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Abstract5

In this study we describe a novel formulation of the so-called modelling to generate6

alternatives (MGA) methodology and use it to explore the near cost optimal solution7

space of the global energy-environment-economy model TIAM-UCL. Our implementation8

specifically aims to find maximally different global energy system transition pathways and9

assess the extent of their diversity in the near optimal region. From this we can determine10

the stability of the results implied by the least cost pathway which in turn allows us to11

both identify whether there are any consistent insights that emerge across MGA iterations12

while at the same time highlighting that energy systems that are very similar in cost13

can look very different. It is critical that the results of such an uncertainty analysis14

are communicated to policy makers to aid in robust decision making. To demonstrate the15

technique we apply it to two scenarios, a business as usual (BAU) case and a climate policy16

run. For the former we find significant variability in primary energy carrier consumption17

across the MGA iterations which then projects further into the energy system leading18

to, for example, large differences in the portfolio of fuels used in and emissions from the19

electricity sector. When imposing a global emissions constraint we find, in general, less20

variability than the BAU case. Consistent insights do emerge with oil use in transport21

being a robust finding across all MGA iterations for both scenarios and, in the mitigation22

case, the electricity sector is seen to reliably decarbonise before transport and industry23

as total system cost is permitted to increase. Finally, we compare our implementation of24

MGA to the so-called Hop-Skip-Jump formulation, which also seeks to obtain maximally25

different solutions, and find that, when applied in the same way, the former identifies more26

diverse transition pathways than the latter.27

Introduction28

Avoiding dangerous global climate change, a goal that has recently been reaffirmed29

by international political agreement at COP21 in Paris as limiting global mean surface30

temperature rise to well below 2◦C above pre-industrial levels1, is one of the greatest31

challenges currently facing humanity. Achieving this goal will require large scale changes32

to the global energy system that serve to mitigate greenhouse gas emissions (Pachauri33

et al., 2014), and indeed are environmentally sustainable in the wider sense, while at the34

same time radically enhancing energy equity and maintaining continuity of supply2.35

Assessing specific, global emission trajectories across time, space and sectors is a com-36

plex task and models are often used to (1) ensure that what is known about e.g. physical37

constraints and resource potentials is considered in the analysis, (2) to provide a consistent38
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underlying methodological framework for describing the decision making of the key agents39

and (3) to guarantee the internal consistency of the scenarios. Examples of such long time40

horizon energy-environment-economy (E3) or integrated assessment models (IAM; note41

hereafter we use E3 and IAM synonymously) that can provide valuable insight into pos-42

sible transition pathways which satisfy at least a stylised version of the above mentioned43

trilemma and as such provide key support to decision makers include e.g. MESSAGE44

(Messner and Schrattenholzer, 2000; Riahi et al., 2007), IMAGE (Stehfest et al., 2014),45

REMIND (Bauer et al., 2012) and AIM (Fujino et al., 2006). However, a critical challenge46

when working with E3 models is appropriately exploring the large uncertainties inherent47

in the modelling procedure (Peterson, 2006). Without careful elucidation, analysts and48

policy makers alike can be misled by the precision of the model output and lured into a49

false sense of security at the certainty of the mechanics of the implied system transition(s)50

(McDowall et al., 2014).51

There are significant uncertainties in not only how the system might develop (see e.g.52

Smil, 2000; Trutnevyte et al., 2016), but also in how the system is expected to adjust53

when, for example, fuel prices or emission taxes are altered (Clarke et al., 2012; Pye54

et al., 2014; Wilkerson et al., 2015). In models, this reaction depends both on the in-55

put data assumptions used and the underlying methodology and structure of the model56

(Kriegler et al., 2015b). Hence, broadly speaking, uncertainty within E3 models stems57

from two main areas, the adopted input parameter dataset and model structural assump-58

tions/simplifications (see also Dodds et al., 2015).59

Taking the former first, E3 models rely heavily on large amounts of input socio-60

economic, technical and environmental data all of which comes with its own inherent61

uncertainties, of varying severity, now and into the future (e.g. the evolution of the cap-62

ital costs of technologies throughout the model’s time horizon, for example see Bosetti63

et al. (2015)). Once the range of uncertainty in each parameter is quantified, a process64

which itself can be a challenging task, the impact of such parametric uncertainty is often65

assessed using Monte-Carlo methods, which here we take to include more targeted scenario66

or sensitivity analyses as well as more general sampling techniques. These function by re-67

peatedly perturbing input parameters in some way, solving the model and generating new68

realisations of the model’s output (see e.g. Usher and Strachan, 2012; Pye et al., 2015;69

Trutnevyte, 2016). Other approaches, e.g. Messner et al. (1996), Keppo and van der70

Zwaan (2012) and De Cian and Tavoni (2012), explicitly take parametric uncertainty71

into account in the decision making process, albeit often in a reduced form, and suggest72

decisions that are optimal in light of the quantified uncertainties. Finally, sensitivity ap-73

proaches (e.g. Anderson et al., 2014; Branger et al., 2015; Fais et al., 2016) can be used74

for analysing and identifying key model sensitivities. Doing this across a range of models75

(Marangoni et al., 2017) provides another dimension, linking parametric uncertainty with76

structural (see below).77

The other key driver of uncertainty is the model’s necessarily simplified representation78

of the extremely complex real energy-environment-economy system. For instance, such79

structural uncertainty can originate from methodological assumptions, e.g. energy system80

optimization with perfect foresight vs descriptive, “myopic” CGE simulation. Model inter-81

comparison (e.g. Knopf et al., 2013; Kriegler et al., 2014, 2015b) and diagnostic (Kriegler82

et al., 2015a) studies can help to understand the impacts of this form of uncertainty across83

a portfolio of models, but since their input data is rarely fully harmonised, reflections of84

structural uncertainty are mixed with those of the parametric kind. Indeed the majority85

of E3 modelling exercises have focused on the influence of parametric uncertainty, leaving86

structural uncertainty, and its effects, largely neglected.87

In this work we focus on structural uncertainty within a particular type of E3 models,88

and modelling platforms, that use a specific mathematical formulation common to the field,89
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i.e. those that (usually) seek to minimise total system cost or maximize total consumer90

and supplier surplus in a linear programming framework (e.g. MESSAGE (Messner and91

Strubegger, 1995), OSeMOSYS (Howells et al., 2011), TIMES3 and MARKAL4). Such92

cost optimising, perfect foresight, E3 models generally function in a deterministic way,93

producing for one run a single cost optimal pathway that meets the set energy service94

demands subject to any additional constraints that have been imposed on it (e.g. a95

cumulative greenhouse gas emission budget).96

In the last decade studies have begun to address the impact of important structural97

assumptions within such models including implementing myopic decision making (Hedenus98

et al., 2006; Keppo and Strubegger, 2010), adding multiple objectives (Alarcon-Rodriguez99

et al., 2010; McCollum et al., 2011; Mahbub et al., 2016) and, most recently, near cost100

optimal solutions (DeCarolis, 2011; Trutnevyte, 2013; Trutnevyte and Strachan, 2013;101

DeCarolis et al., 2015; Trutnevyte, 2016; Li and Trutnevyte, 2017). The latter area of102

research, which is our focus here, is entirely novel in the context of IAMs and originates103

from the fact that it is very unlikely that today’s, or indeed future, policy makers will104

function in a purely cost minimising manner (Gigerenzer and Goldstein, 1996), particularly105

on a global scale, and even if they do, while cost is important it is not the only factor106

driving decision making (Chang et al., 1982).107

Existing studies that have sought to generate near-optimal scenarios have been limited108

to a national level and have concentrated on one or two key sectors of interest. Here, for the109

first time, we simultaneously take a multi-sector, global view by adjusting the structural110

assumption of cost optimality within a complex, global E3 model and exploring the set of111

feasible solutions that are nearly cost optimal, but maximally different from the original112

solution in terms of their primary energy portfolio. Furthermore, to achieve this we use113

a novel, to the energy field, mathematical formulation and go on to compare our method114

to another technique used previously in the energy literature to generate near-optimal115

solutions. Such a comparison allows us gain new insight on the relative sensitivities of116

the two formulations. Beyond the few studies we note above, we are not aware of any117

others that have used a similar approach in this field and, to the best of our knowledge,118

this is the first time such a methodology has been applied to an existing, large IAM. In119

addition, it provides a significantly different route to uncertainty analysis compared to120

what is currently common in the field and thus could improve the understanding of the121

scope and nature of the uncertainties present in long term global system transitions.122

Exploring the impact of uncertainty associated with structural assumptions or sim-123

plifications requires altering the underlying formulation of the optimisation model while124

keeping its input parameters fixed. In order to relax the key assumption of cost op-125

timality, and map the diversity of different energy systems that lie within its near cost126

minimum solution space, we use the approach of modelling to generate alternatives (MGA;127

E. Downey Brill et al. (1982); DeCarolis (2011)). The aim of this is three fold. Firstly,128

we seek to assess the stability of the results implied by the model’s least cost solution and129

to search for consistent insights that emerge under at least a portion of the full struc-130

tural uncertainty budget (which here we take to mean the combined impact of all the131

components of the model’s formulation that do not reflect the full complexities of the real132

world). Secondly, we aim to assess and demonstrate how solutions nearly as good as the133

original one can look very different and therefore suggest (given the significant real world134

uncertainties) that even under a given input data set and specific model formulation a135

wide range of transitions may be considered equally valid. Thirdly, MGA can also be used136

by the analyst to provide information on possible pathways which may meet additional137

3http://www.iea-etsap.org/web/Times.asp
4http://iea-etsap.org/MrklDoc-I_StdMARKAL.pdf
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criteria that decision makers value while at the same time being near least cost, e.g. what138

would a pathway look like with higher shares of renewables than the cost optimal solution.139

In this study we apply MGA, the specific methodology of which will be detailed in a140

later section, to the TIMES Integrated Assessment Model in University College London141

(TIAM-UCL), a global E3 model built within the International Energy Agency’s Energy142

Technology System Analysis Program (IEA-ETSAP) TIMES framework. This paper is143

structured as follows: section 2 describes TIAM-UCL in more detail, section 3 details the144

MGA implementation used here, section 4 sets out the pair of scenarios that we apply145

MGA too, section 5 provides a detailed run through of the results and a comparison of146

our method with another popular MGA approach and, finally, section 6 summarises the147

insights emerging from this study.148

The Model149

TIAM-UCL (Anandarajah et al., 2010; Loulou and Labriet, 2008; Loulou, 2008) is a150

technology rich, bottom-up, cost optimising global energy system focused IAM instanti-151

ated within the generic and flexible TIMES model generator General Algebraic Modelling152

System (GAMS) code. The model aggregates the Earth’s countries into 16 regions, each153

with their own energy system which is represented by technologies (processes) and com-154

modities covering resource extraction/supply of all primary energy sources (e.g. coal, gas,155

oil, nuclear, biomass and renewables) through conversion and eventually culminating in156

end-use energy service demand. On the supply side, fossil and biomass resources can be157

traded between regions while energy service demands are exogenously prescribed at the158

regional level based on a range of drivers such as GDP, GDP per capita and population.159

The model runs from its base year of 2005 to 2100, first in 5 year intervals and then after160

2050 in 10 year intervals.161

The aim of the model is to ensure supply matches demand (i.e. supply = demand)162

across the energy systems of all regions and for all time-steps simultaneously while min-163

imising total discounted system cost (the objective function) and subject to all specified164

user constraints (e.g. resource potentials, energy balances, growth constraints). This lin-165

ear program is solved by the commercial optimiser CPLEX5. Due to the computational166

expense of combining the MGA methodology used here with a large and complicated167

global E3 model like TIAM-UCL, all runs in this study are carried out from 2005-2050.168

Near-optimal solutions169

Background170

As touched upon previously, cost is clearly a key driver shaping energy system transi-171

tions and yet the majority of such systems are made up of many and varied stakeholders172

who do not have perfect foresight and may have their own objectives and preferences173

not related to costs (see e.g. Daly et al., 2014; Cayla and Mäızi, 2015; McCollum et al.,174

2016). It is unlikely that the result of such complex interactions between agents with175

heterogeneous aims would be, as the conventional normative TIMES approach suggests,176

transitions that proceed exactly along a cost optimal trajectory. Indeed, studies such as177

Smil (2000), Trutnevyte et al. (2016) and Trutnevyte (2016) highlight that modelled path-178

ways and historical real-world transitions for a given energy system and period of time179

can differ substantially. Of course it is also unlikely that energy system transitions would180

totally disregard cost and so, while not exactly cost optimal, we would expect real-world181

transitions to be strongly driven by cost considerations.182

5https://www.ibm.com/software/commerce/optimization/cplex-optimizer/

4

https://www.ibm.com/software/commerce/optimization/cplex-optimizer/


Recent work using variations of the MGA methodology have found that, for a given183

model and scenario, small increases in total system cost above that obtained for the184

optimal case can lead to significantly different solutions (DeCarolis, 2011; Trutnevyte,185

2013; Trutnevyte and Strachan, 2013; DeCarolis et al., 2015; Trutnevyte, 2016). That186

is, solutions that cost just a few percent more than the least cost option can have very187

different system designs. Thus the typical focus on cost optimality can mask the sizable188

solution diversity in the near least cost space. Trutnevyte (2016) went a step further and,189

using ex-post analysis, found that the UK’s electricity system transition between 1990-190

2014 was at least 9% more costly than the cost optimal scenario would suggest over the191

same time frame, giving some indication of how far real-world transitions can deviate from192

optimality.193

While exploring the near-optimal space of a cost optimisation model such as TIAM-194

UCL gives a greater understanding of the diversity of plausible energy system configu-195

rations, it can lead to some difficulty interpreting and communicating the results as one196

switches away from a single solution to a set of possible system designs. Furthermore,197

the diversity of solutions can depend on the specific formulation employed, e.g. mapping198

the space using variations in primary energy consumption as opposed to final energy con-199

sumption for instance. Approaches like MGA also tend to be computationally expensive200

because they involve running the original model many times with an adjusted, likely more201

computationally demanding, formulation.202

The MGA Method203

MGA is a general, catchall term for any method that seeks to sample the near cost204

optimal solution space of a model and has a number of steps that are, typically, common205

to all energy system implementations of the technique:206

1. The model is solved in standard formulation and a least cost energy system transition207

pathway obtained.208

2. The total system cost of this pathway, scaled up by a small amount or slack (usually209

> 1%), is entered into the model as a new constraint. Here we use slacks of 1%, 5%210

and 10%, i.e. the new constraint limits the total system cost of subsequent MGA211

runs to be at most 1%, 5% or 10% greater than that of the optimal solution. These212

levels are chosen both to demonstrate the technique and to ensure that solutions213

produced are, within the context of global, multi-decadal energy system transition,214

highly comparable in cost terms with the original, cost optimal pathway. We note215

that although the higher slacks used here are comparable to modelled mitigation216

costs under climate targets (see Clarke et al., 2014) the deviation of real world217

transitions away from cost optimality may well be larger still (Trutnevyte, 2016).218

3. A new objective function is formulated with the specific aim of exploring the near219

optimal region defined by the constraint in step 2. This reformulation of the model220

is also subject to all constraints from the standard formulation in step 1.221

In principle, the scope of possible formulations for the new objective function is large222

and does not necessarily have to be related to the maximization of difference across the223

model solutions. It could, for instance, maximise the amount of primary energy from wind224

or minimise the utilisation of certain end-use technologies, with both energy systems being225

only marginally more expensive than the optimal run. As our focus in this study is finding226

energy systems that are as diverse as possible and yet still nearly cost optimal, here we227

use an objective function formulation that searches for a set of transition pathways that228

are very nearly least cost but also maximally different from one another in terms of the229

fuel mix of their cumulative primary energy consumption:230
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maximise αj231

where αj ≤ Djk ∀j, k

Djk =
∑
i

|PEj
i − PE

k
i | (1)

s.t. tot sys cost(PEj
i ) ≤ optimal sys cost× (1 + slack)232

slack ∈ 1%, 5%, 10%233

tot sys cost =
∑
y,r


INVCOSTy,r +INVTAXSUBy,r +INVDECOMy,r+
FIXCOSTy,r +FIXTAXSUBy,r +SURVCOSTy,r+
VARCOSTy,r +VARTAXSUBy,r

− SALVAGEr

where i is a set that includes all the primary energy carriers considered, i.e. coal, gas,234

oil, biomass, nuclear, wind, solar, tidal, hydropower and geothermal, PE is the discounted235

(at the same rate as total system costs) cumulative consumption (summed globally and236

temporally between 2010-2050) of that primary energy carrier and Djk is the set of L1 or237

Manhattan distances between this MGA iteration (j) and all previous iterations including238

the optimal run (k). We use the L1 distance because it can be expressed using a mixed239

integer formulation and early testing indicated that the most obvious alternative, i.e. a240

quadratic formulation for L2, was much more computationally intensive and beyond the241

available computing resources of this study. We do note, however, that different distance242

metrics may give different results. The cumulative consumption is discounted to limit the243

benefit afforded to the MGA objective function of difference created by the model towards244

the end of its time horizon. tot sys cost is a simplified version6 (for brevity) of the full to-245

tal system cost calculation where y and r are the modelled years and regions respectively.246

Costs are discounted and the terms are as follows: investment costs (INVCOST), invest-247

ment taxes/subsidies (INVTAXSUB), decommissioning costs (INVDECOM), fixed costs248

(FIXCOST), fixed taxes/subsidies (FIXTAXSUB), surveillance costs before demolition249

(SURVCOST), variable costs (VARCOST), variable taxes/subsidies (VARTAXSUB) and250

finally salvage income generated after the end of the model’s time horizon (SALVAGE).251

Based on the above formulation the first MGA iteration (j = 1) is generated such252

that its primary energy consumption is maximally different (greatest possible distance)253

from that used by the optimal run (see Fig 1 for a simplified schematic of a first MGA254

iteration). For the next MGA iteration the set k includes the optimal and the first MGA255

iteration and the set Djk now contains two distances, the minimum of which must be256

maximised. The procedure can then be repeated, each time ensuring that the newly257

generated scenario is maximally different from all previous pathways. Here we have built258

our implementation of MGA into the GAMS source code of TIMES using a mixed integer259

formulation to represent the absolute value expression in equation 1. We note that this260

particular iterative or sequential approach to MGA has been applied outside the energy261

and climate field by a number of studies (Loughlin et al., 2001; Zechman and Ranjithan,262

2007; Rosenberg, 2015).263

In this way the subset of model solutions that exist within the cost space defined264

by the new constraint added in equation 1 are sampled and a set of radically different265

pathways obtained. As will be shown, this set of pathways then allows the analyst to266

begin to understand how stable and robust various features of the energy system transition267

proposed by the cost minimal solution are by identifying key consistencies across MGA268

6For further details see http://iea-etsap.org/docs/Documentation_for_the_TIMES_

Model-Part-II_July-2016.pdf
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3. Approach “pushes” optimal as far away 

as possible (maximises D = x + y) from 

MGA1 in 2D PE space (see left), while 

remaining within the cost slack.

1. Example of first MGA iteration with two 

primary energy (PE) carriers. Axes are 

discounted, cumulative, global 

consumption 2010-2050 inclusive.

4. Code then iterates on to MGA2 where 

it pushes both MGA1 and the optimal 

away in the PE space. Then runs for the 

desired number of iterations.

2. Cost optimal solution found and its 

total system cost (scaled by the desired 

slack) entered as a constraint. Objective 

function switched to MGA formulation.
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Figure 1: Schematic depicting an example of how the MGA method used in this study proceeds. In this case
only two primary energy carriers are shown for diagrammatical simplicity whereas the full implementation
uses ten carriers and runs for five iterations.

iterations. Furthermore, it naturally follows that these pathways also provide an indication269

as to which elements of the original solution can vary significantly within the near optimal270

space. Such a set of pathways can also begin to facilitate an exploration of additional271

criteria that may be of interest to decision makers.272

The Scenario273

The purpose of this study is to describe and then demonstrate the implementation of274

a form of MGA within a E3 model and to that end we use a version of the TIAM-UCL275

representation of Shared Socio-economic Pathway 2 (hereafter SSP2). SSPs are a new276

scenario framework that detail a range of plausible future story lines for the evolution of277

the global socio-economic system and are being used by the climate change community to278

carry out research on impacts, adaptation and mitigation (for further details see ONeill279

et al. (2014)). SSP2 describes a so-called “middle of the road” world with intermediate280

challenges to mitigation and adaptation with respect to SSP1 and SSP3. Quantitatively,281

this is implemented in TIAM-UCL using projections of country level population and GDP282

per capita, provided by the Organisation for Economic Co-operation and Development283

(OECD)7 and aggregated to the model’s 16 regions, combined with a set of assumptions284

which are calibrated to the SSP marker models8 for final energy demand, low carbon285

technology availability and fossil fuel resource potentials. We consider both a business286

as usual (BAU) case that doesn’t include any explicit climate constraints and a global287

CO2 reduction pathway scenario applied to SSP2, i.e. 50% cut relative to 2005 levels by288

2050 with emissions peaking in 2015 and linearly declining, roughly consistent with a 2◦C289

temperature rise target.290

7https://secure.iiasa.ac.at/web-apps/ene/SspDb/static/download/ssp_suplementary%20text.

pdf
8https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about
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Results and Discussion291

BAU292

First we begin by analysing the results from our BAU scenario which are shown in Fig.293

2. The top left panel of this figure displays cumulative global primary energy consumption294

between 2010-2050, i.e. the metric whose difference is maximised between each MGA run295

and all those previous to it including the least cost solution, for all three MGA slacks296

(1%, 5% and 10%). At each slack level the results from the optimal run are plotted as the297

first stacked bar followed by the five MGA iterations. The top right panel of this figure298

shows the fractional variability of each energy carrier across the MGA runs with respect299

to the optimal with, for each fuel, the three slacks ordered from left to right as 1% to300

10%. Note the variability panel is not a standard box plot but simply reports a maximum301

and minimum variation over the MGA iterations normalised by the results of the optimal302

run. From these two plots, it is immediately apparent that sizeable variability is seen for303

important, i.e. significant shares of total primary energy, fuels such as coal and gas even304

at 1% slack. The former varies by ∼ ± 50% across the 1% runs while the latter ∼ ± 30%305

and so we see that just a minor deviation away from the structural assumption of cost306

optimality leads to a large range in key primary energy carrier consumption under this307

scenario. That said, by comparison one consistent insight does begin to emerge in terms of308

oil consumption, which shows comparatively minimal variability at ∼ ± 10%, suggesting309

that its role in the energy system is less easily replaced by alternatives with similar costs.310

Staying with the top two panels of Fig. 2, as the slack level increases the variability of311

each energy carrier also increases while the pattern of variability discussed above remains312

largely unchanged. Such a trend of escalating variability with increasing slack is to be313

expected as the model can push further up a given primary energy carrier’s supply curve,314

and correspondingly reduce the consumption of other carriers to compensate, thus creating315

more difference across iterations. At the same time, it is also better able to adjust to the316

resulting knock-on cost implications further into the energy system of doing so. That said,317

there are two noteworthy exceptions with biomass appearing to hit both upper and lower318

limits on its consumption at slacks of 5% and 10% and renewables showing significantly319

asymmetric behaviour as the slack level increases.320

The middle and bottom panels of Fig. 2 take a more sectoral view of the outcome321

of applying MGA to this scenario and allow us to assess how variability at the primary322

energy level propagates through certain parts of the energy system. The middle left panel323

shows cumulative global electricity production, again between 2010-2050 with the three324

slacks plotted as before. From the variability diagram, right middle panel, we see the325

spread in coal and gas consumption discussed above mapping through to the power sector326

with the left hand panel showing that these two fuels are, in some cases, substituting327

for one another. One can also see from this that whereas coal is mostly used for power328

generation, gas can be used much more flexibly throughout the energy system and therefore329

its contribution to electricity generation can vary significantly across two iterations that330

have fairly similar gas use in primary energy. Furthermore, all energy carriers considered331

show a sizeable range of usage, i.e. ∼ ± 50% or more, even at 1% slack and once more332

the broad trend of increasing variability with slack is apparent.333

The middle panels of Fig. 2 additionally highlight that in some MGA iterations at334

slacks of 5% and 10% there is an increase in electricity production, relative to the optimal335

case, typically associated with, although not always (see the third MGA iteration at 10%336

slack), greater total primary energy consumption. This likely occurs because the MGA337

implementation used here seeks to maximise difference at the primary energy level and so338

may choose to increase total primary energy usage. As end-use demands are inelastic in the339

set up of TIAM-UCL used here, this leads to the model choosing less efficient technologies340

and to an overall drop in energy efficiency of the system as well as a total system cost341

8
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Figure 2: Results from applying MGA to our BAU scenario. The left column shows, from top to bottom,
cumulative global primary energy consumption, electricity production and final energy consumption in
transport between 2010-2050 (inclusive) for the three different MGA slacks of 1%, 5% and 10%. For each
slack the first bar is the cost optimal run followed by five MGA iterations. The right column assesses
the fractional variability of each energy carrier across the MGA runs in the corresponding left panel with
respect to the optimal. For all carriers the bars are ordered by slack from 1% to 10%. Note that only
those fuels that provide greater than 2% of total energy production or consumption in the left panels are
shown in the variability plots for the sake of clarity.
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Figure 3: The spread in CO2 emissions from fossil fuel combustion and industry between 2005 and 2050
for our BAU scenario at the three slack levels considered here. The emissions trajectory for the optimal
pathway is plotted as a black dashed line for reference.

increase that the model is better able to afford with rising slack. The model has thus used342

the slack to replicate an energy efficiency gap (Hirst and Brown, 1990) similar in nature to343

that which is observed in the real world. Equally, in the case of MGA3 at 10% slack, the344

model can also choose to increase energy system efficiency if it is beneficial in creating345

difference, again with an associated impact on total system cost.346

Moving finally to the bottom pair of panels in Fig. 2, which show final energy con-347

sumption in the transport sector by fuel in the same format as discussed previously, we see348

that, of the two key energy carriers oil and gas, consumption of the former proves to be349

highly consistent with little increase in variability as slack increases, i.e. to at most ∼ ±350

20%. This indicates that this sector continues to rely heavily on oil even when the total351

system cost is allowed to escalate by up to 10%. It is worth mentioning, however, that352

this merely suggests that the implied cost curve for creating difference between iterations353

has higher marginal costs for replacing oil in the transport sector than creating a similar354

difference elsewhere in the system, not that the 10% cost slack wouldn’t be adequate for355

transforming the transport sector.356

Another noteworthy point highlighted by the bottom right panel of Fig. 2 is that it357

is possible for the variability in consumption of a given energy carrier to be reduced as358

slack increases for sectors further into the energy system. This, again, is likely a facet of359

the MGA formulation employed in this study which incentives difference at the primary360

energy level but gains no benefit from that created at later stages in the system. As a361

result, while the variability in the consumption of all primary energy carriers is seen to362

increase monotonically with slack, it need not for all carriers in individual branches of the363

energy system. For example, viewed through the lens of one particular sector, the model364

may benefit from further increasing (or decreasing) the usage of a given energy carrier in365

a different sector as one moves to increasing slacks and so the variability of said carrier in366
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Figure 4: The left panel shows cumulative 2010-2050 CO2 emissions from fossil fuel combustion and
industry by sector and slack. The right panel shows the fractional variability in this variable with the
three slacks plotted as before from 1% to 10% left to right.

our chosen sector may stay the same or even decrease as the permitted total system cost367

grows.368

Fig. 3 shows an alternative view of how the variability of energy carrier consumption369

discussed above impacts the energy system. Here we plot the spread in CO2 emission370

trajectories, from fossil fuel combustion and industry between 2010 and 2050, for all MGA371

iterations at the three slack levels and, for reference, we also include the pathway obtained372

from the cost optimal run. Immediately it is clear that even at 1% slack the spread in373

emissions is large, e.g. ± 10 Gt/yr or more in 2050, and grows substantially as the model374

is less cost constrained, e.g. at 10% slack emissions can almost double in 2050 with respect375

to the cost optimal run. This variability is driven by the extensive spread in coal and gas376

use presented in Fig. 2, with some iterations relying heavily on the former and others,377

e.g. MGA3 at 10% slack, reducing both at the primary energy level and almost entirely378

substituting them out for renewables in the electricity sector. To elaborate further on379

this point, in Fig. 4 we show cumulative CO2 emissions between 2010 and 2050 for each380

sector by slack and their range relative to the optimal run. Here we see that the spread in381

emission trajectories stems primarily from the electricity sector, with its large relative and382

absolute variability, and, to a lesser extent the residential and commercial sectors with383

industry and transport showing very little change in variability with increasing slack. Put384

another way, this implies that it is more cost effective for the model to create difference at385

the primary energy level by altering the consumption of energy carriers from one iteration386

to the next in the former three sectors than in the latter pair.387

A final point of interest from Fig. 3 is that, while a 10% slack iteration results in the388

largest absolute emissions, 5% seems to capture more variability across almost all years.389

Again this is likely an outcome of our specific MGA methodology, i.e. that it seeks to390

maximise difference between iterations in terms of cumulative primary energy use and not391
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Figure 5: Results from applying MGA to our 50% CO2 reduction by 2050 scenario. The layout of the
figure is identical to Fig. 2.
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Figure 6: The left panel shows cumulative (2010-2050) avoided CO2 emissions relative to the BAU optimal
case by sector and slack. Again, the right panel shows the relative variability of these parameters with
respect to that of the optimal mitigation case, from 1% to 10% slack left to right.

CO2 emissions.392

To summarise, in this section we have demonstrated that applying a range of rela-393

tively small cost slacks to our BAU scenario and seeking to map the diversity of solutions394

within that cost space leads to significant variability around the optimal solution’s results395

throughout the energy system. We have also seen that this variability increases as greater396

total system costs are permitted, at least up to a slack of 10%. Put another way, these397

results highlight how certain parts of the optimal solution are very sensitive to fairly mi-398

nor alterations in this part of the model’s structure, thus indicating that, in light of the399

numerous real world uncertainties, a range of “equally good” and very different transition400

trajectories exist. Conversely, certain elements of the model solution are fairly robust401

across the iterations and suggest that an alternative development is less likely to be nearly402

as cost effective as that proposed by the optimal solution (e.g. oil use in transport). It is,403

however, worth noting that the results shown here assume no emission constraint or tax404

of any kind and the model therefore has more flexibility to determine the fuel mix than it405

would if such a constraint was imposed. We’ll explore this in the next section.406

50% CO2 reduction407

Next we move on to examining how a small deviation from the structural assumption408

of cost optimality impacts our mitigation scenario. Fig. 5 displays the results for the409

optimal run and five MGA iterations at each slack level in the same format as Fig. 2.410

Straight away it is evident that for the majority of energy carriers across the three pairs411

of panels in the former figure there is less relative variability than in the latter case. As412

previously mentioned, this occurs because in this scenario the model is constrained by the413

applied CO2 reduction pathway and so the diversity of primary energy mixes in the near414

cost optimal solution space is reduced relative to the BAU case.415
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Figure 7: Sectoral CO2 emission trajectories for the 10% slack and optimal mitigation runs.

In primary energy terms, at 1% slack particularly consistent results stand out for oil,416

biomass and renewables with coal use showing the most sizeable range, i.e. ∼ +50% to417

∼ -25%. Again this pattern remains fairly consistent as the total system cost constraint418

is increased with the same two notable exceptions. Specifically, once more biomass seems419

to hit an upper usage constraint while renewables is seen to be increasingly asymmetric420

with growing slack, i.e. the model favours significant up-ticks in consumption, relative421

to the optimal run, and only very limited decreases over the MGA iterations. In the422

power sector, renewables and nuclear are the main contributors and are also the two423

most consistent fuels across the slacks. Furthermore, Fig. 6 and 7 indicate that the near424

complete decarbonisation of the electricity system by 2050 is a robust finding across all425

MGA iterations and slacks, with sectoral emissions dropping by ∼ 79-93% relative to426

2005 levels. In the transport sector, the spread in oil use is again small (∼ +10% to ∼427

-25%) even as the permitted total system cost grows indicating consistency in the common428

narrative (e.g. Knopf et al., 2013; van der Zwaan et al., 2013) that electricity generation429

would be expected to decarbonise before transport when the energy system is responding430

to mitigation targets.431

Fig. 6 shows that, from a cumulative perspective, the absolute sectoral variation in432

avoided emissions with respect to the optimal BAU case is at most ∼ +80 GtCO2 to ∼ -50433

GtCO2. This implies that, as touched upon above, the mitigation burden is distributed434

fairly consistently across sectors throughout the iterations and slacks. That said, Fig. 7435

demonstrates that, taking the 10% slack cases as an example, there is more variation in436

the sectoral emission trajectories over time than perhaps would be expected from Fig. 6,437

e.g. see MGA3’s transport emissions which are ∼ 3 GtCO2/yr less than the optimal run438

from ∼ 2030 onwards.439

However, the general message from the mitigation scenario is, as expected, that once440

an emission constraint is added, a given cost tolerance (slack) allows for less variation than441
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Figure 8: Plot showing how different components of the global energy system evolve between 2005-2050 in
our mitigation scenario. The panels are the same as the left hand column of Fig. 2 but only for a slack of
5% and at 5 yearly steps rather than cumulative over the modelled period.
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we’ve seen in the BAU scenario. We do note that this is the conclusion when difference442

on the level of primary energy is used to explore the space. It may well be that if a more443

elaborated objective function was used, one that would measure difference not only on444

the level of primary energy, but also in terms of, for example, sector specific final energy445

portfolios more room for variability would again exist. Unfortunately each new element in446

the objective function increases the computational burden significantly and this exercise is447

therefore left for a model that is more streamlined than our global integrated assessment448

model.449

To show how the transition of the energy system proceeds in this scenario as a function450

of time, in Fig. 8 we plot the same three left hand panels as in Fig. 5 but this time451

at 5 yearly steps between 2010-2050 rather than cumulative totals over that period for452

the optimal and all five iterations at 5% slack. This chart demonstrates the growth of453

renewables in the power sector and the decline of oil use toward mid century in transport.454

It also demonstrates how differences between MGA iterations and the optimal run typically455

grow as one moves closer to 2050 and the model’s flexibility increases. Thus, the differences456

between two iterations can be quite a bit more striking for 2050 than they are across the457

full time horizon.458

In summary, the results presented in this section demonstrate how the MGA technique459

used here can assess the impact of structural uncertainty on key model output and establish460

whether consistent insights emerge. In particular, we find that transport continues to rely461

significantly on oil and renewables are a consistent feature in the electricity sector when462

emissions from the global energy system are constrained to follow a moderately aggressive463

decarbonisation pathway out to 2050. We have also found that the diversity of solutions in464

the near optimal space of our mitigation scenario is less than in the BAU case, the former465

being more constrained and thus having less flexibility to vary the primary resources used.466

We consider it to be of particular importance to communicate information emerging from467

an analysis like ours to policy makers. Firstly, it is key to highlight the elements of468

the energy system that do remain largely unchanged across the iterations and cost slacks,469

therefore suggesting more robust insights, and those that do not. Secondly, it is imperative470

to convey that there is likely to be a range of, possibly, significantly different trajectories471

that are nearly as good as the cost optimal solution, so that the transition suggested by the472

latter is not automatically seen as the only alternative for the future. Thirdly, to highlight473

structural uncertainty in general to those whose task it is to make robust decisions under474

uncertainty.475

Comparison with Hop-Skip-Jump MGA476

Within the literature, DeCarolis (2011) was the first to apply the concept of MGA477

to an energy system model and employed the so-called Hop-Skip-Jump (HSJ) technique478

(here after MGAHSJ), developed by E. Downey Brill et al. (1982) in the context of land479

use planning. In this section we compare our approach to that of the HSJ method, with480

a particular focus on how diverse the generated near-optimal solutions are.481

The HSJ method follows the same first two steps as outlined previously, i.e. the model482

is run in standard formulation to find an optimal transition pathway and total system483

cost and this cost is then scaled up by some slack and entered into the model as a new484

constraint. The HSJ approach then uses a different third step which here we configure485

to function at the same primary energy carrier level as our technique and to use the486

normalised sector method of DeCarolis et al. (2015):487

1. Record the amount of each primary energy carrier used in the optimal as a fraction488

of total primary energy consumption, e.g. coal use may account for 30% (0.3) of489

total primary energy while renewables may only be 5% (0.05).490
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Figure 9: Plot showing cumulative primary energy consumption from our cost optimal BAU run and five
HSJ MGA runs, left panel, and the fractional variability across the MGA iterations, right panel.
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2. The new objective function then becomes:491

Minimise
∑
i

PE frac optimali × PEi (2)

s.t. tot sys cost ≤ optimal sys cost× (1 + slack)492

slack ∈ 1%,5%,10%493

where again i is the full set of primary energy carriers used in TIAM-UCL, PE is494

their cumulative consumption and PE frac optimali is the variable obtained from495

step 1 and includes all energy carriers even if their fractional use is zero. After each496

iteration the latter variable is updated in a cumulative fashion, i.e. if the fraction497

of primary energy from coal in the optimal case was 0.3 and 0.2 in the first MGA498

iteration then its weight for the second iteration would be 0.5. In this way MGA499

seeks to find maximally different solutions in terms of their primary energy carrier500

mix by forcing out carriers that have featured strongly in the optimal and all previous501

iterations. Here we test HSJ MGA using our BAU scenario, as it leaves room for502

more flexibility than the mitigation scenario does.503

In Fig. 9 we plot the results from MGAHSJ in the same format at Fig. 2, and so the504

figures are directly comparable (although the left panel y-axis scales are slightly different).505

From the former figure we see that the first MGAHSJ iteration is significantly different506

from the optimal across all sectors and slacks. However, subsequent iterations seem to be507

only slightly different and this can be verified by the right hand panels of Fig. 9, which508

shows little relative variability, at least compared to our MGA implementation, across the509

runs at each slack. Fig. 2 indicates that there is significant solution diversity in the near510

optimal space of this scenario and so it would seem, at least in this case, that MGAHSJ511

does not perform as well as the method applied here at finding a set of maximally different512

pathways. We speculate, that this is related to the relatively small number of decision513

variables (primary energy carriers) that can be brought into the solution and that almost514

all of these variables have non-zero values, and therefore non-zero fractional weight, beyond515

the first MGAHSJ iteration. In addition, we also note that MGAHSJ includes the level of516

primary energy use in the objective function and thus provides an incentive to minimize517

the use and, potentially, get stuck in that state. As such, we conclude that, at least when518

applied in this way, our MGA implementation is better able to generate maximally diverse519

near cost minimum solutions.520

Conclusions521

Long time horizon E3 models are an important resource for understanding the alter-522

natives when seeking to mitigate global climate change while simultaneously addressing523

the rest of the so-called energy trilemma. In recent decades such models have been used524

extensively to map out possible energy system transition pathways that respond to this525

challenging problem and provide valuable insights to policy makers. However, given that526

their usage at the science-policy interface has become ubiquitous and that they are in-527

creasingly complex beasts, it is critical to assess and communicate how the significant528

uncertainties inherent to this type of modelling impact their output and to steer the dis-529

course away from point results or precise looking, single trajectories.530

It is worth noting that outside the global context, the technique described here could531

be applied to other cost optimising energy system models at the national and sub-national532
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scales to help policy makers understand the ramifications of near-optimal solutions on their533

particular planning problem. For example, it could be directly applied to the UK TIMES534

whole energy system model (UKTM) also developed at the UCL Energy Institute. UKTM535

is the primary long term energy system planning model used by the UK government to536

understand how to respond to the country’s ambitious climate policy which mandates an537

80% reduction in greenhouse gas emissions relative to 1990 levels by 2050. Our version of538

MGA could be used to explore the near-optimal solution space of a scenario that meets539

this target and to identify consistent insights across those solutions as we have done here.540

Such information could provide decision makers with vital information about the elements541

of the energy system for which technological flexibility exists and about the ones that are542

more locked-in to a specific path, thus greatly helping the formulation of policies.543

Broadly speaking, the output uncertainty budget of such models is driven by input pa-544

rameter uncertainty, e.g. a lack of precise knowledge of future technology costs, resource545

potentials, etc, and structural uncertainty, i.e. the model does not capture the full com-546

plexity of the system it is trying to represent. Here we have described and demonstrated547

one technique to elucidate the impact of a portion of the total structural uncertainty bud-548

get of a global E3 model, TIAM-UCL, on the results it provides. To do this we relax the549

key structural assumption of cost optimality and then seek to explore the diversity of en-550

ergy systems that exist within the model’s near cost optimal solution space using a novel,551

at least to energy systems analysis, formulation of MGA. From this we can identify if any552

features of the proposed optimal transition pathway are robust to policy makers deviating553

from cost minimal decision making, in effect measuring the sensitivity of the results of the554

cost optimal solution. Turning that around, we are also able to demonstrate that relatively555

minor increases to total system cost can lead to significantly different transition pathways,556

thus suggesting that if non-cost related objectives are, in reality, also considered, the pre-557

ferred trajectories could well look very different. From a methodological stand point, at558

a given slack, our approach in effect explores the multidimensional shape of the near cost559

optimal solution space in terms of whichever variables are in the MGA objective function560

and, therefore, provides an assessment of the scope of their variability in that region.561

A summary of the key insights gained from applying our MGA implementation to two562

scenarios based on Shared Socio-economic Pathway 2, at three levels of permitted total563

system cost increase or slack, is as follows:564

• Even at 1% slack, and therefore a particularly restricted near optimal space to565

search, we observe significant diversity/spread in the consumption of a number of566

important energy carriers at the primary energy level and, as a consequence, further567

into the energy system for our BAU scenario. This suggests that, in light of real568

world uncertainties and the multitude of non-cost related objectives, transitions very569

different from the cost optimal one can not be easily considered any “worse” or less570

plausible. The observed variability in the consumption of important energy carriers571

is seen to increase as the MGA total system cost constraint grows with increasing572

slack. Of particular note is the variability of coal and gas, which is largely driven573

by their substitutability in, for instance, electricity production. This interaction,574

together with increased renewable energy consumption and to a lesser extent fuel575

switching in the residential and commercial sectors, drives significant variation in576

CO2 emissions relative to the optimal solution, which also tends to escalate with577

increasing slack. However, because the MGA formulation used here creates difference578

between the current iteration and all previous iterations plus the optimal in terms579

of primary energy consumption, in certain cases more slack does not always mean580

more variability on the sectoral level, e.g. gas use in transport or total energy system581

CO2 emissions in 2050.582
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• The most consistent insight emerging from our BAU scenario is the continuing oil583

consumption, particularly that in the transport sector, and this remains unchanged584

even if total system cost is allowed to increase by 10%.585

• With the addition of a global emissions pathway constraint, our mitigation scenario586

is typically seen to have less relative energy carrier consumption variability than587

the BAU scenario, while still also suggesting significantly different approaches to588

reducing emissions. At the primary energy level, coal is the most variable fuel with589

oil and biomass the most stable. Renewables are found to be a consistent feature590

of the global electricity system with the potential for their deployment seen to grow591

significantly as the MGA slack is increased. In a similar vein to the BAU scenario,592

oil remains the most important and stable fuel in the transport sector even at a593

permitted increase in total system cost of 10%.594

• Furthermore, another key pair of insights from applying MGA to the mitigation595

scenario is the consistency with which, across all three slack levels tested here, the596

power sector is largely decarbonised by 2050 and that as the energy system transition597

proceeds, emissions are mitigated from the electricity sector before the transport598

sector.599

• Finally, we have found that when HSJ MGA is applied in the same way as our MGA600

approach, i.e. at the primary energy level, it does not generate transition pathways601

that are as diverse as our implementation. This, we speculate, is because of how the602

formulation incentivises primary energy use reduction, combined with the limited603

number of decision variables used (10 energy carriers) and the fact that the majority604

of them become non-zero after the first iteration.605

In closing, we reiterate that throughout this work we have explored only one aspect606

of TIAM-UCL’s uncertainty budget and that it remains a task for a future study to fully607

understand the impact of structural and parametric uncertainty simultaneously within the608

framework of a global, whole energy system model.609
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