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INTRODUCTION

The pathological process underpinning Alzheimer’s disease (AD) can manifest as any of several
distinctive clinico-anatomical syndromes (Warren et al., 2012). The factors that drive this
phenotypic variation remain unclear but are likely to hold important insights into the mechanisms
whereby local neurotoxic effects of pathogenic proteins are scaled to distributed brain networks. A
theoretical framework for understanding morphological differentiation in biological systems was
first outlined in now classic work by Turing (1952), who showed computationally that diffusion
of two or more tissue chemicals or “morphogens” reacting across an embryonic cellular network
is sufficient to scale initial random fluctuations into stable, often strikingly asymmetric patterns.
Here we propose that Turing’s theory predicts the phenotypic diversity of AD, as a fundamental
consequence of two interacting pathogenic proteins (phosphorylated tau and beta-amyloid) that
spread diffusively through a common, distributed neural network.

THE PROBLEM OF ALZHEIMER’S DISEASE: CLINICAL
DIVERSITY ON A COMMON PATHOLOGICAL SUBSTRATE

Canonically, AD presents with episodic memory impairment attributable to dysfunction of
hippocampi and connected circuitry traversing the mesial temporal lobes. However, several other
variant clinical presentations of AD are well-recognized: these include a “visual” variant led by
visuoperceptual and visuospatial deficits; “logopenic aphasia” led by language impairment; and
a “frontal” variant led by executive and behavioral decline (Warren et al., 2012). These clinical
syndromes have associated profiles of regional brain dysfunction and atrophy which are likely
to reflect differential involvement of a core, distributed temporo-cingulo-parietal network and its
projections by the diffusive spread of pathogenic proteins (Seeley et al., 2009; Pievani et al., 2011;
Warren et al., 2012). In the healthy brain, the core networkmediates stimulus-independent thought
(hence its designation as the so-called “default-mode network”) and it is targeted early and relatively
selectively by the pathological process in AD (Buckner et al., 2009; Simic et al., 2014).

All AD phenotypes are characterized by pathological tissue accumulation of neurofibrillary
tangles containing abnormally-phosphorylated tau and extracellular plaques containing beta-
amyloid. Though their precise relation remains contentious, beta-amyloid and phosphorylated tau
are central to current concepts of AD biology, and the action of toxic oligomers on synapses may
instigate a cascade of intra- and extra-cellular events leading ultimately to the tissue expression of
AD (Ittner and Götz, 2011; Morris et al., 2014). While the regional tissue distribution of pathology
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may vary between AD syndromes (Murray et al., 2011; Mesulam
et al., 2014; Martersteck et al., 2016; Ossenkoppele et al., 2016),
any mapping between histology and phenotype is likely to be
complex. This raises an apparent paradox: why should the
pathological process in AD manifest as a handful of diverse but
consistent patterns, rather than as a single uniform signature or a
stochastic spectrum of random tissue damage?

TURING’S THEORY OF MORPHOGENESIS
AND ITS LEGACY

Turing’s reaction–diffusion theory of morphogenesis posits that
an initially stable, homogeneous cell array containing “form-
producing” chemicals (morphogens) may depart from stability
due to stochastic fluctuations in the array. It is assumed that
morphogens diffuse and react, such that a morphogen may
excite its own formation and diffusion by autocatalysis, or inhibit
these processes in another morphogen; it is further required
that morphogens have different rates of diffusion. Excitation-
inhibition coupling between the morphogens tends to focus
autocatalysis locally into zones separated by intervening regions
where inhibitory effects predominate (if this is not the case,
then catastrophic instability occurs and growth of the reaction
will halt). Over time, a “wave-like” pattern of inhomogeneous
morphogen concentrations develops across the cell array and
transmits a corresponding pattern of cellular effects. For the case
of two interacting morphogens, the resultant patterns resemble
standing waves and become more salient over time, while for
three or more morphogens, more complex behaviors emerge.

Turing showed that it is relatively straightforward
mathematically to extend the reaction–diffusion framework
of “homogeneity breakdown” from a ring to a sphere (or shell)
of cells. Since Turing’s original formulation, his theory has been
shown to hold for an extraordinary variety of applications,
ranging from coat pigmentation patterns in animals to
predator-prey relationships in ecosystems, crime hotspots in
communities, sand ripples, and galaxy formation (Murray, 1990;
Ball, 2015). Turing effects have also been shown to operate on
electrophysiological neural network parameters that do not
require physical transfer of “morphogens” (Jirsa and Kelso, 2000;
Hutt and Atay, 2005; Steyn-Ross et al., 2009, 2013).

TRANSLATING TURING: FROM
MORPHOGENS TO
NEURODEGENERATIVE PATHOGENS

Our proposal to extend Turing’s theory to AD pathogenesis was
motivated by the empirical resemblance of AD neuroanatomical
phenotypes to Turing reaction-diffusion patterns in other
biological and physical systems. The two pathogenic proteins
integral to the development of AD are clearly dissimilar to the
morphogens of developmental biology (Tiberi et al., 2012): the
pathogenic proteins of AD are “form-destroyers” rather than
form-producers and any analogy must be qualified. Nevertheless,
these AD proteins are likely to possess the key Turingmorphogen
attributes of diffusive spread and mutual reaction (Ittner and
Götz, 2011; Warren et al., 2013): the “inhomogeneities” they

produce are departures from brain network health, expressed as
regional neural dysfunction and damage. Our idea is sketched in
Figure 1.

Pathogenic protein effects on synaptic function and inter-
cellular connectivity determine the final common pathway of
protein diffusion and reaction at network level. Computational
modeling of neural network behavior has established that
certain synaptic connectivity properties can generate spatial
Turing instabilities over macroscopic scales via long-range
electrophysiological field effects (Jirsa and Kelso, 2000; Hutt
and Atay, 2005; Steyn-Ross et al., 2009, 2013). In particular,
Turing activation patterns emerge where the firing rates of
connected neurons are governed by disproportionate excitatory
vs. inhibitory inputs acting over different spatial ranges. Besides
physical diffusion between neurons (Warren et al., 2013),
tau and beta-amyloid have complex effects on synaptic and
neurotransmitter physiology that might establish such Turing
field effects. These proteins react extensively in an intricate
“pas de deux” that is likely to produce net toxic gain-of-
function as well as loss-of-function effects at synaptic (and
by extension, network) level (Winklhofer et al., 2008; Ittner
and Götz, 2011; Leighton and Allison, 2016; Ovsepian et al.,
2016). While ultimately the interaction of tau and beta-amyloid
is additive in promoting the spread of AD pathology, at a
given stage during evolution of the disease the proteins might
plausibly have mutually reciprocal effects on synaptic function
and network connectivity: for example, prior to undergoing
pathogenic misfolding tau protein protects against beta-amyloid-
induced neuronal dysfunction (Dawson et al., 2010), while tau
and beta-amyloid associate with distinct network profiles in the
aging brain (Sepulcre et al., 2016).

Remarkably, connectivity properties of the default-mode
network may make it intrinsically more susceptible to Turing
effects than other large-scale brain networks (Steyn-Ross et al.,
2009, 2013). This might explain why the network is selectively
targeted by the dual-protein pathological process in AD and why
this process is phenotypically differentiated. Electrophysiological
Turing patterns of neuronal dysfunction developing within the
network would be translated into neuronal damage and death,
thereby fixing the electrophysiological patterns into the structural
atrophy patterns that constitute AD phenotypes (Figure 1).

TRANSLATING TURING: SOME KEY
PROBLEMS

We now consider certain important challenges in extending the
Turing framework to AD.

One immediate consideration is the geometry (and relatedly,
the finite number) of diffusive AD patterns. Turing structures are
highly dependent on system boundary and scaling constraints
as well as specific diffusion characteristics of the relevant
morphogens, which are generally not known a priori (Murray,
1990). The intrinsic “wavelength” of the putative reaction–
diffusion process in AD is likely to be substantially larger than
an individual cell or cortical column and may be amplified
by involvement of longer-range network projections, which
have been shown to support macroanatomical Turing structures
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FIGURE 1 | Phenotypic differentiation in Alzheimer’s disease interpreted as a Turing reaction—diffusion process. Each panel shows a schematic axial

projection of the cerebral hemispheres and the top left panel indicates key anatomical regions, including components of the “default-mode network” (in bold italics):

aTL, anterior temporal lobe; FP, frontal pole; hip, hippocampus; iFC, inferior frontal cortex; mPFC, medial prefrontal cortex; TPJ, temporo-parietal junction; OC,

occipital cortex; pCC, posterior cingulate cortex. Superimposed (in red) on the brain schemas in each panel are notional patterns of pathogenic protein

(phosphorylated tau and beta-amyloid) effects resulting from a Turing mechanism, each operating for the same arbitrary (clinically relevant) time period; these patterns

correspond broadly to the atrophy profiles observed in the designated major variant syndromes of Alzheimer’s disease (see Warren et al., 2012). The ideal “spherical”

diffusion volume (dotted outer circle) is constrained by the geometry of brain boundaries; together these factors govern the number of possible patterns that can

develop and their effective “wavelength.” Targeting of the default-mode network by Alzheimer pathology may reflect intrinsic vulnerability of this network to Turing

effects (Steyn-Ross et al., 2009, 2013). The patterns in each panel here are related (purely for illustrative purposes) as simple rotations of a single template pattern that

preserve involvement of the key default-mode network but alter the profile of involvement across network components, each profile corresponding to a major

Alzheimer phenotype. Degree of “rotation” in this context could signify chemotactic and mechanical factors that modulate expression of the basic reaction–diffusion

process (Murray, 1990; Ball, 2015; Kondo, 2016) or variation in specific network connectivity parameters (Jirsa and Kelso, 2000; Hutt and Atay, 2005; Steyn-Ross

et al., 2009, 2013). This simplified model illustrates several cardinal features of Alzheimer phenotypes: (i) network “hubs” such as posterior cingulate and hippocampus

are involved in each case; (ii) there is substantial overlap between rotated patterns (syndromic variants); (iii) at the same time, each variant involves additional,

connected, syndrome-specific brain regions beyond the core network. We propose that other (non-Alzheimer) neurodegenerative proteinopathies may have

analogous but disease-specific “Turing signatures.”

(Nakamasu et al., 2009; Steyn-Ross et al., 2009, 2013; Kondo,
2016).

While Turing’s concept of autocatalysis is broadly supported
by empirical evidence for auto-propagation of pathogenic
proteins in AD and other proteinopathies (Hardy and Revesz,
2012; Warren et al., 2013), the relation between phosphorylated
tau and beta-amyloid remains a key unresolved issue. A Turing
model would require them to fill the roles of “activator” and
“inhibitor:” this need not of course imply that either protein has
a protective role, but would predict a reciprocal relationship over

some spatial scale or temporal interval. At present this is difficult
to assess directly in human disease, however it may be pertinent
that phenotype and tissue damage have been found generally to
correlate with the regional distribution of phosphorylated tau but
not beta-amyloid (Morris et al., 2014; Ossenkoppele et al., 2016).

A further key issue is that the clinico-anatomical patterns
constituting AD phenotypes are eventually unstable, evolving
and converging to a global distribution of tissue damage with
disintegration of the network that instantiates the reaction–
diffusion process. As originally proposed, Turing’s theory
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eschewed scenarios far from the onset of inhomogeneity and
did not explicitly model changing temporal dynamics: these
scenarios are clearly apposite to AD and may be more effectively
addressed using more recent extensions of the theory, including
the incorporation of temporal Hopf instabilities (Kondo et al.,
2009; Steyn-Ross et al., 2009, 2013; Kondo, 2016).

TESTING THE IDEA AND FUTURE
DIRECTIONS

In its simplest form, Turing’s model depends on four parameters
for each pathogenic protein: the rate of production; the rate of
diffusion; the rate of degradation; and the magnitude of their
interaction. This should make the model relatively amenable
to experimental evaluation in artificial neural networks using
computational techniques or indeed, in vitro neural circuits
or transgenic animals. Computational models incorporating
biologically-realistic neuronal and circuit parameters have been
shown to generate complex Turing behavior for both the
healthy brain and selected disease states such as epilepsy and
schizophrenia (Jirsa and Kelso, 2000; Steyn-Ross et al., 2009,
2013). These models should be extended to simulate the effects
of pathogenic protein properties on synaptic function and tissue
spread. The advent of tau-PET neuroimaging (in conjunction
with well-established amyloid imaging) opens an avenue to
directly compare tau and beta-amyloid tissue deposition profiles
in patients (Ossenkoppele et al., 2016). Ultimately there is a need
for direct histopathological examination of human brain tissue:
while inevitably subject to ascertainment bias (toward more
advanced disease), this could be somewhat offset by improved
definition of the culprit molecular species and their sites of action
within local tissue circuits (Ittner and Götz, 2011; Morris et al.,
2014). Although it is unlikely that a Turing reaction-diffusion
process is the sole influence governing phenotypic differentiation
in AD, it might act as an essential driver that is modulated by
other endogenous and environmental factors (Murray, 1990; Ball,
2015; Kondo, 2016).

The molecular nexopathies paradigm of neurodegeneration
rests on a coherent conjunction of pathogenic protein and
network characteristics (Warren et al., 2013). Turing effects
might underpin the peculiar vulnerability of the brain’s default-
mode network to AD nexopathy (Steyn-Ross et al., 2009). At
the same time, a Turing model of AD pathogenesis might
suggest that the neurodegenerative process “unravels” the events
of normal neural network ontogeny (Tiberi et al., 2012),
implying that embryological differentiation and disease-related
de-differentiation exploit intrinsically similar mechanisms. An
important motivation for examining models such as Turing’s
in this context is to deconstruct the apparent complexity of

neurodegenerative disease phenomenology to more tractable
building blocks. Phenotypic heterogeneity in AD is often ascribed
to the operation of still unidentified genetic and epigenetic
modifiers of disease expression in particular neural systems
(Murray et al., 2011; Warren et al., 2012; Mesulam et al., 2014;
Martersteck et al., 2016; Ossenkoppele et al., 2016): if valid,
a Turing process would provide a parsimonious mechanism

encompassing all variant phenotypes and inherent to the primary
disease. This in turn might have implications for development
of novel biomarkers and therapeutic interventions targeting
the factors that scale reaction–diffusion processes dynamically
across the compromised network. At least in principle,
macroanatomical confirmation of a Turing signature could
help discriminate between candidate molecular mechanisms that
drive the observed patterns of neural damage (Kondo et al., 2009;
Kondo, 2016).

Finally, Turing’s theory may be broadly applicable to other
forms of pathological aging and a range of neurodegenerative
proteinopathies besides AD. The interaction of C9orf72 products
and TDP-43 in frontotemporal dementia is one recent candidate
(Vatsavayai et al., 2016) but the application need not be restricted
to diseases with two protein pathogens; the role of the second
morphogen in the Turing model might be taken by a non-
pathogenic tissue factor. Human neurodegenerative diseases
may further vindicate the far-reaching potency of Turing’s
original idea.
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