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of RD114-TR Envelope Glycoprotein
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Lentiviral vectors (LVs) are a highly valuable tool for gene
transfer currently exploited in basic, applied, and clinical
studies. Their optimization is therefore very important for
the field of vectorology and gene therapy. A key molecule for
LV function is the envelope because it guides cell entry. The
most commonly used in transiently produced LVs is the vesic-
ular stomatitis virus glycoprotein (VSV-G) envelope, whose
continuous expression is, however, toxic for stable LV producer
cells. In contrast, the feline endogenous retroviral RD114-TR
envelope is suitable for stable LV manufacturing, being well
tolerated by producer cells under constitutive expression. We
have previously reported successful, transient and stable pro-
duction of LVs pseudotyped with RD114-TR for good trans-
duction of T lymphocytes and CD34+ cells. To further improve
RD114-TR-pseudotyped LV cell entry by increasing envelope
expression, we codon-optimized the RD114-TR open reading
frame (ORF). Here we show that, despite the RD114-TRco pre-
cursor being produced at a higher level than the wild-type
counterpart, it is unexpectedly not duly glycosylated, exported
to the cytosol, and processed. Correct cleavage of the precursor
in the functional surface and transmembrane subunits is pre-
vented in vivo, and, consequently, the unprocessed precursor
is incorporated into LVs, making them inactive.
Received 29 November 2016; accepted 4 January 2017;
http://dx.doi.org/10.1016/j.omtm.2017.01.002.
3These authors contributed equally to this work.

Correspondence: Chiara Bovolenta, MolMed S.p.A., Via Olgettina, 58, 20132
Milan, Italy.
E-mail: chiara.bovolenta@molmed.com
INTRODUCTION
Pseudotyping envelopes of viral vectors are heterologous glycopro-
teins with the key role of mediating vector entry into target cells.
Thus, their nature, function, and density on the vector surface may
deeply influence the transduction ability of the vectors.1 A powerful
strategy to increase the expression of heterologous proteins in eukary-
otic cells is codon optimization (co), which is an artificial process
through which DNA sequences are modified by the introduction of
silent mutations, generating synonymous codons. By degeneracy of
the genetic code, all amino acids (aa) except Met and Trp are encoded
by more than one codon; i.e., synonymous codons. Genetic code
redundancy makes DNA triplets tolerant for point mutations, which
do not result in corresponding aa mutations (silent mutations).
Codon optimization is exploited to overcome species-specific codon
usage bias and ultimately improve heterologous protein production.
The frequency of codon distribution within the genome (codon usage
bias) is variable and differs depending on species. It follows that
tRNAs corresponding to synonymous codons are not equally abun-
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dant in different cell types and species. Therefore, for a certain aa,
there are synonymous codons more often used, influencing the
timing and efficiency of protein translation.2–4 The codon adaptation
index (CAI) technique measures synonymous codon usage bias in a
given species. The CAI uses a range (between 0 and 1, where 1 is
the maximum translational efficiency) of high-rate expression genes
(i.e., ribosomal proteins and elongation factors) to assess the relative
contribution of each codon in a specific organism, allowing compar-
ison with the nucleotide sequence of interest.5 Thus, it is possible to
increase the expression of a certain gene in a specific organism/cell
type by simply changing rare codons with more frequent ones, result-
ing in modification of the CAI. Codon optimization has been exten-
sively used to increase the production of either recombinant proteins
or viral vectors.6–17

RD114-TR is a chimeric mutant deriving from the feline endoge-
nous retrovirus RD114 envelope, in which the TR domain of the
gamma retroviral vector (g-RV) Moloney leukemia virus (MLV)
amphotropic 4070-A envelope, fused at the C-terminal end of
RD114, increases envelope incorporation into lentiviral vector
(LV) particles.18 RD114-TR is first translated in a non-functional
precursor (PR) that is then processed by the membrane-associated
endoprotease furin in the surface (SU) and transmembrane (TM)
active subunits. RD114-TR processing occurs either in furin-rich
compartments of the trans-Golgi network, where the PR accumu-
lates during its way to the plasma membrane or in the recycling
endosomes close to the plasma membrane.19 The cleavage and
post-translational glycosylation of RD114-TR are crucial for traf-
ficking to the plasma membrane and for incorporation into nascent
virion coats. The TM subunit mediates plasma membrane
anchoring of the SU subunit. Upon recognition and engagement
of functional subunits to specific receptors, fusion between viral
and cell membranes mediates the entry of the vector into target
cells. RD114-TR-pseudotyped retroviral vectors are suitable for
both ex vivo and in vivo gene therapy applications because they
7 ª 2017 The Authors.
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Figure 1. Schematic of the Constructs and Abs Used in This Study

(A) Drawings of the plasmids in their linearized forms. (B) Scheme of the RD114-TR protein, where specific anti-TM and anti-SU Ab recognition and furin cleavage site are

indicated. SA, splice acceptor; SD, splice donor; cPPT, central polypurine tract; hPGK, human phosphoglycerate kinase promoter; A, poly A sequence; T, cytoplasmic tail;

R, R peptide.
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can be concentrated by centrifugation and are resistant to human
serum complement inactivation.20–23

To improve and simplify the expression of the RD114-TR envelope
during development of the RD-MolPack packaging technology for
stable and constitutive manufacturing of LVs,21,23 we codon-opti-
mized the entire RD114-TR open reading frame (ORF). This idea
stemmed from our previous observation that RD114-TR expression
is achieved only when the b-globin intron (BGI) is inserted between
the promoter and the RD114-TR cDNA of the expression cassette
of many different expression plasmids tested.23 To explain this
constraint, we hypothesized that BGI may attenuate the negative
effect of interfering sequences existing in the RD114-TR cDNA. To
eliminate these sequences and to simplify the vector design, we
decided to codon-optimize the entire RD114-TR ORF. In fact, the
elimination of the interfering sequences would have avoided using
the BGI, therefore reducing the size of the vector. Unexpectedly,
we found that, despite the high level of transcription/translation
and cytosol export, RD114-TRco is functionally dead. Our data
Molec
strengthen the conclusion, also supported by other studies,24 that
codon optimization may not always lead to functional improvement
of the gene of interest.

RESULTS
Expression of RD114-TR on RD3-MolPack-GFP Producer Cells

and Their Derived LVs

We initially analyzed the expression of the RD114-TRWT envelope in
RD3-MolPack-GFP producer cells and in their derived LVs23 to
confirm previous studies describing proper processing and trafficking
to the plasma membrane of the wild-type (WT) envelope.19 RD3-
MolPack-GFP cells contain 12 copies of the integrated self inactivat-
ing (SIN)-RD114-TRWT-IN-rev-responsive element (RRE) transfer
vector (TV) (Figure 1A, scheme 2), and the originated RD114-
TRWT pseudo-typed LVs are proficient in cell transduction, as re-
ported previously.23 We used two specific antibodies (Abs), each
recognizing either the PR and SU (anti-SU) subunits or the PR and
TM (anti-TM) subunits, respectively (Figure 1B). To visualize the
expression of RD114-TRWT at the RD3-MolPack-GFP plasma
ular Therapy: Methods & Clinical Development Vol. 4 March 2017 103
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Figure 2. RD114-TRWT Expression on RD3-MolPack-GFP Producer Cells

(A) PD assay of cell surface-biotinylated proteins followed by western blot analysis.

Membrane biotinylation was performed on intact cells. 1mg of total cell extracts was

incubated with 60 mL of streptavidin-conjugated Dynabeads for PD. The PD

deglycosylated TM subunit migrated slightly higher than expected because of

erroneous migration of the proteins in SDS-PAGE. (B) PNGaseF and EndoH de-

glycosylations were performed on cellular (30 mg whole-cell extracts) and viral (50 ng

p24Gag equivalent) proteins obtained from RD3-MolPack-GFP cells, and their

derived viral vectors were collected after 48 hr from cell seeding. Anti-calnexin

and anti-ERK staining are internal controls for nonspecific biotinylation and PD;

anti-p24Gag staining is for internal loading control. A long exposure of the film is

included to better visualize the absence of the EndoH-resistant band of the TM

subunit (lane 3) in the vectors. * indicates non-specific staining of the anti-TM Abs

recognizing BSA present in the supernatants. z refers to EndoH-resistant SU and

TM proteins.
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membrane, we carried out pull-down (PD) of biotinylated and de-gly-
cosylated total cell extracts. Because, in SDS-PAGE, glycosylated PR
and SU molecules co-migrate,19 we first pulled down membrane pro-
teins, which were first biotinylated in vivo and then deglycosylated
by peptide N-glycosidase F (PNGaseF) treatment in vitro. PNGaseF
cleaves the link between asparagine and N-acetylglucosamine resi-
dues (complex oligosaccharides) that are added in the endoplasmic
reticulum (ER) and the Golgi stack. We here confirmed the results
104 Molecular Therapy: Methods & Clinical Development Vol. 4 March 201
previously reported by Sandrin et al.,19 showing that both TM and
SU subunits are correctly localized at the plasma membrane, whereas
the PR does not reach and/or accumulate on it (Figure 2A, lane 8).
The very low level of PR detected in the PNGaseF-treated sample
likely derives from contamination of the endoplasmic reticulum or
other membranes (Figure 2A, anti-SU, top right panel, lane 8). To
further characterize RD114-TR glycosylation and trafficking to the
plasma membrane, we treated in vitro producer cellular and derived
vector extracts not only with PNGaseF but also with endoglycosidase
H (EndoH) enzyme. The latter is active on N-linked high-mannose
oligosaccharides (simplex oligosaccharides), added in the ER
compartment, but not on high-glucose residues attached later during
glycosylation in the Golgi apparatus. It follows that glycoproteins
carrying complex oligosaccharides become resistant to the attack of
EndoH (EndoH-resistant proteins). Of note, we observed that, in
both cells and derived LVs, PR and TM subunits are EndoH-sensitive
(Figure 2B, lanes 3 and 6, anti-TM). On the contrary, the SU subunit
is EndoH-resistant because it carries complex oligosaccharides
(Figure 2B, lanes 3 and 6, anti-SU). The TM contains one putative
N-linked glycosylation site (NxS and NxT, where x is any aa), whereas
SU contains 11 sites (Figure S1). It is possible that this unique
N-linked site in TM is glycosylated with simplex and not complex ol-
igosaccharides and that the TM subunit is transported to the plasma
membrane linked to the SU. Furthermore, the average titer of RD3-
MolPack-GFP LVs tested in this study is 1.6 � 106 ± 4.7 � 105

SEM transducing units (TU)/mL (n = 5), in line with our previous
collective data.21,23 Overall, these findings demonstrate that expres-
sion of RD114-TRWT in RD3-MolPack-GFP producer cells and
stemmed LVs is correctly achieved.

Functional Inactivation of the RD114-TR Envelope by Codon

Optimization of the Entire ORF

In an attempt to enhance the transduction efficiency of RD3-
MolPack-derived LVs by increasing the expression and stability of
RD114-TR glycoprotein, we codon-optimized its complete cDNA.
After recoding, the CAI of the RD114-TR ORF shifted from 0.64
to 0.98, and the average GC content increased from 48% (WT) to
61% (co), resulting in 73% identity between the WT and co se-
quences (Figures S2 and S3). To test the function of RD114-TRco,
the new ORF, cloned into the pIRES-puro3 expression vector, was
transiently co-transfected in PK-7 cells together with the SIN-GFP
TV to produce RD114-TRco-expressing LVs. RD114-TRWT-pseu-
dotyped LVs were produced for comparison. We analyzed the
expression of RD114-TR proteins by western blot, treating cell
and virion extracts with or without PNGaseF and EndoH (Figure 3).
Surprisingly, the pattern of RD114-TRco subunits greatly differed
from that of the WT counterparts. In fact, both cell and LV protein
extracts showed very high levels of PRco and very low levels or even
absence of processed SUco and TMco subunits (Figures 3A and 3B).
In contrast, the expression profile of RD114-TRWT in cell and vec-
tor extracts was identical to that of RD3-MolPack-GFP producer
cells and the LVs shown in Figure 2. In agreement with these
data, the viral titer of RD114-TRWT pseudotyped LVs calculated
on CEM A3.01 cells was 3.9 � 104 ± 7.1 � 103 SEM TU/mL
7
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Figure 3. RD114-TRWT and RD114-TRco Expression in Transiently Transfected PK-7 Cells and Generated LVs

(A) Western blot analysis of whole-cell proteins (30 mg) obtained from PK-7 cells after transfection of SIN-EGFP TV and envelope plasmids encoding either RD114-TRWT or

RD114-TRco, treated or not treated with either PNGaseF or EndoH enzymes and then probed with anti-SU and anti-TM Abs. (B) Vector proteins (160 ng of p24Gag

equivalent) obtained from the virions produced by the transfected cells shown in (A), treated or not treated with either PNGaseF or EndoH enzymes, and then probedwith anti-

SU and anti-TMAbs. Anti-HIV protein staining (p55Gag and p24Gag) was used as an internal control. A long exposure of the films is included to better visualize the absence of

the EndoH-resistant band of the TM subunit (lanes 3 and 6). z refers to EndoH-resistant SU and TM proteins.
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(n = 3), whereas that of RD114-TRco-pseudotyped LVs was consis-
tently undetectable.

RD114-TRco Is Correctly Cleaved by Furin In Vitro

To better understand the difference between PRWT and PRco pro-
cessing, we tested whether codon optimization might have somehow
compromised furin-mediated cleavage of RD114-TRco. To this pur-
pose, we treated cell extracts derived from PK-7 cells transfected with
either the RD114-TRWT or RD114-TRco plasmid with recombinant
furin overnight at 16�C. Untreated and treated extracts were then
analyzed by western blot using the anti-TM Ab (Figure 4A). We
observed that, after furin treatment in vitro, the level of TMco subunit
clearly increases (Figure 4A, lane 4), even though it is difficult to
appreciate the corresponding decrement of PRco because of its high
level of expression. On the contrary, the amount of PRWT is clearly
decreased, although it is difficult to appreciate the corresponding in-
crease of TMWT because the wild-type protein is already abundantly
cleaved before cell protein extraction. Overall, these results support
the idea that codon optimization does not compromise furin-medi-
ated cleavage of the envelope, at least in vitro. Based on this notion,
we then tried to understand why the PRco is not correctly processed
in vivo. One possible explanation was that a large amount of PRco
could trigger the phenomenon known as excess substrate inhibition.
To exclude this possibility, we transfected HEK293T cells with a scalar
amount of RD114-TRco plasmid and tested the corresponding cell
extracts in a western blot to find the lowest possible dose of PRco
Molec
substrate not inhibiting endogenous furin action (Figure 4B). We
observed that, even at the lowest amount of plasmid generating
detectable PRco, the TMco subunit was not visible, indicating
that in vivo PRco is not processed (Figure 4B, lane 3). Further ana-
lyses are required to explain the defect underlying this obscure
phenomenon.

Chimeric RD114-TR50co and RD114-TR30co Are Not Functional

We next evaluated whether partial recoding of the ORF could restore
the function of the RD114-TRco envelope. To this aim, we generated
two cDNAs recoded only in the 50 or 30 half of the cDNA sequence.We
transiently transfected either the RD114-TR50co or RD114-TR30co
chimera, cloned into the pIRES-puro3 plasmid, into PK-7 cells
together with the SIN-EGFP TV. We then tested cellular and LV
extracts in a western blot and LV titer in CEM A3.01 cells. Immuno-
blot analysis demonstrated that, for both chimeric RD114-TR
glycoproteins, PRco processing was impaired (Figure S4). Further-
more, although we transfected equal amounts of RD114-TR,
RD114-TR50co, and RD114-TR30co plasmid DNA, the expression of
RD114-TR30co was lower than that of RD114-TR50co and RD114-
TRWT (Figures S4A and S4C, lanes 3 and 4). TheTM30co andTM50co
subunits were not detectable in the respective LVs, whereas, after
PNGaseF treatment, SU30co and SU50co were barely visible and
visible, respectively. We explain the difference between anti-TM and
anti-SU staining with an intrinsic difference in the specific affinity
of the two Abs. In agreement, the titer of LVs pseudotyped with
ular Therapy: Methods & Clinical Development Vol. 4 March 2017 105
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Figure 4. In Vitro and In Vivo Furin Cleavage of RD114-TRco

(A) Western blot analysis of whole-cell proteins (30 mg) extracted from PK-7 cells,

transfected with either RD114-TRWT or RD114-TRco plasmid and treated over-

night at 16�C with 4 U/sample of recombinant furin. The filter was probed with the

anti-TM Ab and, after stripping, with anti-HIV serum as an internal control. (B)

Western blot analysis of whole-cell proteins (30 mg) extracted from HEK293T cells

transfected with the indicated amounts of plasmid DNA encoding either RD114-

TRWT or RD114-TRco. The filter was stained with anti-TM Ab and, after stripping,

with anti-b actin Ab as an internal control.
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half-recoded envelopes was negative. Altogether, these results suggest
that neither partial recoding restores the function of RD114-TRco.

Intracellular Localization of RD114-TRWT and RD114-TRco

To see whether RD114-TRco differs from RD114-TRWT in its sub-
cellular localization, we carried out confocal microscope imaging in
COS-7 cells transfected with pIRES-RD114-TR plasmids. Forty-eight
hours after transfection, RD114-TR expression was visualized
together with that of calnexin and VAMP8/Endobrevin, which are
ER and early and late endosomalmarkers, respectively. As shown pre-
viously by Sandrin et al.,19 RD114-TRWT is expressed in the cytosol
and perinuclear region and is co-localized mostly with calnexin and
very poorly with Endobrevin/VAMP8. A similar staining pattern
and subcellular localization was observed for RD114-TRco in either
the COS-7 (Figure 5) or PK-7 cell experimental setting (Figure S5),
indicating that ER and early and late endosome trafficking of
RD114-TR is not affected by codon optimization.
106 Molecular Therapy: Methods & Clinical Development Vol. 4 March 201
Analysis of the Splicing and Metabolism of RD114-TRWT and

RD114-TRco mRNA

Because many groups have demonstrated that silent mutations affect
correct pre-mRNA splicing by introducing cryptic splice sites or
altering splicing control elements (i.e., exonic splicing enhancers
and silencers),3,25,26 we and two service provider companies analyzed
RD114-TRco mRNA both in silico and in vitro for the presence of
potential cryptic splicing sites. The first in silico service-provided
analysis identified one consensus (cryptic) splice donor site that
was nullified by codon optimization, whereas the second service-pro-
vided analysis recognized no cryptic sites (Figures S2, S3, S6, and S7).
We also examined the RD114-TRWT and RD114-TRco ORFs
in silico using the NetGene2 server, which calculates the probability
of cryptic splicing sites in pre-mRNA sequences. We did not pinpoint
any differences between wild-type and codon-optimized ORFs. To
further confirm these results, we assessed RD114-TRWT and
RD114-TRco mRNA transcripts derived from PK-7 cells transiently
transfected with the SIN-RD114-TRWT/co-IN-RRE constructs (Fig-
ure 1A, schemes 2 and 3) by northern blot (Figure 6A). Two
sequence-specific probes targeting RD114-TRWT and RD114-
TRco, respectively, recognized qualitatively comparable RD114-TR
mRNA transcript patterns (Figure 6A). Similar results were obtained
by using a probe directed against the packaging signal (c), which is a
sequence common to both constructs. The overall steady-state level of
RD114-TRco RNA detected by the c probe was only slightly reduced
compared with the wild-type counterpart, but no extra spliced bands
were observed. These results indicate that the two lentiviral vector
plasmids were equally transfected and correctly expressed from the
50 long terminal repeat (LTR)-cytomegalovirus (CMV) vector pro-
moter. These findings indicate that no cryptic splicing sites are pre-
sent either in the ORF or in the vector backbone (Figure 6A).

To assess whether mRNAmetabolism differs between RD114-TRWT
and RD114-TRco, we studiedmRNAnuclear-cytoplasm export in the
PK-7 cell setting using the pIRES-puro3-based expression vectors,
which generate only one mRNA transcript. Northern blot analysis
of total, nuclear (nucl), and cytoplasmic (cyt) mRNAs and quantifica-
tion by Typhoon Phosphorimager of the band intensity normalized
by cellular equivalents loaded revealed that the unique codon-opti-
mized mRNA is exported 1.4-fold more (WT cyt/nucl band inten-
sity = 1.1 and co cyt/nucl band intensity = 1.6; 1.6/1.1 = 1.4) than
wild-type mRNA (Figure 6B). qRT-PCR analysis, using the expres-
sion of nuclear U6 and cytosolic/total GAPDH genes as an internal
normalizer, revealed that RD114-TRco mRNA is exported 3.6-fold
more than RD114-TRWT mRNA (Figure 6C). Overall, these data
establish that recoding affects nuclear export but not transcription
and splicing processes.

Analysis of the Secondary Structures of the RD114-TRWT and

RD114-TRco mRNA

We then investigated whether codon optimization could influence
mRNA secondary structure and, thereafter, protein translation, as re-
ported recently by several groups.3,4,27 Thus, we examined RD114-
TRWT and RD114-TRco mRNA sequences by MFOLD software
7



40 μm

Endobrevin DAPI RD114-TR DAPI Merge DAPI

RD114-TR wt

RD114-TR co

Endobrevin DAPI RD114-TR DAPI Merge DAPI

40 μm

RD114-TR wt 

Calnexin DAPI RD114-TR DAPI Merge DAPI

40 μm

RD114-TR co

Calnexin DAPI RD114-TR DAPI Merge DAPI

40 μm

A

B

C

D

Figure 5. Subcellular Localization of RD114-TRWT and RD114-TRco

(A–D) COS-7 cells transfected with pIRES-RD114-TR plasmids were fixed, permeabilized, and stained at room temperature with the Abs as indicated. Endobrevin/VAMP8 is

an early and late endosomal marker, and calnexin is an ER marker. Nuclei were stained with DAPI. Scale bar, 40 mm.

www.moleculartherapy.org

Molecular Therapy: Methods & Clinical Development Vol. 4 March 2017 107

http://www.moleculartherapy.org


A B

1.7

kb

RD114-TRco
cytnuctottot

RD114-TRwt
cytnuctottot

mo
y yy

mo

Cell equiv 1.8 0.4 1.7 0.5

28S

18S

Probe RD114-TRwt RD114-TRco

SIN-RD114-TR-IN-RRE

10
8
6

wt co wt  cokb

28S

18S

Probe ψ
RD114-TR

wt co

C

0%

20%

40%

60%

80%

100%

R
el

at
iv

e 
m

R
N

A 
di

st
rib

ut
io

n

Nucleus
Cytoplasm

Figure 6. Northern Blot Analysis of RD114-TRWT and RD114-TRco mRNA

(A) Total RNA (5 mg) extracted from PK-7 cells transiently transfected with SIN-eGFP TV and either SIN-RD114-TRWT or SIN-RD114-TRco plasmids was tested with two

sequence-specific RD114-TRWT and RD114-TRco probes, respectively, and the common c probe as an internal control. Three bands were detected for both mRNAs,

corresponding to the full-length (c and specific RD114-TR probes), the spliced, and the internal cassette transcripts, respectively (specific RD114-TR probes). Bottom:

ethidium bromide (EtBr) staining of the agarose gel showing 28S and 18S RNAs. (B) Total, nuclear, and cytosolic mRNA (5 mg) extracted from PK-7 cells transiently mock-

transfected (mo) and transfected with the pIRES-puro3-based plasmids encoding either RD114-TRWT or RD114-TRco were tested with two sequence-specific RD114-

TRWT and RD114-TRco probes, respectively. A single band derived from the expression cassette was detected for both samples. Bottom: EtBr staining of the agarose gel

showing 28S and 18S RNAs. (C) qRT-PCR analysis of the nuclear and cytoplasmic distribution of RD114-TRWT and RD114-TRco mRNA. Nuclear and cytoplasmic mRNA

was retro-transcribed, and then qPCR was carried out on the corresponding cDNA using specific primers for RD114-TR WT and co genes and, as internal normalizers,

specific primers for the U6 and GAPDH genes. The data were derived from a single qRT-PCR experiment in which each sample was run in sestuplicate.
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(Figures 7A and 7B). This computational analysis predicts the most
thermodynamically stable RNA configurations (up to 50) based on
the free energy value (DG) of the molecules, where a lower DG indi-
cates a higher stability. We retrieved 33 different configurations for
RD114-TRWT and 37 for RD114-TRco (Figure 7E). As expected,
wild-type structures are very different from codon-optimized ones;
the average DG for RD114-TRWT mRNA is �462.25 (where
DG = �468.70 is the most stable configuration), whereas the average
DG for RD114-TRco mRNA is �679.39 (where DG = �687.60 is the
most stable configuration). This finding indicates that recoded
mRNA molecules are more stable than wild-type counterparts (p <
0.0001) (Figure 7E).

Because 50 end and 30 end substructures are fundamentally important
for translational dynamics and protein folding,28 we scanned the 50

and 30 ends of all wild-type and recoded mRNAs to identify any
possible structural conserved domains. Over the 33 conformations
of RD114-TRWT mRNA, we identified a conserved domain at both
the 50 end (nucleotides [nt] 1–320) and 30 end (nt 1,308–1,677) (Fig-
ure 7C). These 50 end and 30 end domains are also conserved in the
corresponding region of the RD114-TRco mRNA structure. Above
the 37 structures calculated by MFOLD for RD114-TRco mRNA,
we identified nt 1–330 at the 50 end and nt 1,390–1,677 at the 30

end (Figure 7D). To evaluate the similarity between identified do-
mains, we studied RD114-TRWT and RD114-TRco mRNA 50 end
and 30 end substructures with SimTree software. This software com-
pares each node complexity (branch-loop) of two structures that
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eventually grades in a similarity score (between 0–1, where 1 is the
maximum). The score is normalized by the number of nucleotides
of the substructures from two RNA structures showing the lowest
DG in MFOLD (Table S1). At the 50 end of the RD114-TRWT
mRNA substructure, 26 complexities were identified, which corre-
sponded to only ten complexities in RD114-TRco (normalized sym-
metric similarity [nss] = 0.5213) (Figure 7A). At the 30 end mRNA
substructures, 42 complexities were found in RD114-TRWT and
only 18 in RD114-TRco (nss = 0.6178) (Figure 7B).

These results point out that codon optimization of the RD114-TR
gene introduced significant alterations at both the 50 end and 30 end
of the RD114-TRco mRNA secondary structure. Such alterations
might affect mRNA processes and eventually alter protein structure
and function.

DISCUSSION
Codon optimization and de-optimization have been used extensively
for a lot of different biotechnological practices, primarily in heterol-
ogous systems to increase recombinant protein yield and as an adap-
tive response to environmental conditions and natural host selection
in bacteria, yeasts and viruses.29–34 In some eukaryotes (i.e., C. elegans
and Drosophila melanogaster), it has been exploited to control intra-
cellular tRNA to modulate translational efficiency.35–38 In autologous
hosts, such as the mammalian Chinese hamster ovary (CHO) or
HEK293 cell lines, which are the most widespread systems for
manufacturing pharmaceuticals,7 codon optimization is a valuable
7
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strategy to prevent transcriptional silencing, mRNA destabilization,
or inefficient translation other than being a powerful tool to increase
immunogenicity in DNA vaccinology applications.9,10,16,17,39 Finally,
HIV-derived LV production has also benefited from codon optimiza-
tion by enhancing production of structural and functional viral pro-
teins (i.e., gag and pol);9,11,12 neutralizing cis-repressive sequences
present in gag/pol genes, thereby making the expression of these genes
Rev-independent;13,14 and eliminating homology between packaging
gag-pol genes and the cis-regulatory packaging (c) sequence con-
tained in the packaging construct and TV, respectively, therefore
reducing the risk of generating a replication-competent lentivirus
(RCL).15

Based on these premises, we analyzed DNA codon optimization of the
RD114-TR gene with the aim of improving envelope translation in
RD3-MolPack producer cells. In fact, codon optimization would
have neutralized the interfering sequences contained in the RD114-
TR ORF, thereby sparing the use of the BGI in vector design and,
at the same time, increasing the production and density of RD114-
TR on the cellular plasma membrane and, consequently, on virion
coats. The increased envelope density on the LVs would have eventu-
ally enhanced their functional titer. We asked for two recoding ana-
lyses by two independent companies, which provided similar results
(Figure S8). Therefore, we believe that the quality of the analysis could
Molecular Therapy: Method
not have affected the final output. The consis-
tently negative results obtained with the
chimeric RD114-TR30co and 50co support this
idea.

In this study, we show that RD114-TRWT ex-
pressed either stably (RD3-MolPack-24 cells)
or transiently (PK-7 cells) naturally traffics
from the ER through the Golgi network to reach
the plasma membrane. PRWT is processed in
SUWT and TMWT subunits, which are eventu-
ally embedded into nascent LVs. In contrast,
RD114-TRco reaches the plasma membrane
mainly as unprocessed PRco, and maturation into SUco and TMco
functional subunits is drastically reduced or even absent. As a conse-
quence, a high level of PRco is erroneously incorporated into budded
viral particles, which become defective vectors.

Because N-linked glycosylation is crucial for maturation of different
envelope (Env) proteins, such as the hepatitis C virus glycoprotein
E2 and human T cell leukemia virus type I (HTLV-I) envelopes,39–41

we studied the glycosylation status of RD114-TRWT and RD114-
TRco. Here we confirm the conclusions reached by Sandrin et al.,19

showing that PRWT, SUWT, and TMWT are deglycosylated by
PNGaseF. Furthermore, we also expanded glycosylation studies
showing that, in contrast to SUWT, TMWT is EndoH-sensitive.
This result suggests that TMWT either reaches the plasma membrane
anchored to SU or loses complex oligosaccharides when on the mem-
brane, or, alternatively, does not need complex oligosaccharides for its
function. The analysis of PRco glycosylation demonstrates sensitivity
to both PNGaseF and EndoH enzymes, suggesting defective glycosyl-
ation of the recoded protein. Further studies will clarify whether a
correlation between the observed defective glycosylation and matura-
tion of RD114-TRco does exist.

Although PRco is cleaved in vitro by recombinant furin both under
reducing and non-reducing conditions (data not shown), it is not
s & Clinical Development Vol. 4 March 2017 109
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cleaved in vivo. To explain this result, we reasoned that cleavage
in vivo could be prevented by an excess of substrate: PRco is, in
fact, much more abundant compared with PRWT. Alternatively,
the deficit of PRco processing could be secondary to a deficit of retro-
grade transport of PRco from the cell membrane to the endosomes,
where the active form of furin is accumulated.42 We ruled out the first
hypothesis because furin is not active in vivo, even with a very low
amount of PRco substrate, whereas the second hypothesis requires
further analysis to be formally accepted.

Synonymous mutations have been considered ineffective for a long
time, and, for this reason, they are also named silent mutations. How-
ever, their nature has been recently re-evaluated because evidence has
shown that these mutations have a great effect on pre-mRNA splicing
and mRNA secondary structure formation, therefore affecting pro-
tein translational efficiency and folding.4,43 Even a single synonymous
codon substitution can have a significant effect on protein folding and
function. Protein dysfunction can be caused either by disruption (or
introduction) of splicing enhancers, by altering mRNA stability at
the global and local level, or by altering the kinetic of protein produc-
tion, the ribosomal pausing sites, and co-translational folding.27,44

Our results exclude that codon optimization has introduced aberrant
pre-mRNA splicing sites. Rather, they establish that RD114-TRco
mRNA is exported more efficiently into the cytosol than RD114-
TRWTmRNA and support the theory that some alterations occurred
at the mRNA secondary structure, thereby influencing protein trans-
lation. We focused our study on the mRNA 50 end and 30 end because
previous findings from others demonstrated that these two domains
crucially influence translation dynamics, such as translation initiation
and RNA global and local stability.45–47 The in silico MFOLD and
SinTree software analyses highlighted that the secondary structures
of RD114-TRWT and RD114-TRcomRNA are significantly different.
Especially some conserved domains at the 50 end and the 30 end
of RD114-TRWT mRNA are lost in the RD114-TRco isoform.
Interestingly, the generation of chimeric RD114-TR5co0 and
RD114-TR3co0 led to even worse functional impairment. These
findings suggest that RD114-TRco inactivity is not due to single
mutations clustered at the 50 end or 30 end but, more likely, due to
conformational modifications distributed along the mRNA molecule
that affect global mRNA stability and, thereby, protein folding and
processing. Sandrin et al.19 demonstrated that modifications in the
cytoplasmic tail of RD114 and RD114-TR alter PR subunit transport
from the cell membrane to the trans-Golgi network. In particular,
transport of the envelopes associated with core protein (i.e., Gag) to
the endosomal compartment, where active furin accumulates, is
important because it affects cleavage efficiency.19 We observed, by
confocal microscope imaging, that both RD114-TRWT and RD114-
TRco are localized mostly in the ER compartment when assessed
either in the presence (PK-7 setting) or in the absence (COS-7) of
Gag protein. To this extent, secondary structure modifications identi-
fied in RD114-TRco mRNA might result in alteration of protein
folding, which, in turn, is responsible for protein dysfunction.
However, further investigations are necessary to validate this
hypothesis.
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Altogether, this study suggests that RD114-TR is not suitable for
codon optimization and that this strategy cannot be applied to
improve its performance.

MATERIALS AND METHODS
Plasmids

The phCMV-RD114-TR plasmid, obtained by F.-L. Cosset
(INSERM), encodes the chimeric RD114-TR envelope that derives
from fusion of the extracellular and transmembrane domains of the
feline endogenous retrovirus RD114 envelope and the cytoplasmic
tail (TR) of the amphotropic (A)-MLV 4070 envelope18 (Figure 1A,
scheme 1). The pIRES-RD114-TRWT-internal ribosome entry site
(IRES)-puro-woodchuck hepatitis post-transcriptional regulatory
element (WPRE) plasmid was obtained by excising the CMV-
RD114-TRWT cassette from the phCMV-RD114-TR plasmid and
cloning it into the pIRES-puro 3 plasmid (Clontech Laboratories, a
Takara Bio Company) (Figure 1A, scheme 7). The generation of the
SIN-RD114-TRWT and SIN-RD114-TRco vectors (Figure 1A,
schemes 2 and 3) as well as the constructs encoding the HIV gag,
pol, and rev genes (Figure 1A, schemes 4 and 5, respectively) have
been described previously.21 The SIN-GFP TV encoding the EGFP
gene was kindly provided by L. Naldini (Tiget, OSR) (Figure 1A,
scheme 6). The RD114-TR ORF was codon-optimized, synthesized,
and cloned in either the pMK-RQ or pMS-RQ plasmid by
GENEART. We further cloned the RD114-TRco ORF into either
the pIRES-puro3 or SIN-LV plasmid. Four different molecules were
generated: pIRES-CMV-RD114-TR-FLco, in which full-length (FL)
cDNAwas codon-optimized and cloned into the EcoRV andNsiI sites
of the pIRES-puro3 plasmid by excising the ORF from the pMK-RQ-
RD114-TR-FLco plasmid; pIRES-CMV-RD114-TR-50co, obtained by
recoding only the 50-half sequence (789 bp) of the RD114-TRWT
ORF (RD114-TR50co was modified by adding Eco47III and NsiI
restriction sites at the 50 end and 30 end of the gene sequence, respec-
tively, and the ORF was then cloned into the Eco47III andNsiI sites of
pIRES-puro3 plasmid); pIRES-CMV-RD114-TR-30co, obtained by
recoding only the 30-half sequence (789 bp) and cloning into the
Eco47III and SphI restriction sites of the pIRES-puro3 plasmid
by excising the ORF from pMK-RQ-RD114-TR-30co (Figure 1A,
scheme 7); and SIN-RD114-TRco FL (Figure 1A, scheme 3), gener-
ated by inserting RD114-TRco into a SIN-LV through a three-step
cloning strategy. First, the RD114-TRWT-IRES-puro-WPRE frag-
ment was excised from the SIN-RD114-TRWT-IN-RRE vector (Fig-
ure 1A, scheme 2) and cloned into the EcoRI site of a pGEM-T
plasmid, generating the pGEM-RD114-TRWT-IRES-puro-WPRE
plasmid. Then, RD114-TRWT-IRES-puro was excised from pGEM-
RD114-TRWT-IRES-puro-WPRE (obtaining the pGEM-WPRE in-
termediate) using BamHI, and the RD114-TRco-IRES-puro ORF
was excised from the pIRES-CMV-RD114-TR-FL-co using EcoRV/
XbaI enzymes. RD114-TRco-IRES-puro was then cloned into
the pGEM-WPRE intermediate through blunt ligation, obtaining
the pGEM-RD114-TRco-IRES-puro-WPRE plasmid. Finally, the
RD114-TRco-IRES-WPRE ORF was cut out from pGEM-RD114-
TRco-IRES-WPRE and cloned into the EcoRI site of SIN-RD114-
TRWT-IN-RRE, generating the SIN-RD114-TRco-IN-RRE vector.
7
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Cells

HEK293T cells and their derivative PK-7 clone, which constitutively
expresses the HIV gag-pol-rev genes,21 were propagated in Iscove’s
modified Dulbecco’s medium (IMDM) (BioWhittaker, Lonza
Group) supplemented with 10% Australian fetal calf serum (FCS)
(BioWhittaker) and a combination of 1% penicillin-streptomycin
and glutamine (PSG) (Lonza). The CEM A3.01 T cell line48

was grown in RPMI 1640 medium (BioWhittaker) supplemented
with 10% FCS and 1% PSG. COS-7 cells were grown in DMEM
(BioWhittaker) supplemented with 10% FCS and 1% PSG.

LV Production, Titration, and Purification

LVs were produced from either HEK293T or PK-7 cells by transient
transfection.21 Briefly, 3–5� 106 cells were plated on 100-mm2 tissue
culture dishes (Becton Dickinson). After 24 hr of culture, the EGFP
TV, rev, packaging, and envelope constructs were co-transfected at
a 4:1:0.88:0.48 ratio using either Profection mammalian transfection
system calcium phosphate (Promega) or FuGENE 6 transfection re-
agent (Roche Diagnostics) according to the manufacturer’s instruc-
tions. Transfection efficiency was calculated 48 hr later by analyzing
the percentage of EGFP-positive cells by fluorescence-activated cell
sorting (FACS) analysis.

Transduction

The CEMA3.01 cell line was transduced by spinoculation at 1,024� g
for 2 hr at 37�C in the presence of Polybrene (8 mg/ml) (Sigma-
Aldrich). Transduction efficiency was obtained by FACS analysis of
EGFP expression. Physical titer was evaluated by measuring the level
of p24Gag released in the culture supernatant with the Alliance
HIV-1 p24 antigen ELISA kit (PerkinElmer) according to the manu-
facturer’s instructions.

Northern Blot Assay

PK-7 cells were transfected with the pIRES-RD114-TR or SIN-
RD114-TR TV plasmid encoding either RD114-TRWT or RD114-
TRco. Forty-eight hours after transfection, total, nuclear, and
cytoplasmic RNAs were extracted by Trizol reagent (Life Technolo-
gies) following the manufacturer’s instructions and analyzed by
northern blot assay. Five micrograms RNA/sample was run on
0.8% agarose-formaldehyde gel, transferred onto a Hybond-N mem-
brane by capillary transfer, and finally probed with 1 � 106 dpm/mL
of a 32P-labeled 550-bp RD114-TRWT or RD114-TRco probe in
PerfectHyb Plus hybridization buffer (Sigma-Aldrich). Membranes
were extensively washed and then exposed to X-ray films at –80�C
or to a Typhoon Phosphorimager 9000 (GE Healthcare) for direct
quantification of the radioactive signal. After stripping, membranes
were re-hybridized with an internal control probe encompassing
the packaging sequence (c) to detect full-length mRNAs.

qRT-PCR

Total, nuclear, and cytoplasmic RNAs, obtained as described above,
were retrotranscribed with the SuperScript first-strand synthesis sys-
tem kit for RT-PCR (Invitrogen). The cDNA (1.25 ng) was quantified
by qPCR SYBR Green technology with the following specific primers:
Molec
RD114-TRWT (for 50 aac ggg tca gtc ttc ctc tg; rev 50 atc aat ggc agg
aat ggg ga), RD114-TRco (for 50 ccg tgc agt tca ttc ctc tg; rev 50 ctc agc
ttg gtg tac tgg gt), U6 (for 50 ctc gct tcg gca gca ca; rev aac gct tca cga att
tgc gt 50), and GAPDH (for 50 tgc acc aca act gct tag c; rev 50 ggc atg
gac tgt ggt cat gag). Normalization was calculated using GAPDH for
total and cytosolic mRNA and U6 for nuclear mRNA.

Western Blot Assay

Cellular extracts and viral proteins derived from isolated cell-free
virus-like particles (VLPs) or LVs were prepared as described previ-
ously.21,49 Briefly, LV supernatants were concentrated by centrifuga-
tion at 15,000� g for 90 min at 4�C. Then, the liquid phase was gently
removed, and pelleted virions were directly lysed by adding 5 mL of
PBS/0.5% NP-40 (Calbiochem, Merck-Millipore, #492016). Proteins
were size-fractionated on 8%, 12%, or 4%–15% gradient SDS-PAGE
(Mini-Protean TGX gels, #456-1084, Bio-Rad). Then, proteins
were electroblotted on either Hybond enhanced chemiluminescence
(ECL) nitrocellulose membranes (GE Healthcare) or Transblot turbo
transfer pack membranes (Bio-Rad, #170-4159). Membranes were
blocked in 5% low-fat dry milk Tris-buffered saline (TBS), 1% Tween
20 (TBS-T) and then incubated with the appropriate primary anti-
body diluted in 5% BSA and TBS-T. The anti-TM RD114-TR rabbit
serum, kindly provided by F.-L. Cosset (INSERM),19 was diluted
1:1,000. The anti-SU RD114-TR mAb, generated by Areta Interna-
tional, was diluted 1:50. The mouse anti-p24Gag Ab (Acris Anti-
bodies) was diluted 1:500. The anti-extracellular signal-related
kinase-1 (ERK) rabbit Ab was diluted 1:1,000 (Cell Signaling Tech-
nology, #16). The anti-calnexin rabbit Ab was diluted 1:2,000 (Santa
Cruz Biotechnology, G1910). The extravidin horseradish peroxidase
(HRP) Ab was diluted 1:2,000 (Sigma-Aldrich, #E2886). The anti-
HIV human serum, obtained from an AIDS patient, was kindly
donated by G. Poli (OSR) and diluted 1:1,000. The secondary HRP-
linked Abs anti-human (#NA933V) and anti-rabbit (NA934V) (GE
Healthcare) were diluted 1:5,000. The anti-mouse (#A2066) Ab
(Sigma-Aldrich) was diluted 1:10,000. ECL western blotting detection
reagent (GEHealthcare, RPMN2106) was used for the chemilumines-
cence reaction.

Immunofluorescence

PK-7 and COS-7 cells were transfected with pIRES-RD114-TR plas-
mids encoding either RD114-TRWT or RD114-TRco, seeded on
poly-L-lysine-coated glass slides (Thermo Fisher Scientific). Forty-
eight hours after transfection, cells were fixed with PBS and 3% para-
formaldehyde (PFA)/0.1 mM CaCl2/0.1 mM MgCl2, permeabilized
with PBS and 0.1% Triton X-100, and then stained with the following
Abs: rabbit anti-VAMP8 (Endobrevin Synaptic Systems, catalog no.
1047 302) at 1:200 dilution, rabbit anti-calnexin (Santa Cruz, H-70,
catalog no. sc-11397) at 1:50 dilution, and mouse anti-SU RD114-
TR mAb at 1:300 dilution. The secondary Abs were Alexa Fluor
goat anti-rabbit A488 (Invitrogen, catalog no. A11034) and Alexa
Fluor goat anti-mouse A568 (Invitrogen, catalog no. A11031). Nuclei
were stained with PBS/0.1 mg/mL DAPI. Slides were mounted with
fluorescence mounting medium (Dako), and images were captured
with a laser-scanning confocal microscope (Leica TCS SP5) with an
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HCX PL APO lblue 63� (NA 1.4) objective in oil immersion. Images
were acquired using the Leica Application Suite (LAS) Advanced
Fluorescence (AF) software (Leica Microsystems) and processed
by the public domain ImageJ image processing and analysis
software (http://rsb.info.nih.gov/ij/) (Image Processing and Analysis
in Java).

In Vitro Deglycosylation Assays and Furin Digestion

Protein extracts from either cells or virions were treated with
PNGaseF and EndoH enzymes according to the manufacturer’s in-
structions (New England Biolabs, #P0704S and #P0702S, respec-
tively). Briefly, proteins were first denatured for 10 min at 99�C
and then digested for 1 hr at 37�C with 250–500 U of PNGaseF or
EndoH enzyme. 4� loading buffer containing b-mercaptoethanol
was added to samples that were then boiled for 5 min at 99�C and
finally loaded onto 4%–15% SDS-PAGE precast gels (Mini-Protean
TGX gels, #456-1084, Bio-Rad) for western blot analysis. In vitro
furin digestion was carried out by treating 35 mg cellular extracts
with 4 U of recombinant furin (NEB, #P8077S) for 16 hr at 16�C
following the manufacturer’s instructions.

Cell Surface Biotinylation

RD3-MolPack-SIN-GFP producer cells were plated in 60-mm2 cul-
ture dishes at 1 � 106 cells/cm2 density. Forty-eight hours after cell
seeding, RD3-MolPack-SIN-GFP cells reached about 90% conflu-
ency. LV supernatant was harvested and filtered with a 0.45-mm filter
(Merck Millipore). Cellular monolayers were gently washed in PBS
supplemented with 1 mMMgCl2 and 0.1 mMCaCl2 to keep epithelial
junctions tight and impermeable to molecules. Cells were then incu-
bated on ice for 30 min with 0.5 mg/ml EZ-Link Sulfo-NHS-LC-
Biotin (Thermo Scientific) in PBS/1 mM MgCl2/0.1 mM CaCl2 and
gently shaken. After biotinylation, cell monolayers were washed for
5 min with PBS/100 mM Glycine/1 mM MgCl2/0.1 mM CaCl2 for
quenching the biotin excess. Cells were finally lysed as described pre-
viously,21,49 and protein extracts were quantified by protein assay
(Bio-Rad, #500-0006). One milligram of proteins was incubated
with 50–60 ml of biotin binder magnetic beads (Dynabeads MyOne
Streptavidin T1, #65602, Invitrogen) for 1 hr at room temperature
by gentle rocking. Beads were washed four to five times with 1 mL
of PBS/0.1% BSA, and then protein/bead complexes were processed
with PNGaseF. After addition of 4� loading dye and boiling for
5 min at 99�C, proteins were separated by SDS-PAGE on 4%–15%
precast gels (Mini-Protean TGX gels, #456-1084, Bio-Rad) and
analyzed by western blot assay.

Virion PD Assay

Matched p24Gag equivalents of vector particles were incubated with
5 mL of anti-SU Ab (0.9 mg/mL) for 3 hr at 4�C under rocking con-
ditions. The PD was performed by washing three times 100 mL of
Dynabeads (sheep anti-mouse immunoglobulin G [IgG] Dynabeads,
Invitrogen, #422.01) with PBS/0.5% BSA/2mM EDTA and then rock-
ing them for 30 min at room temperature in the presence of LV par-
ticles and the anti-SU Ab. After virion PD, the Dynabeads were
washed several times, 4� loading dye was added, and proteins were
112 Molecular Therapy: Methods & Clinical Development Vol. 4 March 201
separated by SDS-PAGE on 4%–15% precast gels for western blot
analysis.

RNA Splicing and Structure Prediction Web Servers

Prediction of RNA splice sites was generated by the software made
available by the NetGene2 Server (http://www.cbs.dtu.dk/services/
NetGene2/) and prediction of mRNA structure by the software
MFOLD (http://mfold.rit.albany.edu/?q=mfold/RNA-Folding-Form)
using the following parameters: linear RNA sequence; 37�C folding
temperature; 1 MNaCl ionic condition: number of calculated folding;
differences between the calculated foldings = default parameters;
maximum extension of the calculated loops = 30; maximum asymme-
try between the calculated loops = 30; and no limit in base pairing dis-
tance. The comparison between different structures was obtained by
the SimTree software (http://bioinfo.cs.technion.ac.il/SimTree/).

Statistical Methods

Statistical analysis was performed using JMP statistical software and
by running the Wilcoxon-Mann-Whitney ranked-sum non-para-
metric test. The significance level was set as p < 0.001.
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