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Abstract We initiate the systematic study of G2-instantons with SU(2)2-symmetry.
As well as developing foundational theory, we give existence, non-existence and clas-
sification results for these instantons. We particularly focus on R

4 × S3 with its two
explicitly known distinct holonomy G2 metrics, which have different volume growths
at infinity, exhibiting the different behaviour of instantons in these settings. We also
give an explicit example of sequences of G2-instantons where “bubbling” and “remov-
able singularity” phenomena occur in the limit.
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1 Introduction

In this article we study G2-instantons: these are examples of Yang–Mills connections
on Riemannian manifolds whose holonomy group is contained in the exceptional Lie
group G2 (so-called G2-manifolds). These connections are, in a sense, analogues
of anti-self-dual connections in dimension 4, and are likewise hoped to be used to
understand the geometry and topology of G2-manifolds, via the construction of enu-
merative invariants. Our focus is on G2-instantons on G2-manifolds where both the
connections and ambient G2 geometry enjoy SU(2)2-symmetry. In particular, as a G2-
manifold is Ricci flat, for it to admit continuous symmetries it must be noncompact.
By restricting to this case, we are able to shed light on the still rather poorly understood
theory of G2-instantons, in an explicit setting. In particular, we give new existence and
non-existence results for G2-instantons. Furthermore, we can see how general theory
works in practice, examine how the ambient geometry affects the G2-instantons and
give local models for the behaviour of G2-instantons on compact G2-manifolds.

1.1 G2-instantons

Let (X7, ϕ) be a G2-manifold,1 which implies the 7-manifold X7 is endowed with
a 3-form ϕ which is closed and determines a Riemannian metric g with respect to
which ϕ is also coclosed. We shall denote ∗ϕ by ψ for convenience. Let P → X
be a principal bundle with structure group G which we suppose to be a compact and
semisimple Lie group. A connection A on P is said to be a G2-instanton if

FA ∧ ψ = 0. (1.1)

Equivalently, G2-instantons satisfy the following G2-analogue of the “anti-self-dual”
condition:

FA ∧ ϕ = − ∗ FA. (1.2)

As far as the authors are aware, the first time G2-instantons appeared in the litera-
ture was in [6]. This reference investigates generalizations of the anti-self-dual gauge
equations, in dimension greater than 4, and G2-instantons appear there as an example.

1 For further background on G2-manifolds, the reader may wish to consult Joyce’s book [16].
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More recently, the studyofG2-instantons has gained a special interest, primarily due
to Donaldson–Thomas’ suggestion [10] that it may be possible to use G2-instantons
to define invariants for G2-manifolds, inspired by Donaldson’s pioneering work on
anti-self-dual connections on 4-manifolds. Later Donaldson–Segal [9], Haydys [14],
and Haydys–Walpuski [15] gave further insights regarding that possibility.

On a compact holonomy G2-manifold (X7, ϕ) any harmonic 2-form is “anti-self-
dual” as in (1.2), hence any complex line bundle L on X admits a G2-instanton,
namely that whose curvature is the harmonic representative of c1(L). However, the
construction of non-abelian G2-instantons on compact G2-manifolds is much more
involved. In the compact case, the first such examples were constructed by Walpuski
[25], over Joyce’sG2-manifolds (see [16]). Sá Earp andWalpuski’s work [22,26] gives
an abstract construction of G2-instantons, and currently one example, on the other
known class of compactG2-manifolds, namely “twisted connected sums” (see [7,17]).

The goal of this paper is to performageneral analysis ofG2-instantons on somenon-
compact G2-manifolds. In the noncompact setting, the first examples of G2-instantons
where found by Clarke [8], and further examples were given by the second author in
[20]. In this article we primarily study G2-instantons onR4×S3, which has two known
complete and explicit G2-holonomy metrics, namely: the Bryant–Salamon (BS) met-
ric [5] and the Brandhuber et al. (BGGG) metric [2]. Both these metrics have {0}× S3

as an associative submanifold: such area-minimizing submanifolds in G2-manifolds
have both known and expected relationships with G2-instantons, so studying these
metrics allows us to verify known theory and test expectations. Of particular note is
that the BS and BGGG metrics have different volume growths at infinity, and are in
a sense analagous to the flat and Taub-NUT hyperkähler metrics on R

4. Our results
exhibit the similarities and differences in the existence theory for G2-instantons for
these metrics.

1.2 Summary

The aimof the article is to start the systematic study of SU(2)2-invariantG2-instantons.
We now summarize the organization of our paper and the main results.

Both the BS and BGGGmetric have SU(2)2 as a subgroup of their isometry group:
in fact, SU(2)2 acts with cohomogeneity-1. All known complete SU(2)2-invariant G2-
manifolds of cohomogeneity-1 actually have SU(2)2 × U (1)-symmetry. These facts
are summarized in Sect. 2, where we also deduce the ODEs for SU(2)2-invariant G2-
instantons. In Sect. 2.5, we give some explicit elementary solutions to the equations,
namely flat connections and abelian ones. Already in this simple abelian setting we
see a marked difference between the G2-instantons for the BS and BGGG metric.

In Sect. 3 we focus on the BS metric, which has isometry group SU(2)3. This
group also acts with cohomogeneity-1 and has a unique singular orbit which is the
associative S3. We describe SU(2)3-invariant G2-instantons with gauge group SU(2).
A dichotomy arises from the two possible homogeneous bundles over the associative
S3 on which the instantons can extend: let P1 and Pid denote these two bundles.
In the P1 case, by combining our study in Sect. 3 with our work in Sect. 4 we obtain
our first main result.
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Theorem 1 Let A be an irreducibleSU(2)2×U (1)-invariant G2-instanton with gauge
group SU(2) on the BS metric. If A smoothly extends over P1, then it is one of Clarke’s
G2-instantons in [8].

See Theorems 4 and 7 for more precise statements and an explicit formula for the
instantons, and see Corollary 1 for a classification of the reducible instantons. Here
we mention that Clarke’s G2-instantons form a family {Ax1}, parametrized by x1 ≥ 0,
and the curvature of these connections decays at infinity.

In the Pid case, we find (in Theorem 5) a new explicit G2-instanton Alim. We
show in Theorem 6 and Corollary 2 that Alim is, in a certain (precise) sense, the limit
of Clarke’s ones as x1 → +∞. We state our second main result informally, which
confirms expectations from [23,24].

Theorem 2 Let {Ax1} be a sequence of Clarke’s G2-instantons with x1 → +∞.

(a) After a suitable rescaling, the family {Ax1}bubbles off an anti-self-dual connection
transversely to the associative S3 = {0} × S3.

(b) The connections Ax1 converge uniformly with all derivatives to Alim on every
compact subset of (R4\{0}) × S3.

(c) The functions |FAx1 |2−|FAlim |2 are integrable and converge to 8π2δ{0}×S3 , where
δ{0}×S3 denotes the delta current associated with the associative S3.

Whilst (a) gives the familiar “bubbling” behaviour of sequences of instantons, with
curvature concentratingon an associative S3 by (c),we can interpret (b) as a “removable
singularity” phenomenon since Alim is a smooth connection on R

4 × S3. In proving
Theorem 2, we show that as {Ax1} bubbles along the associative S3 one obtains a
Fueter section, as in [9,14,27]. Here this is just a constant map from S3 to the moduli
space of anti-self dual connections on R4 (thought of as a fibre of the normal bundle),
taking value at the basic instanton on R

4. Since 8π2 is the Yang–Mills energy of the
basic instanton, we can also view (c) as the expected “conservation of energy”.

We also give a local existence result for G2-instantons in a neighbourhood of the
associative S3 that extend over Pid in Proposition 4. The outcome is that there is a
local one-parameter family of such instantons. Of these only one, i.e. Alim, is shown
to extend over the whole of R4 × S3. The other ones may blow up at a finite distance
to {0} × S3, as suggested by numeric simulations. Some of the necessary analysis
leading to our local existence results is given in Appendix A.

In order to use similar techniques for G2-intantons on the BGGG metric, we must
reduce the symmetry group to SU(2)2×U (1). This actswith cohomogeneity-1 both on
BGGG and BS and, as before, its only singular orbit is the associative {0}× S3. Hence,
in Sect. 4 we describe SU(2)2 × U (1)-invariant G2-instantons on cohomogeneity-1
metrics with that symmetry on R

4 × S3. As a result, the same dichotomy appears in
that the G2-instantons can extend over the associative S3 either on the homogeneous
bundle P1 or Pid. We can thus compare the existence of G2-instantons for the BS and
BGGG metrics. While there is a 1-parameter family of G2-instantons (Clarke’s ones)
that smoothly extend over P1 on the BS metric, for the BGGGmetric we instead have
the following.
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Theorem 3 The moduli space of irreducible SU(2)2 ×U (1)-invariant G2-instantons
with gauge group SU(2) on the BGGG metric, smoothly extending on P1, contains a
nonempty (and unbounded) open set U ⊂ R

2. Moreover, the following holds.

(a) The instantons in U have quadratically decaying curvature.
(b) The map Hol∞ : U → U (1) ⊂ SU(2), which evaluates the holonomy of the

G2-instanton along the finite size circle at +∞, is surjective.

The more precise version of this result appears as Theorem 9 and Corollary 3. It is
typical in gauge theory to assume a bound on the curvature of the connection. One
might be tempted to impose an L2-bound, but this is too restrictive in the G2 setting: in
particular, Clarke’s examples do not satisfy this. Therefore, we impose a weak natural
curvature bound in deriving Theorem 3, namely that the curvature stays bounded. We
also prove that there is a 2-parameter family of locally defined instantons on P1 for the
BGGGmetricwhich do not extend globallywith bounded curvature: this is Theorem8.

Finally, we give local existence results for G2-instantons with SU(2)2 × U (1)-
symmetry in a neighbourhood of an associative S3, on any SU(2)2 × U (1)-invariant
G2-metric. In Proposition 7, we show the existence of a 2-parameter family of locally
defined G2-instantons smoothly extending over P1, whereas in Proposition 8 we show
the existence of a 1-parameter family of G2-instantons smoothly extending over Pid.
This yields the possibility for further study of G2-instantons even on the well-known
Bryant–Salamon metric on R

4 × S3.

2 The SU(2)2-invariant equations

In this section we derive the ordinary differential equations (ODEs) which describe
invariant G2-instantons on SU(2)2-invariant G2-manifolds of cohomogeneity-1. We
begin by giving the general framework of the evolution equations approach to G2-
manifolds and G2-instantons in Sect. 2.1. We then apply this theory in Sect. 2.2 to
the case of the invariant G2-manifolds we wish to study, leading to systems of ODEs
describing the G2-manifolds, and summarise the known complete examples which
arise from this approach. We then give a short presentation of the theory of invariant
fields on homogeneous bundles in Sect. 2.3 so thatwe can obtain the general expression
for an invariant connection on a principal orbit and its curvature. Combining these
considerations yields our desiredODEs in Sect. 2.4, whichwe then solve in elementary
cases in Sect. 2.5.

2.1 Evolution equations

In the work to be developed it is relevant to analyze the case when X7 = It × M6

and It ⊂ R is an interval with coordinate t ∈ R. Let (ω(t),�2(t)) be a 1-parameter
family of SU(3)-structures2 parametrized by t ∈ It and write the G2-structure

2 An SU(3)-structure on an almost complex 6-manifold (M, J ) can be given by a pair of a real (1, 1)-form
ω and a real 3-form �2 such that

ω ∧ �2 = 0, ω3 = − 8

3
�1 ∧ �2,

where �1 = −J�2.
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ϕ = dt ∧ ω(t) + �1(t), ψ = ω2(t)

2
− dt ∧ �2(t), (2.1)

where �1(t) = Jt�2(t) and Jt is the almost complex structure determined by �2(t).
This G2-structure is torsion-free (i.e. dϕ = 0 and dψ = 0) if and only if the 1-
parameter family (ω(t),�2(t)) is a solution of the so-called “Hitchin flow”,3 i.e. if
we write ḟ = d f/dt , then

�̇1 = dω, ω ∧ ω̇ = −d�2, (2.2)

subject to the constraints d�1 = 0 = dω2 for all t , which means that (ω(t),�2(t))
is a family of half-flat SU(3)-structures solving (2.2). (In fact, it is enough to impose
the half-flat condition on the SU(3)-structure at some initial time and the evolution
(2.2) will then preserve this condition.) For more on half-flat SU(3)-structures, in a
case relevant to us, the reader can see [19]. The resulting G2-structure induces the
metric g = dt2+gt , where gt is the metric on {t}× M induced by the SU(3)-structure
(ω(t),�2(t)).

In this situation our bundle P must be pulled back from M and, working in temporal
gauge, A = a(t) is a 1-parameter family of connections on P , so FA = dt ∧ ȧ+ Fa(t).
Hence A is a G2-instanton, i.e. solves (1.1), if and only if

ȧ ∧ ω2

2
− Fa ∧ �2 = 0, Fa ∧ ω2

2
= 0. (2.3)

Using ∗t to denote the Hodge-∗ associated with the SU(3) structure (ω(t),�2(t)) we
have

Jt ȧ = − ∗t

(
ȧ ∧ ω2

2

)
and �t Fa = ∗t

(
Fa ∧ ω2

2

)
, (2.4)

where �t denotes the metric dual of the operation of wedging with ω. Then, applying
∗t to both sides of (2.3) we have

Jt ȧ = − ∗t (Fa ∧ �2) , (2.5)

�t Fa = 0. (2.6)

Lemma 1 Let X = It × M be equipped with a G2-structure ϕ as in (2.1) satisfying
ω∧dω = 0 and ω∧ ω̇ = −d�2, which is equivalent to dψ = 0. Then, G2-instantons
A for ϕ are in one-to-one correspondence with 1-parameter families of connections
{a(t)}t∈It solving the evolution equation

Jt ȧ = − ∗t (Fa ∧ �2) , (2.7)

subject to the constraint �t Fa = 0. Moreover, this constraint is compatible with the
evolution: more precisely, if it holds for some t0 ∈ It , then it holds for all t ∈ It .

3 The nomenclature “Hitchin flow” is somewhat misleading since the system (2.2) is not parabolic in any
usual sense and it does not satisfy the typical regularity properties of geometric flows [4].
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Proof The evolution equation and the constraint follow immediately from equations
(2.5) and (2.6). To prove that the constraint is preserved by the evolution we compute

d

dt

(
Fa ∧ ω2

)
= daȧ ∧ ω2 + Fa ∧ d

dt
ω2 = da(ȧ ∧ ω2) − 2Fa ∧ d�2

= 2da(Fa ∧ �2) − 2Fa ∧ d�2 = 0,

where we used (2.2), (2.3), (2.7) and the Bianchi identity da Fa = 0. 	


Proposition 1 In the setting of Lemma 1, suppose that the family of SU(3)-structures
(ω(t),�2(t)) depends real analytically on t, and let a(0) be a real analytic connection
on P such that �0Fa(0) = 0. Then there is ε > 0 and a G2-instanton A on (−ε, ε)×
M6 with A|{0}×M6 = a(0).

Proof This is immediate from applying the Cauchy–Kovalevskaya theorem to (2.7).
	


2.2 SU(2)2-invariant G2-manifolds of cohomogeneity-1

In this section we shall give a self-contained exposition of all the known complete
SU(2)2-invariant G2-holonomy metrics. We shall see that all these examples actually
have SU(2)2 × U (1)-symmetry. We start with some preparation. Split the Lie algebra
su(2) ⊕ su(2) as su+ ⊕ su−, as follows. If {Ti }3i=1 is a basis for su(2) such that
[Ti , Tj ] = 2εi jk Tk , then T +

i = (Ti , Ti ) and T −
i = (Ti ,−Ti ) for i = 1, 2, 3 give a

basis for su+ and su− respectively. (Thus su+ and su− are diagonal and anti-diagonal
copies of su(2) in su(2) ⊕ su(2).) We shall let {η+

i }3i=1 and {η−
i }3i=1 be dual bases to

{T +
i }3i=1 and {T −

i }3i=1 respectively. The Maurer–Cartan relations in this case give

dη+
i = −εi jk

(
η+

j ∧ η+
k + η−

j ∧ η−
k

)
, (2.8)

dη−
i = −2εi jkη

−
j ∧ η+

k . (2.9)

The complement of the singular orbit can be written as R+
t × M , where M denotes

a principal orbit, which is a finite quotient of S3 × S3. The SU(2) × SU(2)-invariant
SU(3)-structure on the principal orbit {t} × M is given by [19]

ω = 4
3∑

i=1

Ai Biη
−
i ∧ η+

i , (2.10)

�1 = 8B1B2B3η
−
123 − 4

∑
i, j,k

εi jk Ai A j Bkη
+
i ∧ η+

j ∧ η−
k , (2.11)

�2 = −8A1A2A3η
+
123 + 4

∑
i, j,k

εi jk Bi B j Akη
−
i ∧ η−

j ∧ η+
k , (2.12)
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for real-valued functions Ai , Bi of t ∈ R
+, where η±

123 denotes η±
1 ∧ η±

2 ∧ η±
3 . For

future reference, we remark that

4
∑
i, j,k

εi jk Bi B j Akη
−
i ∧ η−

j ∧ η+
k = 8B1B2A3η

−
1 ∧ η−

2 ∧ η+
3 + cyclic permutations.

The compatible metric determined by this SU(3) structure on {t} × M is [19]

gt =
3∑

i=1

(2Ai )
2η+

i ⊗ η+
i + (2Bi )

2η−
i ⊗ η−

i , (2.13)

and the resultingmetric onRt ×M , compatible with the G2-structureϕ = dt ∧ω+�1,
is given by g = dt2 + gt . Recall also that this metric has holonomy in G2 if and only
if the SU(3)-structure above solves the Hitchin flow equations (2.2).

These considerations allow us to derive the general ODEs describing SU(2)2-
invariant G2-manifolds of cohomogeneity-1 as follows (c.f. [19]):

Ȧi = 1

2

(
A2

i

A j Ak
− A2

i

B j Bk
− A2

j + A2
k

A j Ak
+ B2

j + B2
k

B j Bk

)
, (2.14)

Ḃi = 1

2

(
A2

j + B2
k

A j Bk
+ A2

k + B2
j

Ak B j
− B2

i

A j Bk
− B2

i

Ak B j

)
, (2.15)

where (i, j, k) denotes a cyclic permutation of (1, 2, 3). We will be interested in this
article in the setting where we have known complete examples. In fact, in every such
example there is an extra U (1)-symmetry: this U (1) acts diagonally on S3 × S3 with
infinitesimal generator T +

1 . As a consequence, we have A2 = A3 and B2 = B3 and
(2.2) becomes (as in [1]):

Ȧ1 = 1

2

(
A2
1

A2
2

− A2
1

B2
2

)
, (2.16)

Ȧ2 = 1

2

(
B2
1 + B2

2 − A2
2

B1B2
− A1

A2

)
, (2.17)

Ḃ1 = A2
2 + B2

2 − B2
1

A2B2
, (2.18)

Ḃ2 = 1

2

(
A2
2 + B2

1 − B2
2

A2B1
+ A1

B2

)
. (2.19)

We now give the known examples of cohomogeneity-1 complete G2-metrics with
SU(2)2-symmetry.
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2.2.1 The Bryant–Salamon (BS) metric

The Bryant–Salamon metric on R4 × S3 [5] is one of the first examples of a complete
metric with G2-holonomy. It is not only SU(2)2-invariant, but actually SU(2)3-
invariant, having group diagram I (SU(2)3,SU(2),SU(2)2); i.e. the principal orbits
are SU(2)3/SU(2) ∼= S3×S3 and the (unique) singular orbit is SU(2)3/SU(2)2 ∼= S3.
(Here, the SU(2) in SU(2)3 is the subgroup SU(2)3 = 1 × 1 × SU(2), and
SU(2)2 ⊂ SU(2)3 is the subgroup SU(2)3 × �SU(2), where �SU(2) ⊂ SU(2)2 × 1
is the diagonal.) In terms of the SU(2)2-invariant point of view above, the metric can
be explicitly written as follows.

In this case the extra symmetry means that A1 = A2 = A3 and B1 = B2 = B3 and
the Eqs. (2.16)–(2.19) reduce to:

Ȧ1 = 1

2

(
1 − A2

1

B2
1

)
and Ḃ1 = A1

B1
. (2.20)

Setting B1 = s and A1 = sC(s) we see that (2.20) becomes d
ds (sC) = 1−C2

2C which

we can easily solve as C(s) =
√

1−c3s−3

3 , so that, for c > 0 and s ≥ c,

A1(s) = s√
3

√
1 − c3s−3 and B1(s) = s. (2.21)

In particular, choosing c = 1 and using t , the arc length parameter along the geodesic
parametrized by s, we define a coordinate r ∈ [1;+∞) implicitly by

t (r) =
∫ r

1

ds√
1 − s−3

, (2.22)

and solve (2.20) as follows:

A1 = A2 = A3 = r

3

√
1 − r−3 and B1 = B2 = B3 = r√

3
. (2.23)

It is easy to verify that the geometry at infinity is asymptotically conical to the standard
holonomy G2-cone on S3 × S3. In fact, we see from (2.21) that one obtains a one-
parameter family4 of solutions to (2.20), equivalent up to scaling, whose limit with
c = 0 is the conical solution. Moreover, the torsion-free G2-structure has a
unique compact associative submanifold which is the singular orbit {0} × S3

∼= SU(2)2/SU(2).
There is a one-parameter family of SU(2)3-invariant G2-instantons for this Bryant–

Salamon torsion-free G2-structure constructed by Clarke [8], where the parameter can
be interpreted as how concentrated the instanton is around the associative S3. We shall

4 There are, in fact, distinct SU(2)3-invariant torsion-free G2-structures on R
4 × S3 inducing the same

asymptotically conical Bryant–Salamon metric, determined by their image in H3(S3 × S3).
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prove, in Theorem 4 and Proposition 7, a uniqueness result for these G2-instantons in
the class of SU(2)2 × U (1)-invariant ones.

Remark 1 In [5] Bryant–Salamon constructed G2-holonomy metrics on the total
spaces of the bundles of anti-self-dual 2-forms over CP2 and S

4, i.e. �2−CP2 and
�2−S4. Such metrics are also of cohomogeneity-1 with respect to SO(5) and SU(3)
respectively and asymptotically conical. Instantons on these G2-manifolds are also
known to exist and some explicit examples can be found in [20].

It follows from Proposition 3 in [20] [or easily from (2.5), (2.6)] that on an asymptot-
ically conical G2-manifold, a G2-instanton whose curvature is decaying pointwise
at infinity will have as a limit (if it exists) a pseudo-Hermitian–Yang–Mills con-
nection a∞ (or nearly Kähler instanton): i.e. if ϕ∞ = t2dt ∧ ω∞ + t3�1,∞ and
ψ∞ = t4ω2∞/2 − t3dt ∧ �2,∞ is the conical G2-structure on the asymptotic cone
then Fa∞ ∧ ω2∞ = 0 and Fa∞ ∧ �2,∞ = 0.

2.2.2 The Brandhuber et al. (BGGG) metric

OnR4×S3 there is another complete G2-holonomymetric constructed byBrandhuber
and collaborators in [2], which is a member of a family of complete SU(2)2 × U (1)-
invariant, cohomogeneity-1, G2-holonomymetrics onR4×S3 found in [3].5 To derive
this example one can choose c > 0, set B1 = s and

A1 = c
ds

dt
= c

A2
2 + B2

2 − s2

A2B2

from (2.18). Letting C± = A2
2 ± B2

2 the Eqs. (2.17) and (2.19) yield

d

ds
C+ = s2C+ − C2−

s(C+ − s2)
and

d

ds
C− = C−

s
− 2c.

The second equation is easily integrated and so we are able to find solutions

C+(s) = 3s2 − c2

2
and C−(s) = −cs.

We thus obtain a one-parameter family of solutions to (2.16)–(2.19):

A1(s) = 2c

√
s2 − c2

9s2 − c2
, A2(s) = 1

2

√
(3s + c)(s − c), (2.24)

B1(s) = s, B2(s) = 1

2

√
(3s − c)(s + c), (2.25)

5 We thank Lorenzo Foscolo and Mark Haskins for bringing the metrics in [3] to our attention.
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defined for s ≥ c > 0. These solutions give holonomy G2 metrics on R
4 × S3

by Lemma 8 in Appendix A. We can further scale the metric from g to λ2g and
the resulting fields scale as Aλ

i (s) = λAi (s/λ), Bλ
i (s) = λBi (s/λ). These give the

following family of solution to the ODEs (2.16)–(2.19) above:

Aλ
1(s) = 2cλ

√
s2 − c2λ2

9s2 − c2λ2
, Aλ

2(s) = 1

2

√
(3s + cλ)(s − cλ),

Bλ
1 (s) = s, Bλ

2 (s) = 1

2

√
(3s − cλ)(s + cλ).

We see that under the scaling we have c �→ cλ, so we can always scale so that
c = 1. In particular, one can set λ = 3/2, c = 1 and as in [2] define the coordinate
r ∈ [9/4,+∞) implicitly by

t (r) =
∫ r

9/4

√
(s − 3/4)(s + 3/4)√
(s − 9/4)(s + 9/4)

ds (2.26)

and find that

A1 =
√

(r − 9/4)(r + 9/4)√
(r − 3/4)(r + 3/4)

, A2 = A3 =
√

(r − 9/4)(r + 3/4)

3
,

B1 = 2r

3
, B2 = B3 =

√
(r − 3/4)(r + 9/4)

3

solve (2.16)–(2.19). We see in this case that the principal orbits are again S3 × S3 and
the singular orbit {0} × S3 is associative.

In this setting, the geometry at infinity presents a new feature (that also exists in
the BB manifolds below): there is a circle that remains of finite length at infinity.
More precisely, the metric is asymptotic to a metric on a circle bundle over a 6-
dimensional cone with the fibres of the fibration having constant finite length. The
length of this circle is the limit of A1 at infinity: for the family depending on the
parameters λ, c this is 2cλ/3. One also sees that the volume of the associative S3 is
Bλ
1 (cλ2)Bλ

2 (cλ2)2 ∼ (cλ)3, and so, using this family, it is impossible to vary the size
of the circle while keeping the volume of the singular orbit fixed.

In [3], Bogoyavlenskaya constructed a 1-parameter family (up to scaling) of
SU(2)2 × U (1)-invariant, cohomogeneity-1, G2-holonomy metrics on R

4 × S3,
obtained by continuously deforming the BGGG metric. With these metrics, one can
independently vary the size of the circle at infinity and the associative S3, and thus, in
particular, obtain the BS metric as a limit of the family.

The BGGG metric is the only one from [3] which is explicitly known. Choosing
the scaling so that the circle at infinity has size 1, for large t we compute that t (r) ∼ r ,
so

A1 = 1 + O(t−2), A2 = t√
3

+ O(t−1), B1 = 2t

3
+ O(t0), B2 = t√

3
+ O(t−1),
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and thus the metric is asymptotic to

h = dt2 + 4(η+
1 )2 + 4t2

3

(
(η+

2 )2 + (η+
3 )2

)
+ 16t2

9
(η−

1 )2 + 4t2

3

(
(η−

2 )2 + (η−
3 )2

)
.

This limit of the family of metrics given by (2.24), (2.25) as c → 0 is an S1-bundle
over a Calabi–Yau cone on the standard homogeneous Sasaki–Einstein metric on
S2×S3. This conical Calabi–Yaumetric is also known as the conifold or 3-dimensional
ordinary double point.

2.2.3 The Bazaikin–Bogoyavlenskaya (BB) metrics

The Bazaikin–Bogoyavlenskaya G2-manifolds X [1] (BB manifolds for short) have
groupdiagram I (SU(2)2;Z4; U (1)), i.e. the principal orbits are of the form S3×S3/Z4
and the (unique) singular orbit is SU(2)2/U (1) ∼= S2× S3. In fact, X is diffeomorphic
to L4 × S3, where L → S2 is the complex line bundle canonically associated with the
Hopf bundle and L4 denotes its fourth tensor power.

In [1] some complete torsion-free G2-structures with an extra U (1)-symmetry,
i.e. with A2 = A3 and B2 = B3, are constructed. These structures give rise
to a 1-parameter family of holonomy G2-metrics on X = L4 × S3, which have
(A1(0), A2(0), B1(0), B2(0)) = (μ, λ, 0, λ) for some values of λ,μ ∈ R with
λ2 + μ2 = 1. In particular, the volume of the singular orbit S2 × S3 is proportional to
λ4μ = (1−μ2)2μ and that of any 3-sphere ∗×S3 is proportional to λ2μ = (1−μ2)μ:
these 3-spheres are not associative. At least some of these metrics are asymptotic to
an S1-bundle over the conifold.

We have some preliminary results on G2-instantons on these G2-manifolds and
intend to investigate them further in future work.

Remark 2 The examples ofG2-manifolds in Sects. 2.2.2–2.2.3 are asymptotic at infin-
ity to a circle bundle over a cone: such manifolds are called asymptotically locally
conical (ALC), and it is well-known that the asymptotic cone is Calabi–Yau. One
can see, under suitable assumptions, that G2-instantons on ALC G2-manifolds are
asymptotic to Calabi–Yau monopoles on the Calabi–Yau cone. See [21] for some
examples and results on Calabi–Yau monopoles in the asymptotically conical and
conical settings.

2.3 Homogeneous bundles and invariant fields

Wewill now classify invariant connections on bundles over the SU(2)2-principal orbits
in the G2-manifolds X of Sect. 2.2 so X ∼= R

4 × S3 or L4 × S3.
We start with a review of the general setup on a homogeneous manifold K/H .

First, K -homogeneous G-bundles over K/H (which will be our principal orbits)
are determined by their isotropy homomorphism. These are group homomorphisms
λ : H → G, associated with which we construct the bundle Pλ = K ×(H,λ) G. The
reductive splitting k = h⊕m equips K → K/H with a connection whose horizontal
space is m. This is the so-called canonical invariant connection and its connection
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form Ac
λ ∈ �1(K , g) is the left-invariant translation of dλ ⊕ 0 : h ⊕ m → g. Other

invariant connections are classified byWang’s theorem [28] and are in correspondence
with morphisms of H -representations � : (m,Ad) → (g,Ad ◦λ).

In the cases we shall consider, SU(2)2 acts with cohomogeneity-1 and the princi-
pal orbits are of the form M = S3 × S3/H , where H will only be nontrivial in the
BB case where it is Z4. Isomorphism classes of homogeneous G-bundles on these
principal orbits are in correspondence with (conjugacy classes) of isotropy homo-
morphisms, i.e. group homomorphisms λ : H → G. Therefore λ will be the trivial
homomorphism, except in the BB case where the possible λ’s are in one-to-one cor-
respondence with cyclic subgroups of G of order 1, 2 or 4. Given such λ determines
the SU(2)2-homogeneous G-bundle

Pλ = SU(2)2 ×(H,λ) G.

The canonical invariant connection ac is the trivial one (given the choice of H ), hence
its connection 1-form as an element of�1(SU(2)2, g) vanishes. It follows fromWang’s
theorem [28], that any other invariant connection differs from ac by a morphism of
H -representations

� : (su+ ⊕ su−,Ad) → (g,Ad ◦λ).

When H is trivial, both these representations are trivial, and so � is any linear map.
Given such a�we extend it by left-invariance to SU(2)2. This gives rise to the 1-form
with values in g:

a =
3∑

i=1

a+
i ⊗ η+

i + a−
i ⊗ η−

i , (2.27)

where a±
i ∈ g are constant on each principal orbit. Hence, on the open dense set

R
+
t × M ⊂ X , the most general SU(2) × SU(2)-invariant connection on any Pλ can

be written as in (2.27) with the a±
i depending on t ∈ R

+ and taking values in g.

Remark 3 We can always use an SU(2)2-invariant gauge transformation g : R+ → G
to put any invariant connection A in temporal gauge. This amounts to solving the ODE
ġg−1 + g A(∂t )g−1 = 0, which has a unique solution g converging to 1 as t → +∞.

Lemma 2 The curvature of the connection a(t) above on {t} × M is given by

Fa =
3∑

i=1

[
a+

i , a−
i

] ⊗ η+
i ∧ η−

i

+
3∑

i=1

((
−2a+

i +
[
a+

j , a+
k

])
⊗ η+

j ∧ η+
k +

(
−2a+

i +
[
a−

j , a−
k

])
⊗ η−

j ∧ η−
k

)

+
3∑

i=1

((
−2a−

i +
[
a−

j , a+
k

])
⊗ η−

j ∧ η+
k +

(
−2a−

i +
[
a+

j , a−
k

])
⊗ η+

j ∧ η−
k

)
,
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where in the summation above ( j, k) is such that (i, j, k) is a cyclic permutation of
(1, 2, 3).

Proof We can compute the curvature via Fa = da + 1
2 [a ∧ a] and the Maurer–Cartan

relations (2.8), (2.9) for the coframing η±
i . The details are a lengthy but straightforward

computation. 	


2.4 The SU(2)2-invariant ODEs

We may now write down the ODEs arising from Eqs. (2.5) and (2.6) which describe
our invariant G2-instantons.

Lemma 3 Let (i, j, k) denote cyclic permutations of (1, 2, 3). Using the notation from
(2.13) and (2.27), the evolution Eqs. (2.5)–(2.6) for SU(2)2-invariant G2-instantons
a on R

+
t × M are

Bi

Ai
ȧ+

i +
(

Bi

B j Bk
− Bi

A j Ak

)
a+

i = Bi

2B j Bk

[
a−

j , a−
k

]
− Bi

2A j Ak

[
a+

j , a+
k

]
,

Ai

Bi
ȧ−

i +
(

Ai

B j Ak
+ Ai

A j Bk

)
a−

i = Ai

2B j Ak

[
a−

j , a+
k

]
+ Ai

2A j Bk

[
a+

j , a−
k

]
,

together with the constraint

3∑
i=1

1

Ai Bi

[
a+

i , a−
i

] = 0.

Proof The proof amounts to inserting the formula for the curvature Fa from Lemma
2 into (2.5), (2.6). For this we need to use the SU(3)-structure on the principal orbits
given in (2.10)–(2.12). For convenience we shall write η±

a···b = η±
a ∧ · · · ∧ η±

b .
We start by computing

Fa ∧ �2 = −8B1
(

A2B3
([

a−
2 , a+

3

] − 2a−
1

) + A3B2
([

a+
2 , a−

3

] − 2a−
1

))
η−
123 ∧ η+

23

−8A1
(

A2A3
([

a−
2 , a−

3

] − 2a+
1

) − B2B3
([

a+
2 , a+

3

] − 2a+
1

))
η+
123 ∧ η−

23

+ cyclic permutations.

Moreover, since |η−
i |t = 1

2Bi
and |η+

i |t = 1
2Ai

, we conclude that

∗t
(
8η−

123 ∧ η+
23

) = −1

2

A1

A2A3B1B2B3
η+
1 , ∗t

(
8η+

123 ∧ η−
23

) = 1

2

B1

B2B3A1A2A3
η−
1
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and cyclic permutations. Combining this with the previous computation we obtain

∗t (Fa ∧ �2) = 1

2

(
A1

A3B2

([
a−
2 , a+

3

] − 2a−
1

) + A1

A2B3

([
a+
2 , a−

3

] − 2a−
1

))
η+
1

−1

2

(
B1

B2B3

([
a−
2 , a−

3

] − 2a+
1

) − B1

A2A3

([
a+
2 , a+

3

] − 2a+
1

))
η−
1

+ cyclic permutations.

The complex structure Jt is such that

Jtη
+
i = − ∗

(
η+

i ∧ ω2

2

)
= ∗

(
16A j B j Ak Bkη

+
123η

−
jk

)
= Bi

Ai
η−

i

and so it is straightforward to compute

Jt ȧ =
3∑

i=1

Bi

Ai
ȧ+

i ⊗ η−
i − Ai

Bi
ȧ−

i ⊗ η+
i .

Inserting our formulae in (2.7) gives the ODEs in the statement. We finally compute

Fa ∧ ω2

2
= −16A1A2B1B2[a+

3 , a−
3 ]η+

123 ∧ η−
123 + cyclic permutations,

yielding the constraint in the statement. 	


2.5 Elementary solutions

In this subsection we consider elementary cases of SU(2)2-invariant G2-instanton
equations on any of the SU(2)2-invariant G2-manifolds of cohomogeneity-1 described
in Sect. 2.2. We will let X denote such a G2-manifold.

We verify that flat connections satisfy our G2-instanton equations in Sect. 2.5.1 and
we classify and describe all abelian G2-instantons explicitly in Sect. 2.5.2.

2.5.1 Flat connections

Any flat connection on X is obviously a G2-instanton and so must be a solution to our
equations (for any gauge group G). As the fundamental group π1(X) is trivial, any
flat connection in this setting is gauge equivalent to the trivial connection. However,
on a homogeneous bundle there may be invariant flat connections that are not gauge
equivalent to the trivial connection through invariant gauge transformations.

Let A = a(t) be an invariant connection on X given as in (2.27) for a±
i : R+ → g

for i = 1, 2, 3. From the formula in Lemma 2 for the curvature of a(t), one sees that
A is flat if and only if a±

i are t-independent and, for all cyclic permutations (i, j, k)

of (1, 2, 3), we have
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[
a+

i , a−
i

] = 0, a+
i = 1

2

[
a+

j , a+
k

]
= 1

2

[
a−

j , a−
k

]
and

a−
i = 1

2

[
a−

j , a+
k

]
= 1

2

[
a+

j , a−
k

]
.

It is elementary to verify that a constant (i.e. t-independent) choice of a±
i satisfying

these conditions then solves the ODE system for SU(2)2-invariant G2-instantons in
Lemma 3.

2.5.2 Abelian instantons

On circle bundles, equivalently complex line bundles, the Lie algebra structure of
the gauge group is trivial and the G2-instanton equations in Lemma 3 become linear.
Consequently, it is then easy to integrate them, which we shall now proceed to do.

By Lemma 3, to find a G2-instanton in this setting we must integrate

ȧ+
i = −

(
Ai

B j Bk
− Ai

A j Ak

)
a+

i , ȧ−
i = −

(
Bi

B j Ak
+ Bi

A j Bk

)
a−

i . (2.28)

Given t0 ∈ R
+, the Eq. (2.28) can be integrated to

a+
i (t) = a+

i (t0) exp

(
−

∫ t

t0

(
Ai

B j Bk
− Ai

A j Ak

)
ds

)
, (2.29)

a−
i (t) = a−

i (t0) exp

(
−

∫ t

t0

(
Bi

B j Ak
+ Bi

A j Bk

)
ds

)
. (2.30)

We see from the free constants in (2.29), (2.30) that there is a family of G2-instantons
parametrized by 6 real parameters defined on the complement of the singular orbit in
X . Using the results in Appendix A we can characterise the subspaces of this family
of G2-instantons which smoothly extend over the singular orbit in the BS, BGGG and
Bogoyavlenskaya metrics.

Proposition 2 Let A be an SU(2)2-invariant G2-instanton on a U (1)-bundle, or
equivalently a complex line bundle, over R4 × S3 with an SU(2)2 × U (1)-invariant
G2-holonomy metric. Then A can be written as

A =
3∑

i=1

a+
i (t0) exp

(
−

∫ t

t0

(
Ai

B j Bk
− Ai

A j Ak

)
ds

)
η+

i ,

for some t0 ∈ R
+ and a+

i (t0) ∈ R for i = 1, 2, 3, where (i, j, k) is a cyclic permutation
of (1, 2, 3).

Proof The principal orbits on R
4 × S3 are S3 × S3 and the singular one is S3

= SU(2)2/�SU(2). The extensions of a circle bundle P on R
+ × S3 × S3 to S3

are parametrized by isotropy homomorphisms λ : �SU(2) → U (1). The only such
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homomorphism λ is the trivial one, so the unique extension of P to the singular orbit
is as the trivial bundle.

The canonical invariant connection on the trivial homogeneous bundle vanishes
as an element of �1(SU(2)2,R). Any other invariant connection on this bundle is
then given as an element of �1(SU(2)2,R) by the pullback of a bi-invariant 1-form
on S3 = SU(2)2/�SU(2). However, the only such 1-form is the zero form, so the
connection A extends over the singular orbit if and only if Lemma 9 in Appendix A
applies to the 1-form a = ∑3

i=1 a+
i η+

i + a−
i η−

i .
We deduce that, for t near 0, the a±

i (t) are even and a±
i (0) = 0 for i = 1, 2, 3. We

know by Appendix A (and explicitly by Examples 1–2 for the BS and BGGGmetrics)
that for t near 0 we have Ai (t) = t

2 + t3Ci (t) and Bi (t) = b0 + t2Di (t), for some
real analytic Ci , Di and some constant b0 �= 0. Then, choosing 0 < t0 � 1 and using
the expressions (2.29), (2.30), we compute that for t < t0 � 1

a+
i (t) = a+

i (t0)t
−2
0 t2 + · · · and a−

i (t) = a−
i (t0)t

4
0 t−4 + O(1).

Applying Lemma 9 to a, we deduce that a−
i (t0) must vanish for i = 1, 2, 3, while the

a+
i (t0) can be freely chosen. 	

In the BS or BGGG case, we can evaluate the integrals in Proposition 2 to give the
following.

Corollary 1 Let A be an SU(2)2-invariant G2-instanton with gauge group U (1) over
the BS or BGGG G2-manifold R

4 × S3 described in Sect. 2.2.

(a) In the BS case, A can be written as

A = r3 − 1

r

3∑
i=1

xiη
+
i

for some x1, x2, x3 ∈ R, where r ∈ [1,+∞) is determined by (2.22).
(b) In the BGGG case, A can be written as

A = (r − 9/4)(r + 9/4)

(r − 3/4)(r + 3/4)
x1η

+
1 + (r − 9/4)er

√
r(r + 9/4)2

(
x2η

+
2 + x3η

+
3

)

for some x1, x2, x3 ∈ R, where r ∈ [9/4,+∞) is given by (2.26). When x2
= x3 = 0, A is a multiple of the harmonic 1-form dual to the Killing field
generating the U (1)-action.

We already observe a marked difference in the behaviour of G2-instantons on the BS
and BGGG R

4 × S3 in this simple abelian setting. In particular, the instantons in the
BS case all have bounded curvature, whereas those in the BGGG case have bounded
curvature only when x2 = x3 = 0, in which case the curvature also decays to 0 as
r → ∞.
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Remark 4 Of course, for any abelian gauge group all Lie brackets vanish and the
ODE system decouples into several independent linear ODEs for instantons on circle
bundles. Hence, the construction of abelian G2-instantons here reduces to the U (1)
case given in Proposition 2.

3 SU(2)3-invariant G2-instantons

In the Bryant–Salamon case the torsion-free G2-structure is described in Sect. 2.2.1.
Recall that the structure enjoys an extra SU(2)-symmetry, so that A1 = A2 = A3 and
B1 = B2 = B3 where

Ȧ1 = 1

2

(
1 − A2

1

B2
1

)
, Ḃ1 = A1

B1
. (3.1)

We shall use this notation throughout this section.
The only possible homogeneous SU(2)-bundle P on the principal orbits S3 × S3 is

P = SU(2)2 × SU(2), i.e. the trivial SU(2)-bundle. We consider connection 1-forms
with the extra SU(2)-symmetry existent in the underlying geometry.

We begin in Sect. 3.1 by simplifying the ODEs and constraint system in Lemma 3
to this more symmetric situation, and then derive the conditions necessary to extend
the solution to this system across the singular orbit in Sect. 3.2. We give classification
results for the solutions to these equations in Sect. 3.3.We also examine the asymptotic
behaviour of the solutions in terms of a connection on S3×S3, and give a compactness
result for the space of solutions. The latter result is related to the familiar “bubbling”
and “removable singularities” phenomena.

3.1 The SU(2)3-invariant ODEs

We simplify the invariant G2-instanton equations from Lemma 3 in this setting.

Proposition 3 Let A be an SU(2)3-invariant G2-instanton with gauge group SU(2)
on R

+ × SU(2)2 ∼= R
+ × SU(2)3/�SU(2). There is a standard basis {Ti } of su(2),

i.e. with [Ti , Tj ] = 2εi jk Tk , such that (up to an invariant gauge transformation) we
can write

A = A1x

(
3∑

i=1

Ti ⊗ η+
i

)
+ B1y

(
3∑

i=1

Ti ⊗ η−
i

)
, (3.2)

with x, y : R+ → R satisfying

ẋ = Ȧ1

A1
x + y2 − x2 = 1

2A1

(
1 − A2

1

B2
1

)
x + y2 − x2, (3.3)

ẏ = 2 Ȧ1 − 3

A1
y + 2xy = − 1

A1

(
2 + A2

1

B2
1

)
y + 2xy. (3.4)
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Proof We start by realizing SU(2)2 as SU(2)3/�SU(2). Isomorphism classes of
SU(2)3-equivariant bundles over SU(2)2 are then in correspondence with conjugation
classes of homomorphismsμ : SU(2) → SU(2). There are only two such conjugation
classes, namely those represented by the identity and the trivial homomorphism.

We begin with the case where μ is the identity. First, we fix a reductive decom-
position of su(2)3, i.e. a complement m of the isotropy algebra �su(2) ⊂ su(2)3

such that [�su(2),m] ⊂ m. We set �+,�− ⊂ su2 to be diagonal and anti-diagonal
respectively, and let

m = (0 ⊕ �+) ⊕ (0 ⊕ �−).

By Wang’s theorem [28], any SU(2)3-invariant connection can be written as

A = dμ + �+ + �− ∈ �1(SU(2)3, su(2)),

where �± : (�±,Ad) → (su(2),Ad ◦μ) are morphisms of SU(2)-representations.
We now pull A back to SU(2)2 via the map ψ : SU(2)2 → SU(2)3 given by
ψ(g1, g2) = (g2g−1

1 , g1, g2). Then ψ∗dμ = 0 and ψ∗�± = f ±
i j Tj ⊗ η∓

i (the inver-

sion to ∓ on the η∓
i is correct!), for some functions f ±

i j and fixed standard basis {Ti }
of su(2). Extending naturally to R+ × SU(2)2 we obtain a±

i = f ∓
i j Tj .

For a fixed t ∈ R
+, we can apply a gauge transformation so that μ = id. Hence,

we can write a+
i (t) = A1(t)x(t) and a−

i (t) = B1(t)y(t) for i = 1, 2, 3, since the
adjoint representation of SU(2) is irreducible, where we have introduced the non-zero
factors of A1 and B1 for convenience. Since the gauge transformation depends on t ,
we deduce that we can write

A = A1xγ

(∑
i

Ti ⊗ η+
i

)
γ −1 + B1yγ

(∑
i

Ti ⊗ η−
i

)
γ −1

for some functions γ : R+ → SU(2) and x, y : R+ → R.
We now turn to the ODEs and constraint from Lemma 3 arising from the G2-

instanton condition. We see that the constraint is immediately satisfied and the
symmetry in the ODEs forces

A1x[γ −1γ̇ , Ti ] = 0 and B1y[γ −1γ̇ , Ti ] = 0

for i = 1, 2, 3, which means γ̇ = 0 if A is non-zero. Therefore, we may write A as
in (3.2). Using (3.1), we conclude that the ODEs from Lemma 3 imply that x and y
satisfy (3.3)–(3.4) as claimed.

We turn now to the case when μ : SU(2) → SU(2) is the trivial homomorphism.
Here, the canonical invariant connection dμ vanishes as a 1-form on SU(2)3 with
values in su(2). By Wang’s theorem, any other invariant connection is then given by a
morphism of �SU(2)-representations � : (m,Ad) → (su(2),Ad ◦μ). The left-hand
side splits into two copies of the adjoint representation of SU(2) while the right-
hand side decomposes into three trivial representations. Schur’s lemma then implies
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that � must vanish and so the trivial connection is the unique invariant one on this
homogeneous bundle. This corresponds to taking x = y = 0 in the statement. 	


3.2 Initial conditions

Nowwe determine the initial conditions in order for an SU(2)3-invariant G2-instanton
A, given by a solution to the ODEs in Proposition 3, to extend smoothly over the
singular orbit S3 = SU(2)2/�SU(2). For that we need to first extend the bundle
over the singular orbit. Up to an isomorphism of homogeneous bundles, there are two
possibilities: these are

Pλ = SU(2)2 ×(�SU(2),λ) SU(2), (3.5)

with the homomorphism λ : SU(2) → SU(2) being either the trivial one (which we
denote by 1) or the identity id. Depending on the choice of λ, the conditions for the
connection A to extend are different, as we show in the following lemma.

Lemma 4 The connection A in (3.2) extends smoothly over the singular orbit S3 if
x(t) is odd, y(t) is even, and their Taylor expansions around t = 0 are

• either x(t) = x1t + x3t3 + · · · , y(t) = y2t2 + · · · , in which case A extends
smoothly as a connection on P1;

• or x(t) = 2
t + x1t + · · · , y(t) = y0 + y2t2 + · · · , in which case A extends

smoothly as a connection on Pid.

Proof We only analyze the case λ = id in detail, as both situations are similar.
When λ = id, the canonical invariant connection associated with the reductive

splitting su(2)2 = su+(2) ⊕ su−(2) is

Acan =
3∑

i=1

Ti ⊗ η+
i ∈ �1(SU(2) × SU(2), su(2)). (3.6)

Therefore, for A to extend over the singular orbit as a connection on Pid we need to
apply Lemma 10 in Appendix A to the 1-form

A − Acan = (A1x − 1)

(
3∑

i=1

Ti ⊗ η+
i

)
+ B1y

(
3∑

i=1

Ti ⊗ η−
i

)
.

We conclude that A extends over the singular orbit S3 if

• A1(t)x(t), B1(t)y(t) are both even,
• limt→0 A1(t)x(t) = 1 and limt→0 B1(t)y(t) is finite.

By Lemma 8 in Appendix A (or by inspection since the BS metric is explicit), we see
that A1(t) is odd and B1(t) is even, so x(t) and y(t)must be odd and even respectively.
Moreover, Ȧ1(0) = 1

2 and B1(0) �= 0, as we see in Example 1 in Appendix A, so the
expansions of x , y around zero must be as claimed in the lemma.
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To carry over the analysis in the case where λ = 1 we apply Lemma 10 directly to
the 1-form A, giving A1x , B1y are even with limt→0 A1x = limt→0 B1y = 0. 	


3.3 Solutions and their properties

We now describe solutions of the SU(2)3-invariant G2-instanton equations, which
splits into two cases: when the bundle P = P1 and when P = Pid, in the notation of
the previous subsection. In the first case we recover the G2-instantons constructed in
[8], and in the second case we find a new example of a G2-instanton. We then analyse
the asymptotic behaviour of the instantons, and finally show that the R≥0-family of
solutions on P1 admits a natural compactification.

3.3.1 Solutions smoothly extending on P1

Clarke [8] constructed a 1-parameter family of G2-instantons on the Bryant–Salamon
R
4 × S3. These instantons live on the bundle P1 given by (3.5), i.e. when the homo-

morphism λ is trivial. Moreover, they have y = 0 in the notation of Proposition 3, and
so the ODEs there reduce to a single ODE for x which can be explicitly integrated. We
shall reconstruct these G2-instantons in the proof of the next result, which classifies
and explicitly describes the G2-instantons that smoothly extend over the singular orbit
on the bundle P1.

Theorem 4 Let A be an SU(2)3-invariant G2-instanton with gauge group SU(2) on
the Bryant–Salamon G2-manifold R

4 × S3, which smoothly extends over the singular
orbit on P1. Then, A is one of Clarke’s examples [8], in which case there is x1 ∈ R

such that, in the notation of Proposition 3,

x(t) = 2x1A1(t)

1 + x1
(
B2
1 (t) − 1

3

) and y(t) = 0. (3.7)

Given such an x1 ∈ R we shall denote the resulting instanton by Ax1 . Observe that
Ax1 is defined globally on R

4 × S3 if and only if x1 ≥ 0 and that A0 is the trivial flat
connection.

Proof It will be enough to show that any instanton as in the statement defined on
a neighbourhood of the singular orbit must coincide with one of Clarke’s examples
there. For that, let (x(t), y(t)) be a solution to the ODEs (3.3), (3.4). We shall show
that if the resulting instanton A extends over the singular orbit then y(t) = 0 for all t .
Recall from Lemma 4 that for A to smoothly extend over the singular orbit on P1 we
must have

x(t) = x1t + t3u(t) and y(t) = t2v(t)
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for t near 0, where u, v are real analytic even functions of t . The system (3.3), (3.4)
for x , y becomes the following system for u, v:

u̇ = −2u + x21 + x1/2

t
+ f1(t, u, v), (3.8)

v̇ = −6v

t
+ f2(t, u, v), (3.9)

where f1, f2 : [0,+∞) × R
2 → R are some other real analytic functions. The

existence and uniqueness theorem for equations with regular singular points (see [18,
chapters 6 and7], andTheorem4.7 in [13] for a clearer statement) applies here provided
that

u(0) = − x1
4

− x21
2

and v(0) = 0.

In that case, for each x1 ∈ R we obtain a unique solution (x(t), y(t)) in [0, ε), for
some ε > 0.

We are left with showing that all such solutions have y = 0. That is indeed the case
as we can simply set y = 0 and integrate the equation for x :

ẋ = Ȧ1

A1
x − x2. (3.10)

Writing this equation as
d

dt

(
x

A1

)
= −A1

(
x

A1

)2

(3.11)

makes it separable. Since B1 Ḃ1 = A1 by (3.1) and B2
1 (0) = 1

3 , (3.11) can be readily
integrated to show that x is given as in (3.7). By uniqueness the solutions guaranteed
by the local existence theorem must be these ones and so have y = 0. These are the
G2-instantons found in [8]. 	

Using the implicit coordinate r ∈ [1,+∞) in (2.22) and the formula (2.23) we can
explicitly write the G2-instanton Ax1 = A1xTi ⊗ η+

i with

A1(r) = r

3

√
1 − r−3 and x(r) = 2x1r

√
1 − r−3

3 + x1(r2 − 1)
.

We see that the curvature of Ax1 is

FAx1 = Ti ⊗
(

d

dr
(A1x)dr ∧ η+

i + A1x(A1x − 1)εi jkη
+
j ∧ η+

k − A1xεi jkη
−
j ∧ η−

k

)
.

This can then be used to compute that

|FAx1 |2 = 9

2B2
1

∣∣∣ d

dr
(A1x)

∣∣∣2 + 3x2

2

(A1x − 1)2

A2
1

+ 3A2
1x2

2B2
1

, (3.12)
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which shows that |FAx1 | decays at infinity at O(r−2). Observe in particular that the
curvature of Ax1 does not lie in L2.

3.3.2 Solutions smoothly extending on Pid

We now turn to solutions defined on the bundle Pid given by (3.5) with the homomor-
phism λ = id. We first give a local existence result for instantons on Pid.

Proposition 4 Let S3 be the singular orbit in the Bryant–Salamon G2-manifold R
4×

S3. There is a one-parameter family of SU(2)3-invariant G2-instantons, with gauge
group SU(2), defined in a neighbourhood of S3 and smoothly extending over S3 on Pid.
The instantons are parametrized by y0 ∈ R and satisfy, in the notation of Proposition
3,

x(t) = 2

t
+ y20 − 1

4
t + O(t3), y(t) = y0 + y0

2

(
y20
2

− 3

)
t2 + O(t4).

Proof We consider the initial value problem for (x(t), y(t)) to be a solution to the
ODEs (3.3), (3.4) on Pid. By Lemma 4, the conditions for smooth extension over the
singular orbit are that

x(t) = 2

t
+ tu(t), y(t) = y0 + t2v(t),

for some real analytic functions u, v : [0,+∞) → R. Substituting these expressions
and the expansion of A1 from Example 1 into (3.3), (3.4) yields

u̇ = y20 − 4u − 1

t
+ f1(t, u, v), (3.13)

v̇ = −2v + 5y0/2 − 2y0u

t
+ f2(t, u, v), (3.14)

where f1, f2 : [0,+∞) × R
2 → R are two real analytic functions up to t = 0.

Now we use the existence and uniqueness theorem for equations with regular singular
points (chapters 6 and 7 in [18], or Theorem 4.7 [13]). At this stage, this requires that
(u(0), v(0)) are such that the O(t−1) terms in (3.13), (3.14) vanish and that the linear
map (u, v) �→ (−4u, 2y0u − 2v) has no eigenvalues in the positive integers. The
second condition holds (the eigenvalues are −2,−4) and the first condition requires
that

u(0) = y20 − 1

4
, v(0) = y0

2

(
y20
2

− 3

)
.

The theorem for equations with regular singular points applies and shows that, under
these conditions, for each y0 ∈ R there is a unique solution (u(t), v(t)) to (3.13),
(3.14), which gives the result. 	
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Theorem 5 The G2-instanton Alim arising from the case when y0 = 0 in Proposition
4 has

x(t) = A1(t)
1
2

(
B2
1 (t) − 1

3

) and y(t) = 0.

Moreover, Alim extends as a G2-instanton to the Bryant–Salamon G2-manifold R
4

× S3.

Proof Back to the functions x , y in Proposition 4, we have that y = 0 and x is the
unique solution to

ẋ = Ȧ1

A1
x − x2, lim

t→0
A1(t)x(t) = 1.

Writing the ODE in the form (3.11) makes it separable, and using the initial condition
we obtain the solution claimed. Since x(t) is defined for all t , the resulting instanton
is globally defined. 	

Again using the coordinate r ∈ [1,∞) in (2.22) and the formula (2.23) we can write
Alim explicitly with

x(r) = 2r
√
1 − r−3

r2 − 1
.

From (3.12) we see that the curvature of Alim decays at infinity at order O(r−2), just
as for Ax1 .

Remark 5 The reader may wonder about potential G2-instantons A arising from the
local solutions with y0 �= 0 in Proposition 4. Numerical investigation appears to
indicate that such local solutions do not extend globally, if we impose the condition
that the curvature of A decays at infinity. We hope to study this situation further.

3.3.3 Asymptotics of the solutions

We now consider the asymptotic behaviour of the G2-instantons Ax1 and Alim con-
structed in Theorems 4 and 5.

Using the formula (3.7) for Clarke’s G2-instanton Ax1 we see that for x1 > 0 and
large t , the connection form a(t) on the time t slice ofR3×S3, which is diffeomorphic
to S3 × S3, is given by

a(t) = 2x1A2
1(t)

1 + x1
(
B2
1 (t) − 1

3

)
3∑

i=1

Ti ⊗ η+
i ∼ 2x1

t2
9

1 + 2x1
t2
6

3∑
i=1

Ti ⊗ η+
i

∼ 2

3

1

1 + 3
x1t2

3∑
i=1

Ti ⊗ η+
i ,
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where we used the asymptotic behaviour of A1, namely that A1(t) ∼ t
3 + O(t−2) and

B1(t) ∼ t√
3
for t large. Therefore

a∞ := lim
t→+∞ a(t) = 2

3

3∑
i=1

Ti ⊗ η+
i (3.15)

is the canonical SU(2) ⊂ SU(3) connection for the homogeneous nearly Kähler
structure on S3 × S3. Recall that such connections are pseudo-Hermitian–Yang–Mills
(or nearly Kähler instantons). We can also compute the rate at which this happens and
conclude that there is c > 0 such that |a − a∞| ≤ c

|x1|t3 along the end.
Similarly, we compute that for t � 1

Alim = A2
1(t)

1
2

(
B2
1 (t) − 1

3

)
3∑

i=1

Ti ⊗ η+
i = (t/3 + O(t−2))2

t2/6 + O(t−1)

3∑
i=1

Ti ⊗ η+
i

= 2

3
(1 + O(t−3))

3∑
i=1

Ti ⊗ η+
i .

Thus, |Alim − a∞| = O(t−4), as |η+
i | = O(t−1). We summarize these conclusions.

Proposition 5 Let A be an SU(2)3-invariant G2-instanton given by Theorem 4 or 5
which is defined globally on the Bryant–Salamon G2-manifold R

4 × S3. Then A is
asymptotic to the canonical pseudo-Hermitian–Yang–Mills connection a∞ in (3.15)
for the homogeneous nearly Kähler structure on S3 × S3. In particular:

• if A = Ax1 for some x1 ∈ R
+, then for t � 1

|Ax1 − a∞| ≤ c

x1t3
,

where c > 0 is some constant independent of x1;
• if A = Alim, then for t � 1, |Alim − a∞| = O(t−4).

Remark 6 As previously mentioned, any G2-instanton on an asymptotically conical
G2-manifold which has a well-defined limit at infinity and has pointwise decaying
curvaturewill be asymptotic to a pseudo-HYMconnection on the link of the asymptotic
cone [20]. Proposition 5 refines this result in this setting.

3.3.4 Compactness properties of the moduli of solutions

Next we show that as x1 → +∞ Clarke’s G2-instantons Ax1 “bubble off” an anti-
self-dual (ASD) connection along the normal bundle to the associative S3 = {0} × S3

⊂ R
4 × S3. We shall also show that in the same limit Clarke’s G2-instantons converge

outside the associative S3 to Alim. The fact that Alim smoothly extends over S3 can
then be interpreted as a removable singularity phenomenon.
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To state the result we now introduce some notation for the re-scaling we wish to
perform: for p ∈ S3 and δ > 0 we define the map s p

δ from the unit ball B1 ⊆ R
4 by

s p
δ : B1 ⊆ R

4 → Bδ × {p} ⊆ R
4 × S3, x �→ (δx, p).

Recall that if we view R
4\{0} = R

+
t × S3 then the basic ASD instanton on R

4 with
scale λ > 0 can be written as

AASD
λ = λt2

1 + λt2

3∑
i=1

Ti ⊗ η+
i . (3.16)

Theorem 6 Let {Ax1} be a sequence of Clarke’s G2-instantons from Theorem 4 with
x1 → +∞.

(a) Given any λ > 0, there is a sequence of positive real numbers δ = δ(x1, λ) → 0
as x1 → +∞ such that: for all p ∈ S3, (s p

δ )∗ Ax1 converges uniformly with all
derivatives to the basic ASD instanton AASD

λ on B1 ⊆ R
4 as in (3.16).

(b) The connections Ax1 converge uniformly with all derivatives to Alim given in
Theorem 5 on every compact subset of (R4\{0}) × S3 as x1 → +∞.

Proof We prove the two parts independently.

(a) We view the basic instanton AASD
λ in (3.16) as defined on R

4 × {p}. Using the
formula for Ax1 in Theorem 4 and the expansions of A1 and B1 near 0 in Example
1 from Appendix A, we compute, for t < 1,

(
s p
δ

)∗
Ax1 = A1(δt)x(δt)Ti ⊗ η+

i = 2x1A2
1(δt)

1 + x1
(
B2
1 (δt) − 1

3

)Ti ⊗ η+
i

= x1δ2t2/2 + O(x1δ4t4)

1 + x1δ2t2/2 + O(x1δ4t4)
Ti ⊗ η+

i .

Hence, setting δ = δ(x1, λ) = √
2λ/x1 we have that for every k ∈ N0, there is

ck > 0, independent of λ and x1, such that

∥∥∥(
s p
δ

)∗
Ax1 − AASD

λ

∥∥∥
Ck (B1)

≤ ck
λ2

x1
.

Therefore, given ε > 0, we have for any x1 ≥ ckλ
2/ε that

∥∥∥(
s p
δ

)∗
Ax1 − AASD

λ

∥∥∥
Ck (B1)

≤ ε,

demonstrating the claimed convergence.
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(b) We take the explicit formulas for Ax1 and Alim in Theorems 4 and 5 and compute

|Ax1 − Alim| = A2
1(t)

1
2

(
B2
1 (t) − 1

3

)
∣∣∣∣∣

x1
(
B2
1 (t) − 1

3

)
1 + x1

(
B2
1 (t) − 1

3

) − 1

∣∣∣∣∣
∣∣∣∣∣

3∑
i=1

Ti ⊗ η+
i

∣∣∣∣∣
≤ cA1(t)

1
2

(
B2
1 (t) − 1

3

) 1

1 + x1
(
B2
1 (t) − 1

3

) ,

for some constant c > 0. Recall that in the coordinate r ∈ [1,+∞) from (2.22)
we have B1(r) = r/

√
3 by (2.23). Hence, B2

1 − 1
3 is bounded and bounded away

from zero on every compact K ⊆ (R4\{0}) × S3. Thus, for every such K there is
some (possibly other) constant c > 0 such that

|Ax1 − Alim| ≤ c

1 + x1
, (3.17)

and we have similar estimates for the derivatives of Ax1 − Alim. By letting x1 →
+∞ the right-hand side of (3.17) tends to zero as required.

	

Remark 7 As already mentioned, the fact that Alim smoothly extends over S3 is an
example of a removable singularity phenomenon. It follows from Tian and Tao’s work
[23,24] that such phenomena occur more generally provided that the G2-instanton is
invariant under a group action all of whose orbits have dimension greater than or equal
to 3 (codimension less than or equal to 4).

Even though the G2-instantons Ax1 and Alim do not have finite energy, and so the
results of [23] do not immediately apply, we now show that we do have the expected
energy concentration along the associative S3. Below, we let δ{0}×S3 denote the delta
current associated with {0} × S3.

Corollary 2 The function |FAx1 |2 − |FAlim |2 is integrable for all x1 > 0. Moreover,
as x1 → +∞ it converges to 8π2δ{0}×S3 as a current, i.e. for all compactly supported
functions f we have

lim
x1→+∞

∫
R4×S3

f
(
|FAx1 |2 − |FAlim |2

)
dvolg = 8π2

∫
{0}×S3

f dvolg|{0}×S3
.

Proof First, a computation using (3.12) shows that

|FAx1 |2 − |FAlim |2 =
3∑

n=0

10∑
k=0

6qn,k(r − 1)k xn
1

(r + 1)4r6(r2x1 − x1 + 3)4
, (3.18)

for some (explicit) qn,k ∈ R. The claimed integrability of |FAx1 |2 − |FAlim |2 now
follows. Moreover, for future reference we mention here that

q3,0 = 0 = q3,1, and q2,0 = 2529. (3.19)
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Next we prove the claim convergence of |FAx1 |2 − |FAlim |2 by showing that

lim
x1→+∞

∫
K

(
|FAx1 |2 − |FAlim |2

)
dvolg (3.20)

vanishes if K ⊂ (R4\{0}) × S3 is compact and equals 8π2 V ol({0} × S3) if {0} × S3

⊂ K . Notice that |FAx1 |2−|FAlim |2 is SU(2)3-invariant and so it is enough to consider
its integral over SU(2)3-invariant subsets K of R4 × S3. First we consider the case
when K is a compact subset of (R4\{0}) × S3. Then, Theorem 6(b) guarantees that
|FAx1 |2−|FAlim |2 converges uniformly to 0 in K and so (3.20) is zero by the dominated
convergence theorem.

To examine the case where {0} × S3 ⊂ K we first show that, as currents, we have

lim
x1→+∞(|FAx1 |2 − |FAlim |2) = lim

x1→+∞
6 · 2592x21

(r + 1)4r6(r2x1 − x1 + 3)4
. (3.21)

Recall from Sect. 2.2.1 that we can identify (R4\{0}) × S3 ∼= (1,∞) × S3 × S3, with
r the coordinate on (1,∞). For f ∈ C∞

c (R4 × S3,R) we can then compute that

∣∣∣∣∣
∫
R4×S3

f
(r − 1)k xn

1

(r + 1)4r6(r2x1 − x1 + 3)4
dvolg

∣∣∣∣∣
≤ ‖ f ‖L∞

∫ +∞

1

(r − 1)k xn
1

(r + 1)4r6(r2x1 − x1 + 3)4
r6(1 − r−3)V ol(S31)

2

34
√
3

dr, (3.22)

where V ol(S31) = 2π2 denotes the volume of the unit 3-sphere in R
4. Let In,k(x1)

denote the integral on the right-hand side of (3.22) and let ε > 0. To examine In,k(x1),
we separate it into two integrals: one over [1, 1+ε] and the other over [1+ε,+∞). The
secondof these integrals canbe easily seen to befinite andof order xn−4

1 (independently
of k), hence it vanishes as x1 → +∞ since n ≤ 3. The first integral over [1, 1 + ε],
and thus In,k(x1) by the preceding argument, can be bounded as follows for some
constant c:

In,k(x1) ≤ cxn−4
1

∫ 1+ε

1

(r − 1)k+1

(r − √
1 − 3/x1)4

dr + O(xn−4
1 ). (3.23)

The integral on the right-hand side of (3.23) can now be computed to be of order
O(x2−k

1 ) for k = 0, 1, O(log(x1)) for k = 2 and O(1) for k > 2. Letting x1 → +∞
we see that (3.23) vanishes unless k = 0 and n = 2, 3, or k = 1 and n = 3. From
(3.19) we then see that (3.21) holds as desired.
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Now suppose {0} × S3 ⊂ K . Rewriting (3.20) we have from the first part of the
proof that

lim
x1→+∞

∫
K

(
|FAx1 |2 − |FAlim |2

)
dvolg

= lim
x1→+∞

∫
K∩Bε (0×S3)

(
|FAx1 |2 − |FAlim |2

)
dvolg .

Hence, using (3.21) to compute the integral gives

lim
x1→+∞

∫
K

6 · 2592x21
(r + 1)4r6(r2x1 − x1 + 3)4

dvolg

= lim
x1→+∞

∫ 1+ε

1

6 · 2592x21 (1 − r−3)

(r + 1)4r6(r2x1 − x1 + 3)4
23V ol

(
S
3
1

)2
34

√
3

dr

= 4

3
√
3

V ol
(
S
3
1

)2 = 8π2

3
√
3

V ol
(
S
3
1

)
.

Now recall that themetric at the zero section is
(

2√
3

)2
(η−

1 ⊗η−
1 +η−

2 ⊗η−
2 +η−

3 ⊗η−
3 ),

hence its volume form is 1/3
√
3 times that of S31. The result then follows. 	


Remark 8 The sequence of instantons with curvature concentrating along the associa-
tive S3 determines a Fueter section, as in [9,14,27], from S3 to the bundle of moduli
spaces of anti-self-dual connections associated to the normal bundle. The section thus
determined is constant, taking value at the basic instanton on R

4. The Yang–Mills
energy of the basic instanton is 8π2, so Corollary 2 confirms the expected “conserva-
tion of energy” formula (c.f. [23]).

4 SU(2)2 × U(1)-invariant G2-instantons

The main goal of this section is to investigate SU(2)2-invariant G2-instantons on the
Brandhuber et al. (BGGG) G2-manifold R

4 × S3 from Sect. 2.2.2. We will restrict
ourselves to instantons that enjoy an extra U (1)-symmetry present in the underlying
geometry. As already mentioned, all of the known complete SU(2)2-invariant G2-
manifolds of cohomogeneity-1 enjoy an extra U (1)-symmetry and so the analysis of
SU(2)2×U (1)-invariantG2-instantons provides a natural stepping stone to a complete
understanding of SU(2)2-invariant G2-instantons.

Webegin inSect. 4.1 byderiving theODEsdeterminingG2-instantons in this setting
by simplifying the general ODEs and constraint in Lemma 3. We then determine the
necessary conditions ensuring that solutions to these ODEs smoothly extend across
the singular orbit in the Bryant–Salamon (BS), BGGG and Bogoyavlenskaya G2-
manifolds in Sect. 4.2. In the final section Sect. 4.3, we explicitly describe the G2-
instantons which exist near the singular orbit. This leads to a stronger classification
result in the BS case, and existence and non-existence results for global G2-instantons
in the BGGG case.
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4.1 The SU(2)2 × U(1)-invariant ODEs

We shall now rewrite the ODEs from Lemma 3 in this SU(2)2 × U (1)-invariant
setting. As for the SU(2)3-invariant case it will be convenient to rescale the fields a±

i ,
for i = 1, 2, 3, defining the connection 1-form as in (2.27). We thus define

c+
i = a+

i

Ai
, c−

i = a−
i

Bi

so that the connection 1-form is

A =
3∑

i=1

Ai c
+
i ⊗ η+

i + Bi c
−
i ⊗ η−

i .

In these terms we can use (2.16)–(2.19) to obtain the general SU(2)2 ×U (1)-invariant
G2-instanton equations for A from Lemma 3 as follows:

ċ+
1 + 1

2

(
A1

B2
2

− A1

A2
2

)
c+
1 = 1

2

[
c−
2 , c−

3

] − 1

2

[
c+
2 , c+

3

]
, (4.1)

ċ+
2 + 1

2

(
A2
2 + B2

1 + B2
2

A2B1B2
− A2

1 + 2A2
2

A1A2
2

)
c+
2 = 1

2

[
c−
3 , c−

1

] − 1

2

[
c+
3 , c+

1

]
, (4.2)

ċ+
3 + 1

2

(
A2
2 + B2

1 + B2
2

A2B1B2
− A2

1 + 2A2
2

A1A2
2

)
c+
3 = 1

2

[
c−
1 , c−

2

] − 1

2

[
c+
1 , c+

2

]
, (4.3)

ċ−
1 +

(
A2
2 + B2

1 + B2
2

A2B1B2

)
c−
1 = 1

2

[
c−
2 , c+

3

] + 1

2

[
c+
2 , c−

3

]
, (4.4)

ċ−
2 + 1

2

(
A2
2 + B2

1 + B2
2

A2B1B2
+ A2

1 + 2B2
2

A1B2
2

)
c−
2 = 1

2

[
c−
3 , c+

1

] + 1

2

[
c+
3 , c−

1

]
, (4.5)

ċ−
3 + 1

2

(
A2
2 + B2

1 + B2
2

A2B1B2
+ A2

1 + 2B2
2

A1B2
2

)
c−
3 = 1

2

[
c−
1 , c+

2

] + 1

2

[
c+
1 , c−

2

]
, (4.6)

together with the constraint
3∑

i=1

[
c+

i , c−
i

] = 0. (4.7)

We now wish to simplify these equations further using an additional U (1)-symmetry
in the ambient geometry. This extra symmetry in the known complete SU(2)2-invariant
cohomogeneity-1G2-manifolds fromSect. 2.2 canbe encoded, for example, by regard-
ing S3 × S3 as SU(2)2 × U (1)/�U (1), with �U (1) acting via

eiθ · (g1, g2, eiα) = (g1 diag(e
iθ , e−iθ ), g2 diag(e

iθ , e−iθ ), ei(α+θ)).
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With this in hand, we can derive the simplified ODEs in this setting.

Proposition 6 Let A be an SU(2)2 × U (1)-invariant G2-instanton on R
+ × SU(2)2

∼= R
+ × (SU(2)2 ×U (1)/�U (1)) with gauge group SU(2). There is a standard basis

{Ti }3i=1 of su(2), i.e. with [Ti , Tj ] = 2εi jk Tk , such that (up to an invariant gauge
transformation) we can write

A = A1 f +T1 ⊗ η+
1 + A2g+ (

T2 ⊗ η+
2 + T3 ⊗ η+

3

)
+B1 f −T1 ⊗ η−

1 + B2g− (
T2 ⊗ η−

2 + T3 ⊗ η−
3

)
, (4.8)

with f ±, g± : R+ → R satisfying

ḟ + + 1

2

(
A1

B2
2

− A1

A2
2

)
f + = (g−)2 − (g+)2, (4.9)

ġ+ + 1

2

(
A2
2 + B2

1 + B2
2

A2B1B2
− A2

1 + 2A2
2

A1A2
2

)
g+ = f −g− − f +g+, (4.10)

ḟ − +
(

A2
2 + B2

1 + B2
2

A2B1B2

)
f − = 2g−g+, (4.11)

ġ− + 1

2

(
A2
2 + B2

1 + B2
2

A2B1B2
+ A2

1 + 2B2
2

A1B2
2

)
g− = g− f + + g+ f −. (4.12)

Proof We must consider SU(2)2 × U (1)-homogeneous SU(2)-bundles over S3 × S3

∼= SU(2)2 × U (1)/�U (1). Such bundles are parametrized by isotropy homomor-
phisms λ : �U (1) → SU(2), which take the form λk(eiθ ) = diag(eikθ , e−ikθ ). We
take the complement of the isotropy algebra �u(1) to be m = su+(2) ⊕ su−(2) ⊕ 0.
The canonical invariant connection on the bundle

Pk = (SU(2)2 × U (1)) ×(�U (1),λk ) SU(2)

is given by dλk = T1 ⊗ kdθ , where the {Ti }3i=1 form a standard basis for su(2)
and θ is the periodic coordinate on U (1). Wang’s theorem [28] states that any other
invariant connection a on Pk can be written as dλk +�k , where�k is the left-invariant
extension to SU(2)2×U (1) of amorphismof�U (1)-representations�k : (m,Ad) →
(su(2),Ad ◦λk). Splitting into irreducibles, we have

m = (R ⊕ C2) ⊕ (R ⊕ C2) ⊕ 0,

while (su(2),Ad ◦λk) splits as R ⊕ C2k . Therefore, other invariant connections exist
only when k = 1, in which case we can apply a gauge transformation so that

a = T1 ⊗ dθ + A1 f +T1 ⊗ η+
1 + A2g+ (

T2 ⊗ η+
2 + T3 ⊗ η+

3

)
+B1 f −T1 ⊗ η−

1 + B2g− (
T2 ⊗ η−

2 + T3 ⊗ η−
3

)
,
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where f ±, g± are constants. We now pull this back to SU(2)2 via the inclusion map
SU(2)2 → SU(2)2 × U (1) and extend it to R+ × SU(2)2 to obtain

A = γ
(

A1 f +T1 ⊗ η+
1 + A2g+(

T2 ⊗ η+
2 + T3 ⊗ η+

3

))
γ −1

+γ
(
B1 f −T1 ⊗ η−

1 + B2g−(
T2 ⊗ η−

2 + T3 ⊗ η−
3

))
γ −1,

for functions γ : R+ → SU(2) and f ±, g± : R+ → R.
We now turn our attention to such connections A which can solve the G2-instanton

Eqs. (4.1)–(4.7). We first see that the constraint (4.7) is satisfied and we claim that the
evolution equations imply the ODEs (4.9)–(4.12) and that γ̇ = 0. Observe that (4.1)
becomes

ḟ +T1 + f + [
γ −1γ̇ , T1

]
+ 1

2

(
A1

B2
2

− A1

A2
2

)
f +T1 = ((g−)2 − (g+)2)T1.

We conclude that f +[γ −1γ̇ , T1] = 0 and obtain (4.9). Entirely analogous computa-
tions yield

g+ [
γ −1γ̇ , Ti

]
= 0, f − [

γ −1γ̇ , T1
]

= 0, g− [
γ −1γ̇ , Ti

]
= 0

for i = 2, 3, as well as (4.10)–(4.12). Hence, if A �= 0 we obtain γ̇ = 0 and so A
takes the form (4.8) as required. 	

Remark 9 In the setup of the Proposition 6, we have

c±
1 = f ±T1, c±

2 = g±T2, c±
3 = g±T3,

where f ±, g± : R+ → R satisfy the ODEs (4.9)–(4.12).

4.2 Initial conditions

To investigate SU(2)2 × U (1)-invariant G2-instantons A on the BGGG G2-manifold
R
4 × S3, as well as the BS and Bogoyolavenskaya cases, we study the conditions for

A to extend smoothly over the singular orbit SU(2)2/�SU(2) ∼= {0} × S3.
As inSect. 3.2,wehave twobundles Pλ as in (3.5) to consider,whereλ : �SU(2) →

SU(2) is either trivial λ = 1 or the identity λ = id. Recall from Proposition 6 that
A takes the form in (4.8), determined by functions f ±, g± : R≥0 → R. The next
result gives the conditions on f ±, g± so that such A extends over a singular orbit
at t = 0. To state it, we observe that Lemma 8 in Appendix A shows that for any
SU(2)2 × U (1)-invariant G2-metric which smoothly extends over a singular orbit at
t = 0 must be of the form (2.13) for functions A1, A2 = A3, B1, B2 = B3 which
admit Taylor expansions of the form

Ai (t) = t

2
+ t3Ci (t) and Bi (t) = b + t2Di (t), (4.13)
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for some b ∈ R\{0} and real analytic even functions C1, C2 = C3, D1, D2 = D3
with D1(0) = D2(0). The explicit values of C1(0), C2(0) and D1(0) for the BS and
BGGG cases can be found in Examples 1–2 in Appendix A.

Lemma 5 The connection A in (4.8) extends smoothly over the singular orbit S3 if
and only if f + and g+ are odd, f − and g− are even, and, using the notation in (4.13),
their Taylor expansions around t = 0 are:

• either

f − = f −
2 t2 + O(t4), g− = g−

2 t2 + O(t4),

f + = f +
1 t + O(t3), g+ = g+

1 t + O(t3),

in which case A extends smoothly as a connection on P1;
• or

f − = b−
0 + b−

2 t2 + O(t4), g− = b−
0 + b−

2 t2 + O(t4),

f + = 2

t
+ (

b+
2 − 4C1(0)

)
t + O(t3), g+ = 2

t
+ (

b+
2 − 4C2(0)

)
t + O(t3),

in which case A extends smoothly as a connection on Pid.

Proof We start with Pid, i.e. where the homomorphism λ = id, as it is slightly more
involved. The canonical invariant connection on Pid → S3 is Acan in (3.6). We must
then apply Lemma 10 from Appendix A to the su(2)-valued 1-form

A − Acan = (
A1 f + − 1

)
T1 ⊗ η+

1 + (
A2g+ − 1

) (
T2 ⊗ η+

2 + T3 ⊗ η+
3

)
+B1 f −T1 ⊗ η−

1 + B2g− (
T2 ⊗ η−

2 + T3 ⊗ η−
3

)
.

We deduce that A1 f + − 1, A2g+ − 1, B1 f − and B2g− are all even. Moreover, the

first two of these must admit Taylor expansions of the form
b+
2
2 t2 + O(t4), for some

b+
2 ∈ R, while the last two have expansions of the form

b−
0
2 + b−

2
2 t2 + O(t4), for some

b−
0 , b−

2 ∈ R. Using (4.13), we deduce that

f + = 2

t
+ (

b+
2 − 4C1(0)

)
t + O(t3), g+ = 2

t
+ (

b+
2 − 4C2(0)

)
t + O(t3),

and, since D1(0) = D2(0) and b �= 0, we have f − = h− + O(t4), g− = h− + O(t4)
where

h− = b−
0

2b
+

(
b−
2

2b
− b−

0

2b2
D1(0)

)
t2.

The statement for Pid then follows.
We now turn to P1. Here we instead apply Lemma 10 to the 1-form A itself and

conclude that A1 f +, A2g+, B1 f −, B2g− must all be even and vanish at t = 0.
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Hence, by (4.13), we see that f +, g+ are odd and f −, g− are even such that
f −(0) = g−(0) = 0. 	


4.3 Solutions

Wenow investigate existence of solutions of the SU(2)2×U (1)-invariantG2-instanton
equations with gauge group SU(2) on the BS, BGGG and Bogoyavlenskaya G2-
manifoldsR4×S3. There are two cases: when the bundle is P1 or Pid, in the notation of
the previous subsection. In both caseswe explicitly classify the invariantG2-instantons
defined near the singular orbit which extend smoothly and, as a consequence, extend
our uniqueness result forG2-instantons on theBSR4×S3 to the case of SU(2)2×U (1)-
symmetry, and obtain both existence and non-existence results for G2-instantons with
decaying curvature on the BGGG R

4 × S3.

4.3.1 Solutions smoothly extending on P1

We shall now investigate the existence of solutions that smoothly extend over the
singular orbit S3 = SU(2)2/�SU(2) on the bundle P1. The main results are Proposi-
tion 7 and Theorems 7–9. Proposition 7 shows the existence of a 2-parameter family
of G2-instantons in a neighbourhood of the singular orbit, so there is at most a 2-
parameter family of SU(2)2 × U (1)-invariant G2-instantons on P1 on the BS, BGGG
and Bogoyavlenskaya G2-manifolds. Theorem 7 shows that in the BS case, just a
1-parameter family of these local instantons extends, and these are either given by
Clarke’s SU(2)3-invariant examples from Theorem 4 or are abelian. Theorems 8 and
9 show that, unlike the BS case, there is a 2-parameter family of local G2-instantons
which extend to the whole BGGG R

4 × S3 so that their curvature is bounded, as well
as a 2-parameter family which do not extend so as to have bounded curvature.

Proposition 7 Let X ⊂ R
4 × S3 contain the singular orbit {0} × S3 of the SU(2)2 ×

U (1) action and be equipped with an SU(2)2 × U (1)-invariant holonomy G2-metric.
There is a 2-parameter family of SU(2)2×U (1)-invariant G2-instantons A with gauge
group SU(2) in a neighbourhood of the singular orbit in X smoothly extending over
P1.

Moreover, in the notation of Proposition 6 and (4.13), any such G2-instanton A
can be written as in (4.8) with f − = 0 = g− and with f +, g+ solving the ODEs:

ḟ + + 1

2

(
A1

B2
2

− A1

A2
2

)
f + = −(g+)2, (4.14)

ġ+ + 1

2

(
A2
2 + B2

1 + B2
2

A2B1B2
− A2

1 + 2A2
2

A1A2
2

)
g+ = − f +g+, (4.15)

subject to f +(t) = f +
1 t + t3u1(t), g+(t) = g+

1 t + t3u2(t), where f +
1 , g+

1 ∈ R and
the ui are real analytic functions such that
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u1(0) = − f +
1

(
1

8b2
+ 2C2(0) − C1(0)

)
− (g+

1 )2

2
, (4.16)

u2(0) = −g+
1

2

(
1

4b2
+ 2C1(0) + f +

1

)
. (4.17)

Proof It is convenient to study our initial value problem by writing

f +(t) = f +
1 t + t3u1(t), g+(t) = g+

1 t + t3u2(t),

f −(t) = t2v1(t), g−(t) = t2v2(t),

for some real analytic functions u1, u2, v1, v2, which we can do by Lemma 5. In
this way the ODEs for G2-instantons from Proposition 6 turn into ODEs for these
4 functions, which we write as X (t) = (u1(t), u2(t), v1(t), v2(t)). A lengthy but
otherwise straightforward computation yields the regular singular initial value problem
at t = 0:

d X

dt
= M−1(X)

t
+ M(t, X),

where M(t, X) is real analytic in the first coordinate and

M−1(X) =
(

− 2u1 −
(

1

4b2
+ 4C2(0) − 2C1(0)

)
f +
1 − (

g+
1

)2
,

− 2u2 −
(

1

4b2
+ 2C1(0) + f +

1

)
g+
1 ,−6v1,−6v2

)
.

The existence anduniqueness theorem for singular initial value problems ([18], see also
Theorem 4.7 in [13] for a clearer statement) applies if and only if M−1(X (0)) = 0 and
d M−1(X (0)) does not have any positive integer as an eigenvalue. Since d M−1(X (0))
is diagonal with eigenvalues −2,−2,−6,−6, we only need v1(0) = 0 = v2(0)
and u1(0), u2(0) as in (4.16), (4.17) to apply the existence and uniqueness theorem:
this determines the possible initial values X (0), which are therefore parametrized by
f +
1 , g+

1 ∈ R. We conclude that there is a local two-parameter family of G2-instantons
with SU(2)2 × U (1)-symmetry as claimed.

Notice that all these G2-instantons have v1(0) = 0 = v2(0). Thus, setting the
smaller singular initial value problem above with f − and g− both vanishing gives the
same local existence and uniqueness result, and hence the uniqueness implies that in
fact f −(t), g−(t) must vanish identically for any solution extending smoothly over
the singular orbit. The resulting ODEs (4.14), (4.15) then follow from Proposition 6.

	

Remark 10 Recall that the BS, BGGG and Bogoyavlenskaya G2-metrics all have
SU(2)2 × U (1)-symmetry and so Proposition 7 yields G2-instantons in these cases.

Our first result shows that the sign of g+
1 determines the sign of g+.
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Lemma 6 Let ( f +, g+) solve (4.14), (4.15). The sign of g+ does not change as long
as f + does not blow up, and if g+(t0) = 0 for some t0 > 0 or if g+

1 = 0 then g+ ≡ 0.

Proof Suppose, for a contradiction, that the sign of g+ changes. Then there is t0 > 0
such that g+(t0) = 0. The ODE (4.15) implies that ġ+(t0) = 0 and thus g+ ≡ 0
(as g+ solves a linear first order ODE), giving our contradiction. The same argument
using (4.15) yields the statement. 	

Remark 11 The ODEs (4.14), (4.15) are invariant under g+ �→ −g+. We may there-
fore exchange g+ with−g+ and, by virtue of Lemma 6, assume that g+

1 ≥ 0, and thus
g+ ≥ 0, if we wish.

We first focus on the BS G2-manifold R
4 × S3. It follows from Proposition 7 that

there is atmost a 2-parameter family of SU(2)2×U (1)-invariantG2-instantons defined
globally on the BS G2-manifold. We have a 1-parameter family of such instantons
(with more symmetry) from Theorem 4 and a 1-parameter family of abelian examples
from Corollary 1.We now show that these examples provide a complete classification.

Theorem 7 Let A be a SU(2)2 × U (1)-invariant G2-instanton with gauge group
SU(2) on the BS G2-manifold R

4 × S3 which extends smoothly on P1. Either A is
SU(2)3-invariant, and so is given in Theorem 4; or it is reducible, in which case it has
gauge group U (1) and is given in Corollary 1(a) with x2 = x3 = 0.

Proof In the BS case, using (3.1), we see that (4.14), (4.15) are now

ḟ + − Ȧ1

A1
f + = −(g+)2 and ġ+ − Ȧ1

A1
g+ = − f +g+. (4.18)

Let F = f +/A1 and G = g+/A1, and define s ∈ [0,∞) by ds
dt = A1. If we let

f ′ = d f
ds then (4.18) is equivalent to

F ′ = −G2 and G ′ = −FG. (4.19)

It follows from (4.19) that F2 − G2 = c ∈ R, so we need only consider the ODE

F ′ = c − F2. (4.20)

If c < 0, the solutions to (4.20) satisfy F2(s) = −c tan2(a − √−cs), which can then
only exist for finite s and thus finite t .

If c > 0 there are two types of solutions to (4.20): either F2(s) = c tanh2(a +√
cs)

or F2 = c. The first solutions have F2 − c < 0 which contradicts F2 − c = G2. The
second solutions force G ≡ 0, which give abelian instantons as in Corollary 1.

If c = 0, then F2 = G2, which means F = ±G so f + = ±g+. By Remark 11,
we may assume that f + = g+. In this case, A is SU(2)3-invariant and the result then
follows from Theorem 4. 	
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We now focus attention on the BGGG G2-manifold, though some of our results
hold for the 1-parameter family ofBogoyavlenskayametricswhich includes theBGGG
metric. It is natural in the study of G2-instantons on non-compact G2-manifolds to
assume a decay condition on the curvature of the connection at infinity. The weakest
reasonable assumption we can make is the curvature is bounded. In this setting we can
prove both existence and non-existence results.

We first observe the conditions imposed on f +, g+ for the Bogoyavlensakaya
metrics when the curvature is bounded.

Lemma 7 Let A be the G2-instanton on one of the Bogoyavlenskaya G2-manifolds
induced by the pair ( f +, g+) as in Proposition 7. Then |FA| is bounded only if g+ is
bounded, and if both f + and g+ are bounded then |FA| is bounded.

Proof The G2-instanton A induced by the pair ( f +, g+) has connection form as in
(4.8) with f − = g− = 0. Since A = a(t), the curvature FA = dt ∧ ȧ + Fa of A can
be computed from Lemma 2. Notice that |FA|2 = |ȧ|2 + |Fa |2. Computing each of
these terms separately we have

|Fa |2 = 1

4

(
(g+)2 − A1

A2
2

f +
)2

+ (g+)2

2

(
f + − 1

A1

)2

+ A2
1( f +)2

4B4
2

+ A2
2(g

+)2

2B2
1 B2

2

,

|ȧ|2 = 1

4

(
(g+)2 − A1 f +

A2
2

+ A1 f +

B2
2

)2

+ (g+)2

2

(
f + − 1

A1
+ A2

B1B2

)2

,

where in the second case we have used the G2-instanton Eqs. (4.14), (4.15).
It follows from the work in [3] that, up to rescaling,

lim
t→∞ A1 = 1, lim

t→∞
A2

t
= c, lim

t→∞
B1

t
= 2√

3
c, lim

t→∞
B2

t
= c (4.21)

for a constant c > 0. Hence, from the third term in |Fa |2, we see t−2 f + is bounded
as t → ∞. Thus, from the first term, g+ must be bounded. We also quickly see that if
f +, g+ are both bounded then from the formulae for |Fa |2 and |ȧ|2 we see that |FA|2
is bounded as well. 	

We have a 1-parameter family of reducible invariant G2-instantons on the BGGG G2-
manifold which have gauge group U (1) ⊆ SU(2): they are given in Corollary 1(b)
with x2 = x3 = 0 and have bounded (in fact, decaying) curvature. We start with our
non-existence result, which shows that a 2-parameter family of initial conditions leads
to local G2-instantons which either do not extend with bounded curvature or can only
extend as one of the above abelian instantons.

Theorem 8 Let A be a SU(2)2 × U (1)-invariant G2-instanton with gauge group
SU(2) defined in a neighbourhood of {0} × S3 on the BGGG G2-manifold R

4 × S3

smoothly extending over P1 as given by Proposition 7.
If f +

1 ≤ 1
2 , or g+

1 ≥ 0 with g+
1 ≥ f +

1 , then A extends globally to R
4 × S3 with

bounded curvature if and only if A has gauge group U (1) and is given in Corollary
1(b) with x2 = x3 = 0.
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Proof If g+ ≡ 0 then we obtain an abelian instanton as in Corollary 1(b) with x2
= x3 = 0. Suppose, for a contradiction, that g+ is not identically zero and that A is
defined for all t has bounded curvature. By Lemma 6 and Remark 11 we may assume
without loss of generality that g+

1 > 0 and thus g+ > 0 for all t .
Let F = f +/A1 and G = g+/A1 and let s = r − 9

4 ∈ [0,∞) be given as in (2.26).

If we let f ′ = d f
ds then (4.14), (4.15) are equivalent to

F ′ = −G2 and G ′ = (H − F)G, (4.22)

where

H = 1

2

(
2

A2
1

+ 1

B2
2

− A2
2 + B2

1 + B2
2

A1A2B1B2

)
= 1 − 5

(
r − 9

20

)2 − 27
10

r(r − 3/4)(r + 9/4)
. (4.23)

Notice that H takes values in (0, 1), is increasing, and lims→∞ H(s) = 1.
Suppose first that f +

1 ≤ 1
2 . Since f + = f +

1 t + O(t3) and A1 = t/2 + O(t3)
by Example 2, we see that F(0) = 2 f +

1 ≤ 1. Moreover, F is strictly decreasing by
(4.22) as G > 0, so there is ε > 0 so that F(s) ≤ 1 − ε for all s > 0. As H(s) → 1,
there exists s0 > 0 so that H(s) − F(s) > ε

2 for all s ≥ s0. We deduce from (4.22)
that G ′ > ε

2G for all s ≥ s0 as G > 0, and hence G ≥ eεs/2. Therefore, g+ grows at
least exponentially, so either the solution explodes for a finite t , or FA is unbounded
by Lemma 7, giving a contradiction.

Now suppose g+
1 ≥ f +

1 . Then G(0)− F(0) ≥ 0 and one sees that G(s)− F(s) > 0
and is increasing for small s > 0 using g+ = g+

1 t + u2(0)t3 + O(t5), f + = f +
1 t +

u1(0)t3 + O(t5) and the formulae (4.16), (4.17), where the values C1(0), C2(0) for
the BGGG metric are given in Example 2.

We see from (4.22) that

(G − F)′ = (H + G − F)G. (4.24)

Therefore, when G − F = 0 wemust have (G − F)′ = H G > 0. As G − F is initially
increasing, it therefore cannot have any zeros for s > 0, which means that G − F > 0
for all s > 0. We deduce that −F > −G and hence, by (4.22), G ′ > (H − G)G.

If F(s) ≤ 1 for some s, then we are in the same situation as the previous case
of f +

1 ≤ 1
2 , which leads to a contradiction. If instead F(s) > 1 for all s then F is

bounded below, so as F is strictly decreasingwe need from (4.22) that lims→∞ G(s) =
0. Hence, as H(s) → 1, there exists s0 so that G ′ > 1

2G for all s ≥ s0, which
implies that g+ grows at least exponentially. This again gives a contradiction by
Lemma 7. 	

Remark 12 The above proof of non-existence of irreducible instantons for f +

1 ≤ 1
2

immediately extends to the Bogoyavlenskaya metrics by the asymptotics in (4.21).
The proof for g+

1 ≥ 0 and g+
1 ≥ f +

1 would also extend if we knew that H given in
(4.23) continued to be positive for all t > 0 for the Bogoyavlenskaya metrics.
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We now give our existence result, which provides a full 2-parameter family of irre-
ducible SU(2)2×U (1)-invariantG2-instantonswith gauge group SU(2) on theBGGG
G2-manifold.

Theorem 9 Let A be a SU(2)2 × U (1)-invariant G2-instanton with gauge group
SU(2) defined in a neighbourhood of {0} × S3 on the BGGG G2-manifold R

4 × S3

smoothly extending over P1 as given by Proposition 7.
If f +

1 ≥ 1
2 + g+

1 > 1
2 , then A extends globally to R

4 × S3 with bounded curvature.

Proof Recall the notation from the proof of Theorem8. The conditions in the statement
are equivalent to F(0) − 1 ≥ G(0) > 0. Hence, by Lemma 6, we have that G(s) > 0
for all s. Now observe from (4.22) that since the function H in (4.23) takes values in
(0, 1) we have

d

ds

(
(F − 1)2 − G2) = 2(1 − H)G2 > 0. (4.25)

As (F − 1)2 − G2 ≥ 0 at s = 0, we have that (F − 1)2 − G2 > 0 for all s > 0. Thus
(F − 1)2 > G2 > 0 and since F(0) > 1 this means that F(s) > 1 for all s.

By (4.22), F is decreasing and thus F is bounded as it is bounded below (by 1).
We also know that 0 < G < F − 1 so G is also bounded. As H is also bounded, we
deduce that a long time solution to the ODEs (4.22) must exist.

Since F is bounded below by 1, decreasing and exists for all s we must have again
from (4.22) that G(s) → 0 as s → ∞, and that lims→∞ F(s) exists and equals some
constant greater or equal to 1. Hence, both f + and g+ are bounded and so A has
bounded curvature by Lemma 7. 	

Remark 13 Via the asymptotics in (4.21), we see that the function H in (4.23) for any
given Bogoyavlenskaya metric is always bounded above by some C ≥ 1 (possibly
depending on the metric, though one might hope to show that C = 1). Thus, the proof
of Theorem 9 extends to prove the existence of G2-instantons with bounded curvature
for f +

1 ≥ C
2 + g+

1 > 0 in these cases.

Given a G2-instanton on the BGGG R
4 × S3 as in Theorem 9 we can evaluate

its holonomy around the finite circle at infinity, which is a U (1) transformation. In
particular, if we fix g+

1 > 0, we obtain

Hol∞ : ( 1
2 + g+

1 ,+∞) → U (1) ⊂ SU(2), (4.26)

which is the map that takes f +
1 to this limit holonomy. It is natural to ask about the

image of this map, which we now show is all of U (1).

Corollary 3 For any fixed g+
1 > 0, the map (4.26) is surjective.

Proof From (4.25) we conclude that for all s > 0

(F(s) − 1)2 > (F(s) − 1)2 − G(s)2 > (F(0) − 1)2 − G(0)2

= (
2 f +

1 − 1
)2 − (

2g+
1

)2
.
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Since F(s) > 1 for all s by the proof of Theorem 9, we deduce in fact that

F(s) > 1 +
√(

2 f +
1 − 1

)2 − (
2g+

1

)2
for all s > 0. Moreover, as F is decreasing by (4.22), we have that

F∞
(

f +
1

) := lim
t→+∞ F(t) ∈

[
1 +

√(
2 f +

1 − 1
)2 − (

2g+
1

)2
, 2 f +

1

]
. (4.27)

Hence, for any fixed g+
1 , we can vary f +

1 > 1
2 + g+

1 to ensure that F∞ is as large
as we want. By continuous dependence with respect to initial conditions for ODEs,
we have that F∞ varies continuously with f +

1 , and so the image of the map F∞ :
( 12 + g+

1 ,+∞) → R contains at least the interval (1 + 2g+
1 ,+∞).

Now let γt be the circle parametrized by

γt (θ) = (
t, exp(1,1)(2πθT +

1 )
) ⊆ R

+
t × S3 × S3,

for θ ∈ [0, 1]. Then, the holonomy of A = a(t) around γt is

Hol(γt ) = exp

(∫
γt

a(t)

)
= exp

(∫
γt

A1(t)
2F(t)T1 ⊗ η+

1

)

= exp
(
2π A1(t)

2F(t)T1
)
.

Taking the limit as t → +∞ and recalling (4.21) gives Hol∞ = exp(2π F∞T1). The
surjectivity of F∞ onto (1 + 2g+

1 ,+∞) proves the desired result. 	

Remark 14 The proofs of Theorem 9 and Corollary 3 show that for the G2-instantons
A constructed we have F → F∞ ≥ 1 and G → 0 at infinity. Moreover, if F∞ > 1
(which occurs if f +

1 > 1
2 + g+

1 ) then (4.22) implies that G tends to 0 at an exponential
rate. Observe that the abelian G2-instantons of 1(b) with x2 = x3 = 0 are given by
F = x1 ∈ R and G = 0. Hence, A is asymptotic to an abelian G2-instanton, with
exponential rate of convergence if F∞ > 1. Moreover, using Lemma 2 and (4.21) we
may compute the pointwise norm of the curvature FA of A satisfies

|FA| ∼ 2

√
A4
1

A4
2

+ A4
1

B4
2

= O(t−2),

which proves they have quadratically decaying curvature.
By contrast, in Proposition 5, we showed that the irreducible SU(2)2 × U (1)-

invariant G2-instantons for the BS metric are asymptotic to an irreducible connection
and the rate of convergence is O(t−3).

In summary, on the BGGG G2-manifold R
4 × S3, we have shown non-existence

for irreducible SU(2)2 × U (1)-invariant G2-instantons with gauge group SU(2) and
bounded curvature for g+

1 > 0 and f +
1 ≤ 1

2 or g+
1 ≥ f +

1 , and existence for f +
1
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≥ 1
2 +g+

1 > 1
2 . This currently leaves open the region where 0 < f +

1 − 1
2 < g+

1 < f +
1 .

Some numerical investigation indicates that some of these initial conditions may lead
to globally defined instantons with bounded curvature and some may not.

4.3.2 Solutions smoothly extending on Pid

We now turn our attention to the more difficult case of solutions to the SU(2)2×U (1)-
invariant G2-instanton equations on R

4 × S3 which smoothly extend on the bundle
Pid. Here the ODE system does not simplify, but we obtain a 1-parameter family of
local solutions in a neighbourhood of the singular orbit. Although the strategy of proof
remains the same as in our earlier similar results, the analysis is more involved. In
order to ease computations, we use the Taylor expansion for a smooth SU(2)2×U (1)-
symmetric G2-holonomy metric in a neighbourhood of a singular orbit {0} × S3 at
t = 0, computed in (A.4)–(A.7), which depends on constants b, c.

Proposition 8 Let X ⊂ R
4 × S3 contain the singular orbit {0} × S3 of the SU(2)2 ×

U (1) action and be equipped with an SU(2)2 × U (1)-invariant holonomy G2-metric.
There is a 1-parameter family of SU(2)2×U (1)-invariant G2-instantons A with gauge
group SU(2) in a neighbourhood of the singular orbit in X smoothly extending over
Pid.

Moreover, in the notation of Proposition 6 and (4.13), any such G2-instanton A
can be written as in (4.8) with f ±, g± solving the ODEs (4.9)–(4.12) subject to

f +(t) = 2

t
+

((
b−
0

)2
4

− 1

4b2
− 4c

)
t

+
⎛
⎝35

(
b2

(
b−
0

)2 − 16
7

)
b2

(
b−
0

)2 + 112(b2c + 12)b2c + 22

480b4

⎞
⎠ t3 + O(t5),

g+(t) = 2

t
+

((
b−
0

)2
4

+ 2c

)
t

+
⎛
⎝35

(
b2

(
b−
0

)2 − 16
7

)
b2

(
b−
0

)2 + 112(b2c + 12)b2c + 22

480b4

⎞
⎠ t3 + O(t5),

f −(t) = b−
0 + b−

0

4b2

(
b2

(
b−
0

)2 − 2
)

t2 + O(t4),

g−(t) = b−
0 + b−

0

4b2

(
b2

(
b−
0

)2 − 2
)

t2 + O(t4),

for b−
0 ∈ R.
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Proof On Pid, the singular initial value problem to be solved has

f −(t) = b−
0 + t2v1(t), g−(t) = b−

0 + t2v2(t),

f +(t) = 2

t
+ (

b+
2 − 4C1(0)

)
t + t3u1(t), g+(t) = 2

t
+ (

b+
2 − 4C2(0)

)
t + t3u2(t),

for some real analytic v1(t), v2(t), u1(t), u2(t) by Lemma 5. Moreover, notice that
from (A.4)–(A.7) we have C1(0) = c and C2(0) = − 1+8cb2

16b2
and in the following we

will write the coefficients of the metric in terms of b, c ∈ R. The ODEs in Proposition
6 then turn into the following ones for X (t) = (u1(t), u2(t), v1(t), v2(t)):

d X

dt
= M−3

(
b−
0 , b+

2

)
t3

+ M−1(X (t))

t
+ f (t, X (t)),

where f (t, X (t)) is real analytic in both entries and

M−3
(
b−
0 , b+

2

) =
((

b−
0

)2 − 4b+
2 − 1

b2
,
(
b−
0

)2 − 4b+
2 − 1

b2
, 0, 0

)
.

For this to have a real analytic solution X (t) we must have M−3 = 0 which requires
that 4b+

2 = (b−
0 )2 − 1

b2
. In that case we have

M−1(X (0)) =
(

− 6u1(0) + 2b−
0 v2(0),−3u1(0) − 3u2(0) + b−

0 v1(0) + b−
0 v2(0),

− 6v1(0) + 4v2(0), 2v1(0) − 4v2(0)
)

+ K (b−
0 ),

where K (b−
0 ) ∈ R

4 is a constant only depending on b−
0 and the metric. For a real

analytic solution to exist we need M−1(X (0)) = 0. As this is a linear equation and
d M−1(X (0)) is always an isomorphism, it can be uniquely solved for any K (b−

0 ). The
unique solution of M−1(X (0)) = 0 can be written as

u1(0) = u2(0) =
35

(
b2

(
b−
0

)2 − 16
7

)
b2

(
b−
0

)2 + 112
(
b2c + 12

)
b2c + 22

480b4
,

v1(0) = v2(0) = b−
0

4b2

(
b2

(
b−
0

)2 − 2
)

. (4.28)

We now use the existence and uniqueness theorem for initial value problems of [18].
This guarantees that for each b−

0 ∈ R there is a unique solution to the system

d X

dt
= M−1(X (t))

t
+ f (t, X (t)),

provided that M−1(X (0)) = 0 and d M−1(X) has no eigenvalues in the posi-
tive integers. We showed above that we can always find a unique X (0) such that
M−1(X (0)) = 0. Moreover, the eigenvalues of d M−1 can be computed to be
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−8,−6,−3,−2. Hence, for each b−
0 ∈ R there is indeed a unique solution X (t)

to the system above. This yields a unique G2-instanton as in the statement determined
by b−

0 . 	

Remark 15 Since the BS, BGGG and Bogoyavlenskaya G2-metrics all have SU(2)2×
U (1)-symmetry, Proposition 8 yields G2-instantons in these cases. In particular, in
the BS case we have c = − 1

24b2
, b = 1√

3
and these G2-instantons coincide with those

given in Proposition 4.

In light of the existence result in Theorem5 and the local existence result in Proposition
8, it is certainly an interesting non-trivial question which members of the 1-parameter
family of local G2-instantons from Proposition 8 extend on Pid on the BS, BGGG or
Bogoyavlenskaya R4 × S3.

Another natural problem for further study is to understand the limits of the family of
instantons constructed in Theorem 9, and their possible relationship to any extensions
of the local instantons given in Proposition 8. We saw in Proposition 5 that global G2-
instantons on the BSR4×S3 have a limit at infinity given by a canonical connection on
the link S3 × S3 of the asymptotic cone. For the instantons constructed in Theorem 9
we know, by Remark 14, that these are asymptotic to the abelian G2-instantons with a
rate depending on the asymptotic connection. It is also certainly an interesting problem
to investigate the behaviour of the family of instantons from Theorem 9 when one or
both of f +

1 and g+
1 go to infinity. We would expect bubbling phenomena as in the BS

case in Theorem 6, with possible relationship to the ASD instantons on Taub–NUT
found in [11]. The lack of an explicit formula for our instantons makes the bubbling
analysis more difficult.

One other interesting problem is to investigate the behaviour of G2-instantons as
the underlying metric is deformed. For instance, Remark 13 shows how to adapt the
proof of existence in Theorem 9 to the Bogoyavlenskaya G2-manifolds, and we would
want to analyse these instantons as the size of the circle at infinity gets very large or
small. When it gets very large we expect them to resemble G2-instantons for the BS
metric given in Theorem 7. When it gets very small, there may be a relation with
Calabi–Yau monopoles on the deformed conifold (as in [21]).
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Appendix A: SU(2)2-invariant tensors

In this appendix, we use Eschenburg–Wang’s technique [12] to determine when
a metric or connection extends smoothly over a singular orbit Q = SU(2) ×
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SU(2)/�SU(2) ∼= S3 in X = R
4 × S3. The relevant group diagram is I (SU(2) ×

SU(2); {1};SU(2)) and so the principal orbits are topologically S3×S3.Wewill often
identify SU(2) with the unit quaternions.

The normal bundle N Q to Q is R4 × S3 and is homogeneously constructed by
N Q = (SU(2) × SU(2)) ×SU(2) H, where SU(2) acts on SU(2) × SU(2) diagonally
and on H by left multiplication. Similarly, T Q = (SU(2) × SU(2)) ×SU(2) im(H),
where q ∈ SU(2) acts on x ∈ im(H) by q · x = qxq . We also note that

T (N Q) ∼= N Q ⊕ π∗T Q,

where π : N Q → Q is the projection.

A.1: Metrics

By the previous discussion, T (N Q) is modelled on W = H⊕ im(H), with a ∈ SU(2)
acting by a · (p, q) = (ap, aqa), for (p, q) ∈ W . Following [12], to determine
which metrics extend smoothly over Q we seek a basis of S2(W ) corresponding to the
evaluation at 1 ∈ H of homogeneous SU(2)-equivariant polynomials H → S2(W ) of
minimal degree.

The equivariance condition implies that any such polynomial is of the form
x �→ φ(x) ∈ S2(W ) ⊂ W ⊗ W ∼= End(W ), such that for (p, q) ∈ W = H ⊕ im(H)

and x ∈ SU(2) we have

φ(x)(p, q) = (
φ1(x)(p, q), φ2(x)(p, q)

)
= (

xφ1(1)(x p, xqx), x
(
φ2(1)(x p, xqx)

)
x
)
. (A.1)

• First we look at maps x �→ ψ(x)(·) ∈ End(imH) such that ψ(x)(q)

= x(ψ(1)(xqx))x for x ∈ SU(2). The identity map is constant and so homo-
geneous of degree 0. We also have the homogeneous degree 4 polynomials
ψ(x)(q) = −xlxqxlx for l ∈ {i, j, k}. Given the coordinates q = q1i + q2 j
+ q3k ∈ im(H) we have a canonical identification End(im(H) ∼= im(H)∗ ⊗
im(H)∗. Using this identification, we have that the identity and degree 4 polyno-
mials given, when evaluated at x = 1, correspond to

dq1 ⊗ dq1 + dq2 ⊗ dq2 + dq3 ⊗ dq3,

dq1 ⊗ dq1 − dq2 ⊗ dq2 − dq3 ⊗ dq3,

−dq1 ⊗ dq1 + dq2 ⊗ dq2 − dq3 ⊗ dq3,

−dq1 ⊗ dq1 − dq2 ⊗ dq2 + dq3 ⊗ dq3.

• Nowwe consider maps x �→ ψ(x)(·) ∈ End(H) such thatψ(x)(p) = xψ(1)(x p)

for x ∈ SU(2). Fixing coordinates p = p0+i p1+ j p2+kp3 ∈ H, wemay identify
End(H) with H∗ ⊗H

∗. Certainly, the constant maps given by the identity and the
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complex structures are SU(2)-equivariant. The constant map corresponds to

dp0 ⊗ dp0 + dp1 ⊗ dp1 + dp2 ⊗ dp2 + dp3 ⊗ dp3,

while the complex structures correspond to antisymmetric (anti-self-dual) 2-
tensors. We also have homogeneous degree 2 polynomials, where ψ(x)(p)

= 〈p, xl〉xl for l ∈ {i, j, k}. These are SU(2)-equivariant and correspond under
evaluation at x = 1 to

dp1 ⊗ dp1, dp2 ⊗ dp2, dp3 ⊗ dp3.

• Finally, it suffices to consider maps x �→ φ(x) as in (A.1) with φ1(x)(p, q)

= φ1(x)(q) and φ2(x)(p, q) = φ2(x)(p). We have the SU(2)-equivariant linear
polynomial φ(x)(p, q) = (qx, 1

2 (px̄ − x p̄)), which in the coordinates as above
corresponds at x = 1 to

3∑
i=1

dqi ⊗ dpi + dpi ⊗ dqi .

The equivariant homogeneous degree 3 polynomials

φ(x)(p, q) = (〈q, xl1x〉xl2, 〈p, xl2〉xl1x),

for l1, l2 ∈ {i, j, k}, then correspond under evaluation at x = 1 to dpi ⊗ dq j

+ dqi ⊗ dp j for i, j ∈ {1, 2, 3}.

Remark 16 As an alternative to the degree 4 polynomials we wrote down in the first
bullet above, we could have used ψ(x)(q) = 〈q, xl1x〉xl2x , where l1, l2 ∈ {i, j, k}.

We now have enough information to analyze metrics of the form

g = dt2 +
3∑

i=1

(2Ai (t))
2η+

i ⊗ η+
i + (2Bi (t))

2η−
i ⊗ η−

i , (A.2)

where η±
i define bases for the diagonal and anti-diagonal copies of su(2) in su(2) ⊕

su(2) as in Sect. 2.2. We embed R
4 × S3 ↪→ H × H and let SU(2) × SU(2)

act via (a1, a2) · (p, q) = (a1 p, a1qa2). Using this action and the coordinates p
= p0 + i p1 + j p2 + kp3 and q = q0 + iq1 + jq2 + kq3, we compute that, at
(t, 1) ∈ R

4 × S3 for t ∈ R, the dual frames {T ±
i } to the coframes {η±

i } satisfy

T +
i = t

∂

∂pi
, T −

i = t
∂

∂pi
+ 2

∂

∂qi
,

∂

∂t
= ∂

∂p0
,
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for i = 1, 2, 3. At t = 0 the isotropy is�SU(2) and the orbit Q is an S3 whose tangent
space at (0, 1) is 0 ⊕ im(H). For t �= 0 we have

η+
i = 1

t
dpi − 1

2
dqi , η−

i = 1

2
dqi , dt = dp0. (A.3)

It is now easy to rewrite the metric in (A.2) in terms of the equivariant symmetric
2-tensors we found above. This gives

g = dp20 +
3∑

i=1

(
2Ai

t

)2

dpi ⊗ dpi −
3∑

i=1

2A2
i

t
(dpi ⊗ dqi + dqi ⊗ dpi )

+
3∑

i=1

(
A2

i + B2
i

)
dqi ⊗ dqi

=
4∑

i=1

dp2i + C
3∑

i=1

dq2
i +

3∑
i=1

( (
2Ai

t

)2

− 1

)
dp2i +

3∑
i=1

(
A2

i + B2
i − C

)
dq2

i

+ D
3∑

i=1

(dpi ⊗ dqi + dqi ⊗ dpi ) −
3∑

i=1

(
2A2

i

t
+ D

)
(dpi ⊗ dqi + dqi ⊗ dpi )

where C is some smooth even function of t and D is some smooth odd function of
t . Eschenburg–Wang’s technique guarantees that g smoothly extends over Q if and
only if, for i = 1, 2, 3, (2Ai/t)2 − 1 is even and O(t2), B2

i + A2
i − C is even and

O(t4), and
2A2

i
t + D is odd and O(t3). In other words, Ai (t) = t/2 + O(t3) and

B2
i (t) = C(t) − t2/4 + O(t4); in particular notice that up to order O(t2) the Ai

and Bi do not depend on i = 1, 2, 3. Moreover, for g to extend to a metric we also
require it to be positive definite. This implies that Ai , Bi are sign definite for t > 0
and Ai (0) = 0, while Bi (0) �= 0. We summarise these conclusions.

Lemma 8 The metric g in (A.2) extends smoothly (as a metric) over the singular orbit
Q = SU(2)2/�SU(2) if and only if Ai , Bi are sign definite for t > 0 and:

• the Ai ’s are odd with Ȧi (0) = 1/2;
• the Bi ’s are even with B1(0) = B2(0) = B3(0) �= 0 and B̈1(0) = B̈2(0) = B̈3(0).

Remark 17 In fact, for our applications there is no restriction in having the metrics
above being real analytic instead of smooth. As G2 manifolds are Ricci-flat, the metric
is real analytic in harmonic coordinates. The function t can be interpreted as the
arclength parameter along a geodesic intersecting the principal orbits orthogonally, so
it is a real analytic function of the harmonic coordinates, and thus themetric coefficients
must be real analytic functions of t .

Using Lemma 8 and Eqs. (2.16)–(2.19) we can compute the first order terms in the
Taylor expansion for a metric with holonomy G2 in a neighbourhood of a singular
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orbit Q at t = 0 to be

A1(t) = t

2
+ ct3 + 96(22cb2 + 1)cb2 + 11

640b4
t5 + · · · (A.4)

A2(t) = t

2
− 1 + 8cb2

16b2
t3 − 11 − 24(32cb2 + 1)cb2

640b4
t5 + · · · (A.5)

B1(t) = b + 1

4b
t2 − 7 + 8cb2

160b3
t4 + · · · (A.6)

B2(t) = b + 1

4b
t2 − 13 − 8cb2

320b3
t4 + · · · (A.7)

We now confirm that the BS and BGGG metrics from Sect. 2.2 satisfy the conditions
of Lemma 8. We use these formulae on a number of occasions.

Example 1 The BS metric on R
4 × S3 from Sect. 2.2.1 has A1 = A2 = A3 and

B1 = B2 = B3 in (A.2), with expansions

A1(t) = t

2
− 1

8
t3 + O(t5), B1(t) = 1√

3
+

√
3

4
t2 −

√
3

8
t4 + O(t6).

Example 2 The BGGGmetric onR4× S3 from Sect. 2.2.2 has A2 = A3 and B2 = B3
in (A.2), with expansions

A1(t) = t

2
− 7

108
t3 + O(t5), A2(t) = t

2
+ 1

216
t3 + O(t5),

B1(t) = 3

2
+ 1

6
t2 − 7

648
t4 + O(t6), B2(t) = 3

2
+ 1

6
t2 − 17

1296
t4 + O(t6).

A.2: Lie algebra-valued 1-forms

Let G be a compact Lie group with Lie algebra g. We now analyze the conditions to
extend g-valued 1-forms of the form

b =
3∑

i=1

b+
i ⊗ η+

i +
3∑

i=1

b−
i ⊗ η−

i (A.8)

over the singular orbit Q. This a priori depends on how the (trivial) bundle P
= (SU(2) × SU(2)) × G extends over Q. Such extensions are parametrized by (con-
jugacy classes) of isotropy homomorphisms μ : SU(2) → G. Given μ, we pull
Pμ = SU(2)2 ×(SU(2),μ) g back to R4 × S3, which determines the extension.

Then SU(2) acts on g via Ad ◦μ and we need a basis for Hom(W, g) given by
evaluation at 1 of homogeneous SU(2)-equivariant polynomials H → Hom(W, g),
where W = H ⊕ im(H). Following [12], we seek homogeneous polynomials x �→
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φ(x) such that for (p, q) ∈ W we have, for x ∈ SU(2),

φ(x)(p, q) = Ad ◦μ (x) φ(1) (x p, xqx) .

A.2.1: G = U (1)

Here, μ : SU(2) → U (1) must be trivial and g = R. We also have Hom(W,R)
∼= H

∗ ⊕ im(H)∗ and we are left with analyzing when a 1-form extends over Q. We
describe SU(2)-equivariant homogeneous polynomials in H with values in im(H)∗
and H

∗ independently.

• First we look for homogeneous polynomials H → im(H)∗, given by x �→ ψ(x)

such thatψ(x)(q) = ψ(1)(xqx) for x ∈ SU(2). These are generated by the degree
2 polynomials ψ(x)(q) = 〈qx, xl〉, where l ∈ {i, j, k}. Under evaluation at x = 1
these correspond to the 1-forms dqi for i = 1, 2, 3.

• Next we look for homogeneous polynomials H → H
∗ given by x �→ ψ(x) such

that ψ(x)(p) = ψ(1)(x p) for x ∈ SU(2). These are generated by the degree 1
polynomials ψ(x)(p) = 〈p, xl〉, where l ∈ {1, i, j, k}, which correspond under
evaluation at x = 1 to the dpi ’s for i = 0, 1, 2, 3.

We now consider extending the 1-form

b =
3∑

i=1

b+
i η+

i +
3∑

i=1

b−
i η−

i =
3∑

i=1

b+
i

t
dpi +

3∑
i=1

b−
i − b+

i

2
dqi , (A.9)

where we used (A.3). Using the homogeneous polynomials inH computed above and
Eschenburg–Wang’s technique, we immediately deduce the following.

Lemma 9 The 1-form b as given in (A.9) extends over the singular orbit
Q = SU(2)2/�SU(2) if and only if the b±

i ’s are even and b±
i (0) = 0 for i = 1, 2, 3.

A.2.2: G = SU(2)

In this case, using our earlier notation,μ : SU(2) → SU(2)must be either the identity
μ = id (up to conjugacy), or the trivial homomorphism μ = 1. Then, g = su(2)
∼= im(H) and Ad ◦μ is either the adjoint action Ad or trivial, respectively. We shall
denote the respective bundles by Pid = (SU(2) × SU(2)) ×(�SU(2),id) SU(2) and
P1 = (SU(2) × SU(2)) ×(�SU(2),1) SU(2). The main result of this section considers
the problem of extending su(2)-valued 1-forms as in (A.8).

Lemma 10 Let b be an su(2)-valued 1-form as in (A.8). Write b±
i = ∑3

j=1 b±
i j Tj ,

where {Ti }3i=1 is a standard basis for su(2). Then the 1-form b extends over the singular
orbit Q = SU(2)2/�SU(2) on the bundle Pμ if:

• μ = id and for i = 1, 2, 3, b±
i i are even and there are c−

0 , c±
2 ∈ R such that

b+
i i = c+

2 t2 + O(t4), b−
i i = c−

0 + c−
2 t2 + O(t4);
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and for i �= j , b±
i j = O(t4) are even;

• μ = 1 and the b±
i j ’s are even with b±

i j (0) = 0.

The rest of this Appendix is concerned with the proof of Lemma 10.

Case μ = id

Here, we may write Ad(x)q = xqx and Hom(W, im(H)) ∼= (im(H)

⊗ H
∗) ⊕ (im(H) ⊗ im(H)∗). As before, we shall analyze SU(2)-equivariant homo-

geneous polynomials in H with values in each of the components independently.

• We begin by looking for homogeneous polynomials H → im(H) ⊗ H
∗ given by

x �→ ψ(x) such that ψ(x)(q) = x(ψ(1)(xqx))x for x ∈ SU(2). We have the
constant polynomial corresponding to the identity, which is

T1 ⊗ dq1 + T2 ⊗ dq2 + T3 ⊗ dq3.

We also see that the degree 4 polynomials ψ(x)(q) = 〈q, xl1x〉xl2x , where l1, l2
∈ {i, j, k}, generate the space of Tj ⊗ dqi for i, j = 1, 2, 3 when evaluated at
x = 1.

• Next we look for homogeneous polynomials H → im(H) ⊗ H
∗ given by

x �→ ψ(x) such that ψ(x)(p) = x(ψ(1)(x p))x for x ∈ SU(2). The degree 1
polynomials ψ(x)(p) = plx + 〈p, xl〉, where l ∈ {1, i, j, k}, correspond under
evaluation at x = 1 to the maps

T1 ⊗ dp1 + T2 ⊗ dp2 + T3 ⊗ dp3, T1 ⊗ dp0 − T3 ⊗ dp2 + T2 ⊗ dp3,

T2 ⊗ dp0 + T3 ⊗ dp1 − T1 ⊗ dp3, T3 ⊗ dp0 − T2 ⊗ dp1 + T1 ⊗ dp2.

We also have SU(2)-equivariant maps ψ(x)(q) = 〈xl1, p〉xl2x , for l1
∈ {1, i, j, k}, l2 ∈ {i, j, k} which are homogeneous of degree 3. Taking x = 1,
these generate Tj ⊗ dpi , for i = 0, 1, 2, 3 and j = 1, 2, 3.

Recall that our goal is to consider the problem of extending the su(2)-valued 1-form

b =
3∑

i=1

b+
i ⊗ η+

i +
3∑

i=1

b−
i ⊗ η−

i =
3∑

i=1

b+
i

t
⊗ dpi +

3∑
i=1

b−
i − b+

i

2
⊗ dqi ,

where we used (A.3). Since b±
i ∈ su(2), we can write b±

i = ∑3
j=1 b±

i j Tj and

b =b+
11

t

3∑
i=1

Ti ⊗ dpi +
3∑

i=1

b+
i i − b+

11

t
Ti ⊗ dpi +

∑
i �= j

b+
i j

t
Ti ⊗ dp j

+ b−
11

2

3∑
i=1

Ti ⊗ dqi +
3∑

i=1

b−
i i − b+

i i − b−
11

2
Ti ⊗ dqi +

∑
i �= j

b−
i j − b+

i j

2
Ti ⊗ dq j .
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Given the homogeneous polynomials inH computed above,we conclude thatb extends

smoothly over Q on Pid if and only if:
b+
11
t is odd;

b−
11
2 is even;

b+
i i −b+

11
t = O(t3) and, for

i �= j ,
b+

i j
t = O(t3) are odd;

b−
i i −b+

i i −b−
11

2 = O(t4) and, for i �= j ,
b−

i j −b+
i j

2 = O(t4) are
even. Hence, the b+

i j are all even and b+
11 = O(t2), b+

i i = b+
11 + O(t4) (so the O(t2)

terms in all b+
i i coincide) and for i �= j we have b+

i j = O(t4). Thus, the b−
i j must all

be even, b−
i i = b−

11 + b+
i i + O(t4) (so, up to order O(t4) the b−

i i do not depend on i)
and for i �= j we have b−

i j = b+
i j + O(t4). This proves the first part of Lemma 10.

Case μ = 1

Here, Ad ◦μ(x)q = q, so we require homogeneous SU(2)-equivariant polynomials
H → Hom(W,R3) where the action of SU(2) on R

3 is trivial. This is essentially the
same as the situation where the gauge group G = U (1). Therefore, as in that setting,
we have degree 2 polynomials corresponding to Tj ⊗dqi for i, j = 1, 2, 3 and degree
1 polynomials corresponding to Tj ⊗ dpi for i = 0, 1, 2, 3 and j = 1, 2, 3.

We can now consider the problem here of extending the su(2)-valued 1-form b in
(A.8) over Q. As before, we write b±

i = ∑3
j=1 b±

i j Tj and deduce from (A.3) that

b =
3∑

i, j=1

(
b+

i j

t
Tj ⊗ dpi + b−

i j − b+
i j

2
Tj ⊗ dqi

)
.

Hence b extends smoothly over Q on P1 if and only if:
b+

i j
t are odd, while the

b−
i j −b+

i j
2

are even and must vanish at t = 0. In other words, for all i, j ∈ {1, 2, 3}, b±
i j = O(t2)

and is even. This completes the proof of Lemma 10.
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