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ABSTRACT: We compare, for a range of conjugated polymers
relevant to water-splitting photocatalysis, the predictions for the
redox potentials associated with charge carriers and excitons by a total-
energy ΔDFT approach to those measured experimentally. For solid-
state potentials, of the different classes of potentials available
experimentally for conjugated polymers, the class measured under
conditions which are the most similar to those during water splitting,
we find a good fit between the ionization potentials predicted using
ΔB3LYP and those measured experimentally using photoemission
spectroscopy (PES). We also observe a reasonable fit to the more
limited data sets of excited-state ionization potentials, obtained from
two-photon PES, and electron affinities, measured by inverse PES,
respectively. Through a comparison of solid-state potentials with gas
phase and solution potentials for a range of oligomers, we demonstrate
how the quality of the fit to experimental solid-state data is probably the result of benign error cancellation. We discuss that the
good fit for solid-state potentials in vacuum suggests that a similar accuracy can be expected for calculations on solid-state
polymers interfaced with water. We also analyze the quality of approximating the ΔB3LYP potentials by orbital energies. Finally,
we discuss what a comparison between experimental and predicted potentials teaches us about conjugated polymers as
photocatalysts, focusing specifically on the large exciton-binding energy in these systems and the mechanism of free charge carrier
generation.

■ INTRODUCTION
Oligomeric and polymeric photocatalysts1−13 that can drive the
redox half-reactions that underlie photocatalytic water splitting,
i.e., the reduction of protons to molecular hydrogen and/or
oxidation of water to oxygen gas, or CO2 photoreduction, are
currently a very active area of research.14,15 The attraction of
these materials arises from the fact that they are based on earth
abundant elements, that their properties can easily be tuned
through copolymerization, and that, compared to related
carbon nitride16−27 and graphene oxide28,29 photocatalysts,
their molecular structure is generally well understood.
One of the crucial requirements for a potential photocatalyst,

polymeric or not, to meet is the thermodynamic ability to drive
both of the water splitting or CO2 photoreduction solution
half-reactions. This prerequisite, at least for colloidal photo-
catalysts, translates into the constraint that the adiabatic
potentials associated with the charge carriers, the ionization
potential (IP), and electron affinity (EA) for holes and
electrons, respectively, and the excited state, IP* and EA*, in
a materials straddle those of the solution half-reactions, as
shown in Figure 1. Knowledge of these potentials is hence
crucial when trying to understand the activity of known
photocatalysts or developing new ones. Reliably measuring
such potentials, especially under operating conditions, however,

is far from easy. For example, cyclic voltammetry (CV) on solid
polymer films on an electrode in contact with an aprotic polar
solvent system, the closest measurements in practice come to a
solid polymer in contact with water, is generally hard to
interpret because the voltammograms tend to be broad, show
signs of irreversibility,30−32 and involve the incorporation of
counterions and solvent molecules into the film,33 something
not expected under photocatalysis conditions. A related
problem with CV and other electrochemical measurements is
that measuring the electron affinity values of polymers is
complicated by the fact that these often lie outside the stability
window of common solvents and that one thus has to be
cautious not to confuse a signal due to solvent oxidation with
the signature of electron affinity. The ability to calculate the
redox potentials of charge carriers and excitons, therefore, is
very useful, especially as it moreover allows one to predict such
potentials of hypothetical materials that have not been
synthesized as yet and thus to screen computationally for
promising photocatalysts. The latter is an especially attractive
proposition for polymeric materials, for which the synthesis,
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purification, and characterization of both the polymer and
constituting monomers can be very time-consuming.
In our group, we developed a density functional theory

(DFT) approach specifically aimed at predicting the potentials
of polymeric and nanoparticulate photocatalysts34−38 and
applied it, among other things, to linear polymers,11,34 including
the first ever reported polymer photocatalyst poly(p-phenyl-
ene),1−4 polymer networks,8 and carbon nitride materials.35

The main difference between our approach and that developed
by others39−45 for describing photocatalysts is that it revolves
around molecular calculations in combination with a
continuum dielectric screening model46 to describe the material
and its aqueous environment rather than calculations using
periodic boundary conditions (PBC). The focus in the case of
polymeric materials on a single polymer strand and the
assumption that all intermolecular interaction, be it with other
polymer strands or water, can be described in terms of an
isotropic dielectric response, is related to the fact that such
materials are often amorphous or only poorly crystallized.
Hence, we do not have good experimental structural models for
polymers to use in PBC calculations and, even if we did
construct artificially periodic models, they probably would not
necessarily be representative for the solid. Another difference
between our approach and that of many others is that we
calculate the potentials using a total-energy ΔDFT approach,
rather than equate IP and EA with (generalized)
Kohn−Sham−(G)KS−orbital energies, which at least concep-
tually is problematic, especially for EA,37,47 as well as, calculate
potentials associated with the exciton. Finally, we also take into
account the (self-)trapping of charge carriers and excitons, i.e.,
the formation of polarons and polaronic excitons, by
considering adiabatic rather than vertical potentials.
Our approach predicts potentials that are in line with

observed activity of polymeric photocatalysts; e.g., many
polymers are predicted to have no thermodynamic driving
force for water oxidation, their ionization potential is more
negative than the potential associated with the water oxidation
half-reaction, while sacrificial electron donor oxidation is
predicted to be exergonic. However, we never previously
compared the explicit predicted polymer and oligomer
potentials with those measured experimentally. Here, we
correct this omission and compare predicted potentials, in

the absence of data for polymeric solids in contact with water,
to those measured from three distinctly different alternative
data sets, gas phase photoemission spectroscopy (PES) for
oligomers of poly(p-phenylene),48 solution electrochemistry
data in aprotic polar solvents for oligomers of poly(p-
phenylene)49 and poly(fluorene)50 derivatized with solubilizing
alkyl chains, and solid-state (inverse) PES data44,48,51−60 for a
range of conjugated polymer solids in vacuum. The differences
between this and previous work validating the use of hybrid
DFT for predicting redox potentials in the literature61−73 are a
combination of (i) our focus on oligomers/polymers rather
than small molecules or metal complexes, (ii) our emphasis on
potentials in condensed phases, including the solid-state, (iii)
the fact that we consider adiabatic rather than vertical
potentials, and/or (iv) because we also include excited state
potentials in our comparison. We show that, for conjugated
oligomers and polymers, (TD-)DFT calculations using the
standard B3LYP74,75 density functional yield reasonable gas and
solution phase potentials and rather consistently good solid-
state potentials, the latter in line with previous work for the IP
and EA of small molecules.65−67 We further demonstrate that
these good solid-state potentials appear to be the result of
rather benign error cancellation. We discuss that the good fit
for solid-state potentials in vacuum suggests that a similar
accuracy can be expected for calculations on solid-state
polymers interfaced with water. We will also briefly touch
upon the merits of the orbital approximation mentioned above,
as well as discuss the requirements on a density functional to
consistently calculate the potentials associated with charge
carriers and excitons in polymeric materials. Finally, we will
examine what a comparison of experimental and computation-
ally predicted potentials teaches us about conjugated polymers
as water-splitting photocatalysts.

■ METHODOLOGY
We calculate the adiabatic IP, EA, IP*, and EA* potentials of a
polymer P in a ΔDFT fashion from the Gibbs free energy
difference of the following four redox reactions, written, in line
with convention, as reductions

+ →+ −P e P (1)

+ →− −P e P (2)

+ → *+ −P e P (3)

* + →−P e P (4)

where P+, P−, and P* are the polymer with a hole, excess
electron and exciton, respectively. The Gibbs free energy
differences ΔGr are converted to reduction potentials E via

Δ = −G nFEr (5)

where F is the Faraday constant and n the number of electrons
involved in the reaction, typically one. In our calculations, we
furthermore equate the Gibbs free energy difference to the total
energy difference, neglecting the vibrational, translational and
rotational contribution to the free energy. In our previous work
on poly(para-phenylene) oligomers,34 this was found to be a
generally good approximation because of the relative similarity
of the structures of P+, P−, P*, and P. Effects of solvation and
going to condensed phases in general are described using the
COSMO76 dielectric screening model, where we generally
neglect the outlying charge correction. P* energies were
obtained by a TD-DFT energy minimization in vacuum,

Figure 1. Scheme illustrating how, in the case of water splitting, the
redox potentials associated with charge carriers (IP and EA) and
excitons (EA* and IP*) of a photocatalyst must straddle the proton
reduction and water oxidation potentials (blue and red broken lines,
respectively) for both processes to be thermodynamically favorable.
The vertical axis on the right of the figure shows the different possible
alignments with vacuum, the result of the different experimental
SHEAP values.
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followed, if needs be, by a single point TD-DFT calculation
using COSMO, where all TD-DFT calculations make the
Tamm−Dancoff approximation.77 All (TD-)DFT calculations,
finally, except where otherwise indicated, were performed using
the Turbomole 6.6 code,78,79 the B3LYP functional, the double-
ζ DZP80 basis-set, and the m3 medium integration grid.
Potentials, be them computationally predicted or exper-

imentally measured, are always expressed with respect to a
reference, typically vacuum in the case of photoelectron
spectroscopy and a reference electrode, for example, the
standard hydrogen electrode (SHE), for liquid electro-
chemistry. A key parameter in the conversion from one
potential reference to another is the value of the SHE absolute
potential (SHEAP), for which a range of experimental values
are proposed, something that is partly related to different
possible choices for thermodynamic standard states and partly
due to extra-thermodynamic assumptions.81 In this paper, we
consider two values of the SHEAP (see Figure 1), 4.44 V, the
original IUPAC recommended value82 we used in our previous
work, and, a more recently proposed value of 4.28 V.81 We will
present results where possible for both SHEAP choices.
However, if in the text only one value is mentioned for a
given system, this will be based on the use of 4.44 V for
SHEAP.

■ RESULTS AND DISCUSSION
IP. When an oligomer or polymer, or more generally a

molecule, is taken from the gas phase into a solution, the solid
state or a solid in contact with a solution, the IP of the molecule
gets reduced and becomes shallower, through two different
mechanisms.83,84 First, prior to ionization, in solids, where the
molecules are densely packed, hybridization raises the energy of
the highest energy occupied orbital, from which an electron will
get removed upon ionization. Second, after ionization, the
dielectric nature of the environment will screen the generated
charge by polarization and stabilize the charged species formed
energetically. The difference between the gas and condensed IP
values is commonly referred to as the polarization energy, even
if only part of this difference is the result of dielectric
polarization and, in contrast to what the names suggest, it also
contains a contribution due to hybridization.
Table 1 shows experimental and DFT predicted values of the

IP of oligomers and polymers of p-phenylene in the gas phase,
in a dichloromethane (DCM) solution, and as a solid. We will
first concentrate on the experimental values taken from the

literature.48,49 While one has to be slightly careful with
comparing these experimental potentials as they are measured
using two fundamentally different methods, ultraviolet PES
(UV-PES) and CV, and because of the need to convert
between different potential references, vacuum for UV-PES and
the standard calomel electrode (SCE)/SHE and the ferrocene/
ferrocenium redox couple in the case of CV, such a comparison
is very insightful.
As expected based on the literature, the gas phase IPs are the

deepest, with the solid-state and DCM solution values being 1−
2 V smaller than the corresponding gas phase values. More
interestingly, the polarization energies for the different
oligomers in the solid state and DCM, which can be extracted
from the IP values in Table 1, are very similar. As the dielectric
permittivity of the solid-state oligomer/polymer phase is likely
to be smaller than that of DCM, especially given the fact that
the supporting electrolyte is likely to increase the effective
dielectric permittivity of the DCM solution through ion-pair
formation,85 this suggests that the smaller dielectric contribu-
tion to the permittivity and thus screening of the formed charge
in the solid state relative to the solution is more than
compensated by the larger contribution due to hybridization in
the former. On the basis of the numbers, it is hard to extract an
exact value for the effect of hybridization, but it is likely to be at
least a few tenths of volts. The experimental polarization energy
values measured for the oligomers, finally, are similar in
magnitude to those measured for organic crystals83,84 and
appear to decrease with oligomer length.
Moving on to the computational predictions, where we

approximate the alkyl side chain by an isopropyl group (see
Figure 2), inspection of Table 1 shows that, for the gas and
solution phases, ΔDFT calculations using the B3LYP functional
yield IP values that are 0.5−0.6 V shallower, less positive, than
those measured experimentally. A similar shift was reported by
Baik and Friesner when calculating EA values of small
molecules in solution using B3LYP.61 Calculations, discussed
in the Supporting Information (ESI-1), using a slightly higher

Table 1. Experimentally Measured and Computationally Predicted Ionization Potentials of Oligomers and Polymers of p-
Phenylene in Different Environments vs the Standard Hydrogen Electrode (All Values in Volts)

gas phase DCMb solid

UV-PESa,48 B3LYPa CVc,49 B3LYPa εr 8.93 UV-PESa,48 B3LYPa εr 2

2 3.72 (3.88) 3.26 (3.42) 1.91 1.42 (1.58)
3 3.36 (3.52) 2.71 (2.87) 1.78 1.22 (1.38) 1.66 (1.82) 2.09 (2.25)
4 1.73 1.13 (1.29)
5 1.69 1.09 (1.25)
6 2.76 (2.92) 2.08 (2.24) 1.66 1.07 (1.23) 1.46 (1.62) 1.63 (1.79)
7 1.65 1.05 (1.21)
8 1.65
∞ 1.5d 0.9d 1.21/1.36e (1.37/1.52) 1.45 (1.61)f

aAbsolute IP vs vacuum converted to SHE scale by a shift of 4.44 and 4.28 (inside parentheses), respectively. bOligomers with branched iso-alkyl
chains at the terminal p-carbon atoms. cMeasured in DCM in the presence of 0.2 M n-Bu4NPF6 supporting electrolyte against SCE, values converted
to SHE scale by application of a shift of +0.244. dObtained through linear extrapolation vs 1/n. eValue obtained by two different extrapolation
methods in the original experimental paper. fModeled using an oligomer of 12 units.

Figure 2. Structures of oligomer models studied computationally.
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dielectric permittivity for the DCM solution than that of pure
DCM in order to take into account that the supporting
electrolyte will likely increase the effective dielectric permittiv-
ity, as well as calculations with larger basis-sets (ESI-2), do not
sufficiently change this observation. Moreover, a comparison
between similar ΔB3LYP calculations and experimental data for
the ionization potentials of oligo(fluorene) in solution in the
Supporting Information (ESI-1) finds a similar 0.5−0.6 V shift,
suggesting this to be a quite general feature. In contrast to for
the gas and solution phases, in calculations for the solid state, in
which as discussed above we neglect hybridization, the
predicted IPs are 0.2−0.4 V more shallow, less positive, than
those measured experimentally. For the dissolved oligomers,
the calculations reproduce the experimentally obtained polar-
ization energy values rather well, but the solid-state polarization
energies are underestimated by ∼1 V. If the isotropic dielectric
screening model used in our calculation correctly reproduces
the dielectric component of the polarization energy, this would
suggest that the effect of hybridization is ∼65% of the
polarization energy and far from negligible. The absolute
values of the solid-state IPs, most relevant for our work,
however, are, as discussed above, reasonably well reproduced.
As the inherent density functional related error and the error
introduced by neglecting hybridization have similar magnitudes
and opposite signs, the solid-state values by benign error
cancelation lie close to their experimental counterparts.
This success in reproducing experimental values of solid-state

IP values for polymers appears to be not limited to oligomers
and the polymer of p-phenylene. Figure 3 and Table S5 in the

Supporting Information show a comparison of IPs of a range of
conjugated polymers measured experimentally by UV-
PES48,51−54,56,60 and our B3LYP calculations, again using εr 2,
for oligomers of 12 units (see Figure 4 for the structures of
different polymers studied). Concentrating on the polymers
without side chains, for all materials, except perhaps poly-
(pyrrole), the match is quite good (maximum deviation of
−0.44 V, for poly(pyrrole), and a mean absolute deviation of
0.20 V) and the DFT predictions correctly recover the relative
ordering of the IPs of the different polymers. Since poly-
(pyrrole) is easily oxidizable,54 the deviation observed for this
material can in part find its origin in experiment. Use of a
slightly higher dielectric permittivity than 2 for the heteroatom
containing polymers, to account for the fact that such polymers
probably have a higher dielectric permittivity than pure
hydrocarbon polymers (see Table S8 in the Supporting
Information), if anything worsens the fit. In this context, it is

important to remember that photoemission is likely to mostly
involve molecules near the polymer−vacuum interface due to
the surface sensitivity of UV-PES and that such molecules as a
result will be less screened than in the bulk.86 These results also
suggest that the single oligomer embedded in a dielectric
continuum approximation, which ignores details of molecular
packing, works very well for these amorphous/quasi-crystalline
polymers, even if for fully crystalline materials there are cases
known where nonisotropic packing effects are large and one has
to go beyond the continuum approach.87

Overall, on the basis of these results and the fact that the
(dielectric) effect of going from an interface with vacuum to
water is most likely additive, we feel confident that the
computational setup used will also provide decent predictions
for the IP of a polymer interfaced with water. Protonation of a
polymer might induce an additional shift in the potentials, but
this is, even for the nitrogen containing polymers, unlikely to be
an issue at (near) neutral pH.

EA. In contrast to the relative multitude of reference data on
the IP of oligomers and polymers, there is very little
experimental data on the EA of oligomers and polymers,
especially in the solid state. Most reported electron affinities are
obtained by adding the optical gap, the onset of light
absorption, to the value of the IP, but this is a questionable
approach. More theoretically justified values can be obtained
from either inverse PES or the high kinetic energy edge of two-
photon PES (2PPE) spectra. Such data are only available, as far
as we are aware, for three of the polymers discussed above. for
the alkyl-chain derivatized version of poly(thiophene): poly(3-
hexylthiophene) (P3HT),59,60 poly(fluorene): poly(9,9-dioctyl-
fluorene)57 (PF8), and poly(2-methoxy-5-(2-ethyl-hexyloxy)-p-
phenylene vinylene)58 (MEH-PPV). As can be seen from
Figure 3 and Table S6 in the Supporting Information, the fit is
good for P3HT and PPV, and slightly less good for PF8. This is
for calculations neglecting the alkyl side chains. However,
calculations that take these side chains into account, included in
Table S6 in the Supporting Information, show that these side
chains are predicted to only have a small effect on the electron
affinity. While these three data points are not sufficient to
properly test our approach in terms of its ability to correctly
predict electron affinities of polymers in the solid state, it at
least give some confidence in our approach. Similarly as for the
IP, we expect that the difference in the EA for a polymer in
contact with vacuum and water is adequately described by
changing the dielectric permittivity from 2 to that of water.

Excited State Potentials: IP* and EA*. Experimental
benchmark data for the excited state potentials of relevant
polymers are as rare as data for EA, if not rarer. We are aware of
2PPE data, where the process of ionization of the intermediate
state by the second photon can be hypothesized to correspond

Figure 3. Comparison between the potentials predicted using (TD-
)B3LYP and εr 2, thick lines, and measured experimentally, thin lines,
for a range of conjugated polymers.

Figure 4. Structures of the polymers studied; the n used in the
calculations was 12 for all structures except PF, where an n of 6 was
used instead.
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to the ionization of a (self-trapped) exciton and thus IP*, for
only two polymers: P3HT,59 and MEH-PPV.58 As can be seen
from Figure 3 and Table S7 in the Supporting Information, the
experimentally measured values appear in line with the values
predicted by our computational approach for the polymers
without side chains. Moreover, for both P3HT and MEH-PPV,
EA and IP* are split by ∼0.7 (e)V, the adiabatic exciton-
binding energy, in experiment and by ∼1 (e)V in our
calculations. Similarly as for EA, while these two data points
for IP* are not sufficient to properly test our approach in terms
of its ability to correctly predict electron affinities of polymers
in the solid state, it does give confidence in our approach. We
are not aware of any experimental data that would allow us to
directly validate our EA* predictions; this would require a
2PPE equivalent inverse photoemission spectroscopy. How-
ever, as by definition, the splitting between IP and EA* is the
same as between EA and IP*, the fit between predicted IP* and
2PPE values in combination with the fit between experimental
and computational IP values suggests that EA* might be as well
described as IP*. Again, just as for IP and EA, the effect of
water is likely to be additive for IP* and EA*.
Orbital Approximation. IP and EA are often approxi-

mated in the literature by the negative of the energy of the
highest energy occupied (G)KS molecular orbital (HOMO or
valence band maximum) and lowest energy unoccupied (G)KS
molecular orbital (LUMO or conduction band minimum). This
approximation is especially problematic on conceptual grounds
for EA as, at least for pure density dependent functionals, the
unoccupied orbitals are too strongly bound and lie too
deep.37,47 The (G)KS gap, the energy difference between
LUMO and HOMO, as a result lies often closer to the vertical
optical gap than the vertical fundamental gap. A comparison
between IP/EA and −HOMO/−LUMO for the polymers in
Figure 5, however, shows a surprisingly decent fit between both

and by extension with experimental IP/EA values. The
difference between the orbital energies and potentials is an
approximately constant small shift of a couple of tenths of volts.
In line with what was previously observed by Schwenn and co-
workers67 in the case of small molecules, the reason again
appears to be benign error cancellation. The underestimation of
the vertical fundamental gap by the HOMO−LUMO energy
difference is similar in size to a shift in IP and EA due to
adiabatic and polarization effects not included in orbital

energies, and both effects cancel each other. However, while
we observe a decent fit between IP/EA and −HOMO/−
LUMO for the solid-state oligomers studied, the accuracy of
unshifted orbital energies will be different for different dielectric
constants (see the Supporting Information) and hence different
environments, as well as, we expect, when using different
density functionals or for the case of PBC calculations on
solids.

■ PERSPECTIVE
Methodology. Consistently calculating the set of potentials

associated with the charge carriers and exciton is rather a
demanding application. Very likely other density functionals
than B3LYP, for example optimally tuned range-separated
density functionals,69,72,88 might yield more accurate values for
the ionization potential or electron affinity of oligomers in the
gas phase or in solution. However, to be useful in this context,
use of such a functional should simultaneously allow for the
calculations of the other potentials, including the excited state
potentials, and hence the optical properties of a system, and the
potentials of solution reactions, and all to a similar consistent
standard. Additionally, while our dependence on error
cancelation to predict decent solid-state values is unsatisfying
from a theoretical point of view, it saves one from having to do
calculations on extended models of the solid. If our estimate of
the contribution of hybridization to the polarization energy for
PPP is correct and a general feature of conjugated polymers,
then calculations with functionals that give better gas phase
values might require calculations on explicit stacks to obtain
solid-state values or ad-hoc shifts. The latter is probably as
conceptually unsatisfying as relying on error cancelation, while
the former is, at least for polymers that are amorphous or
poorly crystallized, difficult to achieve due to, as discussed in
the Introduction, the lack of meaningful structural models. An
additional complication with calculations on explicit stacks is
the fact that the percentage of Hartree−Fock exchange
included the density functional fixes the intermolecular
dielectric screening inside the stack.89 As a result, the effective
dielectric constant inside the stack might be different from its
desired value and different from that used in the external
continuum dielectric screening model.
We see the use of orbital energies to predominantly lie in fast

screening of materials before calculating the potentials explicitly
with ΔDFT for promising materials. Even if the −HOMO/−
LUMO values would be exactly identical to IP/EA, the fact that
within the orbital formalism one cannot calculate the excited
state potentials or estimate adiabatic or polarization effects
makes it, in our opinion, at least for polymers, more of a high
throughput screening tool than an in-depth analysis method.

Materials. Besides validating our computational method-
ology, the comparison between experimentally measured and
computationally predicted potentials also gives us additional
insight into polymeric materials and their ability to act as water-
splitting photocatalysts. Specifically, the good match between
the predicted and experimentally measured ionization poten-
tials, as well as the specific experimental values of the ionization
potentials and electron affinities for the polymers considered,
supports our previous observation34,38 that conjugated
polymers generally have a large thermodynamic driving force
for proton reduction and a small(er) driving force, if at all, for
water oxidation, i.e., that the electron affinities and ionization
potentials of most polymers are relatively shallow. The
experimental data are similarly in line with our prediction38

Figure 5. Comparison between IP and −HOMO, red open squares,
and EA and −LUMO, open blue triangles, calculated with B3LYP and
εr 2.
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that the incorporation of heteroatoms should drive down the
ionization potential of a polymer and improve the driving force
for water oxidation if it results in a polymer with an electron-
poor π-system, e.g., poly(pyridine), and reduce this driving
force if the resulting polymer is electron-rich, i.e., poly(pyrrole)
and poly(thiophene).
Perhaps even more interestingly, our estimate of the

experimental adiabatic exciton-binding energy in substituted
poly(thiophene) P3HT and poly(phenylvinylene) PPV of ∼0.7
(e)V, obtained above from the difference in the measured
electron affinity58−60 and 2PPE intermediate state energy58,59

discussed above, as well as the fact that it is similar to our
theoretical estimate, confirms our previous observation38 that
excitons in conjugated polymers should be so strongly bound
that they are unlikely to spontaneously fall apart in the bulk.
The generation of free charge carriers, where free signifies that
the charge carriers are not bound in the form of an exciton, thus
has to be mediated by either a reduction of the adiabatic
exciton-binding energy through induced dielectric screening by
close contact with water or dissociation of the exciton at the
polymer−water (or heteropolymer) interface. Calculations38

predict that the former indeed takes place but that the resulting
adiabatic exciton-binding energies still will be larger than kB*T
at room temperature. Free charge carrier generation thus
appears mediated by interface dissociation of excitons, similar
to exciton dissociation in organic photovoltaics on the donor−
acceptor interface.90

■ CONCLUSIONS
We have for a range of polymers relevant to photocatalysis
compared the predictions of density functional theory for the
redox potentials associated with charge carriers and excitons to
those measured experimentally. We find for the ionization
potentials of solid-state polymers in contact with vacuum, of the
different classes of potentials available experimentally for
conjugated polymers, the set measured under conditions
which are the most similar to those during water splitting, a
good fit between the values predicted using ΔB3LYP and those
measured experimentally. Experimental data measured under
similar conditions for the electron affinity and excited state
ionization potential are much more limited, but we find a good
fit to ΔB3LYP in the latter case and a decent fit in the former.
Overall, the comparison with experimental data gives good
confidence in the use of ΔB3LYP to predict polymer potentials
for solids and suggests that, if the effect of replacing the
interface with vacuum by an interface with water is largely
dielectric in nature, the here used approach should also give
accurate predictions under water-splitting conditions.
In contrast to the case of solid-state polymers, the ΔB3LYP

predicted ionization potentials for oligomers of p-phenylene in
the gas phase and solutions and oligomers of fluorene are off by
0.5−0.6 V with respect to experiment. A combination of this
observation and comparison of experimental and theoretical
estimates of the polarization energy suggests that the
consistently good fit for solid polymers may be the result of
benign error cancellation. We lack similar data for the electron
affinity and excited state potentials, but it stands to reason that
the decent description of these potentials is similarly the result
of error cancelation.
Besides validating our computational approach, the compar-

ison between experimental and computational results, among
other things, also confirms our previous prediction that
generally excitons in conjugated polymers are so strongly

bound that they do not spontaneously fall apart in the bulk.
The generation of free charge carriers instead thus must be
mediated by the dissociation of excitons on the polymer−
solution interface or polymer−polymer interface in heteroge-
neous materials.
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