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Abstract—This paper considers simultaneous wireless informa-
tion and power transfer (SWIPT) in a multiple-input multiple-
output (MIMO) wiretap channel with energy harvesting re-
ceivers. The main objective is to keep the probability of the
legitimate user’s achievable secrecy rate outage as well as
the energy receivers’ harvested energy outage as caused by
CSI uncertainties below given thresholds. This probabilistic-
constrained secrecy rate maximization problem presents a sig-
nificant analytical and computational challenge since any closed-
form for the probabilistic constraints with log−det functions
is intractable. In this paper, we address this challenging issue
using convex restrictions. In particular, we derive decomposition-
based large deviation inequalities to transform the probabilistic
constraints into second-order cone (SOC) constraints which are
easier to handle. Then we show that a robust safe solution can
be obtained through solving two convex sub-problems in an
alternating fashion.

I. INTRODUCTION

One of the game changing technologies in wireless com-
munications that attracted booming research interests over
the past decade is the concept of wireless energy harvesting.
Enough have been spoken about its prospects, and numerous
technologies have been proposed in the literature to harvest
the maximum benefits of energy harvesting (see, e.g., [1]
and the references therein). Since RF signals can transport
information as well as energy simultaneously, mobile devices
have access to both energy and data at the same time. All
that they need to do is to harvest the energy brought to their
door-step opportunistically.

However, a fundamental challenge in designing optimal
transmit precoders for simultaneous wireless information and
power transfer (SWIPT) systems is the diverse power sensitiv-
ity level at which the information and energy receiver circuits
operate (e.g., −10dBm for energy receivers (ERs) versus
−60dBm for information receivers (IRs)). Another practical
challenge against RF energy harvesting is that the energy
carried by RF signals decays drastically with increasing dis-
tance due to propagation path loss. Exploiting spatial diversity
techniques, multiple-input multiple-output (MIMO) systems
can help to circumvent these challenges to some extent [2]–[4].

Another potential strategy proposed in the literature to
improve energy harvesting efficiency in SWIPT systems is the
receiver-location based scheduling scheme [2], [5], in which
the receivers located in closer proximity to the transmitter are
scheduled for harvesting energy, whereas those far from the

transmitter are scheduled for decoding information. Although
the scheme apparently seems to be beneficial for energy
harvesting (EH), actually it gives rise to an undesired security
vulnerability for transmitting secret information in scenarios
where ERs are supposed to be kept in the dark about the
secret message. Specifically, ERs in the scheme have better
fading channels than IRs and thus have higher probability to
successfully decode the information sent to the IRs [6], [7].
Therefore, SWIPT systems deserve efficient measures in order
to be able to successfully transfer secret messages keeping the
ERs ignorant of the secret message to the IR.

In order to improve information security is wireless systems,
physical-layer security approaches are being widely consid-
ered in the information-theoretic society since the prominent
technique can afford an extra security layer on top of the
traditional cryptographic approaches. Such measures can make
SWIPT more significant in practice. Hence physical-layer
security techniques have recently been introduced for SWIPT
in numerous scenarios [6]–[12]. While it is generally expected
that full channel state information (CSI) of all the links be
available at the transmitter in order to fully exploit the spatial
degrees of freedom (DoF) provided by MIMO technology,
it is generally very unrealistic in practice. In particular, it
is almost impossible to obtain perfect eavesdroppers’ CSI
since eavesdroppers are often unknown malicious agents.
The situation can further worsen if multiple eavesdroppers
collude together in an attempt to maximize their interception
through joint receive beamforming. Hence the authors in [7],
[9] considered robust design based on deterministic channel
uncertainty models for SWIPT in scenarios where the ERs
may collude together, as opposed to perfect CSI assumption
for non-colluding eavesdroppers in [6].

Other recent works with secrecy in SWIPT either con-
sidered worst-case robust approach in which the CSI errors
are assumed to be within a bounded set, or correlation-based
approach in which the channel statistics is available. A delay-
limited secrecy SWIPT system has been considered in [8]
in which all the nodes are equipped with a single antenna.
A randomization-guided rank-one suboptimal solution has
been proposed in [10] for worst-case MISO secrecy SWIPT
systems, and in [11] for MIMO SWIPT systems. Worst-case
based MISO secrecy SWIPT optimization has also been con-
sidered in [12] for norm-bounded channel uncertainty model
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based on successive convex approximation technique.
However, due to inaccurate channel estimation methods,

often it may not be possible to obtain these deterministic
models perfectly. In such cases, secrecy as well as energy
harvesting outage is an obvious effect. Hence in this paper,
we focus on probabilistically robust design of secrecy rate
optimization for MIMO systems in presence of a multi-antenna
eavesdropper (MIMOME) as well as energy harvesters. Note
that in contrast to the deterministic models in existing litera-
ture, this formulation provides a safe performance guarantee
up to certain QoS requirements.

As is well known, the secrecy rate outage constraints in
MIMOME systems present a significant analytical and com-
putational challenge since no closed-form expression exists
for the probabilistic constraints with matrix variables. The
inclusion of the energy harvesting outage constraints only
thrives that challenge. As such, a common practice in the
robust optimization literature is to develop safe tractable ap-
proximations of the outage constraints that are computationally
efficient and are good in accuracies. In this paper, we first
transformed the probabilistic constraints involving log and det
functions, which are generated by the MIMOME configura-
tion, into tractable second-order cone (SOC) constraints. Then
we showed that a robust safe solution can be obtained through
solving two convex sub-problems in an alternating fashion.

Notations: Throughout the paper we use the following
notation standards. Boldface lowercase and uppercase letters
are used to represent vectors and matrices, respectively. The
symbol In denotes an n×n identity matrix, 0 is a zero vector
or matrix. Also, AH , tr(A), rank(A), and |A| represent the
Hermitian (conjugate) transpose, trace, rank and determinant
of a matrix A; Pr[·] represents the probability of an event;
‖ · ‖ and ‖ · ‖F represent the Euclidean norm and Frobenius
norm, respectively; A � 0 (A � 0) means that A is a
Hermitian positive semidefinite (definite) matrix. The notation
x ∼ CN (µ,Σ) means that x is a random vector following a
complex circularly symmetric Gaussian distribution with the
mean vector µ and the covariance matrix of Σ.
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Fig. 1. A MIMOME wiretap system with energy harvesting nodes.

II. SYSTEM MODEL

A MIMO downlink system is considered for SWIPT in
presence of a multi-antenna eavesdropper, as illustrated in
Fig. 1. All the nodes are equipped with multiple antennas. The
base station (BS) aims to transmit information to a legitimate
user (IR) and energy to K energy harvesting (EH) receivers
keeping the information secret from the eavesdropper (Eve).
The BS, IR, Eve, and the kth ER are equipped with NT > 1,
Nd, Ne, and Nh,k antennas, respectively. The BS performs
linear transmit precoding to send secret information to the IR.
By letting x be the transmit signal vector, the received signals
at the IR, the Eve and the kth ER can be modeled, respectively,
as

yd = HH
d x + nd, (1)

ye = GH
e x + ne, (2)

yh,k = GH
h,kx + nh,k, for k = 1, . . . ,K, (3)

where Hd, Ge, and Gh,k are the conjugated complex channel
matrices between the BS and the IR, the Eve, and the kth ER,
respectively, nd ∼ CN (0, σ2

dINd
), ne ∼ CN (0, σ2

eINe
), and

nh,k ∼ CN (0, σ2
hINh,k

) are the additive Gaussian noises at
the IR, the Eve, and the kth ER, respectively. The BS chooses
the transmit signal vector x ∼ CN (0,QI) where QI � 0 is
the transmit covariance matrix. Thus the mutual information
(MI) between the BS and the IR is given by [13]

CI (QI) = log

∣∣∣∣INd
+

1

σ2
d

HH
d QIHd

∣∣∣∣ , (4)

and that between the BS and the eavesdropper is given by

Ce (QI) = log

∣∣∣∣INe
+

1

σ2
e

GH
e QIGe

∣∣∣∣ . (5)

Accordingly, the achievable secrecy rate at the IR is given by
[13]

Rs = [CI (QI)− Ce (QI)]
+
, (6)

where {a}+ indicates the max(0, a). Note that (6) gives the
perfect secrecy rate when the IR can correctly decode the
confidential information at Rs bits per channel use, while Eve
can retrieve almost nothing.

The harvested power at the kth ER is given by

Ek = ξktr
(
GH

h,kQIGh,k

)
, (7)

where ξk ∈ (0, 1] is the energy conversion efficiency of the
energy transducers at the kth ER. For simplicity, it is also
assumed that the harvested energy due to the environmental
noise at the ERs is negligible [2].

III. ROBUST OPTIMIZATION WITH PROBABILISTIC
CONSTRAINTS

In most of the existing works with secrecy SWIPT, it
is assumed that the instantaneous CSI of all the receivers
(including Eve) is available at the transmitter. However, in
practical wireless communication systems, perfect CSI of the
eavesdropper is always challenging to obtain and an important



issue is how to robustify a secure transmit design in the pres-
ence of imperfect CSI. Hence in this section, our endeavour is
to develop a probabilistically robust algorithm for the secrecy
rate maximization problem with QoS outage constraints. We
assume that the BS has incomplete knowledge of ERs’ as well
as Eve’s channels while the IR’s channel is perfectly known.

We consider the widely used Gaussian channel error model
for the imperfect CSI. We assume that the channel error
matrices have circularly symmetric complex Gaussian (CSCG)
distribution. Thus, the actual channels between the BS and the
ERs can be modeled as

Gh,k = Ĝh,k + ∆h,k, for k = 1, · · · ,K, (8)

where Ĝh,k ∈ CNT×Nh,k is the estimated CSI of the k-th
ER and ∆h,k ∈ CNT×Nh,k , for k = 1, . . . ,K, represent
the channel uncertainties such that δh,k , vec (∆h,k) ∼
CN (0,Rh,k), Rh,k is a PSD matrix. Similarly, the Eves’
channel uncertainty model can be represented by

Ge = Ĝe + ∆e, (9)

where Ĝe ∈ CNT×Ne is the estimated CSI of Eve and
∆e ∈ CNT×Ne represent the channel uncertainties such that
δe , vec (∆e) ∼ CN (0,Re), Re is a PSD matrix. Thus,
the secrecy rate maximization problem with probabilistic QoS
constraints can be formulated as

max
R,QI

R (10a)

s.t. Pr {CI (QI)− Ce (QI) ≥ R} ≥ 1− p, (10b)
Pr [Ek ≥ ηk] ≥ 1− q,∀k, (10c)
tr (QI) ≤ PT, (10d)
QI � 0, R ≥ 0. (10e)

To the best of our knowledge, the above problem formulation
with secrecy rate and energy harvesting outage constraints for
the MIMOME wiretap channel has not been considered in
any existing work. Note that the problem formulation in (10)
guarantees that the IR can successfully decode its message at
least (1−p)×100% of the time. Similarly, the ERs can harvest
the minimum required amount of power at least (1−q)×100%
of the time.

Our next endeavour is to find tractable convex restrictions
for the probabilistic constraints. Two key challenges we need
to tackle in order to derive any such restriction are the
probability operator and the log−det function in the Eve’s
MI expression. Based on Fenchel conjugate arguments, the
following lemma can be defined from [14]:

Lemma 1. Given any integer n and positive-definite matrix
(D � 0) ∈ Cn×n. Considering the function f (S,D) =
−tr (SD) + log |S|+ n, it holds true that

max
S∈Cn×n,S�0

f (S,D) = log |D−1|.

The merit of Lemma 1 is that it introduces an auxiliary
variable and expresses the original complicated log−det
functions in terms of a matrix trace function and the new

variable. Hence to make the probabilistic secrecy constraint
(10b) more tractable, we apply Lemma 1 and rewrite Ce (QI)
as

Ce (QI) = − log

∣∣∣∣∣
(

INe
+

1

σ2
e

GH
e QIGe

)−1
∣∣∣∣∣

= − max
Q̃I�0

f

(
Q̃I, INe +

1

σ2
e

GH
e QIGe

)
= min

Q̃I�0
−f
(

Q̃I, INe
+

1

σ2
e

GH
e QIGe

)
. (11)

In order to simplify the notations, let us now denote

f̄
(
Q̃I,QI

)
, −f

(
Q̃I, INe

+
1

σ2
e

GH
e QIGe

)
= tr

((
INe

+
1

σ2
e

GH
e QIGe

)
Q̃I

)
− log |Q̃I| −Ne, (12)

where the last equality is obtained from Lemma 1. Now by
substituting (12) back into the secrecy rate outage constraint
(10b), we obtain

Pr {Cd (QI)− Ce (QI) ≥ R} ≥ 1− p

⇐⇒ Pr

{
min
Q̃I�0

f̄
(
Q̃I,QI

)
≤ CI (QI)−R

}
≥ 1− p

⇐= Pr
{
f̄
(
Q̃I,QI

)
≤ CI (QI)−R

}
≥ 1− p,

for some Q̃I � 0,

⇐⇒ Pr
{

tr
(
GH

e QIGeQ̃I

)
≤ τ

}
≥ 1− p, (13)

where τ , σ2
e

(
CI (QI)−R+ log |Q̃I|+Ne − tr(Q̃I)

)
.

Note that the constraint is still intractable due to the probability
function. In the following, we focus on developing a safe
approximation approach such that the probabilistic constraint
could be satisfied through solving some convex constraints.

Applying the matrix identity tr(AHBCD) =
vec(A)H(DT ⊗B)vec(C) we obtain

tr
(
GH

e QIGeQ̃I

)
= gHe

(
Q̃T

I ⊗QI

)
ge. (14)

Then substituting Ge = Ĝe + ∆e, i.e., ge = ĝe + δe, in
equation (13) yields

Pr
{
δHe

(
Q̃T

I ⊗QI

)
δe + 2<

{
δHe

(
Q̃T

I ⊗QIĝe

)}
+ĝHe

(
Q̃T

I ⊗QI

)
ĝe ≤ τ

}
≥1−p,∀i (15)

where ĝe , vec
(
Ĝe

)
. Since δe ∼ CN (0,Re), δe can be

re-expressed as δe = R
1
2
e ve such that ve ∼ CN (0, INTNe).

Thus (15) can be re-expressed as

Pr
[
vHe

[
−R

1
2
e

(
Q̃T

I ⊗QI

)
R

1
2
e

]
ve + 2<

{
vHe

[
−R

1
2
e(

Q̃T
I ⊗QI

)
ĝe

]}
− ĝHe

(
Q̃T

I ⊗QI

)
ĝe + τ ≥0

]
≥1−p.

(16)



On the other hand, substituting the ERs’ channel uncertainty
models in the energy harvesting outage constraint (10c), we
obtain

Pr
[
ξktr

(
GH

h,kQIGh,k

)
≥ ηk

]
≥ 1− q,

⇐⇒ Pr
[
tr
(
∆H

h,kQI∆h,k + ∆H
h,kQIĜh,k + ĜH

h,kQI

×∆h,k + ĜH
h,kQIĜh,k

)
≥ ηk
ξk

]
≥ 1− q,∀k. (17)

Applying the matrix identity tr(AHBCD) = vec(A)H(DT⊗
B)vec(C), (17) can be re-expressed as

Pr
[
δHh,k

(
INh,k

⊗QI

)
δh,k + 2<

{
δHh,k

(
INh,k

⊗QI

)
ĝh,k

}
+ĝHh,k

(
INh,k

⊗QI

)
ĝh,k ≥

ηk
ξk

]
≥ 1− q,∀k. (18)

Substituting δh,k = R
1
2

h,kuh,k in (18) with uh,k ∼
CN

(
0, INTNh,k

)
, we obtain

Pr
[
uHh,kR

1
2

h,k

(
INh,k

⊗QI

)
R

1
2

h,kuh,k + 2<
{

uHh,kR
1
2

h,k

(
INh,k

⊗QI) ĝh,k}+ ĝHh,k
(
INh,k

⊗QI

)
ĝh,k −

ηk
ξk
≥ 0

]
≥ 1− q,∀k.

(19)

At this point, one can notice that the probabilistic constraints
(16) and (19) are of the form:

Pr{xHAx + 2<{xHr}+ s ≥ 0} ≥ 1− ρ,

where x ∼ CN (0, In) is a standard complex Gaussian random
vector, A ∈ Hn×n and r ∈ Cn is a complex random vector.
In order to develop some convex restrictions to tackle these
probabilistic constraints, our aim is to find a convex function
g(A, r, s), such that

Pr{xHAx + 2<{xHr}+ s ≥ 0} ≤ g(A, r, s).

Then we will immediately have the following implication from
[15]

g(A, r, s) ≤ ρ =⇒ Pr{xHAx + 2<{xHr}+ s ≥ 0}
≥ 1− ρ. (20)

Thus the L.H.S. of the implication in (20) gives a safe
approximation, which is convex, of the generally intractable
probabilistic constraint in the R.H.S.

Note that such convex restriction approaches have also
been followed in [16], [17] for MIMOME systems with-
out considering the energy harvesting outage constraints
based on Bernstein-type inequality (BTI) [18]. However, the
BTI-based approach transforms the chance-constrained opti-
mization problem into SDPs, the resulting safe designs are
polynomial-time solvable [19]. Meanwhile, the SDPs can
be very expensive to solve if the size of the probabilistic
constraints in (10) is sufficiently large. Hence in this paper,
we aim at developing convex restrictions involving simpler
conic constraints. The method follows decomposition-based

large deviation inequality (LDI) [20] for complex Gaussian
quadratic functions as defined in the following lemma:

Lemma 2. [15, Lemma 2] Let x ∼ CN (0, In) be a standard
complex Gaussian random vector, and let A ∈ Hn×n and r ∈
Cn be given. Then, for any ν > 1√

2
and ζ > 0, we have

Pr
{
xHAx + 2Re{xHr} ≤ tr(A)− ζ

}
≤

exp
(
− ζ2

4T 2

)
for 0 < ζ ≤ 2ν̄νT,

exp
(
− ν̄νζT + (ν̄ν)2

)
for ζ > 2ν̄νT,

(21)

where ν̄ = 1− 1
2ν2 , T = ν‖A‖F + 1√

2
‖r‖.

It is interesting to observe that Lemma 2 has actually
decomposed the sum of dependent random variables (xHAx+
2Re{xHr}) into sums of independent random variables. This
idea has been widely used in the literature of probability
theory; see, e.g., [20], [21].

Next, we concentrate on deriving convex restrictions of (16)
and (17) based on the LDI approach. To derive a convex
restriction of (16) using Lemma 2, we set

ζe = tr
(
−R

1
2
e

(
Q̃T

I ⊗QI

)
R

1
2
e

)
+ τe, (22)

Te = ν
∥∥∥−R

1
2
e

(
Q̃T

I ⊗QI

)
R

1
2
e

∥∥∥
F

+
1√
2

∥∥∥−R
1
2
e

(
Q̃T

I ⊗QI

)
ĝe

∥∥∥ , (23)

where τe , −ĝHe

(
Q̃T

I ⊗QI

)
ĝe + τ , and choose ν > 1√

2
from the solution to the following quadratic equation

ν̄ν = (1− 1/(2ν2))ν =
√
− ln(p). (24)

The resulting safe approximation can then be expressed as

tr(−R
1
2
e

(
Q̃T

I ⊗QI

)
R

1
2
e ) + τe ≥ 2

√
− ln(p)Te. (25)

Replacing Te by the appropriate expression, it is easy to verify
that (25) can be expressed as a system of SOC constraints. In
particular, we obtain the following convex restriction method
for tackling the probabilistic constraint (16):

tr
(
−R

1
2
e

(
Q̃T

I ⊗QI

)
R

1
2
e

)
+ τe ≥ 2

√
− ln(p)

× (αe + βe) ,
1√
2

∥∥∥−R
1
2
e

(
Q̃T

I ⊗QI

)
ĝe

∥∥∥ ≤ αe,

ν
∥∥∥−R

1
2
e

(
Q̃T

I ⊗QI

)
R

1
2
e

∥∥∥
F

≤ βe,

(26)

where αe, βe ∈ R are slack variables. Similarly, defining the
slack variables ψh,k and ωh,k, the energy harvesting outage
constraint (17) can be expressed as

tr
(
R

1
2

h,k

(
INh,k

⊗QI

)
R

1
2

h,k

)
+ ĝHh,k

(
INh,k

⊗QI

)
×ĝh,k − ηk

ξk
≥ 2
√
− ln(q) (ψh,k + ωh,k) ,

1√
2

∥∥∥R 1
2

h,k

(
INh,k

⊗QI

)
ĝh,k

∥∥∥ ≤ ψh,k,

ν
∥∥∥R 1

2

h,k

(
INh,k

⊗QI

)
R

1
2

h,k

∥∥∥
F
≤ ωh,k.



Thus, applying the large deviation inequality method to the
outage constrained problem (10), we obtain the convex restric-
tion formulation of the secrecy rate maximization problem as

max
QI,Q̃I,R,αe,βe,{ψh,k},{ωh,k}

R (27a)

s.t. tr
(
−R

1
2
e

(
Q̃T

I ⊗QI

)
R

1
2
e

)
− ĝHe

(
Q̃T

I ⊗QI

)
ĝe

+ σ2
e

(
CI (QI)−R+ log |Q̃I|+Ne − tr(Q̃I)

)
≥ 2
√
− ln(p) (αe + βe) , (27b)

1√
2

∥∥∥−R
1
2
e

(
Q̃T

I ⊗QI

)
ĝe

∥∥∥ ≤ αe, (27c)

ν
∥∥∥vec

(
−R

1
2
e

(
Q̃T

I ⊗QI

)
R

1
2
e

)∥∥∥ ≤ βe, (27d)

tr
(
R

1
2

h,k

(
INh,k

⊗QI

)
R

1
2

h,k

)
+ ĝHk

(
INh,k

⊗QI

)
ĝk −

ηk
ξk

≥ 2
√
− ln(q) (ψh,k + ωh,k) , (27e)

1√
2

∥∥∥R 1
2

h,k

(
INh,k

⊗QI

)
ĝh,k

∥∥∥ ≤ ψh,k, (27f)

ν
∥∥∥vec

(
R

1
2

h,k

(
INh,k

⊗QI

)
R

1
2

h,k

)∥∥∥ ≤ ωh,k (27g)

QI � 0, {R, αe, βe} ≥ 0, {ψh,k, ωh,k} ≥ 0. (27h)

Note that the above problem contains only SOC constraints
in terms of QI or Q̃I individually, but not jointly. Hence we
solve the problem in an alternating fashion in order to find
the optimal QI. In particular, it can be easily verified that for
given QI or Q̃I, problem (27) is an SOCP with respect to the
remaining variables. Thus for given Q̃I, problem (27) can be
solved using interior point methods [19]. Next, Q̃I is updated
through solving the following problem with known QI:

max
Q̃I,R,αe,βe

R (28a)

s.t. tr
(
−R

1
2
e

(
Q̃T

I ⊗QI

)
R

1
2
e

)
− ĝHe

(
Q̃T

I ⊗QI

)
ĝe

+ σ2
e

(
CI (QI)−R+ log |Q̃I|+Ne − tr(Q̃I)

)
≥ 2
√
− ln(p) (αe + βe) , (28b)

1√
2

∥∥∥−R
1
2
e

(
Q̃T

I ⊗QI

)
ĝe

∥∥∥ ≤ αe, (28c)

ν
∥∥∥vec

(
−R

1
2
e

(
Q̃T

I ⊗QI

)
R

1
2
e

)∥∥∥ ≤ βe, (28d)

{R, αe, βe} ≥ 0. (28e)

Note that in problem (28), we have dropped the convex
restriction constraints relevant to the energy harvesting outage
requirements since those constraints are irrelevant to Q̃I.

IV. SIMULATION RESULTS

In this section, we perform numerical simulations to eval-
uate the performance of the proposed algorithms in MIMO
secrecy SWIPT systems through numerical simulations. For
simplicity, it was assumed that Nh,k = Nh, ηk = η, ξk =
1, ∀k, p = q = ρ, and σ2

d = σ2
e = 1. In particular, we

will examine the case in which the QoS requirements are
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Fig. 2. Convergence of the outage-constrained secrecy rate maximization
problem with NT = 8, Nd = Ne = Nh = K = 2, and η = −5 (dB).

such that each user is provided with an outage probability
of at most 10%; i.e., ρ = 0.1, unless otherwise specified. All
the estimated channel matrices are generated as zero-mean
circularly symmetric independent and identically distributed
complex Gaussian random variables and the TGn path-loss
model for urban cellular environment is adopted considering
a path-loss exponent of 2.7 [22]. In addition, we define the
error covariance matrix of the eavesdropper’s channel as Re =
ε2

eINTNe
and that of the kth ER as Rh,k = ε2

h,kINTNh,k
where

ε2
e , ε

2
h,k represent the corresponding channel error variances.

We also assume that ε2
e = ε2

h,k = ε2,∀k. All simulation results
are averaged over 500 independent channel realizations, unless
explicitly mentioned.

We start the performance analysis of the proposed convex
restriction based alternating algorithm by evaluating its conver-
gence speed. Fig. 2 shows the convergence of the secrecy rate
maximization problem in different channel realization with an
initial Q̃I = INe

for NT = 8, Nd = Ne = Nh = K = 2, and
η = −5 (dB). It can be observed that the proposed algorithm
achieves a fast convergence in various channel scenarios.

In the next example, we examine the secrecy rate per-
formance of the proposed safe convex restriction algorithm
against transmit power. For comparison purpose, we introduce
the very basic sub-optimal scheme named plain maximum
ratio transmission (Plain MRT) which ignores the presence
of Eve. Hence, the transmit covariance matrix is defined as
QI =

(
PT

‖Hd‖2F

)
∗ HdHH

d along the direction of the IR’s
channel. Fig. 3 plots the secrecy rates of the methods against
the average transmit power constraint PT for NT = 8 and 10.
Other parameters were set as Nd = Ne = Nh = K = 2, and
η = −5 (dB). Interestingly, the proposed scheme yields almost
3 bits per channel use secrecy rate gain over the baseline
scheme at 5 dB transmit power. Since the secrecy rate Rs in
(6) is an increasing function the transmit power tr(QI), one
can notice identical reflections in the results of Fig. 3 with
increasing PT. Also, it is no surprise that a larger number of
transmit antennas (NT = 10) yields a higher secrecy rate since
the additional antennas can provide additional spatial DoF.

Finally, we analyze the energy harvesting performance of
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the ERs based on the proposed robust design with NT = 8,
Nd = Ne = Nh = K = 2, and η = 0 (dB). The results in
Fig. 4 indicate that the harvested power increases in line with
transmit power. However, an increased distance (100 meter)
results in adverse effect on the harvested energy due to the
propagation path-loss.

V. CONCLUSIONS

In this paper, we investigated probabilistically constrained
secrecy rate maximization problem for SWIPT in a MIMO
wiretap system where all the nodes are equipped with multiple
antennas. Since the problem is non-convex with intractable
probabilistic constraints, we proposed a convex safe approx-
imation based robust transmit precoding algorithm with im-
perfect CSI. In particular, we transformed the probabilistic
constraints involving log and det functions into SOC con-
straints which are easier to handle. Then we showed that
a robust safe solution can be obtained through solving two
convex sub-problems in an alternating fashion. Numerical
simulations were carried out to demonstrate the effectiveness
of the proposed approach over conventional baseline schemes.
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