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Tubular organ epithelialisation
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Abstract

Hollow, tubular organs including oesophagus, trachea, stomach, intestine, bladder and urethra may require repair or
replacement due to disease. Current treatment is considered an unmet clinical need, and tissue engineering strategies aim
to overcome these by fabricating synthetic constructs as tissue replacements. Smart, functionalised synthetic materials
can act as a scaffold base of an organ and multiple cell types, including stem cells can be used to repopulate these scaffolds
to replace or repair the damaged or diseased organs. Epithelial cells have not yet completely shown to have efficacious
cell-scaffold interactions or good functionality in artificial organs, thus limiting the success of tissue-engineered grafts.
Epithelial cells play an essential part of respective organs to maintain their function. Without successful epithelialisation,
hollow organs are liable to stenosis, collapse, extensive fibrosis and infection that limit patency. It is clear that the source
of cells and physicochemical properties of scaffolds determine the successful epithelialisation. This article presents a
review of tissue engineering studies on oesophagus, trachea, stomach, small intestine, bladder and urethral constructs
conducted to actualise epithelialised grafts.
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Introduction

Hollow organs may be affected by a variety of disease pro-
cesses — congenital malformation, autoimmune disease,
inflammation, infection and cancer to name but a few
potential problems. Current treatment generally relies on
resection and/or replacement of this tissue. Resection of
tissue is often only successful when relatively small seg-
ments of the organ are affected. Ultimately, having less
surface area by large-scale removal of tissue leads to the
organ having reduced functionality as seen in problems
such as short bowel syndrome arising from loss of a com-
ponent of the digestive system.! Attempts to replace tis-
sue have been made using mucosal grafts from other parts
of the body; however, this can cause subsequent problems
at the donor site: reconstruction of hollow organ tissue is
susceptible to leakage, rejection, stricture formation, ste-
nosis and may require continuous stenting to maintain
patency.5 8 Epithelialisation is crucial to maintain patency
of organs, and a lack of epithelial cell layer can lead to
over-proliferation of underlying fibroblast layer leading to
stricture formation, stenosis and potential graft failure® in
addition to organ-specific functions. (Table 1)

This increasing burden of unmet clinical need is driving
the search for effective procedures to develop functional
epithelialised organs. Tissue engineering has already
advanced sufficiently to create various organs syntheti-
cally for transplantation or reconstruction: examples
include the world’s first tissue-engineered bladder.!”
However, epithelialisation of these synthetic organs is a
process that is proving difficult to replicate in vitro.

Understanding the nature of epithelial cells is an impor-
tant consideration when designing epithelialised tissue-
engineered structures. Epithelial cells are finely tuned to
their specific organ (Table 1). Epithelial cells can be lining
hollow organs as surface epithelium!? (Figure 1). At this
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Table I. Types of epithelial cells present in specific hollow organs.

Organ Epithelium type Function References
Trachea Many cell types within epithelium: Moisten and protect airways Delaere
Ciliated pseudostratified columnar Barrier to pathogens and Van
Secretory goblet Mucociliary elevator Raemdonck!'?
Serous cells
Basal neuroendocrine cells
Basal stem cells
Oesophagus Stratified squamous Rapid turnover Ozeki et al.'!,
Protective barrier function against the Kalabis et al.'?
abrasive effects of food
Stomach Stratified squamous above cardia Mucus cells produce protective alkaline Young et al.'3
Simple columnar with gastric pit mucus to prevent digestion of stomach
invagination below cardia wall from HCI producing cells
Small Simple columnar (enterocytes, Selectively absorb digested material Day'4
Intestine goblet cells, enteroendocrine cells, from intestinal lumen
M cells and Paneth immune cells) Release mucus
Barrier to pathogens
Urinary Referred to as urothelium Epithelium can contract and expand in Liao et al.'®
Bladder Transitional response to volume of bladder: allows
Basal layer: compact and cuboidal bladder to change shape according
Intermediate: columnar to volume of urine without damaging
Surface cells: dome cells which are epithelium
imperbeable to urine Protects underlying tissue from caustic
effects of urine
Protect blood—-urine barrier
Urethra Referred to as urothelium Mucus-secreting cells to protect Liao et al.'®
Prostatic Transitional underlying tissue from urine
Membranous Pseudostratified columnar/ Protect blood-urine barrier
Penile stratified squamous

Pseudostratified columnar

simple Squamous
Blood vessels

Simple Cuboidal
Kidney tubules

Simple Columnar
Gastrointestinal tract

Stratified Squamous
Skin

Pseudostratified
Columnar
Respiratory tract

Transitional __—

Epithelium
Bladder

Figure |I. Types of epithelium corresponding to distinct physiological systems.
Diagram template adapted from Wiki Commons? and SEM pictures from Science Photo Library.?!

interface, epithelial cells carry out functions such as creat-
ing a protective barrier for underlying organ; absorption of
luminal contents; secreting substances into the lumen such

as mucus by the goblet epithelial cells in the trachea or
digestive enzymes secreted by the stomach and small
intestine; controlling passage of materials across body
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surface by selective diffusion; and containment of luminal
contents.!® Cells are usually found as a continuous sheet of
cells that, in some organs, can be stacked to form layers.
The cells reside upon a basement membrane, which demar-
cates the border between epithelial cells and underlying
cells. This basement membrane is not penetrated by blood
vessels, and therefore, epithelial cells rely on simple diffu-
sion for supply of oxygen and nutrients.!?

This article focuses specifically on the epithelialisation
of hollow organs such as trachea, oesophagus, stomach,
small intestine, colon, urinary bladder and urethra, where
their tubular forms distinguish them from other more solid,
visceral organs such as the heart and liver and give a prom-
inent role to the luminal epithelial layer, which is in con-
tact with the external environment. This review aims to
evaluate the materials and fabrication methods, which
have been successful in producing scaffolds and their limi-
tations, with a view to present these as lessons in designing
more optimal scaffolds for a functional epithelium associ-
ated with tubular structures.

A host of factors determine epithelial-material interac-
tions which include mimicking extracellular matrix
(ECM). For example, scaffold pores should be large
enough to allow vascular infiltration and angiogenesis, but
not too large to prevent formation of cell layering and epi-
thelial cells slipping through; hydrophilic surface to pro-
mote cell adhesion; appropriate tensile strength appropriate
to the replaced organ; biodegradable and appropriate rate
of degradation to allow successive replacement with native
tissue; surface morphology to support cell adhesion; abil-
ity to mould into appropriate tubular structures; non-
immunogenic; non-toxic; responsive to growth; and casy
to produce and transplant into patient.??-23

Numerous types of scaffolds have been developed for
hollow organ development. The wide range of materials
available and their interaction with epithelial cells are
illustrated in Table 2.

Types of scaffolds
Biological scaffolds

Decellularised scaffolds. Biological, decellularised scaf-
folds can be created from donor human or animal tissue.
Decellularisation involves removing cells expressing
major histocompatibility complex (MHC) class I and II
antigens to stop an immunogenic response using deter-
gent.2® Decellularisation of tissue can be done using chem-
ical treatment of NaClO,;*” however, this method has not
been widely used. Detergent-enzymatic method has been
very popular and generally yields good results.!!-38-42

This method removes immunogenic components of tis-
sue while maintaining structural integrity to cope with the
biological flow stresses in vivo. The scaffold is biologi-
cally active due to native ECM proteins and with pro-
angiogenic, chemotactic growth factors remain intact

even after the decellularisation process.*? They facilitate
cells forming crucial cell-ECM interactions, culminating
in organ remodelling required for transplantation.!”
However, there are several limitations to this method.

Decellularised scaffold relies on donor organs; thus, it
does not overcome the global issue of transplant donor
organ shortage. Furthermore, decellularisation does not
lead to absence of inflammatory response but it is a com-
paratively reduced inflammatory response in comparison
with allogeneic or xenogeneic grafts. While this may be
some form of progress, inflammation can still arise. Both
inflammation stenosis and stricture formation have been
observed in various decellularised tubular scaffolds, in the
absence of cells.!63543 Therefore, decellularised scaffolds
may require stenting to prevent graft collapse and the long-
term biodegradability of decellularised scaffolds being
unknown. There is also a lack of uniformity between scaf-
folds and unable to tailor the graft to the requirements of
the recipient.*

Fibrin gel. Fibrin gel is created from fibrinogen and
thrombin found in the blood to create a gel-like sub-
stance, and this can be easily extracted from autologous
blood.* Bronchial epithelial cells were shown to produce
confluent layer and ciliary production when seeded on
fibrin gels.?* However, in another study, the cells that
grow show less structured layering, rounder cells and
more immature cilia formation than original tissue, as
cytokeratin patterns in experimental models do not cor-
respond to cytokeratin patterns in native trachea.*® And
the significance of epithelial tissue is reiterated by Heikal
et al.,*” where fibrin constructs with cells were not
implanted and it led to fibrosis and stenosis.

Advantages of fibrin gel are that it is easy to seed cells
and mould the gel into appropriate structures. However,
due to its relatively fragile nature, it needs to be supported
by a mesh if used to replace tubular organs.*®

Collagen. Abundant in the ECM, collagen is a good
source to use when culturing epithelial cells. A collagen-
coated polypropylene mesh has been used for airway
reconstruction,* while collagen scaffold—incorporated
fibroblasts have been shown to regenerate tissue and
enhance wound healing. After 14 days, epithelialisation
and cartilage formation was observed throughout the
scaffold, more rapidly than the control.’° This use of col-
lagen-modified scaffolds with stem cell-epithelial cell
co-culture encourages mesenchymal cell migration into
the scaffold, which may produce basement membrane
proteins and growth factors.>!

Basic fibroblast growth factor (bFGF) was incorpo-
rated into a collagen vitrigel membrane, which then cov-
ered an artificial trachea made of Marlex® polypropene
mesh and collagen sponge. There was stratified epithe-
lium, columnar cells and ciliated cells at day 5, 7, and
14, respectively.5?
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OptiMaix-3D collagen-coated scaffolds are prone to
epithelial cells passing through or clustering rather than
seeding uniformly on the surface. Two-dimensional (2D)
scaffolds showed monolayer formation and no cell migra-
tion through the scaffold but have limited applicability.>3-?
As collagen coating may lead to slow or partially epitheli-
alised surfaces, coating the collagen surface with L-C co-
polymer keeps this collagen layer intact and yields more
positive results.¢

The useful effects of collagen may not be specifically
restricted to its physical properties as a scaffold, but also
after its degradation, it can improve vascular growth and
lead to desmin-positive tissue formation.>’

Chitosan. Chitosan is a natural polymer derived from chi-
tin. It can be easily modified and complexed with other
proteins. Unmodified chitosan leads to no cell adhesion.
Modified chitosan scaffold coated with fibronectin or
elastin transiently leads to the formation of strong cell
adhesion contacts, but cells eventually undergo de-adhe-
sion. There has been some link to collagen—chitosan com-
plexes supporting oesophageal epithelial cell adhesion
and proliferation.’!

Gelatin. Gelatin is often complexed with other materials. It
is shown to be a biodegradable and bioabsorbable natural
polymer, with neovascularisation and epithelial growth
seen and degeneration after 2 months. Epithelial markers
such as pan-cytokeratin staining, while initially positive,
become negative after 4 months. It is a good material for
initial adhesion and growth of cells, but poor at maintain-
ing differentiation of buccal mucosa.?

Gelatin has also been combined with other proteins
such as decorin—gelatin electrospun complexes. There was
greater adhesion of cells and increased cell layer formation
in comparison with simple gelatin scaffold. To improve
differentiation, there is a need for greater exposure to bio-
physical flow stress exposure. Also, the pore sizes created
by electrospinning technique are too large for successful
epithelialisation.?

Gelatin was also combined with dextran sulphate to
form dextran sulphate—gelatin membrane. Full tracheal
regeneration was observed, but it took 2-3 months and
there is a high risk of stenosis in the organ. Furthermore,
immunogenic reaction was seen towards this membrane. It
is worth noting that hyaluronate-rich extracellular compo-
nents allow it to have strong cell-scaffold interactions.’

Synthetic scaffolds

Synthetic polymers being increasingly investigated as nat-
ural materials prove to be mechanically weak. However,
while the physical strength, biocompatibility and bioab-
sorbability of these polymers are promising, poor cell
adhesion hinders their use. Synthetic scaffold success with

regard to epithelialisation relies on four main stages epi-
thelial cells have to progress: migration to correct site;
adhesion of cells to surface; proliferation of cells to
increase in number and repopulate area; and finally, dif-
ferentiation to mature cell type or cell type seen in vivo
models. Different factors target different stages, and thus,
the challenge is to create a scaffold material that can suc-
cessfully progress through all four of these stages.

Silicone stents were used as a scaffold for urothelial
growth with an attempt to grow bladder epithelial cells in
porcine models. Better results were in fact seen on latex
scaffolds, but this may not be universally clinically appli-
cable.* Polyglycolic acid (PGA) mesh using poly(lactic
acid) (PLLA) glue was used to seed stomach epithelial
cells such as gastric patches. The results show neomucosa
formation with smooth muscle proliferation and no clear
discontinuity between donor and recipient mucosa.!
Previous work on polycaprolactone (PCL) has been devel-
oped in the fields of bone’®>® and oesophageal?’ tissue
engineering. Electrospun PCL was seeded with primary
oesophageal epithelial cells. While PCL nanofibres show
high tensile strength and slower degradation, there was
greater cell proliferation on PCL—gelatin hybrid. A PCL—
silk fibroin hybrid also promoted the epithelial cell attach-
ment and proliferation. Mitochondrial activity increased
when the material was coated with extracted basement
membrane proteins.?’” These findings demonstrate the
importance of a combination of molecular profiles to
enhance cell attachment. Poly(lactic-co-glycolic) acid
(PLGA) is a biodegradable polymer, and the material
shows rapid degradation and useful biocompatibility prop-
erties. It also has reduced irritation of sensitive tissues and
so may be applicable to urethral stents.® Precoating with
collagen type IV has shown to increase adhesion and pro-
liferation but differentiation is limited.? A mesh knitted
with PLGA and polypropylene for tracheal reconstruction
showed good mechanical properties, which were enhanced
after coating with polyurethane. However, there was
patchy ciliated columnar epithelium intermittently along
the graft, rather than the desired confluent layer, even after
6 weeks.o!

Scaffold fabrication with
three-dimensional printing

A range of biofabrication methods can be used to develop
tubular scaffolds (Figure 2). Conventional methods to cre-
ate scaffolds for tissue engineering such as gas foaming®?
and phase separation® are useful, and there is a need to
regenerate the scaffold’s submicron internal architecture
and initiate a degree of bioactivity for scaffolds to support
epithelialisation. Additive manufacturing methods or
three-dimensional (3D) printing can offer methods that
can enable precise reproduction of the tissue’s size and
shape.®* There are a variety of bioprinting methodologies
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Figure 2. Possible biofabrication methods to develop hollow, tubular scaffolds to replace/repair tubular organs.
(1) Solvent evaporation of polycaprolactone; (2) magnified cross section of (1);74 (3) magnified cross section of solvent exchanged polycaprolactone-
based scaffold;”* (4) decellularised tracheal segment;’> (5) 3D-printed tubular tissue;’¢ (6) hybrid scaffold (polyurethane outer coat on a decellularised
oesophagus); (7) electrospun tubular tissue.”” Figure of structures of natural tubular organs is adapted from Basu and Ludlow.®

that include stereolithography apparatus, thermal inkjet
printing, fused deposition modelling and powder binding.
Stereolithography (SLA)% uses an excess layer of liquid
photopolymer or epoxy resin. A low-power ultraviolet
(UV) laser is then used to cure the excess liquid into a solid
object. The excess raw materials and supporting structures
must be removed and then cured in a UV chamber. A plat-
form is positioned such that a thin layer of photopolymer/
epoxy resin (0.05-0.15mm) exists above the platform,
exposing it to the UV laser.®® As the UV beam comes into
contact with the liquid plastic, it instantly hardens forming
a thin, solid layer at the surface of the platform.®” Each
layer produced represents a cross section of the desired 3D
object. The platform then moves to allow the superposition
of subsequent layers until the desired thickness is reached.
This system can be used with living cells and biomateri-
als.%® Thermal inkjet printing shows promise in regenera-
tive medicine and has generated the foundation for future
organ-printing technologies.®-’0 With this method, living
cells are printed in the form of droplets from a printhead
onto a substrate (as opposed to printing them on scaffolds)
in accordance with instructions sent digitally from a com-
puter to the printer. The droplets are ejected using com-
pression generated either mechanically or using thermal
energy. The droplet size can be as small as 10-150 pL. This
can be modified by altering the pulse frequency, tempera-
ture gradient or the viscosity of the bio-ink. Fused deposi-
tion modelling has a printhead similar to that used in a
thermal inkjet printer.”! Layers of material are created by
the deposition of material such as plastic as the printhead
moves.”"7> The process is repeated allowing very precise

control of the amount and location of each droplet of mate-
rial at each layer.”> As the material is heated, it fuses as it
cools to the layers below.”?

There is also powder binding, by which a layer of pow-
dered material placed on a surface and a solvent (or liquid
binder) is selectively deposited onto the powdered surface
by a printhead. The solvent (or liquid binder) causes the
powdered material to bind together to form a fragile but
solid material of a predetermined geometry. In addition to
hollow, tubular scaffolds, stents are widely used to address
disease and damaged tubular structures. Strut structure,
high radial strength (needed to maintain tubular diame-
ter), low recoil, high radiopacity (to ensure precise posi-
tioning)”® and conformability (lack of conformability or
increased stent rigidity) leading to failure are significant
features.®" Table 3 contains a summary of the advantages
and disadvantages of various 3D printers.

Stainless steel can be used to make stents which has the
main advantage of being highly biocompatible and suffi-
cient mechanical strength. However, there were a number
of limitations such as high strut thickness, limited flexibil-
ity and low corrosion resistance.” Cobalt—chromium stent
alloys are also used which allow for thinner struts without
compromising radial strength or resistance to corrosion.
The introduction of a platinum—chromium alloy stent
appears to incorporate many properties such as radiopac-
ity, thin struts, high radial strength and biocompatibility.
These stents can be designed as drug-eluting stents®! and
can potentially modify to ensure epithelialisation or to
eliminate patency-limiting factors through the introduc-
tion of functional epithelium mimicking bio-factors.
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Table 3. Advantages and disadvantages of 3D printers.

Type of printer Advantages

Disadvantages

Stereolithography High resolution can reach

submicron scale
Thermal inkjet printer Use of small droplet volume
permits high-resolution printing
Objects can be produced using
cheap systems
Low cost
Fast printing speed
Wide variety of powder material

Fused deposition binding

Powder binding

Expensive laser systems

Laser could damage living cells

Limited to UV-curable substances

Requires the use of material that has a high gelation rate
which limits the materials that can be used

During the processing stages, rough surfaces are produced.
Low resolution

Low resolution

Difficult to remove the solvent/liquid binder

3D: three-dimensional; UV: ultraviolet.

Properties considered when
fabricating scaffolds for hollow organ
development

Pore size and porosity

Pore size and porosity play an important role in mimicking
natural ECM and for cells to attach. Electrospinning, salt
sintering and 3D printing® are some methods by which
pores are introduced. Porosity determines the mechanical
strength of the polymer and the rate of biodegradability in
non-biostable materials. Epithelial adhesion is shown to be
optimal in scaffolds with pore sizes <10 pum.'® Nanosized
porous or fibrous surfaces have also been shown to be
advantageous to cell and protein adhesion within scaffold
surface but larger pores created by methods such as elec-
trospinning produce larger diameter pores do not optimally
suit epithelial cell seeding.®?

Hence, a laminated model seems to present a better
solution with large pore sizes on the basal layer but smaller
pore sizes on the luminal surface to allow for epithelial
adhesion and prevent cell penetration. In the small intes-
tine, cell sheets of varying porosity and cell size were com-
pounded to make multi-layered scaffold.3* The bilayered
concept was also explored using electrospun scaffold
where smaller pores are used in luminal surface and bigger
pores for basal surface which is conducive for fibroblasts.??
There is a need for scaffolds with a smaller pore size at the
luminal surface for optimal epithelium attachment and
proliferation. However, larger pores have shown to encour-
age bronchial epithelial cell aggregation, integration and
vascular growth.%

Stretchability/stiffness

The role of scaffold stiffness was long recognised to
influence cell-material interactions, where soft poly-
acrylamide gels (E = 0.1—1kPa) would direct mesenchy-
mal stem cell differentiation towards neuronal phenotype
such as brain. Relatively harder gels (E = 8 to 17kPa)
directed mesenchymal stem cells (MSCs) to become

muscle cells, while the stiffest scaffolds (E =25 to 40 kPa)
produced osteogenic cells.8 Recently, peristalsis has
been shown to stimulate micromechanical processes such
as rearranging lateral cell-cell adhesions and aligning
cytoskeletal components.®7

Surface modification

Surface modifications to scaffolds such as introducing bio-
active molecules®®% can alter the surface chemistry,
thereby modulating cell attachment and proliferation.
Plasma treatment can introduce hydroxyl and carbonyl
groups that increase hydrophilicity of the scaffold and
increase cell adhesion.?! The argon plasma ablation of pol-
yethylene led to oxidation and increased surface roughness
which had positive effect on fibroblasts cells.”?

An optimal scaffold mimics the basic structure of the
ECM. The ECM co-ordinates the binding of cells. Cells
also respond to the ECM via integrin receptors which rec-
ognise and interact with ECM components. Subsequently,
leading to signal transduction intracellularly modifies cell
behaviour.

Therefore, an ideal scaffold must be more than a pas-
sive support for cells. It is a much more dynamic and influ-
ential structure: binding various signals (such as growth
factors and hormones) that are tailored to the surrounding
cell type is responsive to the action of cells and adjusts
nutrient supply to the cell accordingly.

The concentration of calcium to which epithelial cells
are exposed enhances different stages of epithelial cell
growth. Cells cultured under low calcium conditions show
greater proliferative capacity. When calcium concentration
increases, there is raised differentiation of epithelial cells
and reduced proliferation. In synthetic scaffolds, it is the
crucial step of adhesion, that is, one of the great challenges
of tissue engineering. The calcium concentration was ini-
tially low, and after reaching confluence, it increased.

Such chemical and biological modifications on a scaf-
fold can influence the surface wettability of a scaffold sur-
face. Surface wettability refers to the hydrophilic or
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hydrophobic nature of the scaffold surface. Hydrophilic
scaffolds tend to resist proteins, while hydrophobic scaf-
folds absorb proteins. Absorption of proteins might lead to
distortion of the 3D conformation of the protein, making
changes to the degree of cell adhesion and migration.??
Moderately, hydrophilic materials are optimum for adsorp-
tion of proteins. Neither super hydrophilic nor super
hydrophobic materials have shown to be ideal.?

Cell sources for epithelialisation

Current scaffolds seem unable to rely on native cells for
repopulation, as independently forming functional epithe-
lium can be time-consuming and may impact the regenera-
tion of underlying tissues due to reciprocal differentiation
factors released from neighbouring tissue layers.3%-%* The
current studies on cell sources used for epithelisation are
listed in Table 4.

Autologous source

It is also important to consider the immunogenic poten-
tial of grafted cells, a common concern in allogeneic or
xenogeneic transplants. One way to solve this problem is
relying on autologous cell transplantation. Studies have
been carried out to establish culture systems for tracheal
epithelial cells using tissue explant technique.!04105
While it would be intuitive to directly seed epithelial
cells to allow epithelialisation, there is difficulty in epi-
thelial cell extraction, optimal cell adhesion and sus-
tained differentiation.*!-106

There have been attempts to locate endogenous stem
cells found within the site of the organ by looking at mod-
els in response to organ injury and determining where the
new generation of cells to repair the organ and replace lost
cells arise from, hoping to use this pool of undifferentiated
cells for seeding. However, there are some cases where
this proves difficult, such as in patients with reduced intes-
tinal length due to ulcerative colitis or Crohn’s disease and
may not have the capacity to provide the number of stem
cells for adequate population of the graft. One solution for
this may be in-vitro expansion of cells; however, intestinal
epithelial cells have poor in-vitro growth, and this may
reduce the clinical translatability of this method.!

Stem cells

Pluripotent stem cell is a viable option. Bone marrow—
mesenchymal stem cells (BM-MSCs) hold much potential,
as BM-MSCs show cytokeratin expression and migration
to replace damaged epithelial cells. Several papers reiter-
ate the idea that epithelial progenitor cells are derived from
bone marrow, which circulate and then recruit to the site of
injury to reconstitute the repaired epithelium to some
extent.”?8 Adipocyte MSCs showed a pseudostratified

columnar epithelium along with goblet cells, cilia and
angiogenesis in rat models for tracheal epithelial growth.5!
Human embryonic stem cells hold great potential but are
wrapped in controversy. However, amniotic fluid stem
cells or amniotic fluid progenitor cells display similar
characteristics of bone marrow stem cells, but in rodent
models have been shown to have ‘higher healing proper-
ties’, perhaps by influencing local oxygen levels. The stem
cells have similar properties to the embryonic stem cells,
but there are less ethical dilemmas surrounding these cells
as well as less risk of being teratogenic.”> Another cell
source is human-induced pluripotent stem cells, and these
can show embryonic stem cell-like activity using similar
signalling pathways by modification of around four key
genes. 07

Transdifferentiation of skin epithelial cells to tracheal
epithelial cells presents a different method of obtaining
epithelial cells. Results show cilia formation, and cells
remain viable for several months. Despite inflammation
after 1 month post-surgery and some stenosis 4 months
post-surgery, this presents an interesting avenue of alterna-
tive cell sources for epithelialisation. !0

Co-culture

The use of cells seeded on scaffolds is actually one of
some debates. Some papers argue that research should
move to focus on ensuring the scaffold has sufficient fac-
tors to stimulate cell migration, proliferation and differen-
tiation in vivo rather than using valuable resources
procuring cells and fine-tuning technique to graft onto
scaffold.

The bipotential scaffold fabricated by Tada et al.!%8
aimed to show that native tissue infiltration is able to pro-
duce mucosal repair using native cells without the need for
seeding.

Epithelialisation has shown to be optimal when co-cul-
tured with fibroblasts or media conditioned with fibro-
blasts. The interaction between neighbouring mesenchymal
cells and epithelial cells is crucial in differentiation of epi-
thelium and graft development. Fibroblasts produce essen-
tial ECM, which also supports epithelial cells, secrete
growth factor molecules such as bFGF, epidermal growth
factor (EGF) and keratinocyte growth factor among others,
each helping to develop the epithelium and surrounding
mesenchyme.!%

Nasal respiratory epithelial cells and fibroblasts were
grown together for 1 week using a fibrin and titanium mesh
in ovine models, which reconstituted the basement mem-
brane.*’ Fibroblasts continue to have this positive effect
even in larger tracheal defects with ciliated, pseudostrati-
fied epithelium still seen.!% Kobayashi et al.!l® also co-
cultured epithelial cells with fibroblasts, leading to
pseudostratified cilia goblet and basal cells formation and
reciprocally, fibroblasts increasing mucin secretion
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Figure 3. Factors influencing an ideal tubular scaffold.

(1) SEM of a synthetic scaffold;3® (2) various SEM of materials and porous scaffolds;®? (3) porogen to induce homogenous honeycomb-structured
pores (Everett et al.®%); (4) 3D rendering of epidermal growth factor;''2 (5) modulating surface wettability; measurements of water contact angle; (6)
fluorescence image of adipose-derived stem cells;>' (7) SEM of bronchial epithelial cells; (8) skin epithelial cells transdifferentiation;'? (9) epithelial
cell sheets;''? (10) bioreactor;''* (11) organoid (Maemura et al.'); and (12) air-liquid interface.#’

by epithelial cells. However, their novel work was co-cul-
turing fibroblasts and adipose-derived stem cells with tra-
cheal epithelial cells. It transpires that each cell plays its
own unique role in epithelial cell regeneration. The fibro-
blasts drive differentiation and pseudostratification of the
epithelial cell layer, and adipose-derived stem cells drive
proliferation, multilayering of epithelial cell sheets and
accelerate neovascularisation. There are detailed synergis-
tic effects of epithelialisation on both types of cells, as well
as ion channel and basement membrane construction.>?

The inclusion of adipose-derived stem cells has indi-
cated that other cells may also be implicated in improving
epithelialisation shown by promising results with
BM-MSCs and chondrocytes co-culture.”> Pfenninger
et al. co-cultured many human epithelial cells with various
combinations of other cells including chondrocyte pellets,
articular cartilage chips and collagen membrane plus chon-
drocytes. Epithelial cells were seeded internally and chon-
drocyte externally on the luminal surface of a decellularised
tracheal grafts and placed in a bioreactor. Both cell types
covered the matrix within 72 h and improved epithelialisa-
tion and graft survival.l®

Endothelial and epithelial cells have crucial and differ-
ing roles in response to injury. The epithelial cells contain
the extent of the injury and stimulate mesenchymal hyper-
plasia to allow proliferation of cells to replace injured
cells, while endothelial cells maintain and preserve epithe-
lial cells and perfuse the injured tissue. This in turn pro-
duces factors for fibroblast migration and remodelling and
further enhances epithelium growth.!'! This supports
Beckstead in the oesophageal model, who has suggested

that the regeneration of epithelium is crucial as it is linked
to the regrowth of the underlying muscular layers in the
oesophagus.3?

Other techniques of improving
epithelialisation

The way in which cells are seeded onto the scaffold is
important in epithelialisation of the tubular structures.
Conventionally, cells are usually seeded onto scaffold
while in a solution with the appropriate media, with indi-
vidual or clusters of cells forming attachments. This
method works fairly well; however, alternative methods of
cell seeding onto scaffolds have been investigated. Figure
3 summaries the various factors involved to create the
ideal tubular scaffold.

Air-liquid interface

Air—liquid interface cultures are useful in airway epithe-
lium formation.’® In submerged conditions, murine
embryonic stem cells differentiated to non-ciliated secre-
tory Clara cells, but when using air—liquid interface cul-
turing techniques, the stem cells differentiated to all three
cell types of airway epithelium ciliated, basal, and
secretory. !>

Epithelial cell sheets

The use of epithelial cell sheets has been shown to have
regenerative potential even without scaffold support,
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commonly used therapeutically in oesophageal endoscopic
submucosal dissection.!02:113.116 The cell sheet is formed by
lowering the temperature of the flask containing cells to
around 20°C rather than trypsinising cells to seed them on
scaffold in solution; however, mild fibrosis and substantial
degree of constriction are still seen.9117:118

In the context of synthetic scaffolds, cell sheet seeding
may overcome the practical problem of epithelial cell
adhesion as epithelial cells often infiltrate into the scaf-
fold pores rather than forming a surface layer.> A skin
graft of epithelial cells seeded upon cartilage sheets
wrapped with external abdominal oblique muscle flaps
and a silicone stent was performed and are well-vascular-
ised and remodelled except for thin layers that led to poor
epithelialisation.!!®

Organoid units

An organoid is a bud of an organ which preserves the vari-
ous cell layers on a smaller scale than the native organ,
thereby allowing for interactions between different cell
layers such as small intestines.!?? In intestinal models, epi-
thelial differentiation through goblet and/or Paneth cell
formation, as well as a progenitor cell layer forming below,
is consistent with gastric epithelium and expression of gas-
tric stem cell markers.!2! However, most of the cells die
after implanting the construct as the complex organoid
structure no longer receives adequate nutrition to the inner,
more densely packed layers. In the gastric model, hetero-
geneity of cell types in different regions of the stomach
meant that organoids may not have the full variety of cells
seen in the native stomach.!?!

Bioreactor

Exposure of the cell-scaffold construct within in-vivo
environment may enhance tissue formation. All hollow
organs mediate an interface between internal and external
environments, and exposure of the graft to this interface
allows important additional tissue development, such as
immune cell lymphoid tissue.!*

A bioreactor can simulate this in-vivo environment as
the graft matures. There was greater chondrocytes seeding
on collagen scaffold when the scaffold rotated 5 to 201/
min in a bioreactor.!?? This mimics in-vivo physiological
signals such as shear stress, compression and pressure,
thereby allowing cells to respond to them in vitro.

Using in-vivo bioreactor such as implanting urethral
scaffolds in peritoneal cavities of rabbits and scaffolds was
well covered in fibroblasts and mesothelium. There was no
stricture formation when scaffolds were transplanted into
rabbits.!?* Similarly, omentum was used as a bioreactor
where oesophageal scaffolds were implanted. Results
showed vascularisation, and its anatomical position can be
used as a pedicle for subsequent transposition.!?* In-vivo

bioreactors should be explored further to understand its
interaction with host tissue.

Angiogenesis

The delivery of nutrients and oxygen to epithelium plays
a key role in epithelisation. The diffusion limit of nutri-
ents and oxygen is approximately 200 um, and the lack of
vessels severely restrict the size of tissue-engineered
scaffolds. Hence, angiogenesis is important.'?> Therefore,
vascular endothelial growth factor (VEGF) can be intro-
duced to improve vessel infiltration. The administration
of VEGF is, however, difficult but continuous delivery of
VEGF may be possible through a bioreactor. Improved
oxygen delivery may decrease lactate concentration in
the graft and improve epithelial metabolism.!?® This has
been investigated using perfluorocarbon-based artificial
oxygen carrier (Oxygent). This has benefits in maintain-
ing a functional basal lamina and decreased lethal airway
obstruction, but also may lead to decreased chondrocyte
function.'?’

Concluding remarks and future
direction

Biological scaffolds so far have presented relatively more
successful results for tubular scaffold epithelialisation,
originating from their ability to provide tissue-specific
cues for cell-matrix interaction. Biomimicry of the natural
tubular structures with synthetic scaffolds with the state-
of-the-art materials and fabrication methodologies might
be the way forward for effective epithelisation. Current
non-biological approaches involve seeding cells on suita-
ble scaffolds, but still lack the full range of crucial struc-
tures that mimic the ECM which are required to replicate
these organ-specific cellular cues.

The best bioactive scaffolds would be those that use
cell-signalling pathways to mimic the in-vivo repair and
regeneration process. This is the strength of decellularised
scaffolds, despite them lacking suitable mechanical
strength, which could lead to graft failure. Furthermore,
topography and physicochemical characteristics such as
porosity, material strechability and surface wettability play
a major role in epithelialisation. Embedding relevant
growth factors within the scaffold may further enhance
epithelial cell binding. Ultimately, to produce functional
organs, it will be unlikely to rely solely on optimising cell
seeding. It would be practical to improve scaffold intrinsic
properties to allow autologous cells to migrate towards the
scaffold of interest and transform into a functional tissue
that can restore physiological homeostasis.
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