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Abstract

The pursing of a simply- or doubly-connected planar elastic pocket by an

applied pressure is analysed from the bending to the stretching regimes. The

response is evaluated in terms of maximum deflection and profiles across a

range of simply- and doubly-connected circular and square shapes. The study

is conducted using experimental and numerical methods and supported by

previous analytical results. The experimental method is based on an original

2D optical method that gives access to the pursing direction perpendicular

to each image across the field of view. The equations for maximum pursing

deflections are developed and compared for a range of thicknesses of silicone

samples and shapes from the bending to the stretching regimes. In the case

of doubly-connected shapes, dependence of maximum pursing deflection on

clamped central circular and square areas or holes is quantified for both

regimes. Good agreement is established between the three methods and the

study also shows that the optical method may as well be successfully applied

to problems of pursing of rubber pockets.
Keywords: elastic pocket, bending, stretching, hole, optical method, Finite
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Element Analysis

1. Introduction

An elastic pocket can be created by introducing a fluid between two elas-

tic sheets fixed together along a common edge (Adkins and Rivlin, 1952).

When the fluid exerts a pressure on the sheets, a purse is formed. Studies

on inflating flat circular disks were initially carried out to understand elastic

properties of gum rubber (Klingbeil and Shield, 1964; Hart-Smith and Crisp,

1967) with the eponymous model of strain-energy density from M. Mooney

(Mooney, 1940) widely used to characterise incompressible and isotropic ma-

terial such as rubber. His theory of large elastic deformation (Mooney, 1940)

matches experimental tension data of soft rubber from compression to large

stretching (50%-400% of original length). Pursed flat circular disks with

clamped edge were therefore used to determine the strain energy density

function of soft tissue (Wineman et al., 1979).

When considering a clamped pursed pocket, two regimes can be distin-

guished; when the deflection is smaller than the thickness of the initial flat

pocket, the sheets bend and the equations of deflections are linear, while when

the deflection is larger, the sheets are stretched. In the case of bending, the

analytical solution of circular clamped pockets presents limited interest, and

several groups have focussed on the analytical solutions for bending of rect-

angular or square plates with clamped edges (Timoshenko, 1910; Pistriakoff,

1910; Levy, 1942; Meleshko, 1997; Imrak and Gerdemeli, 2007a,b). Meleshko

(1997) wrote a detailed account on the differences between each solution.

More generally, a wide variety of studies have analysed elastic sheets that
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were pinned along an edge with the majority of studies focussed on circular

or rectangular sheets that undergo large deformations (Dickey, 1967; Feng,

1976; Pujara and Lardner, 1978; Wineman, 1978; Roberts and Green, 1980;

Weinitschke, 1988; Chaudhuri and DasGupta, 2014). More specifically, Yang

and Feng (1970) studied the large deformations of hyper-elastic (Mooney-

Rivlin) circular membranes, with stretching rising up to 600 % (meridian

stretching). Christensen and Feng (1986) extended this description to in-

clude deflection of neo-Hookean materials; comparisons with the numerical

results of Yang and Feng (1970) showed that the approximate model is ac-

curate up to 400% strain. One of the limitations of their model is that the

stretch ratio can be considered as averaged, as their model assumed a uniform

inflation over the surface of the disk. More recently, Hewitt et al. (2015) de-

veloped an elastohydrodynamic lubrification theory that characterise deflec-

tion of elastic sheets under different conditions. Lister et al. (2013) applied

an optical method to measure deflection with high resolution along a line

when peeling sheets are bent or stretched. The same method was applied by

Pihler-Puzović et al. (2015) to measure the shape of a circular elastic pocket

in the stretching regime as a method of calibration.

For the last approximately 20 years, a large numbers of studies have

focussed on inflating axisymmetric balloons for technology applications, for

example in the context of artery interactions during stent placements (Liang

et al., 2005; Prendergast, 2003; Martin and Boyle, 2013), in electro-elastomers

used in novel prosthetic blood pumps (Goulbourne et al., 2007, 2004), in novel

endoscopy devices (Glozman et al., 2010), as urinary sphincters for patients

suffering from severe stress incontinence (Hached et al., 2014), as pressure
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sensitive buttons, to strain cells in a controlled manner (Smith et al., 1998)

and even as a tool to break into rental cars on holidays! (by levering doors

open, so that grapples can be inserted). Moreover, inflatable membranes are

also used in a number of space applications such as solar sails and arrays,

scientific ballooning, thermal shields, pressurised habitats in space, actuators

and telescope mirrors (Marker and Jenkins, 1997; Patil and DasGupta, 2013)

as well as in the development of airbags, suspensions for cushioning and

shock absorbers (Kumar and DasGupta, 2013). Inflatable membranes as

elastomer based tunable devices (Song et al., 2012) have been used in the

development of dielectrophoretical tunable optofluidic devices, leading to a

number of applications such as beam steers, optical switches and single pixel

displays (Xu et al., 2013). Laparoscopic gastric banding is an example of a

doubly-connected inflatable structure. They are annular silicon membranes

loaded with a saline solution that, under different pressure loads, limit the

passageway of food through the stomach to reduce the nutritional intake of

morbidly obese patients (Morino et al., 2003). Finally, the understanding

of deformed elastic membranes is applicable to biological systems, such as

fetal dura mater (Kriewall et al., 1983; Bylski et al., 1986), cell membranes

to plant cell walls (Chaplain and Sleeman, 1990; Davies et al., 1998; Selby

and Shannon, 2009), cell replication and motility to pathogenesis of disease

(Karimi et al., 2014; Jenkins and Leonard, 2015).

Much of the research on the physics of clamped inflatable pockets has been

conducted either looking at analytical solutions for small deformations such

as in the work of Meleshko (1997) among others, or for large deformations of

shapes such as Yang and Feng (1970) as explained previously. This paper is
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novel as it looks at the differences between those two regimes, while including

not only simply but doubly-connected shapes (presence of a hole in the shape)

using a three-fold approach: numerical and experimental approaches backed

up by previous analytical results. It is believed by the authors that the

experimental optical method is used for the first time to assess the pursing

of silicone pockets. This original method gives a 3D deformation field from

a single plane of measurements.

2. Mathematical model

The elastic pocket is modelled as a membrane of initial thickness T that

sustains a deflection h due to an applied pressure p, as shown in figure 1.

To understand the implication of pressurising an elastic pocket, we apply

a scaling analysis to identify the adjustment in the bending and stretching

regime. The bending regime is examined explicitly. The response is studied

using Finite Element Method (FEM) which is validated against the results

from the bending regime. It is worth noting that studying large inflations

with the maximum deflection H of the order of the pocket size is not within

the scope of this paper.

2.1. Results from the scaling analysis

From the energy balance equation, Landau and Lifshitz (1975) derived:

p = ET 3

12(1− σ2)∇
4h− T

(
∂2χ

∂y2
∂2h

∂x2 + ∂2χ

∂x2
∂2h

∂y2 − 2 ∂2χ

∂x∂y

∂2h

∂x∂y

)
, (1)
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(a) (b)

(c)

Figure 1: Schematic of plan-view of the problem showing the notation used and the

boundary of (a) simply-connected and (b) doubly-connected pockets with the (c) side

view.
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and

∇4χ+ E

∂2h

∂x2
∂2h

∂y2 −
(
∂2h

∂x∂y

)2
 = 0, (2)

with h being the deflection perpendicular to the x− y plane; E, the Young’s

modulus; σ, the Poisson’s ratio and χ, a stress function. χ is defined in

Landau and Lifshitz (1975) as ζxx = d2χ/dy2; ζxy = −d2χ/dxdy and ζyy =

d2χ/dx2 with ζij, the stress tensor. Equations (1) and (2) are valid as long

as the deflection, h, is smaller than the size of the pocket. The first term

in the right hand-side of (1) represents the bending while the second term

represents the stretching. A scaling analysis can be applied to identify the

different regimes of pursing, by taking H, L and P as the characteristic scales

for the pursed pocket deflection, size, and pressure. When H/T � 1, so that

stretching is negligible, from (1):
H

T
∼ PL4

ET 4 . (3)

The transition from bending to stretching occurs when H
T
≈ 1 (Landau and

Lifshitz, 1975). When stretching is important (H/T � 1), then from (1) :
H

T
∼ PL4

χT 2 , (4)

and from (2):

χ ∼ EH2. (5)

Eliminating χ gives an estimate of the pursed pocket gap to be:

H

T
∼
(
PL4

ET 4

)1/3

. (6)

While the scaling analysis gives an estimate of the purse response in the two

regimes, a more detailed analysis is required to determine the premultiplying

coefficients.
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2.2. Analytical results for bending

When stretching χ is negligible, (1) reduces to the linear bending equation

ET 3

12(1− σ2)∇
4h = P, (7)

which can be solved analytically in a number of cases. For a circular pocket,

an axisymmetric solution to (7) can be derived (Chandrashekhara, 2001) and

h(r) = 3(1− σ2)
16ET 3 P (R2 − r2)2, (8)

with R being the radius of the circular pocket and r, the radial coordinate.

The maximum displacement H, which occurs in the centre of the pocket, is

H

T
= 3(1− σ2)

16
PR4

ET 4 . (9)

If a circular region (radius R1 < R) is clamped in the centre of a circular

pocket, (7) can be solved exactly with the following boundary conditions:

h = 0 and ∂h
∂r

= 0 at r = R1 and r = R. An exact solution is given at the

end of the article from Amon and Widera (1969) and a simplified form is

recalled in (10) with α = R1/R and β = r/R:

h(r) = 3(1− σ2)PR4

16ET 3

(
(β2 − 1)2 +

(α− 1)(α + 1)3(α− αβ2 + A+ β2 −B − 1)
2 (α2 + C − 1) +

(α− 1)3(α + 1)(α− αβ2 + A− β2 +B + 1)
2(C − α2 + 1)

)
, (10)

with A = 2α ln β, B = 2β2 ln β and C = 2α lnα. The deflection is reported

for two limits of α: if α = 0, h = 3(1−σ2)Pβ2R4

16ET 3 (β2 − 2 ln β − 1) while when

α = 1, h = 0.
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For a rectangular pocket bounded by |x| ≤ a, |y| ≤ b, (7) can be solved

more easily in Cartesian coordinates:
ET 3

12(1− σ2)

(
∂4

∂x4 + 2 ∂4

∂x2∂y2 + ∂4

∂y4

)
h = P. (11)

For a rectangular pocket (with all edges clamped), the solution derived

by Koialovich (1902) and Boobnoff (1902) is:

h(x, y) = 12(1− σ2)
ET 3

Pb4

24

(1− y2

b2

)2

+ C0 +
∞∑
k=1

Ak sinh kπ

(kπ coth kπ + 1) cosh kπx
b
− kπx

b
sinh kπx

b

kπ + cosh kπ sinh kπ cos kπy
b

+
∞∑
n=1

Bn sinhnπ
(nπ cothnπ + 1) cosh nπy

a
− nπy

a
sinh nπy

a

nπ + coshnπ sinhnπ

cos nπx
a

]
, (12)

with Ak, Bn and C0 obtained from the systems of equations recalled in

Meleshko (1997):

Ak = 4
π

∑∞
n=1

(−1)k+n+1n3

(k2+n2)2
cosh(2nπ)−1

sinh(2nπ)+2nπBn + 48 (−1)k

k4π4 ,

Bn = 4
π

∑∞
k=1

(−1)k+n+1k3

(k2+n2)2
cosh(2kπ)−1

sinh(2kπ)+2kπAk,

C0 = − 2
π

∑∞
k=1

(−1)k

k
cosh(2kπ)−1

sinh(2kπ)+2kπAk.

(13)

In the case of a square (b/a = 1), the dimensionless maximum deflection,

H/T , occurring at the centre has been derived by Boobnoff (1902) and is

equal to:
H

T
= 0.245(1− σ2)

(
Pa4

ET 4

)
. (14)

2.3. Finite Element Analysis Model

A finite element model of the three-dimensional elastic pocket was created

and solved using Abaqus version 6.12-3. A linear model proves to be insuffi-
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cient for the stretching regime and therefore, the material was defined to be

hyper-elastic, isotropic and homogeneous consistent with the experimental

study. This model uses a strain energy density function, W (Mooney, 1940),

which for incompressible elastic materials is described by:

W = C1(I1 − 3) + C2(I2 − 3), (15)

where I1, I2 are the first and second invariants of the strain tensor and C1,

C2 are material specific constants. The justification of using W for modelling

the silicone sheets is based on the relative low stretching of the pockets and

the collapse of the experimental data onto a Mooney-Rivlin model. Different

circular and square elastic pocket sizes and thicknesses were simulated for

a given set of material constants C1 and C2. Typical domains consist in

circle or square with R = a = 10 mm with a thickness of 0.1 mm. During

the simulation, the pressure is applied uniformly on the lower surface of the

pocket. We used Newton’s method to calculate solutions for pressure values

covering 5 orders of magnitude in sequence. After each solution is found,

the pressure is increased by step ranging from 0.0001 to 10 pascal depending

on the pressure range of the simulation and the current solution is used as

an initial guess for the next one. For a solution to converge, the largest

correction of the solution for one increment should be less than 1% of the

incremental change for the corresponding solution variable with a residual

error of less than 0.5%. The edges of the pockets are clamped. A mesh with

8-node linear brick (hex) elements was generated by extruding a 2D grid.

The optimal number of elements is determined with the convergence of the

maximum deflection (H) and is usually around 50000.
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3. Experimental study

Elastic pocket was created using a clear silicone sheet fixed between two clear

acrylic plates - an upper plate and a base plate. The plate dimensions were

162 mm by 162 mm. Geometries of different shapes were cut in the upper

plate to fix the outer edge of the pocket. The pocket was pressurised by

injecting water under the membrane through a hole drilled in the base plate,

as shown in figure 2.

LIGHTBOX

                                                                                                   CLEAR ACRYLIC PLATES

    

                                        

                                                        

                                                      

       

                                                  INJECTION LOCATION

Figure 2: Photograph showing the lightbox and the upper and base plates screwed together

holding sheet sample 2. The needle is used to inject the dyed water through the base plate.

In order to apply a uniform hydrostatic pressure over the membrane,

water columns of different heights were connected to the membrane. Since

the height of the water column is significantly greater than H, the pressure

applied over the membrane is uniform.

3.1. Characterisation of sheet material properties

Six silicone sheets (from Silex Ltd, Broxhead Trading Estate, Lindford, Bor-

don, Hampshire, GU35 OJX, UK) have been tested using the uniaxial tests
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to obtain the Mooney-Rivlin material constants C1 and C2 as well as the

Young’s Modulus E. The method of Vossoughi (1995) was used to obtain C1

and C2 from uniaxial tests by determining parameters X and Y :

X = 1− λ−3

λ− λ−2 , Y = ζ

2(λ− λ−2) , (16)

as a function of the axial stretching ratio (λ) and stress (ζ). Vossoughi (1995)

showed that C1, C2 [from (15)] and E can be determined from:

Y = C1 + C2X, E = 6(C1 + C2). (17)

C1 and C2 are determined by the method of least squares.

3.2. Characterisation of sheet deformation

3.2.1. Technique

An optical method was used to determine the displacement of the elastic

sheet to an applied pressure using a technique familiar in experimental fluid

mechanics (e.g. Cenedese and Dalziel, 1998). This technique exploits the

translucent (and almost transparent) nature of the silicone sheets. The sheet

deformation was determined using a dilute methylene blue solution (a con-

centration of 33 mg/L). The silicone sheet was clamped between two clear

acrylic plates and lit with a diffusive light source. An Allied Vision technol-

ogy camera of 1280 × 960 pixels was mounted with a 16 mm lens located

above and perpendicular to the membrane to record the optical images (Fig.

3).
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(a) (b) (c)

Figure 3: Typical example of the pocket with sheet sample 2 pursed with a non-dimensional

pressure of 774 showing (a) a colour photograph of the pocket. In (b, c), the black-and-

white image recorded by the camera and post-processed are shown.

The governing principle of the optical technique was to correlate the

height of the membrane to the attenuation of light intensity caused by dyed

water using the calibration curve explained in section 3.2.2. The intensity of

the methylene blue solution recorded by the 8-bit pixel camera is translated

to a 0-255 greyscale range, with 255 being no dye and 0 a very high amount

of liquid.

3.2.2. Calibration

The optical method was calibrated against thin layers of dyed water that were

created by successively adding 0.5 mL of dyed water to a measuring cylinder

from a height of 0.82 mm up to 19.8 mm. Figure 4 shows the variation of the

fluid layer height with the ratio of intensity in greyscale of the current image

compared to the reference image. The heights obtained from the optical

method are on average accurate within 3.5%.
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)
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Figure 4: Calibration test showing the correlation between light attenuation determined

optically (•) and layer thickness determined from a direct measurement (N). It demon-

strates (a) h ∝ log(I0/I) and (b) the error is small (3.5%) and very reproducible.

4. Results

4.1. Material characterisation

The six silicone sheets mentioned earlier with thicknesses ranging from 0.32

mm to 3.25 mm were characterised (see Table 1) using an electromagnetic

linear actuator (Bose Electroforce 3220 Series III).

The maximum load applied is 225 N with a displacement of 6.5 mm and

a resolution of 1 nm. Each uniaxial tensile test was performed at a rate of

0.1 mm/s. This range of displacements was large enough to determine the

Mooney-Rivlin parameters from the uniaxial tests.

Each silicone sample was cut into a bone-shape with the middle part

being 4 mm wide and 15 mm long. Figure 5 shows a typical X-Y variation

for silicone sheet samples (in this case, samples 4, 5 and 6). The values of
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0.76 0.80 0.84 0.88 0.92

0.17
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X
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(M

P
a
)

Figure 5: Typical X-Y scatter plots for silicone samples 4, 5 and 6 (see Table 1). The

Mooney-Rivlin parameters determined from the lines of best fit are also plotted.

C1 and C2 from each silicone sample were averaged from three tests.

4.2. Simply-connected pockets

4.2.1. Field deformation

This section aims at characterising the bending/stretching regime in terms of

maximum deflections and profiles of different simply-connected shapes such

as circles and squares. Typical elevated and plan-views of the deflection ob-

tained experimentally using the optical method from the silicone sample 2

fitted in a circle of radius 10 mm are plotted in figure 6 (a)-(b), while in fig-

ure 6 (c)-(d), the deflection for the same geometry and sample are obtained

numerically using Finite Element Analysis with each figure showing approxi-
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Silicone Thickness C1 C2 Young’s Modulus Length Symbol

sheet T E R or a

sample (mm) (kPa) (kPa) (MPa) (mm)

1 0.32 259 179 2.628 20 H

2 0.5 160 47 1.241 10 .

2 0.5 160 47 1.241 20 I

3 1.6 160 47 1.241 10 �

3 1.6 160 47 1.241 20 �

4 1.72 122 64 1.112 10 ♦

4 1.72 122 64 1.112 20 �

5 3.2 160 47 1.241 20 N

6 3.25 48 133 1.083 20 •

Table 1: Table summarising silicone samples used in the experimental study: the sheet

thickness (T ), Mooney-Rivlin parameters C1 and C2, Young’s Modulus (E), length (R or

a), and symbols are listed.
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Figure 6: Elevated and plan-view contour plots of the reconstructed deformation of a

circular silicone pocket of sheet sample 2 at a dimensionless pressure PR4/ET 4 = 580

obtained (a-b) experimentally and (c-d) numerically using a finite element simulation (for

R = 10 mm).

mately identical maximum deflection. The experimental data are azimuthally

averaged from the lower half of each image as the upper part of the field of

view is obstructed by the injection point. The experimental elevated view is

slightly rounder than the numerical one as confirmed by the plan-views. The

clamping of the sheet may add extra compression on it leading to the slight

raising of the silicone pocket, hence a slightly more stretched 3D view of the

circular pocket. Identical figures are obtained for a square pocket of side

2a = 40 mm in figure 7 (a-d) for a dimensionless pressure Pa4/ET 4 = 138.
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In figure 7 (a, b), the experimental data have been smoothed. It is interesting

to check if the contribution from the hydrostatic pressure to the overall rela-

tively low applied pressure may be neglected. The dimensionless hydrostatic

pressure difference between the centre and the edge can be calculated as

ρgHa4/ET 4 ≈ 0.94 and considered negligible compared to the dimensionless

pressure applied of 138. The deflection is within the stretching regime. The

difference in maximum deflections between the experimental and numerical

pursed square pockets is within 10%. However, the deformation occurring

in the central part of the experimental pocket in figure 7 (a) appears flatter

compared to the finite element results in figure 7 (c). However, when looking

at the plan-view of figure 7 (b), it can be seen that the flattening occurs at

the very top over a relatively small area of the entire pocket. It is there-

fore quite a minimum discrepancy and is probably due to the experimental

technique and to a lesser degree the necessary smoothing of the experimental

data, an additional step that is not required for the numerical results. The

profiles are discussed in more detail in the following section.

4.2.2. Profiles

In figure 8, the cross-section profiles of simply-connected circular and square

shapes for r/R and x/a from 0 to 1 obtained analytically, numerically and

experimentally are plotted in the case of bending and stretching regimes. The

simulations are obtained at respectively PR4/ET 4 = 1.4, 58, 174 and 580 in

figure 8 (a) for sheet sample 2 for a radius of 10 mm and Pa4/ET 4 = 8.6, 14,

42 and 138 in figure 8 (b) for sheet sample 3 for a = 20 mm and plotted using

solid lines. The equivalent bending analytical solutions (8) and (12) obtained
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Figure 7: Elevated and plan-view contour plots of the reconstructed deformation of a

square silicone pocket for sheet sample 3 at a dimensionless pressure Pa4/ET 4 = 138

obtained (a-b) experimentally and (c-d) numerically using a finite element simulation (for

a = 20 mm).
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for the circular and square shapes for PR4/ET 4 = 1.4 and Pa4/ET 4 = 8.6,

respectively, are plotted with a dashed line. It can be seen that the bending

profile has a smaller width compared to the stretching profile in both circular

and square shapes due to the fact that the membrane of the pocket is simply

being displaced upwards under the applied pressure p without being stretched

when bent. However, the four experimental profiles obtained for the bending

regime at PR4/ET 4 = 1.4 (•) and Pa4/ET 4 = 8.6 (N) for the circular and

square shapes respectively, and in the stretching regime at 580 (.) and 138

(�) for the circle and square shapes have a significant larger width compared

to their theoretical and numerical equivalent profiles shown using the same

colour. This could be due to the compression of the sheet when clamped

to the acrylic plate that raises the sheet inside the circular or square shape,

leading to artificially slightly larger deflections. However, the narrower width

profile between the bending and stretching regime is clearly verified for all

four experimental curves.

4.2.3. Maximum displacements

Figure 9 shows the dimensionless maximum deflection (H/T ) of circular

and square elastic pockets over six orders of magnitude of PR4/ET 4 and

Pa4/ET 4. In figure 9 (a) and (b), the finite element simulations match re-

spectively the bending solution for the circle (9) and for the square (14)

plotted with red curves up to the maximum deflection of H/T ≈ 1. Above

H/T ≈ 1, the silicone pocket undergoes stretching and the data obtained nu-

merically can be fitted, in the case of the circular shape, with the following
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Figure 8: Profiles of the sheet deflection along a line of symmetry for (a) circular and (b)

square pockets, as a function of dimensionless pressure PR4/ET 4 and Pa4/ET 4 obtained

analytically using (a) (8) and (b) (12) (dashed line), numerically using a finite element

simulation ranging from PR4/ET 4 = 1.4-580 and Pa4/ET 4 = 8.6-138 (solid line) and

experimentally (see Table 1). The experimental results are plotted for the bending regime

at PR4/ET 4 = 1.4 (a) and Pa4/ET 4 = 8.6 (b) with the corresponding analytical and

numerical results shown with the same colours. The experimental results are also plotted

for the stretching regime at PR4/ET 4 =580 (a) and Pa4/ET 4 =138 (b) with the numerical

lines using identical colours.
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equation:
H

T
≈ γ

(
PR4

ET 4

) 1
3

, (18)

R is replaced by a in the case of a square shape. In the case of a circle, γ is

equal to 0.60. The coefficient γ obtained with the current approach can be

compared with previous findings. Gent and Lewandowski (1987) obtained a

value of 0.595 using Hencky (1915) series expansion technique. Chien (1948);

Dickey (1967); Kao and Perrone (1971) and Kelkar et al. (1985) found out the

same value of 0.595 with different computing techniques while Christensen

and Feng (1986) obtained 0.572. Our current value of 0.60 is within 1% of the

value obtained by Hencky (1915). In the case of the square shape, γ is equal

to 0.70. In the literature, Jones (1974) found numerically a value of 0.71

which is within 1.5% of our current values. The dimensionless maximum

deflection, H/T , measured optically is also plotted. The discrepancies in

greyscale on each measurement are reported with errorbars that are smaller

than the symbol used to represent the averaged maximum deflections, H/T .

Each case was repeated two times. It can be noticed that the data obtained

from the optical method follows (9) for the circle and (14) for the square,

validating the experimental method. The numerical results have been ob-

tained from a serie of twelve simulations (six for the circle and six for the

square) with C1 = 160 kPa and C2 = 47 kPa; the thickness of the pocket, T ,

was fixed to 0.1 mm, the length, R or a, to 10 mm and the pressure, P , was

increased up to 1000 Pa by step ranging between 0.0001 and 10 Pa. The ex-

perimental, analytical and computational results agree quite well especially

in the stretching regime except in the case of the sheet 2 for a circle radius of

10 mm with a maximum error of 40% on the height. It can be noticed that
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the experimental data do not exactly match, as well, the analytical results

plotted with a red line in the bending regime; this may be due to the com-

pression of the sheets by the acrylic plates when tightened to create a seal.

The clamping can cause the sheet to be raised, which would more greatly

affects the dynamics of pursing for smaller deflections in the bending regime

compared to larger deflections in the stretching regime.

23



10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

H
/
T

P R4/ET 4

Bending

Stretching

H
T = 3(1−σ

2)
16

PR4

ET 4

H
T = 0.60( PR4

ET 4)
1
3

(a)

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

Bending

Stretching

H
/
T

P a4/ET 4

H
T = 0.70( Pa4

ET 4)
1
3

H
T = 0.245(1 − σ

2) Pa4

ET 4

(b)

Figure 9: Variation of the dimensionless maximum deflection (H/T ) with the dimension-

less pressure (PR4/ET 4 or Pa4/ET 4) for two different simply-connected shapes obtained

numerically using finite element (�) and experimentally for a range of silicone samples (see

Table 1). The red curve is the analytical result for the bending regime and the magenta

curve is obtained numerically for the stretching regime: (a): circles; (b) squares. It is

worth nothing that each experimental data point is reported with errorbars.
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4.3. Doubly-connected pockets

4.3.1. Field deformation

Doubly-connected pockets are characterised by the ratio of clamped area

over total pocket area (both areas having similar shapes) or α = R1/R in

the case of a doubly-connected circle and α = a1/a in the case of a doubly-

connected square with R1 and 2a1 being the clamped radius and clamped

side, respectively.

Numerical elevated and plan-views of doubly-connected circular and square

pockets with a circular and square central clamped regions are obtained at

similar dimensionless pressure PR4/ET 4 = 580 and Pa4/ET 4 = 138 to fig-

ures 6 and 7 and shown in figure 10 (a-d). It can be seen that in figure

6 the maximum height H goes from 5.2 T for a simply-connected circular

shape to slightly below 2 T for a doubly-connected circular shape in figure 10

(a-b) with α = 0.2 and PR4/ET 4 = 580, hence a reduction of around 60%.

Similarly, at Pa4/ET 4 = 138, the maximum deflection goes from 3.2 T for a

simply-connected square as shown in figure 7 to 1.3 T for a doubly-connected

square with α = 0.2 in figure 10 (c-d), hence a reduction of around 60 %.

While the simply-connected shapes were clearly in the stretching regime, the

presence of a clamped central region or hole results in the equivalent doubly-

connected shapes to be closer to the bending regime, yet still in the stretching

regime. This will be discussed in more detail in figures 12 and 13.
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Figure 10: Elevated and plan-view contour plots of the deformation of a doubly-connected

circular silicone pocket of radius R = 10 mm and α = 0.2 for sheet sample 2 at a dimension-

less pressure PR4/ET 4 = 580 (a-b) and a doubly-connected square silicone pocket with

a = 20 mm and α = 0.2 for sheet sample 3 at a dimensionless pressure Pa4/ET 4 = 138

(c-d), both obtained numerically using a finite element simulation.
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4.3.2. Profiles

The profiles of analytical and numerical normalised deflection for doubly-

connected circular and square shapes for α = 0.2 are shown for PR4/ET 4

and Pa4/ET 4 ranging from 0.8 to 8×104 in figure 11. The eight numerical re-

sults (four for the doubly-connected circle and four for the doubly-connected

square) are obtained for a pocket thickness, length, material specific con-

stants and applied pressure range similar to section 4.2.3. In figure 11 (a),

(10) matches perfectly the simulation of a doubly-connected circular shape

for α = 0.2 and PR4/ET 4 = 0.8. As PR4/ET 4 and Pa4/ET 4 increase to

800, 8000 and 80000, it can be seen that the profiles in figure 11 (a) and

(b) are more curved, in a similar fashion to figure 8 denoting the stretching

regime.

4.3.3. Maximum displacements

In figure 12, the dimensionless maximum deflections, H/T , for doubly-connected

circular and square shapes are shown for a range of non-dimensional pressure

PR4/ET 4 and Pa4/ET 4 ranging from 8×10−3 to 6.2 × 104 and α = 0.1,

0.2, 0.4 and 0.8. The forty-eight simulations (twenty-four for the doubly-

connected circle and twenty-four for the doubly-connected square) were achieved

with similar numerical parameters to section 4.3.2. Akin figure 9, H/T ≤ 1

corresponds to the bending regime while H/T > 1 corresponds to the stretch-

ing regime. For the bending regime of a doubly-connected circular shape, the

maximum non-dimensional height, H/T , deducted from the analytical solu-

tion (10) matches the numerical curves for all values of α. It can be calculated

that, for identical values of PR4/ET 4, H/T is reduced by more than a factor
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Figure 11: Profile of the sheet deflection along a line of symmetry for a doubly-connected

(a) circular and (b) square silicone pocket with α = 0.2, as a function of dimensionless

pressure PR4/ET 4 and Pa4/ET 4 ranging from 0.8 to 8 ×104 obtained analytically (−−),

and numerically using a finite element simulation (−).
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9 when considering a doubly-connected circular shape with α = 0.1 versus a

simply-connected circular shape with similar geometric and material param-

eters. This reduction in height for a fixed dimensionless pressure is further

amplified when α increases in both the doubly-connected circle and square

cases. Therefore, the characteristic length R and a can be amended to R(1-

α) for a doubly-connected circle and a(1-α) for a doubly-connected square to

reflect the great dependence on α. The dimensionless maximum deflection

height, H/T , can then be rewritten in the case of a doubly-connected circle

to:

H/T = γb(1− α)4
(
PR4

ET 4

)
, (19)

with R = a for a doubly-connected square. In the case of a ring, when α

tends to 1, Hewitt et al. (2015) obtained an asymptotical approximation of

γb equal to (1− σ2)/32. In the stretching regime, the maximum deflection

reduces as well when the size of the hole (α) increases for both shapes. For

example, a doubly-connected circular disk with α = 0.8 and PR4/ET 4 =

104 bends (H < T ), while for a simply-connected circular disk, it stretches

(H > 10 × T ). This shows the great dependence of H and thus h(r) on

α. Similarly to (19), H/T can also be defined in the stretching regime for a

doubly-connected circle as:

H/T = γs(1− α)4/3
(
PR4

ET 4

)1/3

, (20)

with R = a for a doubly-connected square. In the case of a ring, γs can

be rewritten as approximately (3(1− σ2))1/3
/4 when α tends to 1 (Hewitt

et al., 2015). Details of γs and γb for both doubly-connected shapes are given

in figure 13.
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Figure 12: Variation of the dimensionless maximum deflection (H/T ) with the dimension-

less pressure (PR4/ET 4) and (Pa4/ET 4) for two different doubly-connected shapes in the

case of circles (a) and squares (b) obtained numerically using finite element for α = 0.1

(�), α = 0.2 (�), α = 0.4 (�) and α = 0.8 (�). The red curves are the analytical (a)

and numerical (b) results for the bending regime and the magenta curves are obtained

numerically for the stretching regime. 30



4.4. Comparison between simply and doubly-connected

pockets

A qualitative comparison based on maximum deflection is conducted be-

tween simply and doubly-connected pockets. The plots of the bending co-

efficients γb and stretching coefficients γs in figure 13 are based on thirty-

six simulations (eighteen for the doubly-connected circle and eighteen for

the doubly-connected square) with α ranging from 0.1 to 0.9, and non-

dimensional pressure increasing up to 1.21 × 106 with other numerical pa-

rameters such as pocket thickness, length and material specific constants

similar to section 4.3.2. Asymptotical solutions obtained when α tends to 1

from Hewitt et al. (2015) are reported with a dashed black line for the bend-

ing solution ((1− σ2)/32) and a blue dashed line for the stretching solution

((3(1− σ2))1/3
/4). The analytical constant coefficients for simply-connected

pockets obtained from (9) (3(1− σ2)/16) in the case of a circle and (14)

(0.245(1 − σ2)) in the case of a square are also reported with respectively

red dashed and dotted lines. These coefficients are the equivalents of γb for

simply-connected shapes. Similarly, magenta dashed and dotted lines rep-

resent respectively the stretching constant coefficients for simply-connected

circles and squares obtained in (18). The coefficient γ is the equivalent of γs
for simply-connected shapes and is equal to 0.6 for circle and 0.7 for square.

First, it can be noticed that both values of γb for the doubly-connected

shapes have a variation of a few percents over the range α = 0.1 -0.9, for

example in the case of the circle, γb decreases from 24.09×10−3 at α=0.1

to 23.44×10−3 at α = 0.9 converging towards the asymptotic approxima-

tion when α tends to 1 given by Hewitt et al. (2015) plotted with a black
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dashed line. Similarly, when considering stretching, γs decreases slowly with

a variation of respectively 6 % and 11% for doubly-connected square and

circle over the range α = 0.1-0.9. The asymptotic stretching approximation

reported by Hewitt et al. (2015) for doubly-connected circle are within 1%

of the numerical simulations.

Moreover, γb and γs for both doubly-connected shapes are consistently

lower than their equivalent parts for simply-connected shapes by approxi-

mately on average one order of magnitude for bending and slightly more

than 40 % in the case of stretching.

Finally, similarly to simply-connected shapes, the coefficients γb and γs are

always higher in the case of doubly-connected squares compared to doubly-

connected circles by an average of 50 % in the case of bending and an average

of 20 % in the case of stretching.
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Figure 13: Bending (red) and stretching (magenta) coefficients (γb and γs) obtained from

analytical and numerical analysis in the case of doubly-connected circles (−◦) and squares

(−�) for increasing clamped central circular and square area ratio (α). Asymptotical

bending and stretching solutions for a round annulus from Hewitt et al. (2015) are shown

respectively in dashed black and blue lines. The equivalent bending and stretching coeffi-

cients (γ) for simply-connected circles (dashed lines) and squares (dotted lines) are plotted

respectively with red and magenta colours.

5. Conclusions

Pursing of simply and doubly-connected (square and circle) rubber planar

elastic pockets have been quantified using analytical, numerical and exper-

imental methods. When deflections are smaller than the thickness of the

pocket, the pocket is bent and analytical solutions developed in previous

works were sought (Koialovich, 1902; Boobnoff, 1902; Amon and Widera,

1969; Chandrashekhara, 2001; Meleshko, 1997; Hewitt et al., 2015), while
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when the deformations are greater than the thickness, the pocket is stretched

and numerical solutions were extended using Finite Element Analysis.

The study was conducted to draw differences between pursed regime

(bending and stretching) of different shapes (simply and doubly-connected)

in terms of maximum deflections and profiles of pockets. The transition from

bending to stretching has been studied in great detail. It was shown that

the maximum deflection varies linearly with P in the bending regime but to

the power 1/3 in the stretching regime once the maximum deflection reaches

approximately the thickness of the pocket and continues to increase.

Both analytical and numerical approaches validated the optical methods

to obtain the dimensionless maximum deflection (H/T ) of pursed silicone

pockets for a range of dimensionless pressure PR4

ET 4 from 10−1 to 105. The pro-

file widths of bent pockets compared to stretched pockets were also shown to

be narrower as expected and quantified at different dimensionless pressures.

It is worth nothing that the optical method was applied successfully for the

first time to the pursing of different rubber pockets, if submitted to rela-

tively low deflection. This technique can be applied to any sheet provided

the material is clear.

A novel comparison was conducted between pursing of simply- and doubly-

connected square and circle shapes. It was shown that the maximum deflec-

tion of doubly-connected pockets is greatly reduced compared to simply-

connected shapes with similar outer shapes. This difference was quantified

by calculating and comparing the coefficients γb and γs to their equivalents

for simply-connected shapes. For example, in the bending regime, the maxi-

mum deflection can be reduced by 5 orders of magnitude when the clamped
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central circular area ratio is 90% (α = 0.9) compared to a simply-connected

circular pocket for identical dimensionless pressure PR4

ET 4 . Therefore, a doubly-

connected shape and more generally a multiply-connected shape has a sig-

nificant effect on regime and response.

The authors believe that simply- and multiply-connected pursed elastic

pockets could be used as effective drug reservoirs for continuous delivery.
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