
Computationally Viable Handling of Beliefs in
Arguments for Persuasion

Emmanuel Hadoux
University College London

London, UK
e.hadoux@ucl.ac.uk

Anthony Hunter
University College London

London, UK
anthony.hunter@ucl.ac.uk

Abstract—Computational models of argument are being devel-
oped to capture aspects of how persuasion is undertaken. Recent
proposals suggest that in a persuasion dialogue between some
agents, it is valuable for each agent to model how arguments
are believed by the other agents. Beliefs in arguments can be
captured by a joint belief distribution over the arguments and
updated as the dialogue progresses. This information can be
used by the agent to make more intelligent choices of move
in the dialogue. Whilst these proposals indicate the value of
modelling the beliefs of other agents, there is a question of
the computational viability of using a belief distribution over
all the arguments. We address this problem in this paper by
presenting how probabilistic independence can be leveraged to
split this joint distribution into an equivalent set of distributions
of smaller size. Experiments show that updating the belief on the
split distribution is more efficient than performing updates on
the joint distribution.

I. INTRODUCTION

Persuasion is an activity that involves one party trying to
get another party to do some action or to believe something. It
is an important and multifaceted human ability. Obviously, it
is vital in occupations such as sales and politics. However, it
is also necessary in many other spheres of life. Consider, for
example, a doctor persuading a patient to drink less, a road
safety expert persuading drivers to not text while driving, or
an online safety expert persuading the users of social media
sites to not reveal too much personal information.

There are various kinds of interaction surrounding persua-
sion including asking questions, providing information, and
saying things to win favour (e.g., by flattering the other agent,
by making small talk or being humorous). Nonetheless, pro-
viding appropriate arguments and counterarguments is central
to the success of the activity.

Within AI, there is an increasing interest in developing
computational models of argument, in part for persuasion.
This includes frameworks for constructing arguments and
counterarguments from logical knowledgebases and formal
criteria for evaluating sets of arguments to determine which
are winning arguments. Works on models of dialogical argu-
mentation, i.e., argumentation undertaken by multiple agents
through dialogues, are also emerging (for reviews see [1], [2]).
For instance, dialogical argumentation can potentially be used
for systems to persuade users to change their behaviour (e.g.,
to eat less, to exercise more, to use less electricity or to vote)
[3].

Most proposals for dialogical argumentation focus on pro-
tocols (e.g., [4]–[7]). Although strategies are recognized as
being important if we want artificial agents to be successful
in, for example, persuasion, they have been under-developed
(see [8] for a review). Furthermore, recent developments in
strategies for dialogical argumentation suggest that probabilis-
tic modelling of the other agents is important (see for example
[9]–[14]).

In this paper, we are concerned with a recent proposal for
probabilistic modelling of the user in dialogical argumentation
for persuasion ([13], [14]). The modelling of beliefs in argu-
ments is based on a belief distribution over the power set of the
set of arguments. This knowledge is used to determine which
are the optimal moves to make in the dialogue at any point. By
having some knowledge of what the other agent believes, more
intelligent choices can be made. After each move, the belief
is updated using an update function. Whilst the approach in
[13] and [14] provides a promising framework for modelling
how different kinds of user represent and update their beliefs
in arguments, there is a question of computational viability
when handling an increasing number of arguments.

We address this question by proposing a method for de-
composing a belief distribution, defined over all the arguments,
into smaller belief distributions over subsets of arguments. We
show that we can use the existing updating methods over these
smaller belief distributions and that it is equivalent to updating
the original distribution. We provide theoretical and empirical
results to demonstrate the viability of our approach.

We proceed as follows: in Section II we review how we
represent belief in arguments using a belief distribution. After,
we show in Section III how we update the belief in arguments.
In Section IV, we introduce the notion of a split distribution as
an efficient way of representing a belief distribution. We then
propose in Section V the concept of metagraphs, a way to
obtain a split distribution. Section VI presents the application
of the update methods on a split distribution instead of on
the main joint distribution. In order to identify the most
efficient representation, Section VII shows how we can rank
different split distributions for a belief distribution. Section
VIII provides empirical results to indicate the computational
viability of our proposal in this paper. Finally, in Section IX
we conclude and discuss future work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/81680115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A1 A2 A3

Fig. 1: Argument graph with 3 arguments

II. ARGUMENTATION PROBLEMS AND PERSUASION

We base our paper on Dung’s abstract argumentation frame-
work [15] where a set of arguments and a set of attacks are
represented by a directed graph G. Each node denotes an argu-
ment and an arc from A to B denotes A is a counterargument
for B (in other words, A attacks B).

Example 1 (Example of argument graph). Consider argu-
ments A1 = “Patient has hypertension so prescribe diuretics”,
A2 = “Patient has hypertension so prescribe betablockers”,
and A3 = “Patient has emphysema which is a contraindication
for betablockers” in the argument graph depicted in Fig. 1.
Here, we assume that A1 and A2 attack each other because we
should only give one treatment and so giving one precludes the
other, and we assume that A3 attacks A2 because it provides
a counterargument to A2.

We assume our dialogues concern an argument graph G =
〈A,R〉 with A the set of arguments and R the set of attack
relations. We assume that each argument is known by at least
one of the agents in the dialogue, but it is not necessarily
the case that each agent knows all the arguments. We use the
epistemic approach to probabilistic argumentation ([16]–[19])
to model belief in arguments as defined next.

Definition 1 (Belief distribution). Let G = 〈A,R〉 be an
argument graph. A belief distribution P over A is such that∑
X⊆A P (X) = 1 and P (X) ∈ [0, 1],∀X ⊆ A. The belief in

an argument A is P (A) =
∑
X⊆A s.t. A∈X P (X).

A belief distribution P is a belief distribution such that
P (A),A ∈ A is the belief one agent has that A will be accepted
(i.e., P (A) > 0.5) by the agent we are modelling (herself or
another agent). Note that this notion of acceptance is different
from Dung’s definition in abstract argumentation frameworks.

Example 2 (Example of a belief distribution). Let A = {A,B}
where P ({A,B}) = 1/6, P ({A}) = 2/3, and P ({B}) = 1/6
is a belief distribution. Then, P (A) = 5/6 > 0.5 and P (B) =
2/6 < 0.5. Therefore only A is accepted.

An example of an application that we focus on in this
paper is a system (the persuader) implemented as an app for
persuading a user (the persuadee) to change behaviour in some
respect (e.g., take more exercise, eat more fruits). The system
can use a belief distribution as a model of the user ([13], [14]),
and it can update the model at each stage of the dialogue (see
Section III). To do so, it may ask the user about her belief in
some arguments that it knows about, and, for the remainder
of the arguments, use data about previous similar users for
completing the belief.

Recent studies on argumentation in humans illustrate how
such distributions can be obtained ([20]–[22]).

We refer to each subset of arguments X ⊆ A as a model,
denoted Models(A). We can represent each model by a binary
number by assuming some fixed but arbitrary order over the
arguments in A. Suppose (A1, ..., An) is the ordering, then
a binary number d1, ..., dn is used to denote a model X as
follows: Ai is in X iff di = 1. For example, for the ordering
(A,B,C), the model {A,C} is denoted by 101. In the examples
in this paper, we use the alphabet ordering over the letters as
the ordering (e.g., (A,B,C)). The binary representation will
only be used in the tables of beliefs, for ease of presentation.

We define the satisfaction operator where a model X
satisfies an argument A (denoted X |= A) if A is in X .
Similarly, X satisfies the negation of an argument A (X |= ¬A)
if A is not in X .

For a distribution P , let the domain of P be obtained by the
function D(P), and let E(P) be the set of arguments appearing
in the models in D(P).

Example 3 (Example 2 cont’d). Let P (m1, . . .m4) be the
belief distribution in Example 2 where m1 = {A,B} = 11,
m2 = {A} = 10, m3 = {B} = 01 and m4 = {} = 00. So
D(P) = {{A,B}, {A}, {B}, {}} and E(P) = {A,B}.

Note that an argument can be seen as a random variable
in the belief distribution. A random variable A concerning an
argument A can hold two values: P (A = 1), the belief of
argument A being accepted and P (A = 0) = 1 − P (A =
1) for argument A not being accepted. This also means that
conditional beliefs (e.g., P (A | B)) can be expressed in the
same way. Of course, this also works on sets of arguments. For
instance, model P (m2 = {A}) from Example 2 can be written
P (A = 1, B = 0). In this eventuality, E(P) only concerns the
conditioned variables, not the conditioning ones. For instance,
let P (A,B | Φ) be a belief distribution, E(P) = {A,B} for
all possible Φ. This notation will only be used in the proofs
for ease of explanation.

III. UPDATE OF A BELIEF DISTRIBUTION

To update a user model (i.e., a belief distribution) during
a dialogue, an update method takes an α where α is either
an argument A or the negation of an argument ¬A, and
then returns a revised belief distribution. Possibilities for this
include probabilistic conditioning. However, in this paper, we
review an alternative method from [13] for redistributing belief
from models not satisfying α to models satisfying α.

Definition 2 (Refinement function [13]). Let α be either
an argument A or the negation of an argument ¬A, P a
belief distribution, and k ∈ [0, 1] a redistribution coefficient.
A refinement function, denoted Hk

α(P), returns the belief
distribution P ′ as follows where X ∈ Models(A):

P ′(X) =

{
P (X) + (k × P (hα(X))) if X |= α
(1− k)× P (X) if X 6|= α

and where hα(X) = X \ {A} when α is of the form A and
hα(X) = X ∪ {A} when α is of the form ¬A.

By convention, Hk
A (P) = P if A /∈ E(P).

TABLE I: Examples of Belief Redistribution

AB P H1
A (P) H1

¬A(P) H0.75
A (P) H1

B (P)

11 0.6 0.7 0.0 0.675 0.8
10 0.2 0.3 0.0 0.275 0.0
01 0.1 0.0 0.7 0.025 0.2
00 0.1 0.0 0.3 0.025 0.0

A B C

Fig. 2: Example of argument graph

Table I presents four examples of redistribution. In Defi-
nition 2, hα returns the model closest to X but with α no
longer satisfied. If k = 1, all the belief is transferred from the
models not satisfying α to models satisfying α. If k < 1, then
only a proportion is transferred. This gives flexibility to model
update in different kinds of user.

Given a belief distribution P representing a user’s beliefs
at the current state of the dialogue, we want to update the
model depending on the move made. For this, we introduce the
notion of an update method. It generates a belief distribution
Pi from Pi−1 based on the move and the argument graph. For
example, consider the system asking a user whether it believes
an argument A. If the answer is “yes”, the update is H1

A(Pi−1),
otherwise it is H1

¬A(Pi−1).
Below we give two further simple examples of update

methods in order to illustrate the idea where we use Hk
Φ(Pi−1)

as an abbreviation for Hk
A1

(. . . Hk
An

(Pi−1)..) when Φ =
{A1, . . . ,An}. We refer the reader to [13] for more details
on update methods.

The first example is the trusting method which raises the
belief in a posit A (i.e, argument A has been played), and
lowers the belief in attackers and attackees. For step i in the
dialogue, the trusting method generates Pi = H1

Φ∪{A}(Pi−1),
where Φ = {¬C | (A,C) ∈ R or (C,A) ∈ R}.

Example 4 (Trusting method). Consider the argument graph
in Fig. 2. Let the initial belief distribution be P0(011) = 0.3,
P0(010) = 0.2, P0(001) = 0.3, and P0(000) = 0.2 where
the ordering of arguments is (A,B,C). After move A has been
posited, P1(101) = 0.6, and P1(100) = 0.4 with the trusting
method.

The second example is the strict method that only allows
updating of the belief in the posit when there is no attacker of
the posit that is believed (i.e., for all (B,A) ∈ R, Pi−1(B) ≤
0.5). For step i in the dialogue, the strict method generates
Pi = H1

Φ∪{A}(Pi−1), where Φ = {¬C | (A,C) ∈ R}.

Example 5 (Strict method). Consider the graph in Fig. 2 with
the strict method. Let the initial belief distribution be P0(111)
= 0.2, P0(110) = 0.3, P0(011) = 0.3, and P0(010) = 0.2
where the ordering of arguments is (A,B,C). After the first
update A, P1(111) = 0.2, P1(110) = 0.3, P1(011) = 0.3, and
P1(010) = 0.2. After C, P2(101) = 0.5, and P2(001) = 0.5.
After the second update A, P3(101) = 1.

These are only some of the possible update methods. We

are assuming that the users being modelled are not necessarily
rational and that one method can be more suitable than another
to model a user.

IV. SPLITTING OF A BELIEF DISTRIBUTION

The major drawback of these update methods is that they
need to go through the whole joint distribution to modify the
beliefs. However, it is often unnecessary to do so when it
comes to updating the belief in arguments that are unrelated to
each other. Fortunately, we can take advantage of the fact that
the belief in an argument may be independant of the beliefs
in all the others. Using conditional independence amongst the
arguments, we can divide the joint distribution into a set of
smaller distributions. We refer to this set as a split. A split
is created by performing marginalizations on the main joint
distribution.

Definition 3 (Marginalization). The marginalization of a
belief distribution P with respect to arguments X ⊆ E(P) is
denoted M(P,X) where M(P,X) = P ′ and, for all X ′ ⊆ X ,

P ′(X ′ | Φ) =
∑

X′′⊆E(P)\X

P (X ′ ∪X ′′ | Φ)

where Φ ⊆ A \ E(P).
We also denote M(P,X1, X2) = M(M(P,X1), X2). Note

that in the case of a joint distribution without conditioning
variables, Φ = ∅.

Example 6 (Example of marginalization). Let P be defined as
follows where E(P) = {A,B}. Let X = {A}. So M(P,X) =
P ′ where P ′({A}) = P (11) + P (10) and P ′(∅) = P (01):
P (11) = 1/6, P (10) = 2/3, P (01) = 1/6.

Proposition 1. Marginalization is commutative, i.e.,
M(P,X1, X2) = M(P,X2, X1).

Proof. Let X = (X1, . . . , Xn) be a set of sets of arguments
such that Xi ⊆ A,∀i. Without loss of generality, the distibu-
tion are not conditional. Moreover, let n = 2, P ′ = M(P,X1)
and P ′′ = M(M(P,X1), X2), denoted M(P,X1, X2). For all
X ′ ⊆ E(P ′′) = X1 ∩X2,

P ′′(X ′) =
∑

X′′′⊆E(P ′)\X2

P ′(X ′ ∪X ′′′)

P ′′(X ′) =
∑

X′′′⊆X1\X2

∑
X′′⊆E(P)\X1

P (X ′ ∪X ′′ ∪X ′′′)

X ′′′ and X ′′ are always disjoint, therefore,

P ′′(X ′) =
∑

X=X′′′∪X′′⊆X1\X2∪E(P)\X1

P (X ′ ∪X)

P ′′(X ′) =
∑

X⊆E(P)\(X1∩X2)

P (X ′ ∪X)

Thus, P ′′ = M(P,X1 ∩ X2) = M(P,X2 ∩ X1) =
M(P,X1, X2) = M(P,X2, X1).

Therefore, the marginalization is commutative.

TABLE II: Clean Split Distributions

(a)

abc P P1 ⊕ P2

m1 111 1/4 1/4
m2 110 1/4 1/4
m3 101 1/4 1/4
m4 100 1/4 1/4

(b)

ab P1

m1,1 11 1/2
m1,2 10 1/2
m1,3 01 0
m1,4 00 0

(c)

c P2

m2,1 1 1/2
m2,2 0 1/2

Proposition 1 allows us to deal with a sequence of marginal-
izations and apply them in any order while always having
the same final distribution. Starting from a set of distributions
or with the main joint distribution, we can apply a sequence
of marginalizations in order to compute a set of smaller
distributions, called a split.

Note that performing a marginalization on a joint distribu-
tion gives a joint distribution. However, most of the time, we
deal with conditional distributions when it comes to asking the
user about her beliefs about a group of arguments. Fortunately,
all the operators on splits are agnostic to the distributions being
conditional or not.

Definition 4 (Split distribution). Given a belief distribution P ,
a split distribution is a tuple of distributions S = (P1, . . . , Pk)
such that:
• E(P) = E(P1) ∪ . . . ∪ E(Pk)
• ∀i, j s.t. i 6= j,E(Pi) ∩ E(Pj) = ∅

A split of an initial distribution separates it into smaller-
sized distributions. However, the initial distribution can be
computed from the split by taking the product of its subdis-
tributions (called components).

This notion of split can be related to Bayesian networks
in a way that they represent a joint distribution using smaller,
linked, distributions. However, in this work, we manipulate the
beliefs in a very different way that probabilities are handled in
Bayesian networks. We moreover apply non-standard update
methods on the split, i.e., methods like those presented in
Section III. We therefore choose not to use Bayesian networks
in this work.

Definition 5 (Combination). Let P1 and P2 be two belief
distributions. The combined distribution of P1 and P2 is
denoted P1 ⊕ P2. For each X1 ⊆ E(P1) and X2 ⊆ E(P2),
P1 ⊕ P2(X1 ∪X2) = P1(X1)× P2(X2)

Example 7 (Example of a split and combined distribution).
Consider P in the 3rd column of Table IIa, with marginals
P1 in Table IIb with E(P) = {A,B} and P2 in Table IIc with
E(P2) = {C}. So P1 ⊕ P2 is in the 4th column of Table IIa
where E(P) = {A,B,C}.

For instance, P1⊕P2(m1) = P1(m1,1)×P2(m2,1) = 1/2×
1/2 = 1/4. So in this example, we have P1 ⊕ P2 = P .

Proposition 2. If S = (P1, P2) is a split distribution of P ,
(or (P1, P2, P3) is a split distribution of P), then:
• P1 ⊕ P2 = P2 ⊕ P1.
• P1 ⊕ (P2(X)⊕ P3(X)) = (P1 ⊕ P2(X))⊕ P3(X)

TABLE III: Non-Clean Split Distribution

(a)

abc P P1 ⊕ P2

m1 111 0.2 0.24
m2 110 0.6 0.56
m3 011 0.1 0.06
m4 010 0.1 0.014

(b)

ab P1

m1,1 11 0.8
m1,2 10 0
m1,3 01 0.2
m1,4 00 0

(c)

c P2

m2,1 1 0.3
m2,2 0 0.7

The proofs are straightforward given Definition 5.

Definition 6 (Clean split). For a split distribution S =
(P1, P2, . . . , Pk) of P , S is a clean split of P iff ((P1 ⊕
P2)⊕ . . .)⊕ Pk) = P .

Example 8 (Example of a combined distribution for a non–
clean split). Consider P in 3rd column of Table IIIa, with the
marginals P1 in Table IIIb and P2 in Table IIIc from which we
obtain P1 ⊕ P2 in Table IIIa 4th column. So in this example,
we have P1 ⊕ P2 6= P .

The issue whether a split is clean is related to the proba-
bilistic independence between the variables in each component
of the split. The split in Table II is clean due to C being
independent of A and B, denoted C ⊥⊥ (A,B). On the other
hand, in Table III, C is not independent of A and B, leading to
a non-clean split. Note that this issue is unrelated to A being
independent of B or not.

V. METAGRAPHS

In order to create a split distribution from the main joint
distribution, we need to make some assumptions about the
dependencies between the arguments in the argument graph
based on its structure. This enables us to create a metagraph
from which the split distribution is derived.

We first introduce some subsidiary definitions concerning
cycles, then the notion of a metagraph and finally we define
the independence assumptions needed to build the metagraph.

Definition 7 (Graph cycles). Let G = 〈A,R〉 be an argument
graph. Then:
• a set of arguments {A1, . . . ,An} ⊆ A is a cycle in G iff
∀i < n, Ai attacks Ai+1 and An attacks A1,

• if C ⊆ A is a cycle in G, then argument A ∈ C is a
participant in the cycle C,

• the cycles of an argument A, denoted Cycles(A), is the set
of cycles in which the argument is a participant defined
as follows:

Cycles(A) = {C ⊆ A | A ∈ C and C is a cycle in G}

• a set of cycles {C1, . . . , Ck} is complete for a graph G
iff ∀A ∈

⋃k
i=1 Ci,Cycles(A) ⊆ {C1, . . . , Ck},

• a set of cycles T is minimal complete for a graph G iff
T is complete for G, and there is not some T ′ ⊂ T such
that T ′ is complete for G.

Each argument in a graph is either in no minimal complete
set of cycles, or it is in exactly one minimal complete set of
cycles. The latter is shown by the following result.

A1

A2

A3

A4

A5 A6

A7

A8 A9 A10

(a)

A1 A2,A3

A4

A5 A6

A7,A8,A9,A10

(b)

Fig. 3: Argument graph and associated metagraph

Proposition 3. Let G be a graph. If T1 and T2 are minimal
complete cycles for a graph G, and T1 6= T2, then:(⋃

C∈T1

C

)
∩

(⋃
C∈T2

C

)
= ∅

Definition 8 (Flock). Let G = 〈A,R〉 be an argument graph.
A non-empty set of arguments F ⊆ A is a flock of G iff:

1) F = {A} and A ∈ A is not a participant in any cycle
of G, or,

2) there is a minimal complete set of cycles T of G and
F =

⋃
C∈T C

Let Flocks(G) = {F ⊆ A | F is a flock of G}.

Proposition 4. Let G = 〈A,R〉 be an argument graph.
Flocks(G) is a partition of A (i.e., ∀Fi, Fj ∈ Flocks(G), Fi∩
Fj = ∅ and

⋃
F∈Flocks(G) F = A).

Now we define the metagraph where each node denotes a
flock in the original graph and each arc denotes an attack
between arguments in different flocks in the original graph.

Definition 9 (Metagraph). A metagraph for a graph G =
〈A,R〉, is defined as a graph Meta(G) = 〈F ,H〉 where F is
Flocks(G), and:

H = {(X1, X2) ∈ F × F | ∃(A,B) ∈ R ∩ (X1 ×X2)}

Fig. 3b depicts an example of metagraph.

Proposition 5. If Meta(G) is a metagraph of G, then
Meta(G) is a directed acyclic graph.

A metagraph allows us to organize the arguments in a graph
so that we can identify which arguments are involved in cycles
together. We specify some intuitive independence assumptions
that we use in this paper.

Definition 10 (Metagraph assumptions). Let Meta(G) be a
metagraph of G. The metagraph independence assumptions
are defined as follows:
• (Flock dependence) ∀F ∈ Flocks(G),∀A ∈ F,A 6⊥⊥

(F \A),

A

C

B

(a) Two to one

A

B C

(b) One to two

Fig. 4: Structures with three arguments

A B

C D

(a) Cycle to one

A B

C D

(b) One to cycle

Fig. 5: Cycle structures

• (Inter-flock conditional independence) ∀F1, F2 ∈
Flocks(G) × Flocks(G) s.t. (F1, F2) /∈ H and
(F2, F1) /∈ H,∀A1 ∈ F1, A1 ⊥⊥ F2,∀A2 ∈ F2, A2 ⊥⊥
F1

In other words, arguments in a flock are dependent. There-
fore, we assume we require a joint distribution over all the
arguments in a flock. Moreover arguments in different flocks
are conditionally independent. Therefore, we assume that the
arguments in a flock are independent of all arguments in flocks
that are not connected to the flock.

An argument graph is the composition of characteristic
smaller structures such as Fig. 4 and 5. Following the previous
assumptions, we can create a split distribution for the whole
metagraph by combining the splits we propose for each of
these characteristic structures.

Fig. 4 shows the two possible three-argument sub-structures
of graphs where no cycle is involved. A split associated with
Fig. 4a is (P (A), P (B | A), P (C | A,B)).

Note that an arc can occur between A and B. However, this
structure is only a combination of Fig. 4a and 4b.

Similarly, one split associated with Fig. 4b is (P (A), P (B |
A), P (C | A)).

When cycles are involved in a split with conditional beliefs,
the corresponding component of the split is only conditioned
by the arguments of the cycle that are actually in relations.
For instance, one split associated with the graph in Fig.
5a is (P (A,B,C), P (D | C)). However, when the arc is
connected to a cycle, the whole cycle component of the split
is conditioned by the attacking argument. A split associated
with the graph in Fig. 5b is P1 = (P (A,B,C | D), P (D)).

Fig. 3 synthetizes the transformation of the argument graph
depicted in Fig. 3a into the metagraph of Fig. 3b. The
split associated to this metagraph is (P (A5), P (A6 | A5),
P (A4 | A5, A6), P (A2, A3 | A4, A7), P (A1 | A2, A3),
P (A7, A8, A9, A10)).

A clean split is a form of modularity in a joint distribution.
This means that we can split a distribution, perform updates
on the split components, join them back together and obtain
the same result as if we modified the main belief distribution
in the first place. In other words, rather than updating the joint

distribution, we perform it on the selected parts of the split
distribution.

VI. UPDATE OF A SPLIT DISTRIBUTION

Let S = (P1, P2) be a clean split of belief distribution P .
Suppose P1 has been updated to P ′1, i.e., for some A ∈ A,
and some k ∈ [0, 1], P ′1 = Hk

A (P). We can propagate the
refinement of P ′1 on P2, denoted P ′1 ⊕ P2.

Proposition 6. Let A ∈ E(P1) and S = (P1, P2) be a clean
split of P : Hk

A (P) = Hk
A (P1)⊕ P2

Proof. Any X ⊆ E(P) can be partitioned into two subsets
X1 ⊆ E(P1) and X2 ⊆ E(P2) such as X1 ∪ X2 = X .
Therefore, building upon the refinement function in Definition
2, P ′(X1 ∪X2) ={

P (X1 ∪X2) + (kP (hα(X1 ∪X2))) if X |= α
(1− k)× P (X1 ∪X2) if X 6|= α{
P1(X1)P2(X2) + (kP (hα(X1 ∪X2))) if X |= α
(1− k)× P1(X1)P2(X2) if X 6|= α P1(X1)P2(X2) + (kP ((X1 ∪X2) \ {A})) if X |= A
P1(X1)P2(X2) + (kP ((X1 ∪X2) ∪ {A})) if X |= ¬A
(1− k)× P1 ⊕ P2(X1 ∪X2) otherwise P1(X1)P2(X2) + (kP1(X1 \ {A})P2(X2)) if X |= A
P1(X1)P2(X2) + (kP1(X1 ∪ {A})P2(X2)) if X |= ¬A
(1− k)× P1 ⊕ P2(X1 ∪X2) otherwise{
P1(X1)P2(X2) + (kP1(hα(X1))P2(X2)) if X |= α
(1− k)× P1 ⊕ P2(X1 ∪X2) if X 6|= α{
(P1(X1) + (kP1(hα(X1)))P2(X2)) if X |= α
(1− k)× P1 ⊕ P2(X1 ∪X2) if X 6|= α

Corollary 1. A clean split remains clean after an update.

Proof. Let S = (P1, P2) be a clean split of P . Let P ′ =
Hk
α(P) such as α ∈ E(P1) (and thus α /∈ E(P2)). Let (P ′1, P

′
2)

be a split of P ′ and P ′i = Hk
α(Pi). This split is clean if

P ′1⊕P ′2 = P ′ = Hk
α(P) = Hk

α(P1⊕P2) = Hk
α(P1)⊕P2. As

α /∈ E(P2), Hk
α(P2) = P2 = P ′2. Therefore, Hk

α(P1) ⊕ P2 =
P ′1 ⊕ P ′2. The split is still clean.

In the light of Proposition 6 and Corollary 1, updating the
split distribution is equivalent to updating the joint distribution.
However, in the following sections, we show that it is more
efficient to update the split distribution.

VII. RANKING OF SPLITS

For a given joint distribution, there can exist several splits
that are equivalent to this distribution. In order to compare
them and choose the most efficient one, we need to assign
a value to each split. We define the valuation of a split as
the sum, for each argument, of the size of the component
containing this argument.

Definition 11 (Valuation of a split). Let S = (P1, . . . , Pn) be
a split of a distribution P such that E(P) = A. The value x
of P is:

x =
∑
A∈A

∑
Pi∈S s.t. A∈E(P)

|Pi|

where |Pi| means the cardinality of D(Pi).

This value is in fact proportional to the amount of time
required to update each argument once in sequence using this
split distribution.

Example 9 (Example of valuation). Let P1 =
(P (A,B|C), P (C), P (D)) be a split. The value assigned to
this split is x = 2× 23 + 21 + 21 = 20.

This valuation method enables us to have a total order on
the splits, which defines a preference relation.

Definition 12 (Preference on splits). Let P (resp. P ′) be a
split and v (resp. v′) be its valuation. A split P is preferred
to P ′, denoted P � P ′ iff v < v′.

Example 10 (Example of valuation and ranking). Let P1 =
(P (A5), P (A6 | A5), P (A4 | A5, A6), P (A2, A3 | A4, A7),
P (A1 | A2, A3), P (A7, A8, A9, A10)) be a split associated
with the metagraph in Fig. 3b. Another split can be P2 =
(P (A1, A2, A3, A4, A5, A6 | A7), P (A7, A8, A9, A10)). Let
P be the joint distribution.

The value v of P is v = 10× 210 = 10 240, the value v′ of
P1 is v′ = 21 + 22 + 23 + 2 × 24 + 23 + 24 = 70 where the
value v′′ of P2 is v′′ = 6 × 27 + 24 = 784. We then see that
P1 � P2 � P .

Of course, the improvement in the update computation
time is a tradeoff with the space taken to hold the whole
split in memory. However, the difference of space is bound.
Indeed, the worst case is when each variable is condi-
tioned by all the others. For instance, with a joint distri-
bution P = P (A,B,C), the worst split would be P2 =
(P (A|B,C), P (B|A,C), P (C|A,B)). If the number of argu-
ments is n, the size of the joint distribution is 2n and the upper
bound size for a split is n × 2n. However, we have P2 6� P ,
there is thus no reason to choose P2 over P as a split.

Definition 13 (Irreducible split). Let P be a distribution and
S = (P1, . . . , Pk) be a clean split of P . We say the split is
irreductible iff @Pi, P ′i and P ′′i such that (P ′i , P

′′
i) is a clean

split of Pi.

Proposition 7. An irreducible clean split is unique.

Proof. Let P be a distribution of beliefs such as
E(P) = {A,B,C} without loss of generality. Let S1 =
(P (A,B), P (C)) and S2 = (P (A), P (B,C)) be two irre-
ducible clean splits of P . Therefore,

P (A,B,C) = P (A,B)× P (C) = P (A)× P (B,C)

P (A,B | C)× P (C) = P (A | B,C)× P (B,C)

as C ⊥⊥ (A,B) in S1 and A ⊥⊥ (B,C) in S2.

P (A | B,C)× P (B | C)× P (C) = P (A | B,C)× P (B,C)

P (A | B,C)× P (B)× P (C) = P (A | B,C)× P (B,C)

Finally, P (B)× P (C) = P (B,C).
Therefore, B ⊥⊥ C and S1 and S2 can be reduced to S3 =

(P (A), P (B), P (C)).

TABLE IV: Computation Time for Updates in Different
Graphs of 50 Arguments (in ms)

cycles # arcs 1 update 50 updates

2 cycles 10 arcs 2ms 107ms
30 arcs 6ms 236ms

4 cycles 10 arcs 1ms 45ms
30 arcs 3ms 114ms

10 cycles 10 arcs 0.03ms 1.6ms
30 arcs 0.06ms 2.5ms

TABLE V: Mean Number of Arguments per Cycle for the
Bigger and Smaller Cycles

cycles Mean size bigger cycle Mean size smaller cycle

2 cycles 15 arguments 7 arguments
4 cycles 12 arguments 3 arguments
10 cycles 8 arguments 2 arguments

Corollary 2. A split P is irreducible iff there is no P ′ such
that P ′ is a split and P ′ � P .

VIII. EXPERIMENTS

We have conducted two experiments using different graphs,
joint distributions and splits.1 The results of the first experi-
ment are presented in Tables IV and V. Table VI contains the
results for the second experiment.

The aim of the first experiment is to show the computational
efficiency of a split maximizing the number of components
while minimizing the size of each component. The experiment
consists of three steps performed as follows:

1) Starting from a set of 50 arguments, we randomly draw
sets of arguments (2, 4 or 10 sets) representing cycles in
an argument graph and therefore flocks in the metagraph.
Increasing the number of cycles amounts to an increase
in the number of components of the split.

2) We then randomly connect the different flocks to have
an actual instance of metagraph (recall that an argument
that is not involved in a cycle is its own flock).

3) We finally perform either 1 or 50 updates on each
instance and compute the time taken to perform the
update only.

The results are averaged on 1000 different metagraphs,
with differents number of arguments in cycles and different
set of connections between the flocks. Table V shows the
mean number of arguments in the smaller-sized and bigger-
sized cycles for each number of cycles. We moreover average
the update part on 100 runs to ensure that both big and
small components are updated. Indeed, updating a bigger-sized
component takes more time and should occur more often as
it concerns more arguments.

Table IV shows the computation time of 1 and 50 updates on
argument graphs of 50 arguments. As we can see, performing

1The code for the experiments can be found at https://gist.github.
com/EHadoux/5a07463086d7dd52b50c29ae79923b3d. A new version of
the library is being developed and can be found at https://github.com/
ComputationalPersuasion/splittercell.

TABLE VI: Computation Time for 20 Updates (in ns)

args Time for 20 updates

25 497ns
50 517ns
75 519ns
100 533ns

more updates takes proportionally more time. Increasing the
number of connections increases the size of each component
of a split due to more conditioning variables, increasing
the computation time. Interestingly increasing the number
of cycles (thus the number of small-sized components) does
decrease the computation time.

It is very important to note that those results only concern
the time taken by the update part. Combining a split into the
main joint distribution after the update costs more by several
orders of magnitude than updating the main joint distribution
in the first place. However, this combination is only required
when computing the belief of all the arguments. If we only
need a subset of those arguments (e.g., the goal arguments
only), we do not need to combine the split into the whole
joint distribution.

As a second experiment, we fix the number of cycles, the
maximum number of arguments in each, the number of updates
and the ratio of connections. The aim of this experiment is to
show how updating a split scales with respect to the number
of arguments in the graph. For each number of arguments,
a partition of the set of arguments is made such that each
subset contains at most 15 arguments. The graph is connected
with a factor of 1/2, i.e., for 50 arguments, for instance,
the graph contains 25 arcs. The experiment is averaged on
1000 instances, with different sets of arcs. Likewise, we have
performed 1000 sets of 20 updates for averaging. Table VI
presents the results of the computation of 20 updates with
different numbers of arguments. Interestingly, these results
show that, when the joint distribution has been substantially
split (as here where the maximum cycle size is 15 arguments),
the computation time is only increased by 4% when the total
number of arguments doubles.

IX. CONCLUSION AND DISCUSSION

The results in this paper show the viability of using a
belief distribution as a way to model the user in computa-
tional persuasion. By using the assumptions proposed for the
metagraphs, we can split a belief distribution. Furthermore,
we have shown both theoretically and empirically how we
can efficiently and effectively update the smaller distributions
while conserving the exact value.

This paper is motivated by the need to use probabilistic
models of the user in dialogical argumentation for tasks
including persuasion. Furthermore, this paper builds on a
recent proposal for persuasion dialogues with probabilistic
user models using [13], [14].

Further proposals for using probability theory in dialogical
argumentation include: a probabilistic model of the opponent
is used by an agent to select moves based on what it believes

the other agent is aware of [10]; the history of previous
dialogues is used to predict the arguments that an opponent
might put forward [9]; a probabilistic finite state machine can
represent the possible moves that each agent can make in each
state [23], generalized to POMDPs when there is uncertainty
about what an opponent is aware of [12]. However, none of
these use the beliefs by the persuadee in the arguments. In
[11], a probabilistic model of beliefs of the persuadee is used
by the persuader to choose beliefs to present, but there is no
consideration of update of the model resulting from dialogue.

The results reported in this paper have been undertaken as
part of a project to develop a framework for computational
persuasion based on computational models of argument for
use in technology for behavour change2. In future work, we
will implement and evaluate systems for behaviour change that
undertake argumentation for persuasion with users. This will
incorporate user modelling of belief in arguments based on
the proposal in this paper.

ACKNOWLEDGMENT

This research was partly funded by EPSRC grant
EP/N008294/1 for the Framework for Computational Persua-
sion project. The authors would like to thank Sylwia Polberg
for her valuable comments.

REFERENCES

[1] P. Besnard and A. Hunter, Elements of Argumentation. MIT Press,
2008.

[2] I. Rahwan and G. Simari, Argumentation in Artificial Intelligence.
Springer, 2009.

[3] A. Hunter, “Opportunities for argument-centric persuasion in behaviour
change,” in Proceeding of the 14th European Conference on Logics in
Artificial Intelligence (JELIA), ser. LNCS, vol. 8761. Springer, 2014,
pp. 48–61.

[4] H. Prakken, “Coherence and flexibility in dialogue games for argumenta-
tion,” Journal of Logic and Computation, vol. 15, no. 6, pp. 1009–1040,
2005.

[5] ——, “Formal sytems for persuasion dialogue,” Knowledge Engineering
Review, vol. 21, no. 2, pp. 163–188, 2006.

[6] X. Fan and F. Toni, “Assumption-based argumentation dialogues,” in
Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI), 2011.

[7] M. Caminada and M. Podlaszewski, “Grounded semantics as persua-
sion dialogue,” in Proceedings of the 4th International Conference on
Computational Models of Argument (COMMA), 2012.

2www.computationalpersuasion.com

[8] M. Thimm, “Strategic argumentation in multi-agent systems,” Kunstliche
Intelligenz, 2014.

[9] C. Hadjinikolis, Y. Siantos, S. Modgil, E. Black, and P. McBurney,
“Opponent modelling in persuasion dialogues,” in Proceedings of the
23rd International Joint Conference on Artificial Intelligence (IJCAI),
2013, pp. 164–170.

[10] T. Rienstra, M. Thimm, and N. Oren, “Opponent models with uncer-
tainty for strategic argumentation,” in Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2013.

[11] E. Black, A. Coles, and S. Bernardini, “Automated planning of simple
persuasion dialogues,” in Proceedings of the 15th International Work-
shop Computational Logic in Multi-agent Systems (CLIMA), ser. LNCS,
vol. 8624. Springer, 2014, pp. 87–104.

[12] E. Hadoux, A. Beynier, N. Maudet, P. Weng, and A. Hunter, “Opti-
mization of probabilistic argumentation with Markov decision models,”
in Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI), 2015.

[13] A. Hunter, “Modelling the persuadee in asymmetric argumentation
dialogues for persuasion,” in Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI), 2015.

[14] ——, “Two dimensional uncertainty in persuadee modelling in argu-
mentation,” in Proceedings of 22nd European Conference on Artificial
Intelligence (ECAI), 2016.

[15] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming, and n-person games,”
Artificial Intelligence, vol. 77, pp. 321–357, 1995.

[16] M. Thimm, “A probabilistic semantics for abstract argumentation,” in
Proceedings of the 20th European Conference on Artificial Intelligence
(ECAI), ser. Frontiers in Artificial Intelligence and Applications, vol.
242. IOS Press, 2012, pp. 750–755.

[17] A. Hunter, “A probabilistic approach to modelling uncertain logical
arguments,” International Journal of Approximate Reasoning, vol. 54,
no. 1, pp. 47–81, 2013.

[18] A. Hunter and M. Thimm, “Probabilistic argumentation with incomplete
information,” in Proceedings of the 21st European Conference on
Artificial Intelligence (ECAI), 2014.

[19] P. Baroni, M. Giacomin, and P. Vicig, “On rationality conditions for
epistemic probabilities in abstract argumentation,” in Proceedings of the
5th International Conference on Computational Models of Argument
(COMMA), 2014.

[20] I. Rahwan, M. I. Madakkatel, J.-F. Bonnefon, R. N. Awan, and S. Abdal-
lah, “Behavioural experiments for assessing the abstract argumentation
semantics of reinstatement,” Cognitive Science, vol. 34, no. 8, pp. 1483–
1502, 2010.

[21] A. Rosenfeld and S. Kraus, “Providing arguments in discussions based
on the prediction of human argumentative behavior,” in Proceedings of
the 29th AAAI Conference on Artificial Intelligence, 2015.

[22] F. Cerutti, N. Tintarev, and N. Oren, “Formal arguments, preferences,
and natural language interfaces to humans: an empirical evaluation,” in
Proceedings of the 21st European Conference on Artificial Intelligence
(ECAI), 2014.

[23] A. Hunter, “Probabilistic strategies in dialogical argumentation,” in
Proceedings of the 8th International Conference on Scalable Uncertainty
Management (SUM), ser. LNCS, vol. 8720. Springer, 2014, pp. 190–
202.

