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Abstract
Purpose Minimally invasive surgery offers advantages over
open surgery due to a shorter recovery time, less pain and
trauma for the patient. However, inherent challenges such as
lack of tactile feedback and difficulty in controlling bleeding
lower the percentage of suitable cases. Augmented reality
can show a better visualisation of sub-surface structures
and tumour locations by fusing pre-operative CT data with
real-time laparoscopic video. Such augmented reality visu-
alisation requires a fast and robust video to CT registration
that minimises interruption to the surgical procedure.
Methods Wepropose to use view planning for efficient rigid
registration. Given the trocar position, a set of camera posi-
tions are sampled and scored based on the corresponding liver
surface properties. We implement a simulation framework to
validate the proof of concept using a segmented CT model
from a human patient. Furthermore, we apply the proposed
method on clinical data acquired during a human liver resec-
tion.
Results The first experiment motivates the viewpoint scor-
ing strategy and investigates reliable liver regions for accurate
registrations in an intuitive visualisation. The second exper-
iment shows wider basins of convergence for higher scoring
viewpoints. The third experiment shows that a compara-
ble registration performance can be achieved by at least
two merged high scoring views and four low scoring views.
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Hence, the focus could change from the acquisition of a large
liver surface to a small number of distinctive patches, thereby
giving a more explicit protocol for surface reconstruction.
We discuss the application of the proposed method on clini-
cal data and show initial results.
Conclusion The proposed simulation framework shows
promising results to motivate more research into a compre-
hensive view planning method for efficient registration in
laparoscopic liver surgery.

Keywords Gaussian curvature · Image guidance · Laparo-
scopic liver surgery · Rigid registration · View planning

Introduction

Approximately 1800 liver resections are performed annually
in theUK for primary ormetastatic surgery.However, this is a
major global health problem and more than 150,000 patients
per year could benefit from liver resection.Augmented reality
has been shown [12] to aid in surgical interventions through
improved resection quality and a reduction in positive sur-
gical margins. Such image guidance systems could make
surgeons reconsider the suitable cases for MIS, thus increas-
ing the number of patients.

The 3D–3D registration between a liver model derived
from the CT scan and the laparoscopic data could be per-
formed with a surface reconstruction of the surgical scene.
Even though they achieve promising results, most meth-
ods [4,8,20,27] are applied in open surgery and acquire
the surgical environment with a laser range camera to get
a point cloud. In the context of minimally invasive surgery,
one approach is to capture with the laparoscopic camera as
many surface patches as possible in order to get a reason-
able reconstruction. In the SmartLiver system [28], a user
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manually selects surface patches to be non-overlapping and
well distributed on the visible part of the liver. However, these
selections are user dependent and there is no specific protocol
to follow. Furthermore, this step is usually performed with
the assistance of technical staff who have to be present at all
the surgical interventions. Another approach consists of an
initial exploratory video [5] in which the clinician moves the
laparoscopic camera for several seconds around the organ
of interest, while their algorithm selects the sharp images
in the background. However, not all the collected patches
contribute equally to the final data fusion. We propose the
reformulation of view planning for the purpose of an effi-
cient registration.

State of the art

The concept of view planning was introduced in robotics
where large scanning sensors had to be moved around a
physical object until a complete 3D reconstruction was
achieved. So, view planning algorithms propose solutions
that determine a suitably short list of best views that would
output an acceptable 3D model under the constraints of
the imaging environment. A good survey of existing tech-
niques in view planning can be found in [23]. A wide range
of research fields have integrated the use of view planning
related concepts to automate and optimise their workflow—
scene exploration [6,13], object recognition [1,7,17,24],
scene inspection [18,25]. In this paper, we reformulate
view planning in the scope of registration in minimally
invasive surgery. Hence, an optimal subset of viewpoints
has to be collected in order to maximise the accuracy of
the registration between an a priori model and the surface
reconstruction.

Closely related techniques have been published by [16,
26]. The doctoral work of David Simon [26] looks at achiev-
ing high accuracy registration with experiments conducted
in open surgery. His proposed framework was based on
the observation that intelligent data selection (IDS) from
specific locations can lead to much better registration than
acquiring large and random collections of data. So, he pro-
posed analysing the constraint imposed by a surface on
a rigid transformation. Ma et al. [15] extended Simon’s
approach by providing an alternative derivation for his con-
straint analysis which tackles several of its limitations. Ma
et al. [16] later incorporated their analysis in a unified
method for registration and point selection using a particle
filter.

There are several aspects in which the methods proposed
by [16,26] differ fromwhat we aim to develop. Bothmethods
use a digitising probe to acquire the data points during the
surgery. Simon’s approach filters out high curvature points,
since it would be difficult for a user to acquire them with

precision. Thus, the algorithm only suggests data in flat
regions which can be more accurately represented by an
uncertainty area around them.While their filtering technique
shows better results for their chosen registration metric, we
plan to use exactly the high curvature points to constrain
the registration. This approach stems from the intuition that
highly distinctive geometrical areas could potentially achieve
a more efficient registration. Secondly, we plan to explic-
itly include in our framework the constraints of the imaging
environment—from the camera space to the clinically vis-
ible parts of the object. Furthermore, their proposed data
collection methods are heavily influenced if the view of the
intra-operative scene is restricted and only a small number of
points are reachable. Consequently, their method would be
impractical and difficult to integrate in a minimally invasive
scenario.

Other related methods have been proposed by [9,14,21].
Low et al. [14] propose an ICP registration predictor which
can output absolute error bounds and use it as a selection
criterion for view planning in object reconstruction for range
acquisition of indoor environments. Rusinkiewicz and Levoy
[21] propose a point selection strategy for ICP which max-
imises the distribution of normals in a sphere. Gelfand et
al. [9] extend the method to maximise both translational and
rotation constraints on the transformation.

A different approach to investigate the registration error
variation with respect to different data collection strategies
was proposed by [30,31] inCT based navigation on the verte-
bra and neuronavigation, respectively. They repeatedly select
points in different configurations and simulate hundreds of
registrations to observe the correlation between the regions
with the registration accuracy.While they highlight a specific
protocol for the surgeons, the recommended configurations
are difficult to generalise to other organs.

Finally, previous methods have investigated different
metrics (i.e. visibility, view overlap) for a wide range of
applications (i.e. object reconstruction, classification). We
aim to investigate the feasibility of a view planning approach
in registration in minimally invasive surgery. As stated in
[26], increasing the amount of data points collected will typ-
ically improve the registration accuracy. However, when the
time is limited, the need for an automatic method to generate
an optimal registration increases. A clear concise protocol
would also reduce user dependent variability in registration
performance.

Contribution of this paper

We focus on improving the efficiency of 3D–3D rigid regis-
tration of shapes—between a 3D liver model extracted from
the pre-operative CT scan and the point cloud of a liver patch
seen froma specific viewpoint. Furthermore,we are currently
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investigating rigid registration and its validation in a clinical
setting, given the difficulty of assessing the performance of
deformable methods.

We have developed a simulation framework in order to
determine which viewpoints would represent the best con-
straints for registration. We propose to automatically select
these views based on a scoring strategy in order to reach an
optimal registration accuracy. This approach aims to remove
the need for a timely exploratory video or for the recon-
struction of a high number of patches. Therefore, it would
make the data acquisition process during surgery faster, more
intuitive and less disruptive for the surgical workflow. We
explicitly include the constraints specific to camera move-
ment and limited field of view to simulate a realistic surgical
scene. In order to validate the feasibility of the proposed
approach in laparoscopic surgery, we address the following
questions:

– How can we evaluate the viewpoints? (“Viewpoint
evaluation” section) We use synthetic data to validate
whether the proposed scoring strategy is correlated with
higher registration accuracy. Furthermore, we investigate
using an intuitive visualisation which regions of the liver
could potentially lead to better registrations.

– Can viewplanning improve registration? (“View plan-
ning for registration” section) Simulated intra-operative
data is used to demonstrate that the proposed pre-
operative planning step can lead to a correct registration
convergence for larger initial misalignments.

– How many patches are needed for a low registration
error? (“Effect of the number of patches on registration
accuracy” section)We validate the need for an initial pre-
operative planning stage in which to automatically select
the most distinctive liver patches.

– How can view planning be applied in a real clinical
scenario? (“Application in laparoscopic liver resection”
section) Clinical data from one human patient undergo-
ing a laparoscopic liver resection is used to illustrate the
use of the proposed approach in a surgical scenario. We
discuss the additional challenges encountered with clin-
ical data and possible future directions.

Methods

Let Pf denote the fixed point cloud of the liver surface
extracted from a pre-operative CT scan. The moving point
cloud Pm represents the surface reconstructed from laparo-
scopic video. Most approaches to registration minimise the
distance between Pf and Pm transformed by T :

min
T

∑
||Pf − T (Pm)||2 (1)

We focus on choosing the optimal set of measurements for
Pm in order to make the registration more efficient. Hence,
our proposed method is independent of the registration algo-
rithm.

The next sections detail the core components of the sim-
ulation framework. The search space of the laparoscopic
camera is modelled to simulate the environment of laparo-
scopic surgery where the field of view is limited (“Search
space representation” section). Given a camera position, the
visible liver patch as well as themaximum visible area can be
generated (“Visible surface simulation” section). Once a liver
patch is available, the corresponding viewpoint is evaluated
based on a scoring strategy (“Viewpoint scoring strategy”
section).

Search space representation

The fixed point cloud Pf is placed at the scene origin, and it
is isotropically scaled to fit in a unit sphere. The search space
of a camera looking at the object of interest represents all
the possible locations from which it can capture images. A
common approach in view planning is to use a virtual sphere
surrounding the object on which the cameras can be placed.
This approach provides an intuitive way to parametrise the
camera location and orientation by working with the spheri-
cal coordinates: radius r , longitude θ and colatitudeφ instead
of 3 translations and 3 rotations. The variation in the radius r
corresponds to the distance from the camera to the surface of
the object. This assumption also restricts the camera orienta-
tion by aligning it with the centre of the object. The variation
in the spherical angles θ , φ corresponds to a different camera
location on the enclosing sphere given by the radius r .

However, we want to incorporate the reduced surgical
invasiveness specific to laparoscopic surgery. Hence, the
space of possible camera locations is heavily constrained.
We consider the main camera position to be where the tro-
car is situated in the patient’s abdomen, pointing towards the
centre of the liver: (rc, θc, φc). Depending on the surgical
procedure, the clinicians can provide a range of available
motion as (rc ± �r , θc ± �θ, φc ± �φ).

Visible surface simulation

Given a camera position, the liver model is projected into
the viewpoint’s space. In order to simulate a realistic surface
reconstruction, the points corresponding to the back surface
of the 3D point cloud are not considered.

Multiple 3D patches can be generated for all the possible
camera positions in the constrained viewing space in order to
obtain the maximum visible surface Pmax by merging them.
Due to the large number of points obtained, the point cloud
is downsampled before any other computation is done.

123



Int J CARS

Fig. 1 Top left correlation between the Gaussian curvature scoring
strategy and the registration errors. Top right TRE variation over the
liver surface. Each sphere represents a camera location. The colourmap
is applied to log(mean(T RE)) over the 100 registrations for each

sphere (mean(T RE) ∈ [0.7992, 13.7048mm]). Bottom left the size
of the spheres is proportional to std(T RE). So, a bigger variation in
errors leads to larger spheres. Bottom right the size for the spheres is
proportional to the curvature score fsurface

Viewpoint scoring strategy

Weevaluate each liver patch in the constrained viewing space
in order to rank them based on their surface quality. Conse-
quently, the principal curvatures k1, k2 are approximated at
each 3D point [2]. The score fsurface gives us an automatic
way to distinguish between ambiguous and distinctive sur-
faces.

fsurface =

N∑
i
Ki

N
(2)

where N is the number of points in each rendered scan and
Ki = ki1k

i
2 is the approximated Gaussian curvature at each

point.

Results

Experiments were performed to validate the feasibility of
view planning for efficient registration in the context of
laparoscopic liver surgery. The liver point cloud Pf is
extracted from a segmented CT scan of a human patient
taken before the surgery.1 The point clouds Pm used in
the following experiments simulate what a camera would
see intra-operatively, in a rigid scenario. Anisotropic noise
[ N (0, 1mm)] was added along the normals to Pm in order
to simulate the characteristic surface reconstruction noise.
All the experiments use the iterative closest point (ICP) [3]
algorithm for the registration step. A liver abnormality is

1 www.visiblepatient.com.
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simulated inside the model, and it is used as a landmark
for measuring the target registration error (TRE). Note that
these points are not used during the registration process
with ICP.

All the experiments use a fixed radius for the enclosing
sphere, thus further reducing to camera parametrisation from
6D to 2D. Consequently, the camera locations are specified
using the spherical angles θ , φ and the camera is always ori-
ented towards the centre of the object. Furthermore, a range
of [−30◦, 30◦] is used for the spherical coordinates in order to
simulate the constrained search space (as described in “View-
point scoring strategy” section).

The simulation framework was implemented in C++ on a
MacOS 10.11.2 laptop with an Intel Core i7 3.1 GHz proces-
sor. The project uses CMake (3.4.2) to enable compilation
on multiple platforms. The libraries used as dependen-
cies are: Eigen 3 [11] and the Point Cloud Library 1.2
(PCL) [22].

Viewpoint evaluation

This experiment explores the distribution of registration
errors for individual patches of the liver model. Since we
are investigating which liver regions could lead to a good
registration irrespective of the clinical case, we do not use
any constraints on the viewing space for now. A total of
170 camera positions were randomly picked on a sphere
enclosing the liver (with a constant radius). Given the cam-
era location, a liver patch is rendered to simulate what
the camera sees. Then, 100 transformations are generated
by randomly choosing rotation and translation parameters
(rotx , roty, rotz, tx , ty, tz) in the ranges rot ∈ [−10◦, 10◦]
and t ∈ [−10, 10mm]. These transformations are applied to

each simulated liver patch and the target registration errors
are recorded after ICP is used to recover their initial position.
Figure 1 shows the distribution and variation of registration
errors on the liver model.

View planning for registration

This experiment analyses the basins of convergence of ICP
between the original livermodel Pf and three different partial
point clouds Pm consisting of the patch with the lowest score
Plow, the patchwith the highest score Phigh and themaximum
visible surface Pmax, respectively. The last point cloud is
chosen as a best case scenariowhen the complete liver surface
visible from a trocar position is reconstructed.

The basins of convergence are generated for rotations in
the range [−40◦, 40◦] over 24 steps for each x, y, z axis. Since
the visual assessment of the graphs (Fig. 2) makes it difficult
to draw any clear conclusions about the differences between
the scenarios, an interactive registration visualisation appli-
cation was implemented. After the visual inspection of each
case, the successful and failed cases have been overlaid on
top of the graphs (Fig. 3).

It can be easily observed in Fig. 2 that the highest scoring
view Phigh recovers the correct transformation for larger mis-
alignments (withmore successful cases). The rotation around
the x axis shows successful registrations for Plow between
[−2◦, 2◦] , whereas for Phigh the range goes to [−6◦, 23◦].
The y rotation leads to a convergence in the global maximum
for a range of [−2◦, 6◦] for Plow and [−6◦, 16◦] for Phigh.
Similarly, for the z axis, the ranges are of [−6◦, 6◦] degrees
for Plow and [−9◦, 6◦] degrees for Phigh. Interestingly, Phigh
has an asymmetrical convergence basin with respect to 0,
which could be due to the irregular size of the patch. Further-

Fig. 2 Basins of convergence for ICP for the lowest scoring point cloud Plow, the highest scoring point cloud and Phigh and the maximum visible
surface Pmax. The green circles were omitted for clarity for the baseline as it always converges to the desired position
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Fig. 3 Visual assessment of ICP progress until convergence. Colour
coding: fixed point cloud in white, moving point cloud after the rota-
tion is applied in red, moving point cloud during ICP iterations in green,
ideal final position of themoving point cloud in purple. Top row success
example for a rotation of 40◦ around the z axis for Pmax. The images

from left to right show the iterations 0 (before ICP), 1, 12, 150. Bottom
row failure example for a rotation of 18◦ around the y axis for Phigh .
The images from left to right show the iterations 0 (before ICP), 1, 20,
25

more, the plateau observed around 2.5 mm is a characteristic
of the registration algorithm chosen (ICP). We propose the
planning method as a separate component to be added to
a registration pipeline, irrespective of the registration algo-
rithm.

Effect of the number of patches on registration
accuracy

This experiment explores the variation of the TRE with an
increasing number of patches selected using each of the fol-
lowing strategies: random, top lowest scores and top highest
scores. These are all compared to the maximum visible liver
surface which is considered the baseline (Fig. 3, Top row).

Similarly to the previous experiment, 100 random trans-
formations are generated and applied to the point cloud
Pm for each selection strategy. Once multiple patches are
selected, they are merged into a point cloud which is subse-
quently used for registration.

Figure 4 shows that the two highest scoring views perform
on average as well as the four lowest scoring views. More-
over, their errors are comparable to the ones obtained from
the baseline with the registration of the maximum visible
surface.

Application in laparoscopic liver resection

In this experiment, we validate the proposed method on real
data from one stereo video sequence from a liver resection
(Fig. 5), which allows for a more realistic representation of
intra-operative data. The liver is automatically segmented
with the deep learning framework proposed in [10]. A total of
113 surface patches are reconstructed using [29] and merged
together to build the maximal surface seen by the laparo-
scopic camera during surgery. So, we compare two scenarios
for registration—the most distinctive patches suggested by
the proposed method and a random subset.

Firstly, the proposed view planning pipeline is used to
recommend thehighest scoring camerapositions basedon the
CT liver model of the patient. Given that ICP is used as the
registration algorithm, a reasonably close initial alignment
between the liver model and the camera space is needed. We
employ a common approach [19,28] in which this alignment
is estimated by the user through the manual rotation and
translation of the 3D model until it approximately matches
the intra-operative surface reconstruction.

The constrained viewing sphere was built to match the
maximal surface derived from the real surface reconstruc-
tion. We use a fixed radius of 30 mm, which represents the
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Fig. 4 LeftmeanTREvariation (for 100 random transformations)with
an increasingnumber of patches.Middle example of top3 lowest scoring
patches chosen by the algorithm.Right example of top 3 highest scoring

patches. Blue regions highlight flat surfaces, whereas green symbolises
positive Gaussian curvature

Fig. 5 Example of video frames used for the stereo reconstruction of the surface in a laparoscopic liver resection

Fig. 6 Visual assessment of registration with view planning for real
data. Colour coding: fixed point cloud in white, moving point cloud in
green, ideal final position given by a gold standard registration of the
moving point cloud in purple. Left the previous experiment was re-ran
for the constraints given by real data from a liver resection in order

to suggest a number of patches to be considered. Middle registration
results using clinical data after running ICP on a merged point cloud
from the top 4 recommended patches by the proposed method. Right
registration results using clinical data after running ICP on a merged
point cloud from 4 random patches

average distance of the laparoscope from the liver during
the video. We use the previous experiment to decide on how
many patches to select (see Fig. 6, left). The mean of the
TRE for the 100 random perturbations applied to Phigh goes
down from 17.5 mm for one patch to 4.7 mm at 4 patches
and seems to converge afterwards. Consequently, we use the
first 4 suggested liver areas as the view planning output and
we merge them to form Pm .

Secondly, we use our computation of the constrained
viewing sphere to generate the random patches. This step is
necessary to ensure that the two scenarios we are comparing
have a similar covered surface area.

Once these simulated patches are recommended, we man-
ually select the real surface patches that match them the most
in position given an initial manual alignment between the CT
and the reconstructed liver surface.
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Fig. 7 Registration examples highlighting the need for additional con-
straints in a real-world scenario. Colour coding: fixed point cloud in
white, moving point cloud in green, ideal final position given by a gold
standard registration of the moving point cloud in purple. Left the mov-

ing cloud is built from 2 patches—the highest scoring viewpoint and
the patch which is furthest away from it. Right the moving point cloud
is built from the top two highest scoring patches

Figure 6 shows the visual assessment of the two con-
sidered scenarios—Pm suggested by view planning and a
randomly selected Pm . The random selection slides away
from the correct position, whereas the views suggested by
view planning appear to lock the registration close to the
desired output.

Discussion

Figure 1 motivates the use of the curvature score for view
planning in registration. With higher scores in the more dis-
tinctive views, the registration error decreases rapidly. The
scaling associated with the curvature score highlights the
camera positions with low registration errors, at the same
time reducing significantly the views with higher and more
spread apart TRE values. Figure 1 allows an intuitive under-
standing of which liver regions lead to accurate registrations,
aswell as how to automatically choose thembased on the cur-
vature score. The graphs suggest the right lobe of the liver as
being the most ambiguous for this camera space parametri-
sation. Similarly, the boundaries and the bottom side of the
liver lead to the lowest errors.

Figure 2 points towards the feasibility of using view plan-
ning in the registration of intra-operative and pre-operative
data. The explicit integration of high scoring patches in a
registration algorithm could lead to a faster and more accu-
rate registration for larger rotational offsets. Furthermore,
these results are promising because they also show that for
small enough rotations, similar registration errors could be

achieved by both a high scoring patch and the maximum vis-
ible surface. This finding would remove the need for picking
multiple patches to cover thewhole area and change the focus
to selecting the most distinctive patch. Such an approach
could potentially automate the selection of useful patches,
leading to less user interaction.

Intuitively, a partial point cloud that covers a larger por-
tion of the surface should provide a better registration than
a smaller region. However, we show in the third experiment
(Fig. 4) that if the small view is distinctive enough, the tar-
get registration errors are comparable. Hence, the time spent
collecting data could be significantly decreased by defining
a laparoscopic camera guidance system.

Lastly, we compared our proposed view planning method
with a random selection of patches on clinical data from
a surface reconstruction in liver resection (Fig. 6). This
experiment highlights the multiple challenges encountered
in a real-world scenario: the deformation of the liver due
to pneumoperitoneum, the flatness of the intra-operative
surface and the noisy surface reconstruction. Due to these
difficulties, we believe the proposed views in the last exper-
iment perform better also because of the surface covered.
Figure 7 highlights two scenarios with just two patches
selected based on curvature and surface covered or based
only on curvature. After 200 iterations, the selection based
only on curvature starts to slide from the desired position,
whereas the first selection performs better. We plan to fur-
ther investigate how to incorporate additional constraints to
arrive at an optimal selection suited to a laparoscopic sce-
nario.
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However, the proposed view planning approach has sev-
eral limitations. The current implementation makes strong
assumptions about the surgical scene (i.e. completely rigid,
nomotion frombreathing or heartbeat) and the cameramodel
(i.e. fixed field of view, fixed focal length, always looks at
the centre of the liver). Nevertheless, a simplified yet rele-
vant framework was needed to explore the feasibility of this
approach in the context of abdominal image guidance. Given
these promising results, more research will be done in this
direction for the development of a comprehensive view plan-
ning technique for optimal registration.

Finally, one of the strengths of the proposed view planning
simulation framework is that it can be easily made specific
for surgical procedures. The clinician would have to input
the trocar position and the maximum viewing space of the
laparoscope, and the method would automatically suggest
good views for efficient registration. An example of such
an approach has been illustrated on real data from a liver
resection. Such an intuitive protocol canbe easily achievedby
clinicians, avoiding the presence of any additional technical
personnel during the surgical procedure. Furthermore, the
reduction in the time spent acquiring data could potentially
lead to surface reconstruction patches which are not as much
influenced by heartbeat or breathing motion deformation.

Conclusion

In this paper, we propose the use of view planning for a
more efficient registration between a liver model derived
from a pre-operative CT scan and laparoscopic data.We have
shown its feasibility in a simulation environment of laparo-
scopic liver surgery and demonstrated it can be applied on
clinical data. We conclude that intelligent viewpoint selec-
tion can provide an essential pre-operative planning tool for
laparoscopic liver surgery. With further work, reduced oper-
ator dependence and registration time should be possible.
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