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S U M M A R Y

Background: Bacille Calmette–Guérin (BCG) is the world’s most widely distributed vaccine, used against
tuberculosis (TB), in cancer immunotherapy, and in autoimmune diseases due to its immunomodulatory
properties. To date, the effect of BCG vaccination on antibody responses to host proteins has not been
reported. High-content peptide microarrays (HCPM) offer a unique opportunity to gauge specific
humoral immune responses.
Methods: The sera of BCG-vaccinated healthy adults were tested on a human HCPM platform
(4953 randomly selected epitopes of human proteins) to detect specific immunoglobulin gamma (IgG)
responses. Samples were obtained at 56, 112, and 252 days after vaccination. Immunohistology was
performed on lymph node tissue from patients with TB lymphadenitis. Results were analysed with a
combination of existing and novel statistical methods.
Results: IgG recognition of host peptides exhibited a peak at day 56 post BCG vaccination in all study
subjects tested, which diminished over time. Primarily, IgG responses exhibited increased reactivity to
ion transporters (sodium, calcium channels), cytokine receptors (interleukin 2 receptor b (IL2Rb),
fibroblast growth factor receptor 1 (FGFR1)), other cell surface receptors (inositol, somatostatin,
angiopoeitin), ribonucleoprotein, and enzymes (tyrosine kinases, phospholipase) on day 56. There was
decreased IgG reactivity to transforming growth factor-beta type 1 receptor (TGFbR1) and, in agreement
with the peptide microarray findings, immunohistochemical analysis of TB-infected lymph node samples
revealed an overexpression of TGFbR in granulomatous lesions. Moreover, the vesicular monoamine
transporter (VMAT2) showed increased reactivity on days 112 and 252, but not on day 56 post-
vaccination. IgG to interleukin 4 receptor (IL4R) showed increased reactivity at 112 days post-
vaccination, while IgG to IL2Rb and FGFR1 showed decreased reactivity on days 112 and 252 as compared
to day 56 post BCG vaccination.
Conclusions: BCG vaccination modifies the host’s immune landscape after 56 days, but this imprint
changes over time. This may influence the establishment of immunological memory in BCG-vaccinated
individuals.
© 2017 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Mycobacterium bovis bacille Calmette–Guérin (BCG) is the most
widely used vaccine in the world, and the only licensed preventive
vaccine for tuberculosis (TB), with over four million doses
administered since 1921.1 Although variably effective against
pulmonary TB in adults, BCG still provides at least 70% protection
against childhood forms of active TB disease in TB endemic
countries.2,3 As a live attenuated vaccine, BCG is a potent inducer of
cellular immune responses (mainly CD4 and CD8 T-cells), as well as
B-cell-mediated immune responses and antigen-specific antibody
production.4–6 The high degree of genetic and thus antigenic
similarity between BCG and Mycobacterium tuberculosis forms the
basis for its documented although varied effectiveness against
childhood TB.2,7 In addition to TB prevention, the immunostimu-
latory properties of BCG have also been explored in the treatment
of bladder cancer for over 35 years,4,8 and more recently in type 1
diabetes,9 as well as in ‘clinically isolated syndrome’ known as the
precursor to multiple sclerosis.10 One of the most clinically
advanced novel TB vaccine candidates, VPM1002, is based on
the genetic backbone of BCG,11,12 and is also being tested
therapeutically in patients with non-muscle invasive bladder
cancer due to its improved immunogenicity and safety profile
compared to the parental BCG vaccine (ClinicalTrials.gov identifier:
NCT02371447). These multiple therapeutic characteristics of the
BCG vaccine strongly underline its importance from a global
healthcare perspective.

Although BCG-induced immune responses have been studied
in the context of T- and B-cell reactivity to mycobacterial
antigens, they have not been studied in the context of the
immune response landscape to host proteins. Molecular mimicry
between mycobacterial heat shock protein 65 and human
proteins such as lactoferrin, transferrin, and human leukocyte
antigen (HLA)-DR-b has been reported in the past,13 while
autoantibody responses to a variety of host proteins, i.e.,
cardiolipin and RNA polymerase in patients with TB, is well
documented and has been reviewed elsewhere.14 Furthermore,
the ability of BCG to modify the host immune response in juvenile
patients with type 1 diabetes via killing of autoimmune cells and
promoting regeneration of pancreatic islets cells has also been
published.9 Thus, it is plausible to assume that BCG vaccination
may leave an imprint on the host’s physiology, inducing the
recognition of specific host-derived epitopes and influencing the
ensuing immune responses.

Among host immune response factors, the transforming growth
factor beta (TGF-b) signalling pathway is an important component
of cellular regeneration, cell proliferation, vascular reconstruction,
and control of adverse immune reactions.15,16 The TGF-b cytokine
binds to a receptor complex comprising TGFbR1 and TGFbR2,
which initiates the signalling cascade necessary for the various
aforementioned cellular processes and immune regulation.
However, premature activation of the TGF-b pathway may
potentially hinder the development of meaningful effector
immune responses, leading to chronic inflammation and disease.
The efficacy of BCG vaccination can be hampered by an increased
presence of TGF-b levels,17 while patients with active TB are
known to have high levels of circulating TGF-b and an impaired
immune system.18

In the current study, a high-content human peptide microarray
(HCPM) encompassing over 6000 individual epitopes correspond-
ing to various human proteins was used to determine specific IgG
responses induced by BCG vaccination. This platform allows for the
detection of antibody responses with high specificity and
sensitivity at the epitope level to gauge molecularly defined target
reactivity using bioinformatic scripts and available software
environments (Bioconductor, R).37,38 The current report describes
the molecular ‘landscape’ of the overall humoral immune
recognition induced by BCG vaccination.

Materials and methods

Serum samples

This study received ethical approval from the Stockholm South
Ethics Committee (diary number 12968). Serum samples were
obtained from healthy adult (>18 years) Caucasian individuals with
no previous exposure to mycobacteria or BCG vaccination, i.e.,
tuberculin skin test (TST)-negative study subjects. The serum was
prepared from the peripheral blood of five healthy individuals who
were vaccinated with the bacille Calmette–Guérin (BCG) vaccine.
Samples were obtained at the following time points: day 0 (at
vaccination, the time point reflects the serum prior to vaccine
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administration; individuals were TST- and Quantiferon-negative);
day 56, day 112, and day 252 after vaccination (kindly provided by
Dr Daniel Hoft, St. Louis University Medical Centre, USA).
Altogether, 20 serum samples were used. All volunteers partici-
pated in the study after providing written informed consent.

Microarray slides and experiments

Peptide microarray slides were customized and manufactured
by JPT (Berlin, Germany). The slides contain three identical sub-
arrays with 5776 positions on each sub-array arranged in
16 printing blocks, with spots in each block in a 19 � 19 matrix
(a schematic representation of a microarray is available in the
Supplementary Material, Figure S1). Four thousand five hundred
and ninety-one unique, randomly selected peptides were printed
across each sub-array (Supplementary Material, Table S8). Each
sub-array also contains positive and negative controls. In total,
considering the three sub-arrays, each microarray contains 17
328 spots: 16 146 of these spots are printed with peptides,
918 contain positive controls and various other controls, and 264
spots are negative controls (‘empty spots’).

Twenty serum samples (four time points � five volunteers)
were processed in individual peptide microarray slides. All
volunteers participated in the study after providing written
informed consent. A further four slides were prepared using only
buffer and secondary antibody, in order to help identify peptides
giving a ‘false-positive’ response (see below).

Experiments were performed based on a standardized proto-
col.19 Briefly, 300 ml sera diluted at 1:100 in washing solution
(filtered phosphate-buffered saline (PBS), 3% foetal calf serum
(FCS; Sigma, Germany), and 0.5% Tween (Sigma, Germany)) were
added to the peptide microarray slide and covered with a cover slip
(Gene-Frame, Abgene, UK). Diluted sera were distributed evenly
Table 1
Significance analysis of microarrays (SAM) time course analysis results. The peptides with
ranked by absolute SAM score. No statistically stronger recognition of peptides over ti
over the microarray slide and incubated at 4 �C in a humid chamber
for 16 h. After removal of the cover slip, the slides were washed five
times on a shaker at room temperature, 5 min per wash (2 � with
washing solution, 2 � with sterile water, and 1 � wash with filtered
Milli-Q water at the end). Just after the washing procedure, 300 ml
of Cy5-labeled polyclonal goat anti-human IgG (affinity-purified
secondary antibody, Abcam, UK; product number ab97172),
diluted at 1:500 in washing solution, was added to the slides in
the dark. The slides were covered with a cover slip and incubated in
the dark, in a humidified chamber at room temperature for 1 h. The
same washing protocol was repeated after the incubation period
with the secondary antibody. Prior to scanning, the slides were
dried in a slide spinner (Euro Tech, UK). Five additional slides were
processed using only buffer, using the first incubation step of the
protocol for detecting false-positive spots due to non-specific
binding of the secondary antibody.

High definition images from the slide sub-array were acquired
with a GenePix 4000 B microarray scanner (Axon Instruments–
Molecular Devices, Union City, USA) using wavelengths of 635 nm
(red channel, for the specific IgG signal quantification) and 532 nm
(green channel, positive controls for grid alignment and orienta-
tion). Data acquisition from the images was performed with the
software GenePix 6 Pro (Axon Instruments–Molecular Devices,
Union City, USA).

The peptide microarray data analysis was performed according
to established protocols18–22 and novel approaches, as outlined in
the sections below.

Pre-processing of peptide microarray data

Quality control
Electronic images of the sub-array were inspected to ensure

that artefacts were not included in the analysis and to detect spots
 intensity values negatively correlated with time (q-value <0.001) are given in green,
me was found.
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erroneously flagged by the software or not identified. Signal
intensity values were computed as log2 (foreground/background)
(‘index’ values). Diagnostic plots were created and examined (as in
Reilly and Valentini20). All spots or areas that did not represent a
high quality signal were removed from the analysis. For each slide
(representing one patient at one time point), outliers and abnormal
values were identified and removed.

False-positive and ‘empty’ spot removal, and exclusion of low intensity
signal spots

All spots identified as false-positive on the buffer slides were
removed from the analysis.20

Normalization
The normalization process was performed using the simple

linear model, as described previously20,23: I = slidei + subarrayj +
blockk + e, where I is the measured signal intensity; slidei,subarrayj,
and blockk are the effects on the intensities due to the position of
the spot in one of the slides, sub-arrays, and printing blocks,
respectively; e is the residual, which contains the biological
interaction, and slide and sub-array interaction (slidei * subarrayj).
Data were fitted into the linear model and the estimated slide, sub-
array, and block effects removed.

Analysis and data mining

First, peptide recognitions were analysed to identify peptide
intensities statistically up-regulated or down-regulated over time,
using time-course analysis in significance analysis for microarrays
(SAM).24

Second, a cut-off threshold for recognition was defined as m + 2
SD, where SD is the standard deviation of m, the mean intensity
value of all negative controls (‘empty’ spots, i.e., with no peptides
printed).19,21 By using this threshold, two different analyses were
performed: (1) the total number of hits, i.e., the peptides above the
cut-off (IgG-reactive peptides) at each time point (inclusive
recognition analysis, IRA); (2) the number of hits at one time
point of the peptides to which no IgG reactivity was observed in the
comparison time point (exclusive recognition analysis, ERA). For
both the IRA and ERA, top peptides identified in each group were
plotted according to the index value and number of recognitions.

Third, peptide differential recognition (the statistical compari-
son of peptide microarray intensities between two groups) was
performed between each couple of time point groups using
empirical Bayes methods, from LIMMA packages (linear models for
microarray data) in Bioconductor project.25

Fourth, a simultaneous comparison of all groups was performed
using prediction analysis for microarrays (PAM) multiclass
analysis26 (a robust statistical method based on shrunken centroid
classification) in order to simultaneously compare all of the time
point groups and to identify which peptides contribute to the
variations between the groups and to what extent. The results from
PAM were also submitted to a cluster analysis.

Fifth, a new visualization method was proposed. For each
individual, using a time-series of scatterplots of normalized index
vs. log2 (background), new IgG-reactive peptides were highlighted
(in red). Similarly, peptides that no longer exhibited IgG reactivity
were also highlighted (in green). This technique makes it possible
to visualize the development of the immune response and its
importance.

Finally, bulkiness–polarity immune recognition surfaces were
created for each individual at the different time points.27

All pre-processing and statistical analyses were performed
using in-house scripts and open-source packages of Bioconductor,
R software (http://www.bioconductor.org).
Immunohistochemistry

Frozen lymphoid tissue samples were obtained from Ethiopian
patients diagnosed with a local TB lymphadenitis (n = 5) or a non-
infectious tonsil hyperplasia (n = 5) (ethical approval diary
numbers 365/00 and 2007/141-32). Lymph nodes and tonsils
are lymphoid tissue, although tonsils have a different architecture
and arrangement of the germinal centres (GC), as well as size of the
follicular dendritic cell network, compared to classical lymph
nodes.28 Nevertheless, the majority of the T-cells that occur in both
structures in healthy individuals comprise CD4 T-cells, although
most of these T-cells tend to occur at the fringe of the GC in tonsils,
whereas they occur closer to the centre in lymph nodes. TB tissue
biopsies were collected from the Paediatrics Department, Black
Lion University Hospital, Addis Ababa, Ethiopia and control tonsils
from the Karolinska University Hospital Huddinge, Sweden, after
informed consent was obtained from the patients.

Frozen tissue sections were assessed for the expression of the
TGFbR protein with the ABC method using a diaminobenzidine
substrate (Vector Laboratories, Burlingame, CA, USA) and haema-
toxylin for nuclear counterstaining. Briefly, frozen tissues were
sectioned (8 mm), mounted, and fixed in 4% paraformaldehyde
(Sigma Aldrich AB, Stockholm, Sweden) on HTC slides (Histolabs,
Gothenburg, Sweden) before permeabilization in saponin (Sigma
Aldrich AB, Stockholm, Sweden). This was followed by overnight
incubation at 4 �C with one of the following primary antibodies: a
commercially available mouse anti-human monoclonal antibody
recognizing the TGFbR2 extracellular domain (clone MM0056-
4F14; Abcam, Cambridge, UK) or a custom-made, affinity-purified
rabbit anti-human monoclonal antibody specifically recognizing
the GKQYWLITAFHAK transmembrane epitope of TGFbR2 (Gen-
Script Biotech, NJ, USA). For protein detection, a biotinylated
secondary swine anti-rabbit F(ab0) antibody or a goat anti-mouse
IgG antibody was used (Dako, Glostrup, Denmark). Haematoxylin
stain was used for nuclear counterstaining. Stained images were
analyzed on a DMR-X microscope to determine the percentage
positively stained area in the total cell area using the computerized
image analysis program Leica QWin 550 (Leica Microsystems,
Wetzlar, Germany).

Results

Time-dependent IgG-peptide recognition post BCG vaccination

To map the serum IgG response to human host proteins and to
determine the increased and/or decreased immune reactivity,
longitudinal analyses of serum samples from five individuals
obtained at day 0, 56, 112, and 252 after BCG vaccination were
performed on an HCPM containing randomly selected peptides
corresponding to human proteins. First, IgG-peptide recognition
intensities were studied over time using SAM time course analysis.
Each individual’s timeline (0, 56, 112, and 252 days) represented
one data time course. This analysis assessed the different IgG-
peptide recognition patterns that emerge over time (positively or
negatively, with a significant p-value) (Table 1). Despite the fact
that empirically many peptides exhibited increased recognition,
the value of many of these IgG responses decreased over time. Only
14 peptides showed a statistically significant trend, albeit with a
decreased overall serum IgG reactivity (Table 1).

Differences in IgG-peptide recognition post BCG vaccination within
and between time points

The lack of strong positive IgG reactivity to host peptides over
time could be due to a non-linear trend in the IgG response, i.e.,
strong IgG responses appearing exclusively at certain time points.

http://www.bioconductor.org
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Therefore, IgG-peptide recognition patterns were examined at
days 0, 56, 112, and 252 post BCG vaccination, followed by a
comparison between the different time points. Peptides with
increased IgG reactivity (above the cut-off for recognition) showed
a similar visual pattern for all the four time points post-vaccination
(Supplementary Material, Figure S1). In particular, a positive
peptide recognition was constantly present in all five serum
samples at day 0 for 236 peptides. Here, the peptide
CGRMACSPTHDEH (neuronal acetylcholine receptor subunit al-
pha-7) emerged with the highest average intensity level, while
ranking high also at days 56, 122, and 252 post-vaccination (third,
again first, and fifth, respectively).

Similarly, the peptides EHATGEACWWTIH (brain ryanodine
receptor 3) and QWWNMPSPSVDPY (striatin 3) had the second and
third highest increase in IgG reactivity at day 0, respectively, which
also ranked high at the later time points. At 56, 112, and 252 days
post BCG vaccination, 273, 256, and 262 peptides, respectively,
exhibited an IgG reactivity above the cut-off value in all five
individuals.

It was observed that the ‘top recognized peptides’ exhibiting
increased IgG reactivity were conserved over time. Almost all of
the top 10 peptides with consistently high average intensity values
at a given time point were also found in the top 15 positions at each
of the remaining time points. The only time point with a slightly
different pattern of IgG-peptide recognition appeared to be at day
56 post-vaccination. The top 15 peptides displaying increased IgG
reactivity at each time point post BCG vaccination are provided in
the Supplementary Material (Table S1).

The cut-off-based comparisons of serum IgG responses carried
out by ERA showed that most of the variation occurred between
days 0 and 56 post-vaccination (Figure 1). At day 0 post-
vaccination, 2434 peptides were found to be never IgG-reactive
in any of the samples, of which 9 peptides were always recognized
Figure 1. Number of peptides without IgG reactivity in the reference group by the n
comparisons for (a) day 56 vs. day 0; (b) day 112 vs. day 0; (c) day 252 vs. day 0; (d) d
in all five serum samples at day 56 post BCG vaccination. In
addition, a further 91 out of the 2434 peptides were recognized in
four out of five serum samples. At day 112 post-vaccination, 2 and
10 peptides out of the 2434 peptides never responding at day 0
were IgG-reactive in all five serum samples and in four out of five
serum samples, respectively. Moreover, 2 and 9 out of 2434
peptides had IgG-reactivity in five out of five serum samples and
four out of five serum samples, respectively, on day 252 post-
vaccination, albeit without reactivity on day 0. All ERA results are
reported in Figure 1. The top peptide with constantly high serum
IgG reactivity at day 56 post-vaccination but not at day 0 was
IEMKKRSPISTDT (CIN7, sodium channel protein type 7). The top
peptides with increased IgG reactivity from all ERA comparisons
are listed based on the number of hits and signal intensity in the
Supplementary Material (Tables S2–S7).

Differential IgG-peptide recognition over time: comparison of multiple
time points to day 0 post BCG vaccination

In addition to the peptides identified with ERA comparisons,
peptides with statistically significant differential serum IgG
reactivity were obtained using LIMMA analysis. The peptides with
increased or decreased IgG reactivity, with an absolute log fold-
change value higher than 0.58 (corresponding to a fold-change of
�1.5) are reported in Tables 2–4 . When IgG reactivity at day 56
post-vaccination was compared to that at day 0, differential
reactivity to 115 peptides was identified (44 peptides with
increased reactivity, 71 peptides with decreased reactivity; q-
value �0.05). Some of the peptides with increased reactivity in this
comparison included APEALFDRIYTHQ (fibroblast growth factor
receptor 1, FGFR1), KVLKCNTPDPSKF (interleukin-2 receptor beta,
IL2Rb), NHLKSKEVWKALLQE (60 kDa SS-A/Ro ribonucleoprotein),
and ADYINANYIDGYH (mast/stem cell growth factor receptor Kit)
umber of hits and by average intensity in the comparison group. Shown are the
ay 112 vs. day 56; (e) day 252 vs. day 56; (f) day 252 vs. day 112.



Table 2
LIMMA differential recognition analysis results for samples at day 56 vs. samples at day 0. Top selected peptides: peptides with increased IgG reactivity are given in red;
peptides with decreased IgG reactivity are given in green (absolute log fold-change �0.58 corresponding to �1.5 times).
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Table 3
LIMMA differential recognition analysis results for samples at day 112 vs. samples at day 0. Top selected peptides: peptides with increased IgG reactivity are given in red,
peptides with decreased IgG reactivity are given in green (absolute log fold-change �0.58 corresponding to �1.5 times).

Table 4
LIMMA differential recognition analysis results for samples at day 252 vs. samples at day 0. Top selected peptides: peptides with increased IgG reactivity are given in red,
peptides with decreased IgG reactivity are given in green (absolute log fold-change �0.58 corresponding to �1.5 times).
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(Table 2). The number of differentially recognized peptides
decreased to five (one peptide with increased reactivity, four
peptides with decreased reactivity) and two peptides only (one
peptide with increased reactivity, one peptide with decreased
reactivity) at day 112 and day 252 post-vaccination compared to
day 0, respectively (all q-values �0.05). GGIHEDYQLPYYD
(TGFbR1) exhibited decreased IgG reactivity on days 112 and
252 post-vaccination vs. day 0, while VDLRHVSVYGSVY (synaptic
vesicular monoamine transporter, VMAT2) showed increased
reactivity (Tables 3 and 4).

Differential IgG-peptide recognition over time: comparison of multiple
time points to day 56 post BCG vaccination

IgG-peptide reactivity in serum samples obtained at day 112
and day 252 post BCG vaccination was also compared to day 56
post-vaccination. Peptides with an absolute fold-change of serum
IgG reactivity higher than 1.5 are reported in Tables 5 and 6. At day
112 post BCG vaccination, 146 peptides displayed differential IgG
reactivity (66 peptides with increased reactivity, 80 peptides with
decreased reactivity), while 39 peptides had differential reactivity
at day 252 post-vaccination (18 peptides with increased
reactivity, 21 peptides with decreased reactivity).
VDLRHVSVYGSVY (synaptic vesicular monoamine transporter)
showed increased reactivity, while KVLKCNTPDPSKF (IL2Rb)
showed decreased reactivity at day 112 and day 252 compared
to day 56 post-vaccination, respectively. No major differences
were observed on comparison of IgG reactivity at day 252 to day
112 post-vaccination, with the exception of one peptide that had
decreased reactivity at a low fold-change (ITTLAKDTPLEEV
(chloride channel Kb), fold-change 0.68, i.e., �0.56 times).

Identification of predictive peptides for the simultaneous
characterization of the IgG reactivity at the various time points

PAM multiclass comparison identified 145 peptides with
statistically significant IgG reactivity, which characterized the
various time points. The 20 top-ranked peptides are reported in
Table 7. A visualization of comparative differences in serum IgG
reactivity to peptides (Figure 2) represents the contribution of the
predicted peptides for each time point post-vaccination. A peptide
intensity plot for each serum sample and time point post-
vaccination is illustrated in Figure 3. An unsupervised cluster
analysis of the identified peptides was also performed (heat map
reported in the Supplementary Material, Figure S3).
Visualization of individual changes in peptide responses and in
immune recognition profiles

The variations in peptide intensities over time for each
individual were assessed by plotting the data using a new
visualization technique, whereby the new IgG-reactive peptides
(above the recognition cut-off) at each time point post-vaccination,
as well as the peptides that are no longer IgG-reactive, are marked
with a different symbol and colour. As a paradigm, the scatterplots
of IgG reactivity intensities vs. log backgrounds for all four time
points post-vaccination for individual 1 are reported in Figure 4
(plots for individuals 2–5 are reported in the Supplementary
Material, Figures S4–S7). In agreement with the previous analyses
reported in this study, the increase in serum IgG reactivity peaked
at day 56 post-vaccination and waned at day 112 and day 252 post-
vaccination). However, several new IgG-reactive peptides were still
present at day 112 and day 252 post-vaccination, particularly for
individual 5 (Supplementary Material, Figure S7). Finally, three-
dimensional immune recognition surfaces were created for the
average IgG reactivity intensities at all four time points post-
vaccination in order to estimate the peptide recognition profile and
the time-dependent landscape (Figure 5). These analyses illustrat-
ed the dynamic nature of the immune-recognition IgG profile of
the host protein over time (see also the Supplementary Material,
movie file ‘bcg’).

Expression and distribution of TGFbR2 in TB lymph node tissue

The results from the peptide microarray suggest that there is a
decreased IgG reactivity to the TGFbR1. Since TGF-b is an
important signalling pathway in cellular physiology, as well as
immune responses,15,16 TGFbR protein expression in lymph node
tissue obtained from patients with local TB lymphadenitis was
assessed using immunohistochemistry. For this purpose, a
monoclonal antibody recognizing the TGFbR2 transmembrane
epitope GKQYWLITAFHAK, as well as a commercially available
anti-human TGFbR2 antibody, was tested. TGFbR1 and
TGFbR2 have similar ligand-binding affinities and both also have
a high affinity for TGF-b1 and low affinity for TGF-b2.
TGFbR2 expression was clearly elevated in TB lymph nodes
compared to lymphoid tonsil tissue obtained from healthy
individuals (Figure 6). TGFbR2 expression was particularly high
in the TB granulomas where M. tuberculosis-infected macrophages
had accumulated.29 Both tested antibodies resulted in significant
TGFbR2 staining in TB lymph nodes; however, the commercial



Table 5
LIMMA differential recognition analysis results for samples at day 112 vs. samples at day 56. Top selected peptides: peptides with increased IgG reactivity are given in red,
peptides with decreased IgG reactivity are given in green (absolute log fold-change �0.58 corresponding to �1.5 times). Peptides with IgG reactivity also found in the
exclusive recognition analysis (ERA) top 20 are given in bold.
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Table 6
LIMMA differential recognition analysis results for samples at day 252 vs. samples at day 56. Top selected peptides: peptides with increased IgG reactivity are given in red,
peptides with decreased IgG reactivity are given in green (absolute log fold-change �0.58 corresponding to �1.5 times).
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TGF-b2 antibody showed relatively higher background in healthy
control tissue (Figure 6).

Discussion

The BCG vaccine is widely accepted as a potent inducer of
cellular immune responses in humans (CD4 (Th1, Th2, Th17) and
CD8 (cytotoxic lymphocytes) T-cells), with a broad specificity, and
directed to a range of mycobacterial antigens.5,30–33 Likewise,
antigen-specific CD4+ T-cells that are induced after intravesical
BCG instillation therapy in patients with bladder cancer, show
similar Th1 cytokine profiles as demonstrated in active TB
infection.34 Using a human HCPM platform, it has been shown for
the first time in the present study that BCG vaccination of healthy
human adults modifies the IgG response to host targets, with
implications for shaping T-cell responses. To the best of the
authors’ knowledge, this is also the first study to describe the
general outcome of BCG vaccination in healthy adults, assessing
antibody responses to a broad range of host proteins and not in
response to mycobacterial antigens, i.e., anti-BCG/M. tuberculosis
responses.

BCG-driven modulation of antibody responses to host epitopes
was visualized over a 252-day period in vaccinated healthy adults.
The peak of differential serum IgG reactivity appearing at 56 days
post-vaccination, which waned over time, indicates that BCG
vaccination does not leave a permanent imprint on the host’s
immune profile. Host epitopes belonging to ion transporters
(sodium, potassium voltage-gated channels) exhibited the high-
est increase in reactivity, suggesting that these proteins may have
a general effect on immune cell activity and proliferation after
BCG vaccination.35 Increased IgG reactivity to IL2Rb at day
56 post-vaccination is particularly interesting due to its
indispensable role in IL-2 as well as IL-15-mediated signalling,
which is central to T-cell activation and proliferation.36,37 This
indicates that BCG may modify the growth factor (IL2, IL-15)
responsiveness of T-cells early after vaccination. Additionally,
increased serum IgG responses towards other growth factors
including FGFR1 and stem cell growth factor receptor 1 (SCFR1, c-
Kit), both of which promote T-cell activation and develop-
ment,38,39 suggest that a transient interruption in the activation
of T-cell responses may be expected within the first 2 months of
BCG vaccination. The Ro ribonucleoprotein (Ro-RNP), which is
involved in maintaining RNA stability and DNA replication,40 also
showed increased IgG reactivity. Anti-RNP autoantibodies are
clinically implicated in the pathogenesis of several autoimmune
diseases, i.e., systemic lupus erythematosus, primary biliary
cirrhosis, and Sjögren’s syndrome,41,42 although no clear link
exists between T-cell function and Ro-RNP responses. Evidently,



Table 7
Prediction analysis for microarrays (PAM) multiclass comparison results. Top 20 peptides and their relative scores for each time point: increased IgG reactivity in red,
decreased IgG reactivity in green.
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the functional impact and subsequent clinical relevance of these
epitope-reactive IgG antibodies needs to be further addressed in
other studies.

This study found that there was minimal differential IgG-
peptide recognition at days 112 and 252 post BCG vaccination
compared to baseline (day 0). The comparison of day 112 versus
day 0 and of day 252 versus day 0 revealed decreased IgG reactivity
to GGIHEDYQLPYYD, which belongs to the transmembrane
component of TGFbR1. This suggests that the TGF-b pathway
may play a role in BCG-mediated immunomodulation. As
mentioned previously, TGF-b signalling is essential for various
cellular processes, i.e., cell proliferation, cell cycle arrest, apoptosis,
and immunosuppression.15 Regulatory T-cells and mesenchymal
stromal cells neutralize exaggerated inflammation to abate
autoimmunity and severe organ damage via TGF-b production.15,16

However, up-regulation of TGFbR expression in chronic infections
such as active TB may prevent imperative T-cell responses and
instead promote an immunosuppressive environment in the TB
granuloma, which is the major site of bacterial replication. An
enhanced tissue expression of both TGF-b and the TGFbR is in line
with the previously reported role of TGF-b overexpression in
progressive TB disease.29,43,44

BCG vaccination could also result in BCG-mediated apoptosis or
necrosis of host cells that together with other inflammatory
responses may lead to exposure of intracellular proteins to the
immune system. Also of note is the increased IgG reactivity to
VDLRHVSVYGSVY, which belongs to the transmembrane domain of
VMAT2, at day 112 and day 252 post BCG vaccination compared to
baseline (day 0), as well as at day 56 post-vaccination. VMAT2 is
important for the vesicular release of gamma-aminobutyric acid
(GABA) and the transport of neurotransmitters in general.45,46

Pharmacological inhibitors targeting VMAT2 are in clinical trials for
the treatment of attention-deficit/hyperactivity disorder, hyperten-
sion, and movement disorders.47 Antibody responses against
VMAT2 may therefore be clinically beneficial in preventing the
development of neurological conditions and high blood pressure.

BCG vaccination may also negatively modulate the late
Th2 response, as suggested by the increased IgG reactivity to IL-
4 receptor alpha subunit (IL4Ra) by serum IgG on day 112 com-
pared to 56 days post BCG vaccination. BCG-triggered humoral
immune responses may not necessarily need T-helper cell
assistance, since B-cells can engulf mycobacteria on their own
and subsequently produce antibodies.48 Although not necessarily
the primary antigen-presenting cell in mycobacteria-directed
immune responses, B-cell involvement in orchestrating local
and systemic immune-modulation in human pulmonary TB has
been documented and reviewed.49,50 In contrast, T-cell homeosta-
sis and activation is potentially unperturbed in the long-term, since
IL2Rb and FGFR1 exhibited decreased IgG reactivity on days 112
and 252 post BCG vaccination compared to day 56 after vaccina-
tion. Decreased IgG reactivity to c-Kit on day 252 may serve as an
indicator of focused cellular immune responses, as observed in M.
tuberculosis-specific precursor-like CD8 T-cells from patients with
TB with an HLA-A*02:01 background.51

Administering BCG as a means to induce immunomodulatory
effects with potential clinical benefit seems plausible based on the
differential recognition of cytokine receptors across 252 days after
vaccination. The disease-modifying effects observed in patients
with non-invasive bladder cancer, type 1 diabetes, or multiple
sclerosis after BCG vaccination further attests to this.9,10,32

Additionally, BCG vaccination of infants in low-income countries
has been shown to protect against death from non-TB infections,
i.e., sepsis, trypanosomiasis, and diphtheria, by improving the early
immune response to the relevant pathogens.30 An equilibrium
between precise and protective versus uncontrolled and destruc-
tive inflammatory responses benefits the host.52 The current study
suggests that BCG vaccination modifies the immunological and
non-immunological landscape in the host, which may influence



Figure 2. Prediction analysis for microarrays (PAM) multiclass centroids plot. Shown is the ranked list of all 145 predictive peptides identified. The length of the horizontal bar
is determined as the difference between the overall centroid and the class-specific one (for details, see Valentini et al.21), and is representative of each peptide’s contribution
to the class differentiation.

Figure 3. Intensity plot for the top peptides selected by PAM, grouped by time point. Red, green, blue, and cyan dots shown in the plots correspond to sample intensities at day
0, 56, 112, and 252, respectively.

150 D. Valentini et al. / International Journal of Infectious Diseases 56 (2017) 140–154



Figure 4. Scatter plots of intensities vs. log backgrounds for individual 1 at different time points. Shown are results for analyses at (A) time point 0; (B) time point day 56; (C)
time point day 112; (D) time point day 252. New IgG-reactive peptides are marked in red, and peptides that are no longer recognized in green. The dashed line corresponds to
the cut-off for recognition.
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disease-specific immune responses previously reported in TB,
autoimmune disease, and cancer.

‘Non-specific’ effects of BCG vaccination � contextually
referring to immunological outcome other than mycobacteria-
directed immune responses � have been described previously
and attributed to the cross-reactivity observed in infants and
neonates leading to protection against non-tuberculous patho-
gens.30 Although the precise underlying mechanisms remain to
be fully elucidated, the present study sheds some light on possible
physiological processes that may be affected, and how these
changes influence the immune system. The induction of
measurable antibody, thus humoral immune responses to host
proteins by the BCG vaccine, is a good indication of ‘non-specific’
immune-editing, as discussed in the preceding paragraphs.
Nevertheless, vaccination of adults cannot be directly compared
to very young children, and this hypothesis of course requires
formal testing in healthy babies who receive the BCG vaccine for
the first time. In addition, it is recognized that it would have been
valuable for a control study to be performed alongside the present
one � to gauge anti-BCG responses in the sera of the five
vaccinated individuals described in this study; however, the
availability of the serum samples that were provided was a
limiting factor.

The results of the current study suggest that BCG vaccination
modifies immunological and non-immunological host processes
and may influence disease-specific immune responses. It would be
interesting to investigate which of the physiological modifications
in BCG-vaccinated adults may reveal opportunities in host-
directed therapies (HDTs), and whether (host) antigen-specific
humoral immune responses possibly enhance or decrease immune
functions. Of note, although increased IgG reactivity occurred as a
consequence of BCG vaccination, some antibody reactivity also
disappeared. This was commonly seen at 56 days after vaccination.
Although the ‘absence’ of immune reactivity to certain host targets
is difficult to evaluate, it may have biologically and clinically
relevant effects, e.g., suppression of certain B-cell clones that react
to host proteins. This may be relevant in the case of autoimmune
diseases, such as multiple sclerosis. In addition, the absence of
certain host-directed IgG molecules has been associated with a
high risk of developing neurological diseases, since naturally
occurring antibodies aid in removing apoptotic cells � a
mechanism that is crucial to maintaining neurological function.53



Figure 5. Bulkiness/polarity immune recognition surfaces.27 Surfaces are computed at the four different time points post BCG vaccination: (a) day 0, (b) day 56, (c) day 112, (d)
day 252.
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BCG-induced immuno-editing can be harnessed to shape targeted
immune responses in humans, taking into consideration the age of
vaccine recipients, their general response to other vaccines, etc. It
is also crucial to investigate which of the BCG-mediated
modifications may reveal opportunities for HDTs.

In conclusion, using a human HCPM platform, changes in serum
IgG reactivity to a panel of physiologically relevant host molecules
following BCG vaccination of healthy adults were identified, which
were most pronounced after 56 days of vaccination but waned
after 112 and 252 days. BCG vaccination appears to induce
immune-editing in the host by initially interrupting the proin-
flammatory response, followed by active suppression of anti-
inflammatory factors. This pattern of BCG-induced responses may
influence the modulation of targeted T-cell responses in health and
disease, and provide opportunities for HDTs.
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Figure 6. High expression of TGFbR2 in Mycobacterium tuberculosis-infected human lymph nodes. TGFbR2 protein immunostaining in human tissues with the monospecific
antibody against GKQYWLITAFHAK (TGFbR2 epitope recognized in peptide microarray, custom-made), as well as a commercially available anti-human TGFbR2 antibody. The
arrow heads indicate multinucleated giant cells (MGC), which are a characteristic trait of human TB granulomas (gr). Arrows indicate TGFbR-positive cells labelled in brown.
Nuclear counterstaining with haematoxylin is shown in blue. Magnification is � 125. Representative images from five patients with TB lymphadenitis and five uninfected
controls are shown.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ijid.2017.01.027.
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