
1 
 

Research Article 

 
Validation of copy number variation analysis for next-

generation sequencing diagnostics 

 
Jamie M Ellingford1,2,  
Christopher Campbell1, 
Stephanie Barton1, 
Sanjeev Bhaskar1, 
Saurabh Gupta3, 
Rachel L Taylor1,2, 
Panagiotis I Sergouniotis1, 
Bradley Horn1, 
Janine A Lamb4, 
Michel Michaelides5,6, 
Andrew R Webster5,6, 
William G Newman1,2, 
Binay Panda3, 
Simon C Ramsden1, 
Graeme CM Black1,2 
 
1Manchester Centre for Genomic Medicine, Central Manchester University 
Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, 
St Mary's Hospital, Manchester M13 9WL, UK. 
2Institute of Human Development, University of Manchester, Oxford Road, 
Manchester, M13 9WL, UK. 
3Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied 
Biotechnology, Bangalore, 560100, India. 
4Institute of Population Health, University of Manchester, Oxford Road, 
Manchester, M13 9PT, UK. 
5Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK 
6UCL Institute of Ophthalmology, Department of Genetics, London, EC1V 9EL, UK. 
 
Corresponding Author: Jamie M Ellingford, 
Jamie.ellingford@postgrad.manchester.ac.uk, +44 161 276 8703. 
 
Conflict of Interest: The authors declare no conflict of interest. 
 
Running Title: CNV detection in targeted NGS diagnostics  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/81680321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Abstract 
Although a common cause of disease, copy number variants (CNVs) have not 

routinely been identified from next-generation sequencing (NGS) data in a clinical 

context. This study aimed to examine the sensitivity, and specificity of a widely 

used software package, ExomeDepth, to identify CNVs from targeted NGS datasets. 

We benchmarked the accuracy of CNV detection using ExomeDepth v1.1.16 

applied to targeted NGS datasets, through comparison to CNV events detected 

through whole genome sequencing (WGS) for 25 individuals, and determined the 

sensitivity and specificity of ExomeDepth applied to these targeted NGS datasets 

to be 100% and 99.8%, respectively. To define quality assurance metrics for CNV 

surveillance through ExomeDepth, we undertook simulation of single exon 

(n=1000) and multiple-exon heterozygous deletion events (n=1749), determining 

a sensitivity of 97% (n=2749). We identified that the extent of sequencing 

coverage, the inter- and intra-sample variability in the depth of sequencing 

coverage, and the composition of analysis regions are all important determinants 

of successful CNV surveillance through ExomeDepth. We then applied these 

quality assurance metrics during CNV surveillance for 140 individuals across 12 

distinct clinical areas, encompassing over 500 potential rare disease diagnoses. All 

140 individuals lacked molecular diagnoses after routine clinical NGS testing, and 

through application of ExomeDepth we identified 17 CNVs contributing to the 

cause of a Mendelian disorder. Our findings support the integration of CNV 

detection using ExomeDepth v1.1.16 with routine targeted NGS diagnostic 

services for Mendelian disorders. Implementation of this strategy increases 

diagnostic yields and enhances clinical care.   
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Introduction 

Molecular diagnostic services available for patients with genetically 

heterogeneous Mendelian disease have been transformed by the adoption of next-

generation DNA sequencing (NGS) within the clinical setting.1, 2 At present, 

diagnostic services facilitated by NGS are frequently limited to targeted capture 

techniques, including custom gene panels3, 4 and whole exome sequencing (WES).5, 

6 These techniques have demonstrated tremendous power to identify rare and 

private single nucleotide variation and small insertions/deletions underpinning 

disease onset.  

The identification of large structural variants and copy number variants (CNVs) 

encapsulating the regions targeted by WES and custom gene panel assays have 

proved challenging in a clinical context. While whole genome sequencing (WGS) 

techniques have the potential to address this gap in diagnostic NGS services,7, 8 the 

cost and data burdens remain substantial. Consequently, the application of CNV 

detection algorithms in targeted NGS diagnostic services can facilitate immediate 

improvement in clinical care for individuals with heterogeneous Mendelian 

disorders. However, such techniques require formal assessment to demonstrate 

accuracy, reliability and repeatability. 

Here, we assess a framework for the implementation of CNV detection with 

targeted NGS diagnostic services applied across a range of highly heterogeneous 

Mendelian disorders.   
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Methods 

Study Design 

High coverage targeted NGS data was generated in a United Kingdom Accredited 

Clinical Laboratory. We applied a CNV detection algorithm to validate the 

sensitivity for (i) known CNV events, and (ii) simulated CNV events (Figure 1). We 

assessed a number of factors to determine whether they influenced successful 

CNV surveillance. We selected two key factors identified from assessments of 

simulated and known CNVs (inter-sample variability and insufficient coverage) as 

quality assurance metrics during prospective CNV detection for individuals 

without molecular diagnoses through clinical NGS testing (Figure 1). 

Our analyses included individuals referred for diagnostic testing for four highly 

heterogeneous disorders where targeted gene panel NGS is a routine diagnostic 

service, specifically: inherited retinal dystrophies (IRD), congenital cataracts, 

cardiac disorders and metabolic disorders. 

Sequencing & Variant Analysis 

Whole Genome and Targeted Next-Generation Sequencing 

WGS data was generated for 25 individuals by Complete Genomics (Mountain 

View, CA, USA) using a mate-paired sequencing technique, as described 

previously.9 Read alignment and variant calling was performed using version 2.5 

of the Complete Genomics pipeline.10  

For targeted NGS, enrichments were performed on DNA extracted from peripheral 

blood using Agilent SureSelect Custom Design target-enrichment kits (Agilent, 

Santa Clara, CA, USA). Enrichment kits were designed to capture known 
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pathogenic intronic variants and the protein-coding regions +/-50 nucleotides of 

selected NCBI RefSeq transcripts; conditions tested included IRD (105 genes or 

180 genes), congenital cataracts (114 genes), cardiac disorders (72 genes 

comprised of 10 sub-panels) and metabolic disorders (226 genes comprised of 6 

sub-panels). The genes and transcripts included in the targeted capture regions 

for each disease referral are available online (Supp Tables S1-S4) and through the 

UK Genetic Testing Network (http://ukgtn.nhs.uk/find-a-test/search-by-

laboratory/laboratory/manchester-rgc-36/). Samples were pooled and paired-

end NGS was performed using the manufacturer protocols for the Illumina HiSeq 

2000/2500 platform (Illumina, Inc., San Diego, CA, USA). Sequencing reads were 

demultiplexed with CASAVA v.1.8.2. and aligned to the hg19 reference genome 

using Burrows-Wheeler Aligner short read (BWA-short v0.6.2) software11 before 

duplicate reads were removed using samtools v0.1.18. 10.3 million unique NGS 

reads were generated, on average, per sample (n=170, min=1,241,785, 

max=23,240,481, median=10,812,279), with an average coverage of 880 unique 

reads per nucleotide (n=70,514,012, min=0, max=7956, median=783, sd=515.4) 

and 2155 unique reads per exon (n=388,974, min=0, max=317678, median=1561, 

sd=3309.8) within the complete region enriched for analysis. The detection and 

clinical analysis of single nucleotide variants and small insertions/deletions was 

performed as described previously.4, 12 

Copy Number Variant Detection 

For the 25 samples with WGS data, CNVs were identified using version 2.5 of the 

Complete Genomics pipeline.10 Briefly, this strategy incorporates an assessment 

of (i) sequencing read depth, and (ii) discordant mate-pairs. For each tested 
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individual, sequencing read depth was normalized for GC content and genomic 

positional effects, and CNV status was calculated for non-overlapping 2Kb 

genomic intervals through comparison to a baseline sample set – comprised of 52 

unrelated individuals. To identify the location of breakpoints and insertion points 

of CNV events, genomic regions where mate-pairs aligned to the reference genome 

displayed abnormal genomic intervals between the two reads were flagged. 

Within these flagged regions, local de-novo assembly was then performed for 

sequencing reads where only one of the two reads within the mate-pair aligned to 

the reference genome. Where possible, the genomic location of breakpoints and 

insertion points was identified and reported.  

For targeted NGS samples, CNV detection was performed using ExomeDepth 

v1.1.6.13 For each tested individual, the ExomeDepth algorithm builds the most 

suitable reference set from the BAM files of a presented group of potential 

reference samples. We presented ExomeDepth with BAM files for >20 individuals 

that had been generated by identical laboratory and computational procedures. 

All potential reference samples were individuals referred for genomic diagnostic 

testing who were not knowingly related to the tested individual, and had been 

obtained from the same sequencing run on the Illumina HiSeq platform, where 

possible. The reference sample sets selected by ExomeDepth are referred to as 

‘reference samples’ herein.  

Accuracy of ExomeDepth in comparison to WGS and MLPA 

For 25 individuals with IRD we generated gene panel NGS and WGS datasets 

(Figure 1). We used the variant detection techniques applied to the WGS datasets 

as a reference standard for CNV detection and then assessed, at the exon level 
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(n=1590 exons per sample), the sensitivity and specificity of ExomeDepth applied 

to gene panel NGS datasets. We defined sensitivity as the capability of 

ExomeDepth to identify exons with abnormal CNV, and specificity as the capability 

to identify exons with a normal CNV status. For a further five individuals with 

cardiac disorders we generated gene panel NGS and MLPA datasets (Figure 1) and 

then assessed the sensitivity of ExomeDepth applied to gene panel NGS datasets 

for these individuals.  

 

Assessment of ExomeDepth to identify simulated CNV events 

Simulated CNV events were introduced into targeted NGS data for the 25 IRD 

patients with complementary WGS data. The enrichment region for targeted NGS 

for the 25 samples encapsulates 1590 protein-coding exons for 105 genes 

associated with IRD. Importantly, we had previously defined and reported the 

copy number status for each exon included within the targeted enrichment 

through the analysis of WGS data.7 

Simulation was performed using a random sample and exon selector, bedtools 

v2.16.2 intersect, and software within the PicardTools v1.75 java package: 

DownsampleSam and MergeSamFiles (Supp Figure S1). Exons were excluded 

from analysis if they overlapped with known heterozygous deletion events in the 

selected sample. We simulated deletion events for 1000 single exons and 1749 

multiple exons (2, 3 and 4 exon events). In all cases, we assume that the intronic 

breakpoints of the deletion event are not captured through NGS. Deletion events 

are not expected to be detected above a test:reference sample read ratio of 0.7 

(see supplemental results and methods). We created three discrete groups for 
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simulated deletion events, with the extent of sequencing reads randomly removed 

indicated in parentheses: (i) control events (0%), (ii) deletion with amplification 

bias (40%) and (iii) deletion without amplification bias (50%). Further details on 

the simulation methodology are provided in the supplemental results and 

methods. 

Assessment of factors influencing successful identification of CNV events 

We assessed a number of criteria for known and simulated CNV events in order to 

assess whether they are key determinants of successful CNV surveillance through 

ExomeDepth, including:  (i) the intra-sample variation in coverage, using the 

normalized read count (reads-per-kilobase-per-million, rpkm) coefficient of 

variation (CV) for surveyed genes in test samples (Supp Figure S2), (ii) the inter-

sample variation in coverage, using the rpkmCV for surveyed exons across 

reference samples selected by ExomeDepth (Supp Figure S2), (iii) the percentage 

of nucleotides and the number of exons containing nucleotides with appropriate 

sequencing depth for in-house diagnostic surveillance (>50x unique sequencing 

reads), (iv) the total and normalized read depth across surveyed exons, (v) the GC 

content of the surveyed regions, (vi) the size of exons, and (vii) the distance 

between neighbouring exons. All statistical analyses were performed in R v3.2.1 

software. 

Integration of CNV detection during clinical NGS testing 

We integrated CNV detection using ExomeDepth into the NGS workflow for 140 

individuals from 12 distinct referral groups (Supp Table S5). The reasons for 

assessment of CNV events were (i) an assessment of whether a heterozygous CNV 

event was in-trans to a clearly or likely pathogenic variant, or (ii) an assessment 
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of whether a heterozygous CNV event was present in a gene highly specific to an 

individual’s clinical presentation. In accordance with the recommendations of the 

ExomeDepth developers, test samples with an overall correlation to selected 

reference samples <0.97 were repeated with an alternative set of reference 

samples or excluded from analysis. Clinical interpretation of CNVs was restricted 

to genes relevant to their referral on a case-by-case basis. We performed 

additional assays to confirm the presence of all identified CNVs before they were 

clinically reported. Where kits designed and created by MRC-Holland 

(Amsterdam, Netherlands) were available, we carried out multiplex ligation-

dependent probe amplification (MLPA) assays. In the absence of a suitable MLPA 

kit, we validated CNVs using droplet digital PCR or a bespoke multiplex 

quantitative fluorescence methodology (see Supplemental Methods). Validated 

CNV events were submitted to the ClinVar database.14  
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Results 

Accuracy of ExomeDepth in comparison to WGS and MLPA 

To establish the accuracy and reliability of ExomeDepth when applied to targeted 

NGS data, we analysed targeted NGS datasets for 30 individuals in whom CNV 

detection had been performed using either WGS (n=25) or MLPA (n=5).  This 

allowed calculation of the sensitivity and specificity for identified deletions and 

duplications. Overall, we found a sensitivity of 92.9% and identified that variable 

and insufficient coverage within surveyed genes reduces the capability of 

ExomeDepth to identify single exon deletions. 

In comparison to WGS, we determined that ExomeDepth applied to targeted NGS 

datasets (encompassing 1590 exons from 105 genes) has a sensitivity of 100% 

and a specificity of 99.8% (Supp Table S6) at the exon level. True positive events 

included a single exon deletion in GPR98, a 2 exon deletion in USH2A, and a 6 exon 

deletion in PCDH15 (Supp Table S7). In comparison to MLPA, we identified 3 out 

of 4 single exon deletions and one single exon duplication (Supp Table S7). We 

assessed a number of key factors, and observed that the sequencing data for the 

individual in whom a single exon deletion was erroneously not identified, showed 

the highest intra-sample variation (62%) and the highest level of  insufficient 

coverage (9.5% of exons and 0.86% of nucleotides; sample 14011718, Supp Table 

S8).  

We assessed metrics calculated by ExomeDepth for the 8 previously identified 

deletions and duplication events, observing that the average confidence (Bayes 

factor, BF) determined by ExomeDepth for true positive CNV events was 45.04 

(Supp. Table S7, min=6.4, max=76.8) and the average ratio of sequencing reads 
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between test and reference samples for deletions was 0.61 (Supp. Table S7, 

min=0.539, max=0.745) and 1.4 for the sole duplication event.  

Capability of ExomeDepth to identify simulated CNV events 

In order to assess factors that influence the successful identification of CNV events 

in targeted NGS data using ExomeDepth, we introduced simulated events, in-silico, 

into the targeted NGS datasets created in a clinical setting for the 25 individuals 

for whom we held complementary WGS data. We found a 97% sensitivity for 

simulated events when 50% of the NGS reads were removed from selected exons 

(n=2749), and identified that inter-sample variation – a measure of consistency of 

NGS read coverage across reference samples (Supp Figure S2) – and insufficient 

coverage were key determinants of whether simulated events were missed or 

identified by ExomeDepth (Tables 1 & S9). 

Single exon deletions (n=1000) were introduced into 101 of 105 genes enriched 

during NGS and we observed that the sensitivity of ExomeDepth for simulated 

events was 93.5%, with 930 deletions precisely detected at the exon level and 5 

included in deletion events erroneously identified as spanning to adjacent exons. 

This sensitivity is reduced to 79.5% when accounting for amplification bias in 

simulated events (Supp Tables S10 & S11), with an additional 140 false negative 

events identified when only 40% of the original NGS reads were removed from the 

selected exon. Interestingly, 51% (36/70) of the false negative simulated events 

without amplication bias (50% of NGS reads removed) were exons flanked by 

neighbouring exons within 250 nucleotides of the canonical donor or acceptor 

sites. Further, all of these 36 events could be identified if the neighbouring exon 

boundaries were merged into a single analysis region for simulations, increasing 
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the overall sensitivity of ExomeDepth for simulated events to 97.1% (Supp Table 

S11).  

Multiple exon deletions (n=1749) – where 50% of the NGS reads were randomly 

removed from adjacent exons – were introduced into all of the 105 genes enriched 

during targeted NGS for all 25 individuals. We observed sensitivity rates of 96.6% 

(n=620), 95.9% (n=586) and 97.1% (n=543) for 2 exon, 3 exon and 4 exon 

deletions, respectively.  

To ensure that the process of introducing simulated events into targeted NGS data 

did not influence the performance of ExomeDepth, we performed the same 

computational processes of the simulation technique for each event, without 

removing any NGS reads. No single exon or multiple exon simulated deletion 

events were identified by ExomeDepth in any of these control simulation 

experiments.  

Integration of CNV detection during clinical NGS testing 

Following assessment of the accuracy and the reliability of ExomeDepth applied 

to targeted NGS datasets, we then integrated CNV detection using ExomeDepth 

into the NGS workflow for 140 individuals from 12 distinct referral groups to 

assess specific clinical evaluations. These included either (i) an assessment of 

whether a heterozygous CNV event was in-trans to a clearly or likely pathogenic 

variant, or (ii) an assessment of whether a heterozygous CNV event was present 

in a gene highly specific to an individual’s clinical presentation. This analysis 

strategy led to the surveillance of a single gene for 128 individuals, two genes for 

10 individuals and three genes for 2 individuals.  
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Confirmation of molecular diagnoses for 17 individuals 

Analysis on a gene-by-patient basis identified 17 heterozygous CNV events (15 

deletions, 1 duplication and 1 complex event; Supp Table S12; Supp Figure S3). All 

events were verified through an alternative technique, were concluded to 

contribute to the molecular diagnosis for referred individuals and have been 

submitted to the ClinVar database (Submission number: SUB2171211). The 

heterozygous CNV events identified by ExomeDepth ranged from a 20 exon 

deletion in PCDH15 (NG_009191.2, NM_001142770.1; >600Kb) to single exon 

deletions in RPGRIP1 (NG_008933.1, NM_020366.3), BEST1 (NG_009033.1, 

NM_004183.3) and NMNAT1 (NG_032954.1, NM_022787.3). For a single individual 

referred with a provisional clinical diagnosis of Marfan syndrome, we identified a 

complex event in FBN1 (NG_008805.2, NM_000138.4): a 3-exon deletion 

(chr15:48737523-48741140, c.(5545+1_5546-1)_(5917+1_5918-1)del) and a 2-

exon duplication (chr15:48720493-48723049, c.(6739+1_6740-

1)_(6997+1_6998-1)dup), consistent with a clinical diagnosis of Marfan syndrome 

(Figure 2).  

We assessed metrics calculated by ExomeDepth for identified deletion and 

duplication events, observing that the average confidence score (BF) attributed to 

identified CNV events by the ExomeDepth algorithm was 87 (Supp Table S12, 

min=22, max=321) and the average read count ratio between test and selected 

reference samples was 0.56 (min=0.518, max=0.637) and 1.35 (min=1.31, 

max=1.38), respectively.  
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Accuracy of ExomeDepth applied in a clinical context 

To estimate the accuracy of ExomeDepth applied to targeted NGS datasets for the 

123 individuals determined to be absent of CNV events, we assessed (i) copy 

number variant status through orthogonal techniques, and (ii) two key factors 

identified through assessments of simulated and known CNV variants: inter-

sample variation and insufficient coverage (Table 1).   

We calculated the sequencing coverage for each individual, and identified that 3% 

(135/4551) of the surveyed exons contained at least one nucleotide with less than 

50 unique NGS reads. Nine of these exons were found in individuals with a 

confirmed CNV event in the gene, and 28 were in a gene confirmed to be absent of 

a CNV event through orthogonal techniques (MLPA; Supp Figure S4). Of the 

remaining 97 exons, 34 were unique patient-exon combinations and 63 were 

accounted for by 12 exons with insufficient coverage across multiple samples. On 

average, 4.6% of the nucleotides within these 97 poor coverage exons received 

less than 50 unique NGS reads (n=97, min=0.1%, max=40.9%, median=3.6%), and 

all exons were within the range of insufficient coverage values observed for true 

positive simulated deletion events (Table 1).  

To estimate the accuracy of ExomeDepth in relation to reference samples, we 

calculated the variability of sequencing coverage across the selected references 

for each individual, and identified an average inter-sample variation for surveyed 

exons of 5.1% (n=4551, sd=3.4%), with average minimum and maximum values 

observed per-individual of 2.4% (sd=1.9%) and 9.9% (sd=5.5%), respectively. In 

comparison to simulated single exon deletions, these data are consistent with an 

average sensitivity of 98.7% (sd=1.5%, min=88.7%, max=100%; Figure 3).  
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For 6 individuals, data from MLPA analyses provided additional support for the 

absence of a CNV event (Supp Figure S4). For a single individual, we identified a 

false negative event after subsequent MLPA analysis of the DSP gene. We found 

that alteration of the analysis region, to survey 5 sub-exonic regions enriched by 

non-overlapping probes though ExomeDepth identified a partial exon duplication 

event within the DSP gene which complemented the result from MLPA (Supp 

Figure S5).  
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Discussion 

Copy number variants (CNVs) are an important and common form of genomic variation 

in the general population,15, 16 and are implicated in many Mendelian disorders.7, 8, 17 

An ability to accurately survey for CNV events, in particular in targeted NGS datasets, 

therefore has the power to increase diagnostic yields and enhance clinical care. While 

it has already been shown that read count CNV detection algorithms can be successfully 

applied to targeted NGS data in a research context,13, 18-20 their integration within 

diagnostic services has been slower due to a lack of validation parameters. In this study, 

we have identified key factors which can facilitate the successful application of a 

widely used bioinformatics tool, ExomeDepth,13 for CNV surveillance of targeted NGS 

datasets within the clinical environment.  

 

CNV detection tools used in a diagnostic context must be able to identify deletion and 

duplication events that encapsulate single targets/exons included within the targeted 

enrichments of custom gene panel and WES techniques, which is a known limitation 

of some publically available algorithms. Since large datasets of known true positive 

single exon CNV events do not exist, we have developed and applied a  computational 

simulation technique which permits extended assessment of single exon CNV events. 

As a result, we have been able to perform an assessment of trends in large and controlled 

datasets (Table 1), We have then used real-time comparison between WGS and targeted 

NGS data to assess their applicability to real datasets. Using this combined approach 

we have shown that amplification bias within NGS assays and the distance between 

exons enriched during NGS influences the overall sensitivity of ExomeDepth (Supp 

Table S11). After accounting for these dominating factors, we have demonstrated how 

variability of sequencing coverage between and within samples, the extent of read 
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depth, the size of surveyed exons and the level of insufficient coverage are important 

determinants of successful identification of single exon deletion events through 

ExomeDepth (Table 1, Table S9 and S10). Whilst all these metrics are indicated as 

important quality assurance parameters for the accurate detection of single exon CNVs, 

they are neither completely independent nor equally applicable to real datasets on an 

individual basis. We therefore selected two key metrics for routine incorporation into 

diagnostics: insufficient coverage (test sample dependent) and inter-sample variability 

(reference sample dependent). This two-part process firstly checks for the quantity of 

sequencing coverage over exons surveyed in the tested sample, and second, assesses 

the consistency of NGS read coverage across reference samples for each surveyed 

exon. We have assimilated this information to successfully integrate surveillance of 

CNVs into the clinical bioinformatics pipeline for 140 individuals in a clinical setting, 

achieving a definitive molecular diagnosis in 17 of 140 individuals. Importantly, we 

have shown that 97.2% of the exons surveyed and determined to be absent of a CNV 

event have sufficient coverage, and none of the insufficiently covered exons lie outside 

the range of true positives identified from simulated experiments. Moreover, we have 

calculated the inter-sample variability for surveyed exons on an individual basis, and 

through comparison to simulated single exon events, estimated the accuracy of 

ExomeDepth to be 98.7% for the 123 individuals without an identified CNV (Figure 

3). Both of these quality assurance observations are supported by their integration with 

other CNV software tools21 and the absence of CNV events in 6 individuals tested 

through MLPA. 

 

Taken together, our data illustrate the utility of CNV assessments within a diagnostic 

setting using the publically available ExomeDepth software, and support the utilization 
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of quality assurance parameters in complement to CNV detection algorithms in targeted 

NGS diagnostic services. Whilst other types of software can be routinely applied to 

WGS datasets to detect CNVs at single nucleotide resolution, we expect that application 

of the approaches outlined in this study will improve the utilization of read depth CNV 

tools in diagnostic environments across heterogeneous targeted NGS gene panel 

approaches, including small and large gene panels, as described here, and WES.   
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Figure Legends 

Figure 1. Study Design. The approach taken in this study to assess the 

‘accuracy’ and ‘key factors’ influencing the accuracy of ExomeDepth applied 

to targeted next-generation sequencing datasets. The ‘key factors’ assessed 

by application of ExomeDepth to datasets with known and simulated CNVs 

are outlined in Table 1. CNV, copy number variation; WGS, whole genome 

sequencing; MLPA, multiplex ligation-dependent probe amplification; gene panel, 

next-generation sequencing data generated in a diagnostic environment after 

enrichment for a set of genes known as a cause of specific Mendelian disorders. 

 

Figure 2. FBN1 copy number variant. A complex 3-exon deletion, 

c.(5545+1_5546-1)_(5917+1_5918-1)del,  and 2-exon duplication, 

c.(6739+1_6740-1)_(6997+1_6998-1)dup event identified in FBN1 

(NG_008805.2, NM_000138.4), confirming a clinical diagnosis of Marfan syndrome 

for the referred individual. Red crosshairs, the ratio of reads between test and 

reference samples; grey bar, the 95% confidence interval of expected read ratios 

in comparison to reference samples.  

 

Figure 3. Inter-sample variation in sequencing coverage across surveyed 

exons. Simulations, the variability of sequencing coverage in selected reference 

samples for 971 identified and 29 missed single exon simulated deletions. 

Diagnostic survey, the variability of sequencing coverage in selected reference 

samples for 4551 exons surveyed for copy number variants in a diagnostic 

context. 


