrange
multipliers and the negativity of the inequality constraints is
performed, four solutions are feasible and as none of them
overlap, they are the final explicit solutions of Example 1.

REMARK. Note that in this case study, the uncertain set is
unbounded. In principle, the proposed algorithm can facili-
tate parametric unboundedness but for larger problems that

leads to excessive computations because of the increase in
the possible CRs.

In Table 6, the parametric solutions and the correspond-
ing CRs are listed which are the same as the ones computed
following the methodology of Gal.22

To demonstrate the computation of the CRs the steps of
computing CR2 are demonstrated. CR2 corresponds to the
10th candidate solution and is formulated by the intersection
of the parametric ranges defined by the inequalities (3 and
4) which are as given by (20)

2
89h116

2h13
� 0

2
47

2h13
� 0

10

2h13
� 0

20260h
2h13

� 0

2
28h12

2h13
� 0

5210h
2h13

� 0

! h 2 ½2 16

89
;2

1

14
�

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

(20)

For the sake of clarity, in Figure 2 the different parametric
ranges where each constraint is satisfied are given. Note that the
set of constraints that leads to the definition of the CRs are the
Lagrange multipliers of the active constraints and the inactive
constraints. In Figure 2, above from the parametric ranges the
corresponding inequality is defined as well as the resulting para-
metric range where it is valid. As can be observed from the Fig-
ure 2, CR2 is defined as the space where all the constraints are
satisfied and for illustration purposes is marked with a red
rectangle.

Note that in the inequalities given by Eq. 20 the point h5

2 3
2

is point where the corresponding explicit solution cannot

Figure 2. Graphical definition of CR2 for Example 1.

[Color figure can be viewed at wileyonlinelibrary.com]
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be defined and is not included in CR2. Finally, in Figure 3
the graph of the objective function across the corresponding
CRs for Example 1 is given. Notice that despite the fact that
each explicit solution may not be continuous in original
parametric space, each continuity is preserved within its cor-
responding CR.

EXAMPLE 2. (Parametric linear LHS) Next, an example from
Khalilpour and Karimi26 was chosen. This problem is a para-
metric problem with LHS uncertainty given by Eq. 21–25.

zðhÞ5 min
x

x111:5x213x3 (21)

Subject to:

x11ð1 1 2hÞx212x3 � 6 (22)

ð11hÞx112x21x3 � 10 (23)

2100 � h � 100 (24)

xi � 0; 8i51; 2; 3 (25)

In this example, the uncertain parameter h is found in two dif-
ferent rows of the technology matrix and in different columns.
Following the proposed algorithm, first we formulated the
Lagrangian function of the problem as shown by Eq. 26.

Lðx1; x2; x3; k1; k2; k3; k4; k5; hÞ

52k3x11k1ð2x12ð2h11Þx222x316Þ

1k2ðð2h21Þx122x22x3110Þ

1x12k4x211:5x22k5x313x3

(26)

Next, the gradient of the Lagrangian is computed with
respect to the optimisation variables as shown in Eq. 27.

rx1;x2;x3
L5½ð2h21Þk22k12k311; ð22h21Þk1

22k22k411:5; 22k12k22k513�T
(27)

Note that the components of the gradient are explicit func-
tions of the Lagrange multipliers and the uncertain parame-
ter because of the linearity of the original optimisation
problem. Solving the system of equations derived by the cor-
responding first order KKT conditions results in 10 candi-
date solutions. Following the proposed methodology, we
compute the explicit solution along with the parametric
intervals, since there is only one uncertain parameter. The
results of this example are given in Table 7.

As shown the parametric intervals are in total agreement
with the ones computed following the algorithm of Khalil-
pour and Karimi.26 Apart from the parametric intervals note
that following the proposed algorithm the explicit form of
the objective function is computed as well in contrast with
the aforementioned algorithm. In Figure 4, the optimal value
function can be envisaged across the range of parametric
variability; note that the different colors indicate different
explicit functions and consequently the range that the curve
is plotted for indicates the corresponding CR.

So far, the examples examined, considered only one
parameter that could vary simultaneously in one or more
entries of the technology matrix. Next, we extend to the
cases were more than one parameter is considered in the
mp-LP and global uncertainty is treated.

EXAMPLE 3. (Multi-parametric linear LHS) A crude oil
refinery example32 was chosen and slightly modified to facili-
tate the test of the proposed algorithm. The optimisation prob-
lem with LHS uncertainty is given by Eq. 28–32.

zðh1; h2Þ5 max
x

8:1x1110:8x2 (28)

Subject to:

h1x110:44x2 � 24000 (29)

0:05x110:10h2x2 � 2000 (30)

0:10x110:36x2 � 6000 (31)

Figure 3. Plot of the explicit objective function and the
CRs in the parametric space of example 1.

[Color figure can be viewed at wileyonlinelibrary.com]

Table 7. Validation of the Example 2 by Khalipour and Karimi (2014)

i Explicit Solution (ziðhÞÞ CRi

CRi Computed by
Khalipour and Karimi 26

1
2

10:5

21:51h
1

30ð20:11hÞ
21:51h

2100 � h � 20:9340 2100 � h � 20:9340

2
4:5ðh20:666667Þ

h211:5h20:5
1

10ðh20:1Þ
h211:5h20:5

20:9340 � h � 0:1010 20:9340 � h � 0:1010

3 7.5 0:1010 � h � 0:3340 0:1010 � h � 0:3340

4 10
h11

0:3340 � h � 0:6670 0:3340 � h � 0:6670

5 6 0:6670 � h � 100 0:6670 � h � 100
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x1; x2 � 0 (32)

210 � h1;2 � 10 (33)

The Lagrangian is given by Eq. 34 while the gradient of the
Lagrangian is given by Eq. 35.

Lðx1; x2; k1; k2; k3 k4; k5; h1; h2Þ

52ð8:1x1110:8x2Þ1k1ðh1x110:44x2224000Þ

1k2ð0:05x110:10h2x222000Þ1k3ð0:10x110:36x226000Þ

1k4ð2x1Þ1k5ð2x2Þ
(34)

rx1;x2
L5ð0:8h1k110:05k210:1k32k428:1; 0:1h2k2

10:44k110:36k32k5210:8ÞT
(35)

Note, that the gradient of the Lagrangian in Eq. 34 is a non-
linear function of the Lagrange multipliers and the uncertain
parameters as products of the form k � h occur. With the
above computed the first order KKT conditions are given by
Eq. 28–32.

0:8h1k110:05k210:1k32k428:150 (36)

0:1h2k210:44k110:36k32k5210:850 (37)

k1ðh1x110:44x2224000Þ50 (38)

k2ð0:05x110:10h2x222000Þ50 (39)

k3ð0:10x110:36x226000Þ50 (40)

k4ð2x1Þ50 (41)

k5ð2x2Þ50 (42)

The solution of the square system of equations derived by
the first-order KKT conditions is solved symbolically using
Mathematica 10, with respect to the following variables: x1;
x2; k1; k2; k3 k4; k5 and as a result the candidate solutions
computed at this step will be parametric in h1 and h2. Solv-
ing the system of Eq. (28)–(32), leads to the following candi-
date solutions as shown in Table 5.

Evaluating with the optimality and feasibility conditions,
that is, Eqs. 3 and 4, from the 10 candidate solutions com-
puted in the first step of the algorithm, only 4 solutions are
qualified and thus after the comparison procedure are the
final explicit solutions of the system and are given in Table
8 while the corresponding CRs are given in Table 9.

Visually the CRs of the present example are presented in
Figure 5, while a 3-D plot of the objective function in the
parametric space is shown in Figure 6.

To demonstrate the scalability of the proposed algorithm,
we revisit the same example with more uncertain parameters
as shown below

zðh1; h2; h3; h4; h5; h6; h7Þ5 max
x

h1x11h2x2 (43)

Subject to

h3x110:44x2 � 240001h4 (44)

0:05x11h5x2 � h6 (45)

0:10x110:36x2 � h7 (46)

x1; x2 � 0 (47)

9 � h1 � 12; 10 � h2 � 13; 0:1 � h3 � 0:3; 0 � h4 � 3000;

0:2 � h5 � 0:5; 2000 � h6 � 6000; 4000 � h7 � 8000

(48)

In the augmented version, again the analytical solution
returns 10 candidate solutions out of which only three are
feasible. For purposes of illustration, in Table 10, the map
of candidate solutions is provided where the highly noncon-
vex nature of the problem can be further understood. As it
can be seen, despite the fact that the number of candidate

Figure 4. Graph of the optimal explicit objective value
across the parametric range of variability for
Example 2 (see Table 7 for the CRs intervals).

[Color figure can be viewed at wileyonlinelibrary.com]

Table 8. Explicit Solutions of Example 3

Explicit Solutions Mathematical Expressions

½h1; h2� 2 CR1
x1ðhÞ5

60000ðh221:2Þ
h221:8

, x2ðhÞ5 210000
h221:8

,

zðhÞ5 6912002486000h2

1:82h2

½h1; h2� 2 CR2
x1ðhÞ5

30000ðh220:366Þ
h1h220:275

,

x2ðhÞ5
15000220000h1

0:2752h1h2

,

zðhÞ5 2511002216000h12243000:h2

0:2752h1h2

½h1; h2� 2 CR3 x1ðhÞ540000; x2ðhÞ50,

zðhÞ5324; 000

½h1; h2� 2 CR4 x1ðhÞ5
20833:3

h120:153
,

x2ðhÞ5
16666:7ðh120:5Þ

h120:153
,

zðhÞ5 180000h1178750

h120:153
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Table 9. Critical Regions of Example 3

Critical Regions Mathematical Expressions

CR1

¢

8<:210 � h1 � 0:5186

210 � h2 � 20:667

0:5186 � h1 � 0:890625

2971144h1

2601120h1

� h2 � 20:667

8><>:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
CR2

¢

8<: 0:75 � h1 � 0:890625

0:667 � h2 � 10

f 0:890625 � h1 � 10

10:5553h127:11018

8:79609h124:39805
� h2 �

24:739h1
2226:8693h116:8741

20:6158h1
2218:812h114:25202

16:7109h1211:2567

13:9258h126:96289
� h2 � 10

8>>>><>>>>:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
CR3

¢
210 � h1 � 0:75

20:667 � h2 � 10

(

CR4

¢210 � h2

8>><>>:
h150:7293

h2 � 0:2914

8><>:
0:5186 � h1 � 0:70419

h2 � 1:21
0:933276

2:2398624:47973h1

h1 � 10

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8><>:
0:70419 � h1

h2 � 0:17974

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0:7705 � h1

ðh4
1ð1:18059h221:41671Þ1h3

1ð3:0793822:36118h2Þ

1h3
1ð1:77089h222:494ÞÞ310331

h1ð8:9282225:90296h2Þ3103217:378731031h221:1928931032 � 0

8><>:
h2 � 1:22

0:2083

h120:5

0:7293 � h1 � 0:89068<: h2
1h221:2h2

12h1h211:4083h110:25h2 � 0:404167

0:70419 � h1 � 0:7293

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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solutions does not scale, the nonconvex terms that appear in
the problem’s solution rapidly grows.

The explicit results for the problem are given in Table 11.
To identify overlapping CRs the comparison procedure was
followed; a number of the overlapping CRs provide identical
cost-wise solutions. In this example, we chose to keep the
overlap as a new CR where two different solutions are avail-
able at the same cost and remove the overlap from the origi-
nal regions. Of course, an alternative would have been to
keep only one CR as dominant (when only the optimal cost
is of interest and not the underlying choices) and that would
reduce the computational complexity from the procedure to
locate the CRs at the expense of less insight that can be
valuable for the decision making.

In more detail, CR1 was found to be overlapping with both
CR2 and CR3 and that led to CRfin

1 ; CR1CR2; CR1CR3;

CRnew
2 ; CRnew

3 while CRnew
2 overlaps with the entire CRnew

3

and thus leading to CRfin
2 ; CR2CR3, where CRiCRj denotes

that overlap that after that step is considered as a CR and
has been removed from the original ones (CRi;CRj) thus
leading to new nonoverlapping CRs (CRnew

i ; CRnew
j ). The

CRnew
2 and CRnew

3 are the intermediate CRs created during
the comparison procedure and are not provided in the article
for the sake of space. This example illustrates how flexible the
decision-making procedure can be as with the procedure fol-
lowed (keep overlapping CRs for better insight in the decision
making) the number of final CRs is 5 albeit only 2 final CRs
are needed when the cost-wise criteria are more important.

EXAMPLE 4. (Discontinuous mp-LP with LHS uncertainty)
This example is a modified version of the one presented by
Dinkelbach.33 We chose to work on this specific example
because as shown later on, the explicit solution involves
fragmented CRs and a discontinuous objective function in
the original parametric space

zðh1; h2Þ5 min
x

2x12x2 (49)

Subject to

ð32h2Þx11ð22h1Þx2 � 2 (50)

2h1x12h2x2 � 21 (51)

x1;2 � 0 (52)

225 � h1;2 � 25 (53)

This example involves two uncertain parameters located in
both rows and columns of the A matrix. First, the first order
KKT conditions are calculated and the corresponding system
of polynomial equations in x; k; h is solved using Mathema-
tica. In principle, the procedure followed is to compute the
Groebner Bases of the polynomial system of equations and
then proceed with back-substitutions so as to solve the trian-
gular system that arises. The Groebner Bases of this exam-
ple using lexicographic order for the monomials with x > k;
is given by Eq. 54.

Figure 5. Critical regions of Example 3.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 6. Three-dimensional plot of the objective function for the Example 3 in the parametric space.

(a) CRs plot; (b) Visualisation of the cost function in the parametric space.
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Þ
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GB : 5

k2k3k4

k1k3k4

2h1k1k2k41h2k1k2k423k1k2k4

h1k1k2k312h2k1k2k322k1k2k3

k4x2

h2k2k3x22k2k3

2k1k31h1k1k3x222k1k3x2

2h1k1k222h2k1k212k1k21h1
2k1k2x1

22h1k1k2x12h2
2k1k2x113h2k1k2x1

k3x1

2k21h1k2x11h2k2x2

2k11h2k1x123k1x11h1k1x222k1x2

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(54)

To illustrate how the solution of the system is computed, a candi-
date solution will be computed herein and following similar pro-
cedure the rest of the candidate solutions are computed. Note
that this procedure is done for illustration purposes and simply to
highlight the role of Groebner Bases theory in the proposed algo-
rithm while in the implementation done in Mathematica the com-
mand “Solve” is used. From the last row of the bracket in (54),
using k1 as a common factor and k2 for the row above the last
one we factorise the system as shown in (55).

GBfactored : 5

k2k3k4

k1k3k4

2h1k1k2k41h2k1k2k423k1k2k4

h1k1k2k312h2k1k2k322k1k2k3

k4x2

h2k2k3x22k2k3

2k1k31h1k1k3x222k1k3x2

2h1k1k222h2k1k212k1k21h1
2k1k2x1

22h1k1k2x12h2
2k1k2x113h2k1k2x1

k3x1

k2ð211h1x11h2x2Þ

k1ð21h2x123x11h1x222x2Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(55)

Now, let us consider the scenario for which x150 and k3 6¼ 0
such that the row 3 from the bottom is always satisfied. For
x150, the system (55) allows us to compute x2 from the last
row as shown in (56).

k2k3k4

k1k3k4

2h1k1k2k41h2k1k2k423k1k2k4

h1k1k2k312h2k1k2k322k1k2k3

k4x2

h2k2k3x22k2k3

2k1k31h1k1k3x222k1k3x2

2h1k1k222h2k1k212k1k21h1
2k1k2x122h1k1k2x1

2h2
2k1k2x113h2k1k2x1

k3x1

x25
1

h2

x150

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(56)

Having computed the explicit expression of x25f ðhÞ, we can
now compute k3 from the seventh row of the system (56),
under the scenario that k150.

k2k3k4

k1k3k4

2h1k1k2k41h2k1k2k423k1k2k4

h1k1k2k312h2k1k2k322k1k2k3

k4x2

h2k2k3x22k2k3

2h1k1k222h2k1k212k1k21h1
2k1k2x122h1k1k2x1

2h2
2k1k2x113h2k1k2x1

x25
1

h2

x150

k150

k352
h1ð2h211Þ

h2

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(57)

Following similar reduction steps of factorisation, we end up
with the following system of explicit expressions (58) which forms
a candidate solution to the original KKT system of the example.

x150

x25
1

h2

k150

k252
1

h2

k352
h1ð2h211Þ

h2

k450

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

(58)

The procedure given above for the computation of the candi-
date solutions given the Groebner basis is rather for illustra-
tion purposes and for the sake of clarity rather than
implementation purposes. In fact, in the literature of Groeb-
ner basis theory, one can find rules to optimise the perfor-
mance of the reduction procedure; such details are beyond
the scope of the present article but the interested reader is
referred to the book of Buchburger and Winkler.34

Following the steps of the proposed algorithm, we com-
pute two explicit solutions while their corresponding CRs as
given in Table 12.

As shown in Figure 7, it is interesting to note that CR1

(colored gray) is discontinuous and fragmented in two parts
both involving the same explicit solution. The reason why
this example was modified and solved is twofold: first, as
illustrated in Figure 7a, the discontinuity poses a significant
challenge on the implementation of the already existing
algorithms for mp-LPs as the “neighboring” property does
not hold in the discontinuous instance of the parametric
space. Moreover, one when solving the present example
might consider that there exist 3 CRs and not 2, leading
thus in unnecessary increase of the dimensions of the explicit
solution. This is due to the fact that, the algorithms proposed
so far in the literature of mp-P are based on solution of
problems with a valued parameter vector, that is, one has to
first find a feasible point in the parametric space collect the
postoptimal information needed and then repeat this proce-
dure until the entire feasible parametric space is covered.
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Following this algorithmic routine however, one would have
to perform two steps for the identification of a single CR for
the case of discontinuous regions.

EXAMPLE 5. (Multi-parametric global mp-LP) To illustrate
the case of global uncertainty in general mp-LPs the follow-
ing example is taken from Li and Ierapetritou (L&I)23

zðh1; h2; h3Þ5 min
x

h1x11x2 (59)

Subject to

2x11x21x35h2 (60)

x12h3x21x451 (61)

xi � 0; 8i51; . . . ; 4 (62)

25 � hq � 5;8q51; 2; 3 (63)

In this example, the most generic case of a multi-parametric
LP problem is considered, that is, uncertainty in the RHS,
LHS, and OFC simultaneously. Following Algorithm 1, the
results are given in Table 13 and a comparison with results
from Li and Ierapetritou23 is presented.

As observed, the CRs computed are different from the
ones computed in the work of Li and Ierapetritou;23 this is
because of the core difference between the two approaches:
following the approach proposed in Li and Ierapetritou,23

the accuracy of the approximation for the nonconvex CRs
arising from the LHS uncertainty is highly dependent on the
projection methodology that is employed as well as the
degree of discretisation of the parametric space, while in the
proposed methodology exact nonconvex CRs are computed
from the analytic solution of the global mp-LP. For better
understanding, in Figure 8, the different CRs are presented

Table 11. Final Results of the Example 3, with 7 Uncertain Parameters

Explicit solutions x1 x2 zðh1; h2; h3; h4; h5; h6; h7Þ
if ½h1; h2� 2 CR1 or CR1CR2 or CR1CR3 10h7 0 10h1h7

if ½h1; h2� 2 CR2 or CR1CR2 or CR2CR3 20h6 0 20h1h6

if ½h1; h2� 2 CR3 or CR2CR3

h4124000

h3

0 h1

h4124000

h3

Critical Regions Mathematical Expressions

CR1

¢

9 � h1 � 12

10 � h1 � 13

0:1 � h3 � 0:3

0 � h4 � 3000

0:2 � h5 � 0:58<: 2000 � h6 � 4000

4000 � h7 � 2h6

4000 � h6 � 6000

4000 � h7 � 8000

(

8>>>>>>>><>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

CR1CR3
¢

9 � h1 � 12

10 � h1 � 13

0:1 � h3 � 0:3

0 � h4 � 3000

0:2 � h5 � 0:5

4000 � h6 � 6000

h758000

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

CR1CR2

¢

9 � h1 � 12

10 � h1 � 13

0:1 � h3 � 0:3

0 � h4 � 3000

0:2 � h5 � 0:5

2000 � h6 � 4000

h752h6

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

CR2
¢

9 � h1 � 12

10 � h1 � 13

0:1 � h3 � 0:3

0 � h4 � 3000

0:2 � h5 � 0:5

2000 � h6 � 4000

2h6 � h7 � 8000

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

CR2CR3¢

9 � h1 � 12

10 � h1 � 13

h350:3

h450

0:2 � h5 � 0:5

h654000

h758000

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
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and their nonconvex nature is clearly shown; in Figure 9,
the entire final parametric space is presented.

This example was implemented in GAMS 24.4.1 (GAMS

Development Corporation. GAMS version 24.4.1. 2015) using

the commercial solver CPLEX 12.6.1 for evenly distributed

parametric points of the 3D space to evaluate the correctness

of the proposed methodology compared to the one by L&I and

it was clearly illustrated that the proposed methodology indeed

computes exact nonconvex CRs; especially for CR1 and CR4.

Note that the results computed complement the argument of

Theorem 1 about the continuity of the optimiser and the CRs

and this can be envisaged in Figure 10, where the discontinu-

ous CR4 at h351 is “joined” by CR2 and thus the optimiser of

CR4 is continuous 8h 2 CR4 but not continuous for h351.

Case study

Thermal cracker. This problem is adapted from Edgar

et al.35 and deals with the maximisation of profit under

uncertain cost of propane ðh1Þ, cracker capacity ðh3Þ while

LHS is involved in the stoichiometric coefficient of DNG

(h2Þ. The problem includes 7 optimisation variables, 13

constraints and is formulated as an LP. In Table 14, the

nomenclature of the case study is available. The uncertain

set H is defined in Table 15 while an illustration of the vari-

ous flows and the final olefins of the thermal cracker is

given in Figure 11. The rest of the data can be found in

Edgar et al.35

The corresponding multi-parametric programming problem

is given by Eqs. 64–72

zðh1; h2; h3Þ5 min
x

2:84x12h1x223:33x311:09x419:39x519:51x6

(64)

subject to

1:1x110:9x210:9x31h2x411:1x510:9x6 � 200; 000 (65)

Table 12. Explicit Solutions and CRs of Example 4

i xi
1ðh1; h2Þ xi

2ðh1; h2Þ ziðh1; h2Þ CRi

1
2

2h122h212

h1
222h12h2

213h2

2
22h12h213

h1
222h12h2

213h2

4h115h227

h1
222h12ðh223Þh2

31
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h1

228h119
p

< 2h2

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

8<:
211 < h1 < 0

2h11h2 � 3

8<:
222:5 < h1 � 211

h2 � 25

8>>>>>><>>>>>>:

14

3
< h1 � 25

h112h2 � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h1

228h119
p

12h2 > 3

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
2 0 1

h2

2
1

h2

h1 � 22h2

8<: 0 < h1 � 2

h2 < 0

2 < h1 � 25

h112h2 � 2

8<:

8>>>>>>>><>>>>>>>>:

Figure 7. Visual representation of the final results for Example 4.

[Color figure can be viewed at wileyonlinelibrary.com]
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0:5x110:35x210:25x310:25x410:5x510:35x6

� 100; 0001h3 (66)

0:01x110:15x210:15x310:18x410:01x510:15x6 � 20; 000

(67)

0:4x110:06x210:04x310:05x420:6x510:06x650 (68)

0:1x210:01x310:01x420:9x650 (69)

26857:6x11364x212032x321145x426857:6x5

1364x6121; 520x7520; 000; 000
(70)

xi � 0; 8i51; . . . ; 7 (71)

hq 2 H; 8q51; . . . ; 3 (72)

The solution of the problem results initially in 220 candidate
solutions. Qualifying with primal and dual feasibility condi-
tions, from the 220 candidate solutions only seven are feasible

and for these the procedure to identify overlaps is followed so
as to store at the end only the globally optimal solutions. The
initial feasible CRs are given in Table 16.

Notice that CR2 and CR3 are CRs defined by symmetric sol-
utions and that leads to identical CRs and identical costs;
therefore, from the two only one is stored for further investiga-
tion. After the dominance test, a number of CRs were found to
overlap and within the common space their associated costs
are identical. This phenomenon, can be attributed to the non-
convex nature of the problem. Again, it is up to the decision
maker to decide in such case what should be done but in the
present article for purposes of clarity we chose to keep these
overlaps as extra CRs where the available information is
stored while removing the overlap from the corresponding
CRs. In Table 17, the final CRs of the optimal operation for
the thermal cracker are presented while the notation CRiCRj is
used to denote the new CR that corresponds to the overlap of
CRi with CRj. More specifically, CR1CR6 denotes the overlap
of CR1 and CR6 where z1ðhÞ5z6ðhÞ; 8h 2 CR1CR6, which is
practically the entire original CR1 in the present example; the

Table 13. Results of Global mp-LP

i zi CRi zi (L&I) CRi (L&I)

1 0 0 � h1 � 5

0 � h2 � 5

25 � h3 � 5

8>><>>:
0 25 � h1 � 0

21 � h2 � 5

h1h3 � 21

8>><>>:
2 h1

8>>>>>><>>>>>>:

25 � h1 � 2
1

5

21 � h2 � 5

25 � h3 � 2
1

h18>>>>>><>>>>>>:

2
1

5
� h1 � 0

21 � h2 � 5

25 � h3 � 5

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

h1 0 � h1 � 5

21 � h2 � 0

25 � h3 � 5

8>><>>:

3 2h1h2 0 � h1 � 5

21 � h2 � 0

25 � h3 � 5

8>><>>:
2h1h2 0 � h1 � 5

0 � h2 � 5

25 � h3 � 5

8>><>>:
4 11h11h21h1h2h3

12h3

8>>>>>><>>>>>>:

25 � h1 � 21

21 � h2 � 5

2
1

h1

� h3 < 1

8>>>>>><>>>>>>:

21 � h1 � 2
1

5

25 � h2 � 21

1 < h3 � 2
1

h18>>>>>><>>>>>>:

2
1

5
� h1 � 5

25 � h2 � 21

1 < h3 � 5

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

11h11h21h1h2h3

12h3

0 � h1 � 5

25 � h2 � 21

1 � h3 � 5

8>><>>:
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Figure 8. Separate critical regions of the global mp-LP.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 9. Critical regions of the global mp-LP (example 5).

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 10. Discontinuous instance for Example 5.

[Color figure can be viewed at wileyonlinelibrary.com]
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same happens with CR4CR5 and CR4. Finally, as the explicit

solutions for CR4CR5 and CR5 and CR1CR6 are identical and

the regions are connected, we can further reduce the number

of CRs by two if we merge these two CRs into one big; the

postprocessed results for the CRs are given in Table while the

corresponding optimal explicit solutions in Table 18.

Discussion

Having demonstrated the applicability of the proposed algo-

rithm for general mp-LPs with global uncertainty, in this sec-

tion computational aspects and limitations will briefly be

discussed.

Table 14. Nomenclature of the Thermal Cracker Case Study

x1 Fresh ethane feed (lb/h)
x2 Fresh propane feed (lb/h)
x3 Gas-oil feed (lb/h)
x4 DNG feed (lb/h)
x5 Ethane recycle (lb/h)
x6 Propane recycle (lb/h)
x7 Fuel added (lb/h)

Table 15. Uncertain Set of Case Study

h1 2 ½0; 6�
h2 2 ½0; 1:5�
h3 2 ½250000; 50000�

Figure 11. Thermal cracker.

Table 16. Initial Feasible CRs of Case Study

CR1 : 5

0 � h1 � 6

1:37ð0:2710:0147h1Þ � h2 � 1:5

29090 � h3 � 50000

8>><>>:
CR2 : 5

0 � h1 � 6

0 � h2 � 1:5

250000 � h3 � 29090

8>><>>:
CR3 : 5

0 � h1 � 6

0 � h2 � 1:5

250000 � h3 � 29090

8>><>>:
CR4 : 5

0 � h1 � 6

0:298 � h2 � 2:2ð0:16710:00917h1Þ

29090 � h3 � 50000

8>><>>:
CR5 : 5

0 � h1 � 6

0:298 � h2 � 1:5

29090 � h3 � 50000

8>><>>:
CR6 : 5

0 � h1 � 6

0 � h2 � 2:61ð0:14110:00771h1Þ

h3529090

8>><>>:
CR7 : 5

0 � h1 � 6

0 � h2 � 0:2977

29090 � h3 �
27:14310712:033108h2

24:4931031225h2

8>>>><>>>>:

Table 17. Critical Regions of the Thermal Cracker Case

Study

(a) Final CRs of the Thermal Cracker Case Study

CR1CR6 : 5

0 � h1 � 6

0:36810:0201h1 � h2 � 1:5

29090 � h3 � 50000

8>><>>:
CR2 : 5

0 � h1 � 6

0 � h2 � 1:5

250000 � h3 � 29090

8>><>>:
CR4CR5 : 5

0 � h1 � 6

0:298 � h2 � 0:36810:0201h1

29090 � h3 � 50000

8>><>>:
CR5 : 5

0 � h1 � 6

0:36810:0201h1 � h2 � 1:5

29090 � h3 � 50000

8>><>>:
CR6 : 5

0 � h1 � 6

0 � h2 � 0:36810:0201h1

h3529090

8>><>>:

CR7 : 5

0 � h1 � 6

0 � h2 � 0:2977

29090 � h3 �
27:14310712:033108h2

24:4931031225h2

8>>>><>>>>:
(b) Postprocessed Results for Final CRs of the Thermal Cracker
Case Study

CRfin
1 : 5

0 � h1 � 6

0:2977 � h2 � 1:5

29090 � h3 � 50000

8>><>>:
CRfin

2 : 5

0 � h1 � 6

0 � h2 � 1:5

250000 � h3 � 29090

8>><>>:
CRfin

3 : 5

0 � h1 � 6

0 � h2 � 0:36810:0201h1

h3529090

8>><>>:
CRfin

4 : 5

0 � h1 � 6

0 � h2 � 0:2977

29090 � h3 �
27:14310712:033108h2

24:4931031225h2

8>>>><>>>>:
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Scalability of the proposed algorithm

The case studies tested so far are of small to medium size
due to limitations in terms of number of variables and con-
straints. The way the analytical solution of the KKT system is

calculated is based on the principles of commutative algebra
and algebraic geometry, for example, Groebner Bases theory.

The number of optimisation variables and equations tends to

rapidly increase the initial number of candidate solutions and

Table 18. Explicit Solutions of the Thermal Cracker Case Study

Solution No. x1

if ½h1; h2; h3� 2 CRfin
1 then

x15109000

x250

x350

x450

x5572700

x650

x7558900

zðhÞ5993000

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

if ½h1; h2; h3� 2 CRfin
2 then

x15120000 1 1:2h3

x250

x350

x450

x5580000 1 0:8h3

x650

x7564700 1 0:637h3

zðhÞ5109000 1 10:9h3

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

if ½h1; h2; h3� 2 CRfin
3 then

x15
6152021:2h2h32120000h210:0112h3

0:5632h2

x25
0:22h312000

h220:563

x350

x45
0:22h312000

h220:563

x55
42500280000h210:169h320:8h2h3

0:5632h2

x650

x75
3476220:6373h2h3264661:7h210:1781h3

0:5632h2

zðhÞ52
h1ð0:22h312000Þ1h2ð210:92h321:0923106Þ14:0148h31595404

h220:563

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

if ½h1; h2; h3� 2 CRfin
4 then

x15
5872021:2h2h32120000h220:1235h3

0:548562h2

x250

x350

x45
2:2h3120000

0:548562h2

x55
37457:820:8h2h3280000h220:268h3

0:548562h2

x65
0:0244h31222:22

0:548562h2

x75
33294:720:6373h2h3264661:7h210:11027h3

0:548562h2

zðhÞ52
h2ð210:92h321:0923106Þ13:2514h31574124

h220:54856

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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thus demanding more computational effort. An interesting

observation during the tests of the proposed algorithm is the

symmetry involved in the initial candidate solutions and

exploiting this symmetry, through an early elimination of sym-

metric solutions, would probably benefit the scalability of the

proposed algorithm. Conversely, the algorithm does not scale

at all with the number of uncertain parameters involved in the

problem which is a significant feature from a multi-parametric

programming point of view. This is because, when solving the

problem, the uncertain parameters are treated as symbols and

thus no computational power is consumed on the dimensional-

ity of the uncertain vector. Finally, as observed from the

results throughout the article, computer algebra systems tend

to spend a considerable amount of memory and computational

time for the precision of the results; this problem is also know

in the literature of symbolic computations as the “floating

point format problem.”36 As the algorithm presented herein

was implemented in Mathematica 10,37 such decisions were

beyond the scope of the article but constitute an observation

that may optimise the performance of a custom-made imple-

mentation of the algorithm. Overall, in Table 19, for the exam-

ples considered their computational statistics are given.

Dimensionality of the LHS parameters

As discussed in Theorem 1, when LHS uncertain parameters

are involved the global explicit optimisers, the Lagrange mul-

tipliers and the optimal parametric objective function are in

principle fractional polynomial functions of the uncertain

parameters. It was observed that the order of the power-

products in these functions, increases linearly with the number

of uncertain parameters on the LHS. The main bottleneck in

that case is the computation of the corresponding CRs. As it is

demonstrated in Appendix, the computation of the CRs

involves the definition of redundant constraints, overlapping

CRs and finally the computation of the final nonoverlapping

CRs, if necessary. Identifying redundant constraints and defin-

ing CRs is in general a very challenging task especially for

nonconvex problems as the one that this work deals with; a

possible way to overcome this issue could be an inclusion of a

postprocessing step where the parametric solutions, for which

the CRs could not be defined offline, are evaluated and com-

pared point-wise when the uncertainty occurs. Note that

despite the computational burden involved in the definition of

CRs, the explicit functions can be computed with relative ease

and an extra step for online application could be an attractive

alternative to the solution of a nonconvex NLP.

Concluding remarks and future research directions

In this work, we presented a novel algorithm for the solution

of general mp-LPs that are subject to global uncertainty. Our

main motivation was the extended existence of uncertainty in

optimisation problems either in the extrinsic data of the system,
for example, demands, resources availability, prices, and so

forth. that lead mostly to RHS and OFC uncertainty but also

intrinsic data of the system such as stoichiometric coefficients
or transition times in a scheduling problem. Multi-parametric

programming can handle, nowadays, uncertainty on the RHS
and OFC but the main bottleneck is when uncertainty is present

on the LHS and to address this was the main aim of this article.
We presented through a number of case studies the applica-

bility and generality of the proposed framework as well as

some instances that the proposed framework outperforms in

accuracy and/or computational complexity than other pro-
posed algorithms in the literature. Using symbolic manipula-

tion software to analytically solve the square system of
equations derived by the KKT conditions, the exact solution

of the general mp-LPs was computed together with the corre-
sponding nonconvex CRs.

Nonetheless, we should report that despite the merits of this

work, its applicability at the moment is highly dependent upon

the mathematical software used to conduct the calculations
and as a result the size of problems that can be solved are of

small to medium scale; note that for the case of LHS in mp-P
problems only small size problems have been solved because

of the computational complexity involved. As next steps, we
aim to further improve the performance of the proposed algo-

rithm so it can facilitate large-scale problems.
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Appendix

Comparison Procedure for the Dominance
Criterion

Defining redundant constraints and computing the new CRs

within the comparison procedure is a nontrivial task, especially for

nonconvex problems. A comparison procedure for parametric solu-

tions valid in the same parametric space can be found in Acevedo

and Pistikopoulos,38 so as to keep only the one that provides the

better solution (dominance criterion). For the case of convex CRs,

that is, when the CRs are defined as a set of linear inequality con-

straints. In general, while solving a mp-LP problem under global

uncertainty it can happen that two different parametric solutions,

that is, z1ðhÞ and z2ðhÞ to be feasible in the same parametric

space. The comparison procedure aims to identify the regions were

z1ðhÞ2z2ðhÞ � 0 (A1)

and

z2ðhÞ2z1ðhÞ � 0 (A2)

given that z1ðhÞ is valid in CR1 and z2ðhÞ is valid in CR2. The

first step is to compute CRINT5CR1 \ CR2.

Computation of CRINT and Redundant
Constraints

Excluding the case that CRINT51 there are three possible out-

comes in the definition of the CRINT which are described in Table A1

In Figure A1, the different cases for the definition of the

CRINT can be envisaged.

For illustration purposes assume that the following two ran-

domly generated CRs, given by Eqs. A3–A4, are under exami-

nation. We have chosen to illustrate a case that two nonconvex

CRs overlap and the CRINT is nonconvex as well, to underline

the salient feature of the proposed algorithm, that is, computing

exact nonconvex CRs.

Table A1. Possible Outcomes in the Definition of CRINT

Case 1 CR1 � CR2 which means that all constraints of
CR2 are redundant and CRINT5CR1

Case 2 CR1 � CR2 which means that all constraints of
CR1 are redundant and CRINT5CR2

Case 3 The CRINT is defined by a set of active constraints
from both CR1and CR2 as both

CRs have some nonredundant constraints
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Figure A1. Definition of CRINT.

Figure A2. CR1 and CR2 in the parametric space.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure A3. CRINT in the parametric space.

[Color figure can be viewed at wileyonlinelibrary.com]
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CR15
28 � h1 � 10

h3
2 > h11h2

113

(
(A3)

CR25
210 � h1 � 5

h2
21h2 < 92h3

11h2
1

(
(A4)

Graphically, in the parametric space CR1 and CR2 are presented in

Figure A2. These two CRs are nonpolyhedral and the inequalities

defining the CRs are polynomial. As mentioned above, in this

work Mathematica was used for the analytic solution of the mp-LP

under global uncertainty. Specifically, for the comparison proce-

dure the command “Reduce” was used. “Reduce” is a command

in Mathematica that qualifies sets of conditional arguments within

a given set of parameters and computes a new set within which

these conditional statements are satisfied. For example, in the defi-

nition of the intersection of two CRs (CRINT), “Reduce” identifies

the redundant constraints of both CRs and computes the region of

parametric space where both CRs exists; for the case that the CRs

do not overlap the output of “Reduce” is a “False” statement

equivalent to the argument CRINT51.

In this illustrative case using “Reduce” the CRINT is computed

and the redundant inequalities from the two CRs are automati-

cally removed from the set of inequalities forming the CRINT,

which is given mathematically by condition (A5) and graphically

presented in Figure A3; the CRINT as expected is nonpolyhedral.

CRINT5

28 � h1 � 1:84742

h2 � 2h12h2
11h3

123

h2 � 20:5 1 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37 1 4h2

124h3
1

q
8>>><>>>: (A5)

The redundant constraints from each CR can be computed as

RCCRi
5fhj h 2 ðCRi�ð:CRINTÞÞg;8i51; 2 (A6)

using Mathematica.

Computation of CRREST and the Final
Nonoverlapping CRs

After the definition of the CRINT dominance criterion can be

expressed by the conditional inequality (A7).

z1ðhÞ2z2ðhÞ � 0; h 2 CRINT (A7)

As a next step, excluding the case that CRINT51, the comparison

procedure is continued and a new set of conditional statements is

qualified, given by Eq. A7. The output of this step is used so as to

define the CRRESTi
, given by Eqs. A8–A9, and the two new CRs

that satisfy the comparison procedure and no longer overlap.

CRREST1
5fhj h 2 ðCRINT�ðz1ðhÞ � z2ðhÞÞg (A8)

CRREST2
5fhj h 2 ðCRINT�ðz1ðhÞ � z2ðhÞÞg (A9)

Following the comparison procedure for the previous illustrative

case, assume that

z1ðhÞ2z2ðhÞ50:03h4
21h2

118h1220 (A10)

To compute the dominant solution for the illustrative case the

“Reduce” command is again used to qualify Eq. A7. The output

of the “Reduce” in this case a new set of polynomial inequal-

ities given by Eq. A11, namely CRREST1
; this is the fraction of

CRINT in which z1ðhÞ � z2ðhÞ

CRREST1
5

28 � h1 � 22:83459

8<:
h2 � 2h12h2

11h3
123

h2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22000 1 800h11100h2

11h4
1

q

22:83459 � h1 � 2:49087

h2 � 2h12h2
11h3

123

h2 � 20:5 1 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37 1 4h2

124h3
1

q
8><>:

8>>>>>>>>>>><>>>>>>>>>>>:
(A11)

Given the mathematical expression of CRREST1
the fraction of

the CRINT where z1ðhÞ � z2ðhÞ can be computed evaluating two

equivalent conditional expressions given by Eqs. A12–A13. The

output of “Reduce” for this evaluation is given mathematically,

for the present illustrative case by Eq. A14

CRREST2
5fhj h 2 ðCRINT�ð:CRREST1

Þg (A12)

CRREST2
5fhj h 2 ðCRINT�ðz1ðhÞ � z2ðhÞÞg (A13)

Figure A4. Final nonoverlapping CRs in the parametric
space.

[Color figure can be viewed at wileyonlinelibrary.com]
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CRREST2
5

28 � h1 � 22:83459

h2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22000 1 800h11100h2

11h4
1

q
h2 � 20:5 1 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37 1 4h2

124h3
1

q
8>>>><>>>>: (A14)

After the CRREST regions are computed the final CRs can be computed as follows

CRfin
1 5fhj h 2 ðCR1�ð:CRREST2

Þg (A15)

CRfin
2 5fhj h 2 ðCR2�ð:CRREST1

Þg (A16)

Notice that in the previous step CRREST2
could be implicitly computed employing the negative Boolean expressions and not explicitly as

done here, alleviating thus the computational effort. Finally, the two CRs that no longer overlap are presented graphically in Figure A4,

while their mathematical expression is given by Eqs. A17–A18. Notice that z1ðhÞ is optimal in CRfin
1 and z2ðhÞ is optimal in CRfin

2

CRfin
1 5

28 � h1 � 22:83459

8>>>>>><>>>>>>:

h2 � 2h12h2
11h3

123

h2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
220001800h11100h2

11h4
1

q
h2 � 20:510:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3714h2

124h3
1

q
22:83459 � h1 � 10

h2 � 2h12h2
11h3

123

8<:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

(A17)

CRfin
2 5

210 � h1 � 28

8>><>>:
h2 � 20:5 1 0:5
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37 1 4h2

124h3
1

q

h2 � 20:5 1 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37 1 4h2

124h3
1

q

28 � h1 � 22:83459

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
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h2 � 20:5 1 0:5
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37 1 4h2

124h3
1

q

h2 � 2h12h2
11h3

123

8>><>>:
h2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22000 1 800h11100h2

11h4
1

q

h2 � 20:5 1 0:5
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37 1 4h2
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1

q
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37 1 4h2
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1

q
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37 1 4h2
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1

q

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(A18)
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