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The humidity surrounding a sample is an important variable in scientific

experiments. Biological samples in particular require not just a humid

atmosphere but often a relative humidity (RH) that is in equilibrium with a

stabilizing solution required to maintain the sample in the same state during

measurements. The controlled dehydration of macromolecular crystals can lead

to significant increases in crystal order, leading to higher diffraction quality.

Devices that can accurately control the humidity surrounding crystals while

monitoring diffraction have led to this technique being increasingly adopted, as

the experiments become easier and more reproducible. Matching the RH to the

mother liquor is the first step in allowing the stable mounting of a crystal. In

previous work [Wheeler, Russi, Bowler & Bowler (2012). Acta Cryst. F68, 111–

114], the equilibrium RHs were measured for a range of concentrations of the

most commonly used precipitants in macromolecular crystallography and it was

shown how these related to Raoult’s law for the equilibrium vapour pressure of

water above a solution. However, a discrepancy between the measured values

and those predicted by theory could not be explained. Here, a more precise

humidity control device has been used to determine equilibrium RH points. The

new results are in agreement with Raoult’s law. A simple argument in statistical

mechanics is also presented, demonstrating that the equilibrium vapour pressure

of a solvent is proportional to its mole fraction in an ideal solution: Raoult’s law.

The same argument can be extended to the case where the solvent and solute

molecules are of different sizes, as is the case with polymers. The results provide

a framework for the correct maintenance of the RH surrounding a sample.

1. Introduction

Sample environments that control relative humidity (RH) are

important in many experiments where a wide variety of

samples require specific RH values to maintain sample

integrity or RH is a parameter to be varied. Humidity control

has been an important parameter in the study of lipid bilayers

(Lin et al., 2007) and amyloid fibres (McDonald et al., 2008),

and in small-molecule crystallography (Mo & Ramsøskar,

2009), coherent X-ray diffraction microscopy of cells

(Takayama & Nakasako, 2012) and serial crystallography

(Roedig et al., 2016). In biological crystallography, changing

the RH can sometimes induce phase changes in crystals of

macromolecules with a concomitant improvement in the

quality of observed diffraction. This has been observed since

the earliest days of macromolecular crystallography (Berthou

et al., 1972; Einstein & Low, 1962; Huxley & Kendrew, 1953;

Perutz, 1946) and is most easily effected by altering the molar

fraction of water in the crystal solution or by changing the RH
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of the air surrounding a crystal. Many successful examples are

given in the literature (Adachi et al., 2009; Bowler et al., 2006;

Cramer et al., 2000; Fratini et al., 1982; Gupta et al., 2010;

Heras et al., 2003; Hu et al., 2011; Kadlec et al., 2011; Kuo et al.,

2003; Nakamura et al., 2007; Sam et al., 2006; Vijayalakshmi et

al., 2008; Yap et al., 2007; Zerrad et al., 2011). Several specific

devices have been developed to control the humidity

surrounding a crystal (Einstein, 1961; Sjögren et al., 2002;

Pickford et al., 1993) with modern devices mounted at X-ray

sources or synchrotron beamlines (Kiefersauer et al., 2000;

Russi et al., 2011; Sanchez-Weatherby et al., 2009). The ability

to change the RH while characterizing changes via diffraction

allows any changes undergone by the crystal to be observed in

real time and increases the chances of characterizing a bene-

ficial phase change.

The HC1 humidity control device was developed at the

EMBL Grenoble to be a user-friendly device compatible with

a complex beamline environment (Sanchez-Weatherby et al.,

2009). It produces an air stream with a controlled RH using a

dispensing nozzle, in the same manner as cryostream devices

produce a nitrogen flow at 100 K, and is therefore easy to

integrate with most diffractometers. It supplies a stream of

humid air at an RH determined by a dew point controller

acting on a water-saturated air supply. The device is now

installed at laboratories and synchrotrons across the world

(Bowler, Mueller et al., 2015), resulting in many successful

experiments (Hu et al., 2011; Kadlec et al., 2011; Malinauskaite

et al., 2014; Oliete et al., 2013). The device can also be used for

ambient-temperature data collection (Bowler, Mueller et al.,

2015; Russi et al., 2011) where the RH must be matched to the

mother liquor to prevent dehydration of the crystal. The first

step in these experiments is to define the equilibrium point

between the RH and the mother liquor of the sample. This is

an essential step as it defines the starting point for the

experiments and maintains the crystal in a stable environment

when the mother liquor is removed. In order to facilitate this

stage we measured the equilibrium RH points for a variety of

solutions commonly used for the crystallization of proteins

and nucleic acids (Wheeler et al., 2012). This provided a

starting point for most experiments and the results obtained

were compared with Raoult’s law (Raoult, 1887) for the

equilibrium vapour pressure of water above a solution [and

for solutions of polymers, with a generalization (Bowler,

Mueller et al., 2015)]. The measurements made were consis-

tently higher than those predicted by Raoult’s law and a

satisfactory explanation for the discrepancy could not be

found. Here, we have repeated the measurements using a

device based on the HC1 but with higher precision in the

control of RH. The new measurements are in very good

agreement with Raoult’s law. Because of its importance, we

present a simple explanation for Raoult’s law using statistical

mechanics and also show how this treatment can be extended

to polymer solutions, where Raoult’s law breaks down. These

results illuminate the machinery underlying a long-observed

phenomenon and allow the accurate prediction of humid

atmospheres for specific sample requirements, applicable to a

wide variety of fields.

2. Experimental procedures

2.1. RH measurements

Solutions of polyethylene glycol (PEG) were made grav-

imetrically at concentrations between 50 and 10%(w/w). Stock

solutions of salts at 3 M were made and then diluted to reach

the desired concentration. A round 600 mm Micromount

(MiTeGen, Ithica, New York, USA) was mounted on either

the BM14 or MASSIF-1 (Bowler, Nurizzo et al., 2015; Nurizzo

et al., 2016) diffractometers with an HC-Lab device (Arinax,

Moirons, France) mounted at a distance of 5 mm from the

loop. The HC-Lab is based on the original HC1 developed at

the EMBL, Grenoble (Sanchez-Weatherby et al., 2009), but

with improvements in the dew point controller, temperature

measurement and calculation of RH. These developments

have led to a device with superior control and stability of RH

levels. In order to determine the equilibrium RH, 2 ml of

solution were taken and a small drop placed on the loop with a

pipette. The diameter of the drop was measured using specific

image analysis software. The humidity was adjusted until the

drop diameter was stable. This was repeated a few times until

the drop diameter was stable upon initial placement on the

loop. Each measurement was then repeated three times at

ambient temperature.

3. Results

3.1. Comparison of measured equilibria and predicted values

In previous work we measured the RH equilibrium points

for a range of solutions commonly used in protein crystal-

lization and examined the results in terms of Raoult’s law and

the Flory–Huggins model for the entropy of mixing of poly-

mers (Bowler, Mueller et al., 2015; Wheeler et al., 2012). While

the measured values provided a starting point for humidity

control experiments and Raoult’s law should be a good

explanation for the observed results, there was a considerable

discrepancy between the two (Wheeler et al., 2012). Measured

values were consistently 1–3% higher than those predicted,

which was attributed to the condenser used in the device being

rather inaccurate at humidity values above 96%. Repeating

these measurements using the new humidity control device,

the HC-Lab, the discrepancy is no longer significant (Figs. 1a

and 2a). The results obtained from the HC-Lab are also in

agreement with detailed studies of the activity of water above

salt (Robinson, 1945; Wishaw & Stokes, 1954) and polymer

solutions (Sadeghi & Shahebrahimi, 2011; Sadeghi & Ziama-

jidi, 2006) (Figs. 1b and 2b), with the salt solution measure-

ments made in this study appearing to be more accurate. This

now brings the control of RH surrounding crystals into line

with measurements made using dedicated and accurate

devices, as well as with theoretical calculations.

3.2. Derivation of the origin of Raoult’s law

Raoult’s law (Raoult, 1887) describes the reduction in the

saturated vapour pressure above a solvent when a mole

fraction x of some solute is dissolved within it. If the vapour
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pressure above the pure solvent is p0 then the vapour pressure

of the solvent above the solution is given by

p ¼ p0ð1� xÞ: ð1Þ

This is of course an idealization, but it is remarkably good,

particularly at low mole fractions of the solute. Originally

empirical, from what principles can it be derived? Any such

derivations depend on the assumption of an ideal solution,

meaning that within the body of the solution the elements of

the solute are nearly identical to the elements of the solvent

(and yet for a non-volatile solute the solute cannot enter the

vapour phase). In thermodynamics, equilibrium at constant

temperature and pressure corresponds to a minimum of the

Gibbs’ function G and hence liquid–vapour equilibrium

requires equal chemical potentials. The chemical potential of

the solvent vapour phase is the same as that of the solvent,

both above the pure liquid solvent and above a solution. The

chemical potential in the solution is reduced by mixing;

thermodynamic arguments are used to turn an entropy of

mixing into a change in chemical potential. Thermodynamics

does not deal with the mechanisms underlying these steps and

it seems reasonable to ask, first, how the vapour pressure can

be affected by the number of ways of arranging fixed numbers

of two kinds of molecule and, secondly, why is there no

apparent role for a work function related to the latent heat of

vaporization?

Raoult’s law is the direct result of the dilution of the solvent

by the solute and can be extracted by applying elementary

statistical mechanics. The machinery involves the energy levels

the confined components can occupy and, in the simplest case

of non-ideal solutions, differences in work functions are both

important and easily calculated.

3.2.1. Statistical mechanics. It is a truth universally

acknowledged that any system (such as an atom in a box) that

has energy levels "i and is in thermal equilibrium at

temperature T has a probability of occupying a given level

proportional to expð�"i=kBTÞ, where kB is Boltzmann’s

constant, for in an ensemble the vast majority of possible

configurations have this distribution and for macroscopic

phenomena we are concerned with sums or averages over very

many individual microscopic systems (here atoms, ions or

molecules). For pure solvent we divide the energy levels into

two classes, those in the liquid and those in the vapour phases.

They are separated by a step in energy, a work function W, and

so the number nv
i , from a total of N atoms, found in the ith

vapour state of energy "v
i + W is given by

nv
i ¼N exp �

"v
i þW

kBT

� ��"X
j

exp �
"v

j þW

kBT

� �

þ
X

k

exp �
"l

k

kBT

� �#
: ð2Þ

Here, the factor following the total number N is the prob-

ability of finding a solvent molecule in a vapour state of energy

"v
i above energy W, and "l

k is the energy of the liquid state k.

The sum over the index j in equation (2) is over the vapour

states and the index k over the liquid states.

For a given temperature, the total number of atoms in the

vapour is found by summing the numerator of equation (2)

over the index i, yielding a fraction y of the total number N.

The vapour energy levels start raised above the energy levels

in the liquid by the work function W (closely related to the

latent heat) and so the fraction of atoms in the vapour

contains a suppression factor of expð�W=kBTÞ. We are not

yet concerned with this factor, nor with the details of the

structure of the energy levels. It suffices that, for a given

temperature and container, the number of atoms in the vapour

phase is the fraction y of the total number of solvent atoms N.
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Figure 1
(a) Plots showing the equilibrium RH for salt solutions commonly used as
precipitants or additives in macromolecular crystallogenesis measured
using the HC-Lab. (b) The measured vapour pressures above solutions of
ammonium sulfate (Wishaw & Stokes, 1954) and sodium chloride
(Robinson, 1945). The lines show the calculated RH from Raoult’s law
(Wheeler et al., 2012). The measurements made using the HC-Lab [panel
(a)] more accurately reflect the predicted values from Raoult’s law.

Figure 2
(a) Plots showing the equilibrium RH for PEG solutions commonly used
as precipitants or additives in macromolecular crystallogenesis measured
using the HC-Lab. (b) The measured vapour pressures above PEG
solutions from Sadeghi & Shahebrahimi (2011) and Sadeghi & Ziamajidi
(2006). The lines show the calculated RH from Raoult’s law modified for
polymer solutions (Bowler, Mueller et al., 2015).



This fraction is determined by the work function, the

temperature and the detailed structure of the energy levels, in

turn determined by the volumes available. If a fraction x of the

solvent atoms are removed and replaced by Nx units of solute,

changing nothing else, the volume of the container does not

change and neither the detailed structure of the energy levels

nor the work function for solvent atoms changes because of

the (close) identity of the solvent and solute units in an ideal

solution. The fraction of solvent atoms in the vapour phase

does not change and, because there are now only (1 � x)N

atoms of solvent, the number of atoms of solvent in the vapour

phase is reduced by a factor (1 � x). Hence the reduced

vapour pressure and Raoult’s law.

This simple argument is indubitably correct, given the

assumptions of an ideal solution. The flux of solvent molecules

leaving the surface is reduced by a factor (1 � x), and for

equilibrium both the returning flux and the number density of

solvent molecules in the vapour phase are also reduced by a

factor (1 � x), as a direct result of the lower concentration of

solvent molecules. This approach can be extended to non-ideal

solutions (such as solutions of polymers), but this is more

complicated because of the need to calculate differences in

work functions.

3.2.2. Some technical details concerning volume. A second

result from elementary statistical mechanics removes a

potential objection to the above argument. What if the volume

of pure solvent is reduced? If the volumes of liquid and vapour

are held constant, the number of vapour atoms is (for a fixed

temperature) a definite fraction of the number of atoms in the

liquid phase. The more general result is that the concentration

of atoms in the vapour phase is a definite fraction of the

concentration of atoms in the liquid phase. The vapour pres-

sure above a liquid in a sealed container does not, in equili-

brium, depend on the volume of liquid in the container. Thus

(1 � x)N atoms of solvent in the container without xN atoms

of dissolved solute would not (and does not) result in a

pressure reduced by (1 � x). The reason is as follows. The

energy levels for atoms in the vapour are those of particle

waves confined within the volume between the liquid surface

and the walls of the container. For an ideal gas, the number of

energy levels in a given interval of energy is proportional to

the volume – the spacing goes down as the volume goes up. If

the volume available to vapour doubles, the number of levels

in some interval �" at " also doubles and hence so does the

number of molecules in the vapour. Thus the concentration of

atoms in the vapour phase is constant as the volume increases

– the pressure remains the same. Similarly, the molecules in

the liquid roam throughout the liquid volume and their

wavefunctions are constrained by the walls and the liquid

surface. If the volume of liquid is reduced, the sum over the

populations of liquid energy levels is reduced because there

are fewer of them. The spacing between energy levels in the

liquid goes up with the reduction in volume and the concen-

tration in the liquid remains the same. Thus the saturated

vapour pressure above the liquid remains constant as the ratio

of vapour volume to liquid volume is increased, until of course

all the atoms originally in the liquid are in the vapour phase.

Thereafter, as the volume is increased (by pulling back on a

piston perhaps) the vapour density, and so the pressure along

the isotherm, falls.

When extracted solvent molecules are replaced by solute,

the solute molecules make up the missing liquid volume. This

makes available to the reduced number of solvent molecules

the same energy level structures in both the liquid and vapour

phases. This dependence of the energy-level density on the

free-range volume results in the concentration of atoms in the

vapour phase being a definite fraction of the concentration in

the solution. This is important for considering the vapour

pressure above solutions that are not ideal, for example

polymers. Finally, it is essential for understanding the

thermodynamic treatment and entropy of mixing.

3.2.3. Solutions of molecules of different sizes. Suppose

now that, instead of replacing a fraction of molecules of

solvent with molecules of solute pre-empting the same

volume, the solute molecules require a different volume. For

the case of polymers, such as polyethylene glycol (PEG), the

specific volume will be larger, very substantially larger for the

heavier long-chain polymers. Let there be N1 molecules of

solvent of specific volume v1; similarly for the solute N2, v2.

The volume occupied by the liquid solution is N1v1 + N2v2 and

the concentration of solvent molecules is less than for pure

solvent occupying the same volume. The ratio of concentra-

tions of the solvent molecules in the solution to pure solvent

gives a factor in the vapour pressure ratio of

N1v1

N1v1 þ N2v2

: ð3Þ

This factor reduces to Raoult’s law as the specific volumes of

solvent v1 and solute v2 approach equality. This is not the

whole story because the work needed to remove a solvent

molecule from solution is not equal to that required to remove

a solvent molecule from pure solvent, except in this limit. The

following simple calculation yields the requisite difference in

work functions. The work function is the work that has to be

done when removing a molecule against the cohesive forces in

the liquid and any contribution from ambient pressure.

Because the forces are cohesive, the removal of a volume �V

of liquid to the vapour state requires energy �Pc�V, where

the quantity Pc is the potential energy density associated with

the cohesive forces. It is a contribution to the pressure in the

liquid and is negative. If a volume �V is instead added, it

acquires negative potential energy and the work done is

Pc�V, where Pc is again negative. Consider the operation of

replacing a molecule of solvent by one of solute. The liquid

volume increases by �V = (v2� v1) and this volume contains a

negative potential energy density. The cohesive pressure term

�Pc must balance that from the thermal energy density (both

are of the order of 1000 atmospheres and ambient pressures

permitting the liquid state are perhaps 1 atmosphere) and so is

given by

�Pc N1v1 þ N2v2ð Þ ¼ N1 þ N2ð Þ kBT: ð4Þ

Thus the work that has to be done to make the replacement is

given by
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�
kBT N1 þ N2ð Þ v2 � v1ð Þ

N1v1 þ N2v2

: ð5Þ

This is made up of two parts, the work necessary to insert a

molecule of solute (a contribution to the chemical potential

�2) and the work necessary to extract a molecule of solvent

(��1). The question is, what part of equation (5) is to be

identified with the component of �1 and, because equation (5)

is a difference, what is the origin? As N2 ! 0, the solution

approaches pure solvent and the term in the numerator

involving N2 goes to zero, thus suggesting that the difference

in the work that has to be done to deliver one molecule of

solvent to the solution as opposed to pure solvent is

�W" ¼
kBTN2 v2 � v1ð Þ

N1v1 þ N2v2

: ð6Þ

This can be verified by calculating the work done against

cohesive pressure to insert a solvent molecule into the solution

as opposed to the same volume of pure solvent: calculate the

(pressure-related) work done inserting an atom of solvent 1

into a solution and also calculate the work done inserting an

additional atom into a volume of pure species 1. In both cases

�v = v1.

The magnitude of the cohesive pressure in a solution is

given by

N1 þ N2ð Þ kBT

N1v1 þ N2v2

ð7Þ

[from equation (4)] and the pressure in a pure solvent is

kBT/v1. Then

��ðp�vÞ ¼ �
N1 þ N2ð Þv1

N1v1 þ N2v2

� 1

� �
kBT: ð8Þ

This also yields equation (6).

The difference in work functions for removing atoms to the

vapour phase, �W#, is the negative of equation (6). The effect

on RH is an exponential factor

exp �
�W#

kBT

� �
¼ exp

�W"

kBT

� �
: ð9Þ

The concentration ratio of equation (3) multiplied by this

factor yields the RH of the solvent:

p

p0

¼
N1v1

N1v1 þ N2v2

exp
N2 v2 � v1ð Þ

N1v1 þ N2v2

� �
: ð10Þ

The first factor on the right-hand side is the volume fraction of

solvent in the solution and reduces to Raoult’s law as the

specific volumes become equal. The second factor goes to

unity in this same limit. It is less obvious that equation (10)

also reduces to Raoult’s law in the limit of extreme dilution,

regardless of the ratio of specific volumes, but it is so.

This expression [equation (10)], derived using elementary

notions from statistical mechanics, is the same as that derived

using thermodynamics and the Flory–Huggins entropy of

mixing devised for polymer solutions (Flory, 1942, 1970) or,

equivalently, Hildebrand’s entropy of solution of molecules of

different sizes (Hildebrand, 1947). In such treatments both

factors in equation (10) emerge from matching chemical

potentials. Our treatment clarifies the physical meaning of the

factors – the first factor is the concentration ratio, while the

second (exponential) factor embodies the difference in work

functions arising from different specific volumes. In Appendix

A we discuss the relationship between simple statistical

mechanics and thermodynamic arguments, addressing in

particular the significance of the entropy of mixing.

3.2.4. Relationship between observations and theory. We

have shown that there is good agreement between measured

values of the RH above a solution and the theoretical basis for

vapour pressure above a solution. How do the curves shown in

Figs. 1 and 2 relate to equations (1) and (10)? The RH given by

Raoult’s law is a linear function of the fraction of molecules

that are solvent, the mole fraction, but the curves shown in the

figures are not linear for two reasons: (i) the concentrations

are shown in units that are commonly used in biochemistry,

not the mole fraction, and (ii) the specific volume of the solute

changes the relationship. This section explains the observed

curves, first for salts and then for polymers.

Writing Raoult’s law as

p

p0

¼ 1�
N2

N1 þ N2

; ð11Þ

it is obvious that the RH is a linear function of the fraction of

more or less freely propagating components of species 2.

However, for practical reasons solutions are not usually

prepared as a mole fraction, but rather of a specified molarity,

the number of moles of solute in a litre of solution (the graphs

in Fig. 1 are plotted as a function of molarity). If the solute

molarity is to be specified, there are two complications in the

translation of Raoult’s law. The first is that (ionic) salts when

dissolved dissociate into freely drifting ions (such as Na+ and

Cl�). The second is that the volume of water is reduced below

1 l by the volume of the salt. Thus, if M is the solute molarity,

the RH is given by

p

p0

¼ 1�
xM

xM þ 1000
18 ð1� yMÞ

; ð12Þ

where x is the number of independent ions into which the salt

dissociates and y accounts for the specific volume of the salt.

For sodium chloride the quantities x (y) are 2 (0.027), for

ammonium sulfate 2 (0.074) and for sodium malonate 3

(0.095). The above equation is in fact equation (3) of Wheeler

et al. (2012). It is clear that the Raoult’s law RH is not a linear

function of molarity and also that the slope at low molarity

depends directly on the degree of dissociation of the salt,

clearly seen in Fig. 1(a).

Comparison of equations (1) and (10) makes it clear that if

the specific volumes are not the same, and the solution is not

very dilute, the RH is not a linear function of mole fraction.

There is a further complication: equation (10) is primarily used

for solutions of polymers where mass fraction (w/w), rather

than mole fraction, is the most commonly used expression of

concentration. Thus, to obtain the RH in the form quoted as

equation (1) of Bowler, Mueller et al. (2015) the following

steps are taken. Equation (10) is written as
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p

p0

¼
1

1þ f
exp 1�

1

r

� �
f

1þ f

� �
; ð13Þ

where f = rN2/N1 and r = v2/v1. The mole ratio is written in

terms of the ratio of polymer mass to solution mass, here

called x but in Fig. 2, and in other usage, weight per

weight (w/w):

N2

N1

¼
x

1� x

18

n
; ð14Þ

where n is the molecular weight of the polymer (as in PEG n)

and 18 that of water, assumed to be the solvent.

The remaining problem is the value to be adopted for the

volume ratio r. The expression for the RH above a polymer

solution was originally worked out using the Flory–Huggins

entropy of mixing. These early calculations supposed a lattice,

with water molecules each occupying one site and each

monomer unit of a polymer likewise occupying one site. Then,

if the molecular weight of the monomer is m the quantity r is

n/m and

f ¼
x

1� x

18

m
: ð15Þ

Substitution yields equation (1) of Bowler, Mueller et al.

(2015), used in the construction of the curves in Fig. 2. (We

have found that the best value of m for PEGs is 38.) Expressed

as a function of mass fraction, the RH becomes independent

of the polymer molecular mass n as n becomes very large, i.e.

for very long chain polymers.

4. Discussion

The control of the RH surrounding samples is important to

maintain their integrity and study the effects of increased or

decreased humidity. Here we have established that the theo-

retical RH values we previously calculated (Bowler, Mueller et

al., 2015; Wheeler et al., 2012) are in satisfactory agreement

with a humidity control device used on protein crystallography

beamlines. As the predicted values are also in complete

agreement with measurements made using specific devices, the

previous discrepancies can be ascribed to shortcomings in the

control of RH in the HC1c device used. We have also deter-

mined the origin of the observed vapour pressure changes

above solutions of solutes. If N units of a liquid solvent are in

an equilibrium where liquid and vapour phases coexist, a fixed

fraction are (for a given temperature) in the vapour phase. If

the number of units is reduced to N(1 � x) and if all else

remains unchanged, because of the presence of Nx units of the

solute in an ideal solution, then the number of units in the

vapour phase (and hence the pressure) is reduced by the same

factor (1 � x), Raoult’s law. For unequal sizes of solvent and

solute components, the dilution factor has to be multiplied by

an exponentiated work function. These results provide a solid

basis on which to predict the RHs required to maintain a wide

variety of samples and solutions in homeostasis.

APPENDIX A
Statistical mechanics, entropy and chemical potentials

The origin of Raoult’s law lies in the freedom of the units of

solvent and solute to roam throughout the volume of liquid.

For the assumptions of an ideal solution, access of both solvent

and solute to the whole volume results in energy levels

available (to the solvent) for a given volume, unchanged from

those in the pure solvent, and the density of (energy) states is

proportional to the volume. Entropy of mixing expresses these

same ideas in the language of thermodynamics.

Suppose that we can decompose a system into many iden-

tical parts having energy levels "i. This complex system is in

thermal equilibrium at some temperature T, with an expo-

nential distribution in the energies of the components. Let the

total energy of our complex system be U. The following

relations apply:

ni ¼
N exp �"i=kBTð Þ

z
ð16Þ

and

U ¼
X

i

ni"i ¼ N

P
i "i exp �"i=kBTð Þ

z
; ð17Þ

where

z ¼
P

i

exp �"i=kBTð Þ: ð18Þ

A small change in the internal energy U can be written as

�U ¼
P

i

"i�ni þ
P

i

ni�"i þ �
P

i

�ni: ð19Þ

The last term vanishes if there is no change in the number of

components in the system. The first term is the result of

slightly redistributing the population over the energy levels "i.

It represents the addition of heat. The second term corre-

sponds to the energy levels changing with no change in

population – doing it very slowly. If the volume slowly

increases the energy levels slowly sag as the wavelengths of

standing waves increase and the system does work. Thus the

equivalent expression in thermodynamics is the first law in the

form

�U ¼ �Qþ�W þ ��N; ð20Þ

where the last term is called chemical work and � is the

chemical potential. (Generally, each species of atom has its

own chemical potential.)

If everything is done very slowly and reversibly,

�Q ¼ T�S; ð21Þ

where S is the thermodynamic entropy going back to Carnot.

We are identifying the heat term in the first law with

�Q ¼
P

i

"i�ni: ð22Þ

Express the energy of the ith level in terms of its population

"i ¼ �kBT ln Pizð Þ; Pi ¼ ni=N: ð23Þ
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For fixed N the sum of �ni is zero and so the term in ln(z)

drops out and

�Q ¼ �kBTN�
P

i

Pi ln Pi

� �
¼ T�S; ð24Þ

demonstrating the equivalence of the Carnot and Boltzmann

entropies.

Thus the entropy associated with N units (atoms, molecules,

ions . . . ) distributed over these energy levels, in equilibrium at

temperature T, is

S ¼ �N kB

P
i

Pi ln Pi: ð25Þ

The probabilities Pi involve the normalizing factor z, a sum

over all energy levels. The value depends on the level density.

The more levels the components are spread over, the smaller

the individual Pi and the larger the entropy.

Substitution of the expressions for the exponential prob-

abilities yields for the entropy

S ¼
U

T
þ N kB ln z: ð26Þ

Rewriting the sum for z as an integral

z ¼

Z
exp

�"

kBT

� �
dn

d"
d": ð27Þ

The density of states factor dn/d" depends on " (which inte-

grates out) and is linearly proportional to the volume available

to the wandering molecules. Consider taking a volume V1 of

solvent and a volume V2 of solute. (This is most easily envi-

saged if the solute is also a liquid; otherwise, pretend that

there is a solute liquid with the properties the solute will

display in the solution.) Before mixing the two together each

has its entropy, appropriate to volumes V1 and V2, respectively.

After mixing, both solvent and solute have access to a total

volume V1 + V2. For an ideal solution nothing else has changed

and so, taking the difference in entropy after and before the

mixing,

S12 � S1 � S2 ¼ kB½ N1 þ N2ð Þ ln V1 þ V2ð Þ

� N1 ln V1 � N2 ln V2�: ð28Þ

This is the entropy of mixing and arises entirely from the

increased density of energy levels as more volume is made

available for units of both solvent and solute to roam at

random. (These volumes are defined by the boundaries

confining the liquids, setting boundary conditions and hence

determining the quantized energy levels.)

Since we are looking at mixing of two forms of condensed

matter, each with the same specific volume (an ideal solution

again), the above expression for the entropy of mixing can also

be written with V1 and V2 replaced by N1 and N2, respectively.

The result is essentially identical to the product of kB

(Boltzmann’s constant) and the logarithm of the number of

different ways of arranging N1 and N2 units (for large N1 and

N2 , using Stirling’s theorem). This is a purely combinatorial

problem and the number of perceptibly different ways is given

by

N1 þ N2ð Þ!

N1! N2!
: ð29Þ

What can this have to do with the vapour pressure above a

solution? We now see that N1 and N2 are (for an ideal solu-

tion) proxies for V1 and V2 and these volumes control the

energy levels available to the components of the solution

before and after mixing.

More generally, suppose that the solvent molecules are each

associated with a free volume v1 and the solute molecules with

v2. Then the entropy of mixing [equation (28) above] is

kB N1 þ N2ð Þ ln N1v1 þ N2v2ð Þ � N1 ln N1v1ð Þ � N2 ln N2v2ð Þ
	 


:

ð30Þ

This is essentially the expression for the entropy of mixing for

solvent and solute molecules of different free volumes to be

found in equation (3) of Hildebrand (1947), where the

volumes are introduced through a classical argument

concerning uncertainty of location. It is also equivalent to the

Flory–Huggins entropy for polymer solutions, most clearly

discussed by Flory (1970).

The derivative of the entropy of mixing with respect to the

number of solvent molecules within the solution (N1) yields

the difference in chemical potentials that must match the

difference in chemical potential of the vapours above the

solution and the pure solvent:

�� ¼ �T
@�S

@N1

: ð31Þ

For the solution, the derivative of S12 in equation (30) with

respect to N1 is

�1
12 ¼ �kBT

@

@N1

N1 þ N2ð Þ ln N1v1 þ N2v2ð Þ; ð32Þ

and for the pure solvent before mixing the derivative of S1 is

�1
1 ¼ �kBT

@

@N1

N1 ln N1v1ð Þ: ð33Þ

In the standard thermodynamic argument (e.g. Hildebrand,

1947), taking the difference in chemical potentials and

matching to the vapour phase eventually yields

ln
p

p0

� �
¼ ln

N1v1

N1v1 þ N2v2

� �
þ

N2 v2 � v1ð Þ

N1v1 þ N2v2

; ð34Þ

which is equation (6) given by Hildebrand (1947). Then the

RH of the solvent above such a solution is

p

p0

¼
N1v1

N1v1 þ N2v2

exp
N2 v2 � v1ð Þ

N1v1 þ N2v2

� �
: ð35Þ

Equation (35) is identical to equation (10).

In x3.2.3 we calculated the difference in work functions for

the solvent in a solution of volume V and for the pure solvent

in the same volume. This result can also be obtained from the

differential of the difference in entropies of the solution and

the pure solvent in equal volumes. The only terms that survive

in the difference are (N1 + N2)kB lnV for the solution and

N0
1kB ln V for the pure solvent. The volume V is given by
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V ¼ N1v1 þ N2v2 ¼ N0
1v1: ð36Þ

The relevant difference in chemical potentials is then

kBT
N2 v2 � v1ð Þ

N1v1 þ N2v2

: ð37Þ

The negative of this is the difference in work functions, needed

to complete the ratio of vapour pressures at the end of x3.2.3.

The result given in equation (37) above of course agrees with

equation (6).
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Sjögren, T., Carlsson, G., Larsson, G., Hajdu, A., Andersson, C.,
Pettersson, H. & Hajdu, J. (2002). J. Appl. Cryst. 35, 113–116.

Takayama, Y. & Nakasako, M. (2012). Rev. Sci. Instrum. 83, 054301.
Vijayalakshmi, L., Krishna, R., Sankaranarayanan, R. & Vijayan, M.

(2008). Proteins Struct. Function Bioinform. 71, 241–249.
Wheeler, M. J., Russi, S., Bowler, M. G. & Bowler, M. W. (2012). Acta

Cryst. F68, 111–114.
Wishaw, B. F. & Stokes, R. H. (1954). Trans. Faraday Soc. 50, 952–954.
Yap, T. L., Chen, Y. L., Xu, T., Wen, D., Vasudevan, S. G. & Lescar, J.

(2007). Acta Cryst. F63, 78–83.
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