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Genome-wide association study identifies
MAPT locus influencing human plasma
tau levels

ABSTRACT

Objective: To identify genetic loci associated with plasma tau concentrations in healthy elders and
individuals with Alzheimer disease.

Methods: Four hundred sixty-three non-Hispanic white individuals exceeding quality control crite-
ria were included from the Alzheimer’s Disease Neuroimaging Initiative (ADNI-1) cohort. Associ-
ation of plasma tau with genetic polymorphisms was performed with a linear regression model.
Significant associations were validated in an independent replication cohort consisting of 431
healthy elders or individuals with mild cognitive impairment recruited from the University of
California, San Francisco Memory and Aging Center.

Results: The minor allele (A) of rs242557 in the microtubule-associated protein tau gene (MAPT)
was associated with higher plasma tau levels at genome-wide significance (p 5 4.85 3 1029,
empiric family-wise error corrected p 5 0.0024) in a dose-dependent fashion. This association
was also observed in the replication cohort (p 5 1.0 3 1025; joint analysis p 5 1.2 3 10212).
Single nucleotide polymorphisms near PARK2 (rs2187213) (p 5 6.15 3 1026), IL2RA
(rs7072793, rs7073236) (p 5 7.89 3 1026), and an intergenic locus on 9p21.3
(rs7047280) (p 5 8.13 3 1026) were identified as suggestive loci associated with plasma
tau levels.

Conclusions: MAPT H1c haplotype (rs242557) has previously been identified as a genetic risk
factor for progressive supranuclear palsy and corticobasal degeneration. The current findings
suggest that plasma tau concentration could be an endophenotype for identifying risk for
4-repeat tauopathies in older individuals. Neurology® 2017;88:669–676

GLOSSARY
AD 5 Alzheimer disease; ADNI-1 5 Alzheimer’s Disease Neuroimaging Initiative 1; CBD 5 corticobasal degeneration;
GWAS 5 genome-wide association studies; HC 5 healthy controls; LD 5 linkage disequilibrium; MCI 5 mild cognitive
impairment; p-tau 5 phosphorylated tau; QC 5 quality control; SNP 5 single nucleotide polymorphism; t-tau 5 total tau.

Tau is a microtubule-associated protein that promotes assembly and stabilization of cytoskeletal
microtubules.1 Accumulation of insoluble deposits of tau has been observed in a number of
neurodegenerative disorders, including Alzheimer disease (AD), progressive supranuclear palsy
(PSP), corticobasal degeneration (CBD), some forms of frontotemporal lobar degeneration, and
chronic traumatic encephalopathy, which are collectively classified as tauopathies.1

CSF tau concentrations are thought to reflect neuronal degeneration in AD, and CSF tau,
either alone or in combination with b-amyloid peptide, has been confirmed as a useful bio-
marker for AD across the spectrum of disease severity.2 On the basis of this finding, CSF total
tau (t-tau) and phosphorylated tau (p-tau) concentrations at residue 181 have been used as
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endophenotypes in genome-wide association
studies (GWAS) to detect risk variants for
AD, with the APOE locus showing the stron-
gest association with elevated CSF tau.3,4 Enig-
matically, despite strong genetic links to tau,
CSF tau levels are normal or low in other
tauopathies such as PSP and some tau gene
(MAPT) mutation carriers.5,6

The recent development of an ultrasensitive
assay for tau in peripheral blood makes it fea-
sible to study the relationship between periph-
eral tau concentrations and tauopathies.7 In
comparison to CSF, plasma tau levels in aging
and neurodegenerative disease have not been
well studied.

The use of quantitative traits in GWAS has
been shown to increase statistical power over
case-control designs.3,4 Here, we hypothesized
that plasma tau, similar to CSF tau, may con-
stitute a suitable endophenotype for identify-
ing genetic risk factors for tauopathies. Within
this context, we conducted a GWAS for
plasma tau level and identified a single nucle-
otide polymorphism (SNP) (rs242557) within
the MAPT gene that showed a genome-wide
significant association with plasma, but not
CSF, tau levels.

METHODS Participants. In this study, 463 (AD 5 149,

mild cognitive impairment [MCI] 5 163, healthy controls

[HC] 5 151 at baseline) non-Hispanic white individuals whose

data met all quality control (QC) criteria were included from the

Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI-1) cohort.

Table 1 shows the demographic data and description of the

plasma tau levels in each group. Data used in the preparation

of this article were obtained from the ADNI database (adni.

loni.usc.edu).

The full cohort with both plasma tau and GWS data included

506 participants. The analysis was restricted to non-Hispanic

white participants (n 5 468) to reduce the potential bias of

population stratification in the GWAS. Cryptic relatedness and

population substructure, which can confound GWAS, were

checked with genomic identity-by-descent and multidimensional

scaling components using the PLINK v1.90b3.28 software8 (fig-

ure e-1 at Neurology.org). This step removed 2 participants who

appeared cryptically related and clustering separately from the

other samples (figure e-1a), resulting in 466 valid samples.

Finally, with the use of the HapMap cohort, they showed tight

clustering with individuals of European ancestry (figure e-1b).

Plasma and CSF tau measurements and QC. Plasma tau

concentrations were determined with the Human Total Tau kit

from Quanterix (Lexington, MA), as described by the manufac-

turer. Assays were run at the University of Gothenburg. Intra-

assay and interassay coefficients of variation were 10% to 15%.

The lower limit of quantification was 1.22 pg/mL; samples

with a reported plasma tau concentration below this value were

removed from further analysis. The plasma tau concentrations

could be downloaded from the ADNI1 database (http://adni.

loni.usc.edu/). Detailed steps for measurements and QC using

CSF t-tau and CSF p-tau have been previously reported.4 Further

QC was performed to reduce the potential influence of extreme

outliers on statistical results. Mean and SD of baseline plasma tau

measures were calculated by investigators blinded to diagnostic

information, and participants who had a value .4 or ,4 SD

from the mean value (7.7 pg/mL) were regarded as extreme

outliers and removed from the analysis.4 This step removed 3

additional participants, resulting in 463 valid samples.

Standard protocol approvals, registrations, and patient
consents. The study was approved by institutional review boards

of all participating institutions, and written informed consent was

obtained from all participants or authorized representatives.

Genotyping and QC. The ADNI-1 samples were genotyped

with the Human 610-Quad BeadChip (Illumina, Inc, San

Diego, CA). Stringent QC assessment was performed with the

PLINK software with the following criteria: call rate for SNPs

.95%, call rate for individuals .95%, minor allele frequencies

.0.20, and Hardy-Weinberg equilibrium test p . 0.001. The

restriction to SNPs with a minor allele frequency.20% served to

reduce the likelihood of false-positive results from quantitative

trait association in a relatively small sample size. The final,

cleaned dataset included a total of 316,802 genotyped variants.

The polymorphisms rs7412 and rs429358, which define the

APOE alleles, were genotyped separately by an APOE
genotyping kit.4

Statistical analyses. The Spearman rank correlation coefficient

was used to determine correlations of plasma tau concentrations

with CSF tau concentrations. Values of p, 0.05 were considered

statistically significant after adjustment for multiple comparisons

with Bonferroni correction. A linear regression model was used to

Table 1 Demographic information

Baseline diagnosis AD MCI HC Total

n 149 163 151 463

Age, mean 6 SD (range), y 76.1 6 7.3 (56.5–90.9) 74.6 6 7.6 (54.4–88.8) 75.7 6 4.9 (62.0–89.6) 75.5 6 6.7 (54.4–90.9)

M/F, n 83/66 110/53 89/62 282/181

APOE e4 carrier, % 67.1 53.4 25.8 49.0

Plasma tau, mean 6 SD,
pg/mLa

3.2 6 1.3 2.9 6 1.3 2.7 6 1.1 2.9 6 1.2

Abbreviations: AD 5 Alzheimer disease; HC 5 healthy controls; MCI 5 mild cognitive impairment.
a Plasma tau concentrations were different across the 3 diagnostic groups (p 5 0.006). Post hoc pairwise analyses after
Bonferroni correction showed that only patients with AD had higher plasma tau levels compared with HC (p 5 0.004).
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determine association of plasma tau concentrations with genetic

polymorphisms using the PLINK software with an additive

genetic model (i.e., dose-dependent effect of the minor allele).

To correct for confounding by genetic ancestry that could lead to

population stratification, the first 4 multidimensional scaling

components of a representative, linkage disequilibrium (LD)–

pruned genotype matrix were calculated in PLINK and used as

covariates in the regression model. Age, sex, and diagnosis were

also included as covariates. To account for multiple comparisons,

thresholds of p , 5 3 1028 and p , 1 3 1025 were used for

genome-wide significant and suggestive associations,

respectively.9 As an additional alternative to exclude possible

false-positive results, the PLINK max(T) permutation test with

5,000 permutations was used to generate empiric p values and for
multiple-testing correction. Genome-wide associations were

visualized with the R package qqman10; regional associations

were visualized with the LocusZoom web tool.11

Replication of genome-wide significant associations. An
independent replication cohort of 431 healthy individuals free

of neurologic diseases was identified from patients seen at the

University of California, San Francisco and approved by the local

Institutional Review Board. Subsequently, 29 of these partici-

pants were diagnosed with MCI. Plasma tau concentrations were

determined with the Human Total Tau 2.0 kit fromQuanterix at

the University of Gothenburg. Samples were diluted 4-fold and

run in singlicate. SNPs for the validation stage were chosen on

the basis of the genome-wide significance threshold in the

initial analysis (p , 5 3 1028). Genotyping of these SNPs was

performed with Taqman assays (rs242557: C_1016016_1_). In

total, we acquired both plasma tau concentration measurements

and genotyping of rs242557 in 387 participants. Data analysis

was performed with linear regression implemented in R,

accounting for age, sex, diagnosis, and cohort (discovery vs

replication) as covariates.

RESULTS Correlations between plasma tau and CSF

tau levels. There were 316 participants (AD 5 83,
MCI 5 149, HC 5 84) with both plasma and CSF
tau levels. However, there was no correlation between
tau levels in plasma and CSF in any diagnostic group
(plasma tau vs CSF t-tau [figure 1A]: AD, r 5 0.131,
p 5 0.234; MCI, r 5 0.209, p 5 0.066; HC, r 5
0.002, p5 0.984; plasma tau vs CSF p-tau [figure 1B]:
AD, r 5 0.056, p 5 0.611; MCI, r 5 0.145, p 5

0.077; HC, r 5 20.027, p 5 0.809), indicating that
plasma tau levels do not reflect CSF tau levels.

The SNP rs242557, near MAPT, is associated with

plasma tau levels. A total of 463 individuals (AD 5

149, MCI5 163, HC5 151 at baseline) were iden-
tified for GWAS (table 1). Plasma tau concentrations
were different between the 3 diagnostic groups (p 5

0.006) (table 1). Post hoc analysis after Bonferroni
correction showed that only patients with AD had
higher plasma tau levels compared with HC (p 5

0.004). After adjustment for age, sex, and diagnosis,
the association summary statistics appeared well cali-
brated with no evidence of population stratification
(the genomic inflation factor 5 1.00). A genome-wide
significant association of rs242557 (in theMAPT region)
with elevated plasma tau levels (p 5 4.85 3 1029) was
detected (table 2 and figure 2A). Assuming an additive
genetic model, the genotype of rs242557 explained 6.3%
of the variance in plasma tau concentrations. This locus
survived permutation-based empiric corrections for
multiple testing (empiric p , 0.0002; permutation-
based corrected empiric family-wise error rate
controlled at 0.0024). The minor allele (A) of
rs242557 was associated with higher plasma tau levels
in a dose-dependent effect within both combined groups
and each diagnostic group (normal group, p 5 9.1 3

1025; MCI group, p 5 0.0013; and AD group, p 5

3.1 3 1024) (figure e-2a).
There were no other genome-wide significant as-

sociations with plasma tau outside the MAPT region.
In the MAPT region, several SNPs in LD with
rs242557 showed values of p , 0.001 for plasma
tau levels (figure 2B). However, after controlling for
rs242557 genotype (figure 2C), no SNPs in this
region showed strong association with plasma tau
levels (minimum uncorrected p 5 0.007 at
rs2239925), indicating that all of the association in
this locus was driven by rs242557.

The LD pattern between rs242557 and nearby
SNPs was nearly identical in the ADNI cohort

Figure 1 Correlations between plasma tau and
CSF tau levels

(A) There was no correlation between plasma tau levels and
CSF total tau in any diagnostic group. (B) There was no cor-
relation between plasma tau levels and CSF phosphorylated
tau in any diagnostic group. AD 5 Alzheimer disease; HC 5

healthy controls; MCI 5 mild cognitive impairment.
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compared with 1,000 Genomes European participants
(figure e-3), suggesting that the SNP genotypes from
this study were accurate. Moreover, LD between
rs242557 and the H1/H2 haplotype-defining SNP,
rs1560310, was calculated using the 1,000 Genomes
European cohort (r2 5 0.197 and D’ 5 1), demon-
strating that rs242557 is specific to the H1 clade.

The analysis identified 3 other suggestive loci near
PARK2 (rs2187213) and IL2RA (rs7072793 and
rs7073236) and within an intergenic locus on
9p21.3 (rs7047280) where p values reached the level
of p , 1025 (table 2, figure 2A). PARK2 and
IL2RA minor alleles were associated with lower
plasma tau levels (figure e-2b and e-2c) and the

Table 2 Top SNPs associated with plasma tau

CHR SNP Observed MAF Closest gene SNP type/location p, Plasma tau Empiric FWER

17 rs242557 0.372 MAPT Intron 4.85 3 1029 0.0024

6 rs2187213 0.359 PARK2 Intron 6.15 3 1026 0.7562

10 rs7072793 0.393 IL2RA Upstream 11978bp 7.89 3 1026 0.8334

10 rs7073236 0.394 IL2RA Upstream 12264bp 7.89 3 1026 0.8334

9 rs7047280 0.404 ELAVL2 Intergenic 8.13 3 1026 0.8394

Abbreviations: bp 5 base pair; CHR 5 chromosome; FWER 5 family-wise error rate; MAF 5 minor allele frequency; SNP 5 single nucleotide polymorphism.
rs7072793 is in complete linkage disequilibrium with rs7073236 (r2 5 1).

Figure 2 Manhattan and regional plots for associations with plasma tau

(A) Genome-wide signal intensity (Manhattan) plots showing the 2log10 (p value) for individual single nucleotide polymorphisms. (B) Regional association
results for the MAPT region of chromosome 17. (C) Association results for 17q21.31 controlling for rs242557.
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9p21.3 minor allele was associated with higher
plasma levels (figure e-2d) in a dose-dependent fash-
ion within both combined groups and each diagnostic
group. However, they did not survive after both
permutation-based empiric corrections for multiple
testing. Other plasma tau-associated SNPs that did
not reach genome-wide significance and with p values
that are greater than 1024 are listed in table e-1.

APOE but not MAPT locus affects CSF but not plasma

tau levels. Among the 463 individuals analyzed in
the plasma tau levels, 314 participants (AD 5 82,
MCI 5 148, HC 5 84) had CSF tau levels. We
investigated whether the top SNPs identified in the
plasma tau concentration GWAS (rs242557 within
MAPT) and previous CSF tau concentration GWAS
(APOE) were associated with CSF tau levels. After
adjustment for age, sex, and diagnosis, APOE e4
showed significant associations with both CSF t-tau
(pc 5 0.004) and CSF p-tau (pc 5 0.028) after Bon-
ferroni correction. However, rs242557 withinMAPT
was not associated with CSF t-tau (p 5 0.988) or
CSF p-tau (pc 5 0.835). APOE e4 was not associated
with plasma tau levels (p 5 0.312), nor were other
SNPs in the APOE region.

Association with plasma tau at the MAPT locus replicates

in an independent cohort. To validate our finding of
a locus near MAPT associated with plasma tau con-
centrations, we measured plasma tau concentrations
and genotyped the rs242557 SNP in an independent

cohort of 387 adult participants without any history
of neurologic disease. After sample collection, 27 of
the participants were diagnosed with MCI. In this
cohort, the participants ranged from 30 to 99 years
of age (mean 68.9 years, standard deviation 10.5
years) at the time of blood draw. Both sexes were well
represented, including 161 male and 226 female par-
ticipants. The mean plasma tau concentration was 2.2
pg/mL with an SD of 0.8 pg/mL. In the replication
sample, the minor (A) allele of rs242557 was signif-
icantly associated with higher plasma tau levels (p 5

1.0 3 1025, figure 3) in a linear regression model
accounting for age, sex, and diagnosis and explained
4.5% of the variation in plasma tau concentration. In
a combined joint analysis incorporating the initial
discovery cohort and the replication cohort, the asso-
ciation between plasma tau concentrations and
rs242557 genotype was strengthened (p 5 1.2 3

10212). Fit into a joint regression model, each A allele
of rs242557 increased plasma tau concentration by
0.38 pg/mL.

DISCUSSION We present a GWAS of plasma tau
levels in the ADNI cohort. We identified
a genome-wide significant association of a SNP in
the tau gene MAPT (rs242557) region with plasma
tau levels and 3 additional suggestive association loci
(in PARK2, IL2RA, and an intergenic region in
9p21.3). The minor allele of rs242557 (A) near
MAPT and rs7047280 (C) in 9p21.3 was associated
with higher plasma tau levels in a dose-dependent
fashion, whereas minor alleles of SNPs near PARK2
(rs2187213-T) and IL2RA (rs7072793-C and
rs7073236-C) were associated with lower plasma
tau levels.

Several polymorphisms and mutations in and
around MAPT confer risk for neurodegenerative
tauopathies. The MAPT gene locus is located on
chromosome 17q21.12,13 It exists as 2 major haplo-
type groups, H1 and H2, with the majority of indi-
viduals having the H1/H1 haplotype. Up to 25% of
individuals in Western populations have a z970 kB
sequence, including MAPT, oriented in the reverse
orientation, precluding recombination and yielding
a 1.3- to 1.6-MB region of linkage disequilib-
rium.13,14 Genetic studies, including GWAS, have
identified both the inversion polymorphism and
haplotype-specific polymorphisms influencing the risk
of 4-repeat tauopathies (PSP and CBD).12,13,15–19

Moreover, the common subhaplotype H1c (tagged
by rs242557) on the background of the H1 haplotype
has been consistently found to be associated with
both PSP and CBD.12,15,16,20 Previously published
GWAS data with neuropathologically diagnosed cases
showed that rs242557, tagging the MAPT H1c hap-
lotype, was one of the most common SNPs associated

Figure 3 Plasma tau levels in a replication cohort as a function of rs242557
genotype

Plasma tau levels were compared across the GG, GA, and AA genotypes of rs242557 in an
independent cohort of 387 participants to validate the initially observed association. A sig-
nificant association of increasing plasma tau concentration with increasing minor allele (A)
dose of rs242557 was observed (p 5 1.0 3 1025).
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with PSP (odds ratio 5 1.96, p 5 4.2 3 10270) and
CBD (odds ratio 5 1.57, p 5 7.91 3 1026) (table
2).16,20 However, rs242557 was not associated with
the risk of AD (p 5 0.974),21 which is pathologically
characterized by intracellular neurofibrillary tangles
composed of roughly equal ratios of 3- and 4-repeat
tau.1

The mechanism by which the MAPT H1c haplo-
type could increase plasma tau levels is not clear. The
SNP rs242557 falls into a 182–base pair highly con-
served region that was previously predicted to regulate
MAPT expression (figure 2B).19 In cultured cells, the
rs242557 A allele coupled with the H1 background
promoter region had 2.7-fold greater transcription
activity relative to the G allele on the H1 background
and 4.2-fold greater activity relative to the H2 back-
ground.22 It has also been hypothesized that rs242557
could affectMAPT splicing,20,23 although this has not
been supported by subsequent studies.24,25

Elevated plasma tau was not explained by elevated
CSF tau. We did not identify a correlation between
tau levels in plasma and CSF (figure 1), suggesting
that different mechanisms are likely to regulate
plasma tau concentrations. Previous GWAS have
determined that the APOE locus is the strongest asso-
ciation for CSF tau and p-tau levels, although we have
not observed an association between APOE genotypes
and plasma tau concentrations.3,4 Although rs242557
was associated with higher CSF tau protein levels in
one small sample of patients with AD (n 5 89),26

both our data (n 5 314) and another study with
313 individuals27 did not identify any association of
this SNP with CSF tau protein levels. Multiple
MAPT loci have been strongly associated with PSP
and CBD, and some autosomal dominant MAPT
mutations, particularly those in IVS10, are known
to produce a PSP-like syndrome.28 Together, these
data indicate that plasma tau levels might be a more
useful endophenotype for identifying genetic risk for
4-repeat tauopathies (PSP and CBD) than for AD.

The alleles that we identified as suggestively asso-
ciated with plasma tau might also be associated with
risk for tauopathies. Mutations in the PARK2 gene,
which encodes an E3 ubiquitin ligase, are the most
common cause of early-onset parkinsonism.29,30

Interestingly, a PARK2 polymorphism (Val380Leu)
is associated with lower risk of PSP, and PARK2 mu-
tations produce clinical and pathologic features of
PSP.31,32 IL2RA, a multiple sclerosis susceptibility
gene, plays an important role in regulating immune
response.33 Moreover, a SNP in IL2 (rs6852535, p5
1.3 3 1027), which encodes the ligand for IL2RA,
was identified as a suggestive locus for PSP risk in a
previous GWAS.20 Recent data also suggest
that microglia may play a role in tau-related neuro-
degeneration, which would be consistent with this

association between an immunologic risk factor gene
and plasma tau.34 Further studies are required to con-
firm these suggestive findings and to identify the
potential roles of PARK2 and IL2RA in tauopathies.

A limitation of this report is the modest sample
size, precluding stratified analyses for each diagnostic
group. Furthermore, our study included data from
HC and patients with AD spectrum disorders, raising
the possibility that the identified associations result
from confounding with AD pathology. Since
rs242557 is a risk factor for non-AD tauopathies
(CBD and PSP), this diminishes the possibility that
an interaction between AD pathology and the H1c
haplotype in our sample accounts for the association
with plasma tau. Furthermore, the subgroup analysis
showed that rs242557 (and the additional suggestive
loci) was associated with plasma tau levels in a dose-
dependent effect within each diagnostic group (HC,
MCI, and AD, figure 2). This, along with replication
of the rs242557 association in a cohort of participants
largely without AD or other neurologic diseases, sug-
gests that the presence of AD pathology is not neces-
sary to observe the plasma tau association.

We detected a genome-wide significant SNP,
rs242557, inMAPT and 3 suggestive loci (in PARK2,
IL2RA, and an intergenic region in 9p21.3) associated
with plasma tau levels measured in healthy elders and
individuals with MCI or AD. Because rs242557 rep-
resents the MAPT H1c haplotype that has previously
been identified as a major genetic risk factor for both
PSP and CBD, our findings suggest that plasma tau
concentration could be a useful endophenotype for
identifying risk for 4-repeat tauopathies.
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