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ABSTRACT  

Photosensitivity is a condition in which lights induce epileptiform activities. This abnormal 

EEG response has been associated with hyperexcitability of the visuo-motor system. In the 

present work, we evaluate if an intrinsic dysfunction of this network is present during brain 

activity at rest, independently of any stimulus and of any EEG paroxysmal activity. To address 

this issue, we investigated the hemodynamic correlates of the spontaneous alpha rhythm, which 

is considered the hallmark of the brain resting state, in photosensitive patients and in people 

without photosensitivity. Secondly, we evaluated the whole-brain functional connectivity of 

the visual thalamic nuclei in the various populations of subjects under investigation.  

Forty-four patients with epilepsy and 16 healthy controls underwent an electroencephalography 

correlated functional magnetic resonance imaging study, during an eyes-closed condition. The 

following patients’ groups were included: (a) Genetic Generalized Epilepsy (GGE) with 

photosensitivity (GGE PS+); 16 subjects (mean age 25±10 years); (b) GGE without 

photosensitivity (GGE PS-), 13 patients (mean age 25±11 years); (c) Focal Epilepsy, 15 

patients (mean age 25±9 years). For each subject, the posterior alpha power variations were 

convolved with the standard hemodynamic response function and used as a regressor in a 

general linear model. Within and between groups second level analyses were performed. 

Whole brain functional connectivity was evaluated for two thalamic regions of interest based 

on the BOLD findings that included the posterior thalamus (pulvinar) and the medio-dorsal 

thalamic nuclei.   

GGE PS+ demonstrated a significant greater mean alpha-power with respect controls and other 

epilepsy groups. In photosensitive epilepsy, alpha-related BOLD signal changes demonstrated 

lower BOLD deactivation relative to all other groups at the occipital, sensory-motor, anterior 

cingulate and supplementary motor cortex. Coherently, the same brain regions demonstrated 

an abnormal connectivity with the visual thalamus only in GGE PS+.    

As predicted, our findings indicate that the cortical-subcortical network generating the alpha 

oscillation at rest is different in people with epilepsy and visual sensitivity. Such difference 

consists of a decreased alpha-related inhibition of the visual cortex and sensory-motor 

networks at rest. These findings represent the substrate of the clinical manifestations (i.e. 

myoclonus) of the photoparoxysmal response. Moreover, our results provide the first evidence 

on the existence of a functional link between the circuits that trigger the visual sensitivity 

phenomenon and the posterior alpha rhythm generation.   
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INTRODUCTION  

Photosensitivity refers to a condition in which epileptiform activity is induced by flickering 

lights, such as flashes on television or produced by video games on computer screens. As an 

EEG trait, it is characterised by the occurrence of a photoparoxysmal response during 



intermittent photic stimulation (Kasteleijn-Nolst Trenitè et al, 2001) and it is reported in about 

10% of patients with epilepsy compared with less than 0.5% in otherwise healthy individuals 

(Gregory et al, 1993). Photosensitivity is the distinctive hallmark of photosensitive occipital 

lobe epilepsy, which is a focal reflex epilepsy syndrome (Guerrini et al, 1995), and Jeavons 

syndrome (Jeavons, 1977), which is characterised by eyelid myoclonia with or without 

impaired consciousness after eye closure. Visual sensitivity is also frequently reported as a 

reflex trait in patients with genetic generalised epilepsies (formerly known as 

idiopathic generalised epilepsies), particularly juvenile myoclonic epilepsy, for which the 

incidence of photosensitivity ranges from 30% (Wolf and Goosses, 1986) to 90% (Appleton et 

al, 2000) of patients. The high heritability of photosensitivity is widely recognised. Recent 

evidence points to CHD2 as a novel gene implicated in photosensitive epilepsy, with patients 

exhibiting a higher prevalence of unique CHD2 variants than a control cohort representative of 

the general population (Galizia et al, 2015).  

Precipitation of seizures in photosensitive patients inevitably depends on the activation of a 

critical neuronal population in the occipital cortex (Wilkins et al, 2004). The distinguishing 

feature of photosensitive individuals seems to lie in intrinsic hyperexcitability of the visual 

cortex, which can predispose to large-scale neuronal synchronization. Studies of visual evoked 

potentials and transcranial magnetic stimulation in patients with photosensitive 

genetic generalised epilepsy (Strigaro et al, 2012, 2015; Brigo et al, 2013) identified an 

abnormal excitability profile of the visual cortex, which coexisted with defective contrast gain 

control mechanisms (Porciatti et al, 2000). However, although hyperexcitability of the visual 

cortex explains some ictal and EEG findings, it does not entirely elucidate the range of 

photosensitivity-associated EEG and clinical correlates. Indeed, photoparoxysmal responses 

are often generalised, and photic stimulation ultimately can elicit seizures with motor 

components, which are a particularly frequent reflex trait in patients with 

genetic generalised epilepsies.   

Previous EEG-correlated functional MRI (EEG-fMRI) studies have 

detected photoparoxysmal-related activations in parietal and premotor cortices (Moeller et al., 

2009; Bertolini et al., 2014). We recently elucidated the BOLD (blood oxygen level dependent) 

response to eye-closure in patients with Jeavons Syndrome, discovering the involvement of 

substantially the same brain circuits (Vaudano et al, 2014). Interestingly, both the study 

of Vaudano et al, (2014) and the study of Moeller et al, (2009) reveals the presence of an 

abnormal increase of BOLD signal before the appearance of spikes and waves discharges, thus 

underscoring that signal changes might be linked to an intrinsic dysfunction of this network.  

Taken together, current data indicate that photosensitivity is the expression of a visual system 

alteration, not only limited to the occipital cortex, but expressed as an extended and functional 

system. For this reason, we believe that a fundamental question, still substantially not 

investigated, concerns the neural correlates of the alpha rhythm in photosensitive patients. The 

alpha rhythm, first described by Berger in the 1929 (Berger, 1929), represents the posterior 

rhythm of the brain. Historically, alpha oscillations have been thought as an idling rhythm, 

indicating inactivity of brain regions (Pfurtscheller et al, 1996). More recently, the view has 

changed toward a functional role of alpha oscillation in inhibiting neural regions not relevant 

in the task-related contest (Klimesch et al, 2007; Mazaheri and Jensen, 2010). Therefore, alpha 

oscillations in the primary visual areas may represent a mechanism to modulate incoming 

information. The ‘gating function’ theory, along with the classical alpha desynchronization, 

predicts greater alpha activity (i.e. greater alpha power) in inhibited cortical areas and lower 

alpha activity (i.e. lower alpha power) in areas engaged in information processing (Volkmann, 

1986; Toscani et al, 2010).  

Recently, concurrently recorded EEG-fMRI has been used to search the entire brain for 

metabolic and/or hemodynamic correlates of the posterior alpha rhythm (Goldman et al, 2002; 



Laufs et al, 2003, 2006; Moosmann et al, 2003; Feige et al, 2005; de Munck et al, 

2007; Tyvaert et al, 2008; Sadaghiani et al, 2010). The cortical correlation between the 

posterior alpha modulation and the BOLD signal was negative in every study. This means that 

the higher the power of the alpha rhythm, the lower was the BOLD signal. The negative alpha-

related BOLD signal is evident and maximal over the posterior visual areas, but extends to 

parietal and prefrontal cortical regions in the majority of studies.   

On the basis of this knowledge, we tested the hypothesis that the hemodynamic correlates of 

the alpha rhythm in photosensitive patients are different with respect to normal subjects and 

people with epilepsy without photosensitivity. We used EEG-fMRI to find out if the 

fluctuations in the alpha rhythm correlate with changes in the BOLD signal in cortical and 

subcortical regions. Specifically, we predicted that alpha-related BOLD signal decreases in the 

visual system (and beyond, as demonstrated in previous studies) are reduced in photosensitive 

patients. Then, we evaluated the whole-brain functional connectivity of the visual thalamus 

(pulvinar), a region implicated in the genesis of the alpha rhythm in animals and humans 

(Moruzzi and Magoun 1949; Lopez da Silva et al, 1973, 1980; Chatila et al, 1993; Hughes 

and Crunelli 2005; Liu et al, 2012) in the various sub-populations under investigation.  

METHODS  

STUDY POPULATIONS AND SETTING  

We retrospectively reviewed the entire cohort of patients with epilepsy who underwent an 

EEG-fMRI study for different purposes, between September 2008 and September 2015 at our 

Department (total of 260 patients). For the purpose of this study, only patients who had a good 

quality 10 minutes resting-state fMRI recording with eyes-closed and that fulfilled the 

following inclusion criteria were considered:  (a) older than 16 years of age; (b) normal 

structural brain MRI on conventional diagnostic protocol at 3 Tesla; (c) absence of sleep EEG 

figures and absence of interictal events during scanning, or with fewer than 2 spikes/min. 

Patients with epileptic encephalopathies were further excluded from this study.   

We therefore focused on a pool of 44 patients affected by the following epileptic syndromes 

(according to the definitions of the Commission on Classification and Terminology of the 

International League Against Epilepsy, Berg et al, 2010):   

(a) Genetic Generalized Epilepsies with photosensitivity (GGE PS+).  This group of 

patients consisted of 16 subjects (mean age 25 ± 10 years), 11 female and 5 males. For all these 

patients a 32-channel EEG recording was available within the three months before the fMRI 

study with an intermittent photic stimulation (IPS) protocol according to international 

guidelines (Kasteleijn-Nolst Trenite et al, 1999). Photosensitivity was diagnosed if subjects 

had a photoparoxysmal response (PPR) to IPS (Kasteleijn-Nolst Trenité et al., 2001). In all 

patients, PPR consisted of generalized spike and wave discharges (type III and IV PPR) (Waltz 

et al, 1992).   

Patients were classified as affected by Juvenile Myoclonic Epilepsy (JME) or Jeavons 

Syndrome (Eyelid Myoclonia with Absences, EMA)(Jeavons, 1977). The specific inclusion 

criteria for diagnosis of EMA, beyond the presence of photosensitivity, were the 

followings (Appleton et al, 1993; Giannakodimos and Panayiotopoulus 1996; Striano et al., 

2002): (i) age of onset between 2 and 14 years; (ii) eyelid myoclonus with or without 

absences; (iii) related generalized paroxysmal activity; (iv) eye-closure-induced seizures, EEG 

paroxysms or both (within 0.5-4 seconds after eye-closure). At the time of the study, self-

induction was not reported by any patients. All patients had a photoparoxysmal response with 

eyelid flickering.  

(b) Genetic Generalized Epilepsies without photosensitivity (GGE PS-). This group of 

patients consisted of 13 subjects (mean age 25 ± 11 years), 9 female and 4 males. Patients were 

classified as affected Juvenile Absence Epilepsy (JAE) or GGE with tonic-clonic seizures 

only.  



(c) Focal non-lesional epilepsy group (FE). This group of patients consisted of 15 subjects 

(mean age 25 ± 9 years), 10 female and 5 males. As inclusion criteria, these patients were 

affected by cryptogenic focal epilepsy (normal structural MRI). All had clear focal interictal 

discharges and seizures with or without consciousness impairment.   

None of the patients belonging either to GGE PS- and FE groups ever showed PPR to IPS or 

abnormal sensitivity to the closure of eyes in previous EEG recordings.  

Table 1 reports the demographic and electroclinical variables of the three epilepsy groups. Per 

protocol, all patients were administered a general intelligence evaluation within 1 to 6 months 

prior to fMRI recordings  [Wechsler Adult Intelligence Scale – Fourth Edition (WAIS-IV)]. 

Full-scale intelligence quotient (IQ) was within the normal range in all recruited subjects.   

(d) Controls (CRT). Sixteen healthy volunteers (10 female and 6 male subjects, mean age 25 

± 5 years) with no history of neurologic or psychiatric disorders participated in the study.   

The four study groups had the same age and gender distribution. Neither patients nor controls 

had been taking neuroactive drugs (alcohol and caffeine included) for 72 h prior to the study, 

except for the patients’ antiepileptic treatment. As far as valproic acid (VPA) treatment, a drug 

that in previous studies has been demonstrated to lower brain rhythms power (Larsson et al., 

2005, 2012; Clemens et al., 2007), it was assumed orally by nine out of 16 GGE-PS+ patients, 

by eight out of 13 GGE-PS- patients and by 4 out of 15 focal epilepsy patients. The mean VPA 

dose in each group was 750   ± 200 mg/day (GGE-PS+), 800 ± 300 mg/day (GGE-PS-), and 

800 ± 200 mg/day (FE), resulting in no significant difference (one-way ANOVA, p > 0.1).  

Subjects’ neurologic, and ophthalmologic examinations were normal. All subjects were right-

handed based on the Edinburgh Handedness Inventory.  

The human ethics committee of the University of Modena and Reggio Emilia approved this 

study. Written informed consent was obtained from all the 60 subjects, and by their parents if 

underage.   

  

EEG RECORDINGS  

Scalp EEG was recorded by means of a 32-channel MRI-compatible EEG recording system 

(Micromed, Mogliano Veneto, Italy). Electrodes were placed according to conventional 10–20 

locations. FCz was the reference. ECG was recorded from 2 chest electrodes. Electrode 

impedance was kept below 10 kOhms. Prior to in-magnet EEG recording, 10 min of out-

of magnet EEG data were collected in a room adjacent to the scanner. Foam pads were used to 

help secure the EEG leads, minimize motion, and improve patient comfort. Data were 

transmitted via an optic fiber cable from the high-input impedance amplifier (5 kHz sampling 

rate) to a computer located outside the scanner room. To avoid saturation, the EEG amplifier 

had a resolution of 22 bits with a range of ±25.6 mV. An anti-aliasing hardware band-pass filter 

was applied with a bandwidth between 0.15–269.5 Hz.  

Subjects’ behavior was constantly observed and recorded by means of a small camcorder 

positioned on the head coil inside the scanner pointing to the patient’s face to obtain split-screen 

video-EEG documentation during the fMRI recording (Ruggieri et al, 2015).    

The subjects were asked to rest with eyes closed, to not sleep, and to keep still during fMRI 

acquisitions. All recordings were performer in the early afternoon in a dimly-illuminated room 

with a constant luminance (=ca 25 Lux). Sedation was never used.   

  

FMRI DATA ACQUISITION  

Functional data were acquired using a Philips Intera system at 3T and a gradient-echo echo-

planar sequence from 30 axial contiguous slices (TR=3000 ms; in-plane matrix= 64x64; voxel 

size: 4x4x4 mm) over one 10-min session per patient (200 images). A high-resolution T1-

weighted anatomical image was acquired for each patient to allow anatomical localization. The 



volume consisted of 170 sagittal slices (TR= 9.9 ms; TE= 4.6 ms; in plane matrix= 256x256; 

voxel size=1x1x1 mm).  

  

EEG ARTIFACTS CORRECTION AND PROCESSING  

The correction of the gradient artifact was performed offline by means of the Brain Quick 

System Plus software (Micromed, Mogliano Veneto, Italy) (Allen et al, 2000). The EEG data 

were then exported in the .edf format and reviewed and analyzed by means of 

the BrainVision Analyzer 2.0 software (Brain Products, Munich, Germany). After down-

sampling to 250 Hz, a band-pass filter between 1 and 70 Hz was applied to the continuous 

recording and channels showing high impedance or electrode displacement artifacts were 

interpolated through a cubic spline. Pulse related artifacts were removed offline from the EEG 

trace recorded during scanning using the EEG processing package of Brain Analyzer (Brain 

Products, Munich, Germany) (Allen et al, 1998).   

The pre-processed EEG data were then submitted to an Independent Component Analysis 

(ICA) as previously described (Ruggieri et al, 2015; Avanzini et al, 2014).  

For each participant, the 30 EEG channels signal was decomposed into 30 components 

(between F0 to F29). Each component resulting from ICA separation is characterized by a time 

course, describing the morphology of the component over time, and by a specific topography 

(i.e. an array containing the weights the specific component has on each channel). In patient 

populations, two expert epileptologists (A.E.V., A.R.) reviewed both the standard EEG 

recordings and the relative individual components of the ICA-processed recordings to 

detect interictal epileptic discharges (IED). The independent components that on visual 

inspection showed IEDs were marked as epi-IC and discarded from subsequent alpha 

frequency and power estimations.  Moreover, to avoid interaction of interictal events or 

remaining small motion artifacts with the alpha power variation analysis, we replaced the EEG 

during these events with a signal obtained by interpolating the EEG before and after the event, 

as previously applied (Tyvaert et al, 2008). For each subject no more than 5% of the EEG was 

subjected to interpolation.     

  

ESTIMATION OF THE ALPHA POWER AND VALIDATION  

The Supplementary Figure 1 illustrates the main steps of individual alpha band calculation. 

The independent components that on visual inspection showed rhythmic activity in the 8 – 12 

Hz band were marked as alpha-related IC (αIC). For all αIC in each subject, artifact-free time 

course was divided into 3s epochs (= to repetition time) using a Hanning time window (epochs 

were overlapped by 50%) and submitted to Fast Fourier Transform (FFT). The relative power 

was computed between 7.5 and 12.5 Hz with a frequency resolution equal to 0.1 Hz. The FFT 

revealed a number of αIC ranging from a minimum of 2 to a maximum of 20 components for 

each subject. Then, one posterior alpha component originating from the early visual cortex was 

selected based on the following criteria: (1) a peak in the alpha range as revealed by FFT and 

(2) a medial-posterior topography of the mixing weights, which expresses the relative strength 

at which each component time course is expressed at each electrode. This component is reliably 

observed when ICA is applied to EEG data (Makeig et al, 2004a, 2004b). As a next step, for 

each subject the mean individual alpha frequency (Hz) and its respective power (uV2/Hz) were 

calculated for the selected component. We followed this ICA procedure, as in previous EEG-

fMRI studies (Feige et al., 2005; Sheeringa et al., 2010, 2012) to ensure that the EEG-based 

regressors described an EEG activity as much as possible related to the occipital generators of 

the alpha rhythm, making them free from volume-conduction and without a-priori choices that 

could have weakened/blurred their time course.   

Finally, after the ICA component selections, the spectral power of the alpha component of the 

given subject was integrated across each epoch and used as “alpha” regressor for the same 



subject’s fMRI time series. The regressor therefore quantifies the alpha-band power of the 

medial-posterior alpha component within each scan interval.   

To ensure the validity of the EEG data and analysis obtained during the functional 

image acquisition, the same EEG pre-processing and analysis was performed for the 10 

minutes of resting-state acquired prior to the fMRI protocol in each subject. As a next step, we 

compared the mean alpha frequency and the mean alpha power of the EEG outside the scanner 

with those obtained during the scan time.  

  

FMRI ANALYSIS: ALPHA-BOLD CORRELATION  

Matlab 7.1 and SPM8 (Welcome Department of Imaging Neuroscience, London, United 

Kingdom) software were used for fMRI data analysis. All functional volumes were slice-time 

corrected, realigned to the first volume acquired, spatially normalized into standard space and 

smoothed with 8 X 8 X 8 mm full-width half maximum (FWHM) Gaussian Kernel.   

First-level analysis: The alpha power variations were convolved with the standard 

hemodynamic response function (HRF), down-sampled to the MRI frequency and used as a 

regressor in a single general linear model (GLM). Movement artifacts identified by analysis of 

Video-EEG recordings (blinking, lip smacking, swallowing, head movements) were 

considered as confounds in the model (Ruggieri et al, 2015). In addition, 24 realignment 

parameters [six scan realignments parameters from image pre-processing and a Volterra 

expansion of these (Friston, et al, 1996)] were included in the model as confounds. A t-contrast 

was specified, testing for the column “alpha regressor”.   

Second-level group analysis: the statistical images resulting from single-subject contrasts 

were submitted to a second level (group) random-effect analysis to look for effect on the BOLD 

signal at the population level.  A full factorial design, as implemented in SPM8, was used to 

test for between groups’ effects (one-way ANOVA; four groups): GGE PS+; GGE PS-; FE and 

healthy controls. Subjects’ age and sex were included in the model as covariates.  

The statistical inferences for first- and second-level analyses were set to the threshold of 

p<0.05, corrected for family wise errors (FWE) in order to show significant BOLD changes at 

whole-brain. If there were no cluster surviving at this level, the threshold was changed to 

p<0.05 corrected for False Discovery Rate (FDR). Controlling the FDR with the criterion 

FDR=0.05 increases the number of false positives relative to FWE rates techniques, but also 

increases the ability to detect meaningful signal (Bennett et al., 2009; Genovese et al., 2002; 

Nichols and Hayasaka, 2003).  

The resulting statistical maps have been warped to the PALS-B12 atlas in Caret for 

visualization purposes (Caret, http://brainvis.wustl.edu/wiki/index.php/Caret:About) (van 

Essen, 2005).  

  

FMRI ANALYSIS: RESTING-STATE FUNCTIONAL CONNECTIVITY  

Considering previous studies (Liu et al, 2012) and the group-level results of the current study 

(see below), two thalamic regions-of-interest (ROIs) were defined for further functional 

connectivity analysis. The BOLD signal time course was extracted from each ROI (5 mm-

sphere) for each subject by means of marsbar software (http://marsbar.sourceforge.net/). The 

first ROI consisted of the bilateral posterior clusters showing negative correlation with the 

posterior alpha (i.e. the pulvinar, PUL); the second ROI was the bilateral medial dorsal region 

showing significantly positive correlation with the posterior alpha modulation (i.e. medial 

dorsal nuclei, MDN). Both ROIs served separately as the seed from which the functional 

connectivity to the rest of the brain was evaluated for all the subjects considered together and 

for each group independently. The nuisance variables consisting of 24 realignment parameters 

and three compartment signals (modeling the average signal in the grey matter, white matter, 

http://brainvis.wustl.edu/wiki/index.php/Caret:About
http://marsbar.sourceforge.net/


cerebrospinal fluid) were included in the model.  Then, functional connectivity maps of 

controls and epilepsy subpopulations were evaluated and compared.   

  

RESULTS   

ESTIMATION OF THE ALPHA POWER   

All the subjects demonstrated a component with a medial posterior topography and a single 

peak in the alpha frequency range, each within 8-12 Hz, the typical limit for this age group as 

reported in the literature (Nunez et al, 2001) (Fig. 1, Panel A). The individual alpha frequency 

and its respective power were averaged across each sub-population and compared (ANOVA). 

Across all the investigated subjects, the individual peak alpha frequency showed a normal 

distribution within the alpha band, both outside and inside the scanner (Fig. 1, Panel B). No 

group differences were evident when comparing the mean alpha frequency between the 

different populations (Fig.1, Panel C). On the contrary, the mean alpha power was higher in 

the GGE PS+ population compared to controls and other epilepsies (p<0.01 for all 

comparison) (Fig. 1, Panel D). The EEG inside and outside the scanner appeared similar on 

visual inspection in all the subjects. Nevertheless, the alpha power recorded during fMRI was 

reduced in all the investigated populations with an average power reduction of 30%. The mean 

power reduction was slightly different across the four investigated cohorts, but there was no 

effect of group on power reduction. This finding is consistent with previous published data 

(Laufs et al, 2003) and is probably linked to the EEG preprocessing, especially the gradient 

artifact suppression algorithm. No difference for the mean alpha frequency peak was observed 

comparing the EEG inside versus outside the scanner.  

    

ALPHA-BOLD CORRELATION: WHOLE POPULATION RESULTS  

When considering all the subjects as a unique population (N=60), the alpha power time series 

correlated positively with brain activity in the bilateral dorsal cingulate cortex and medial 

thalamic nuclei and negatively with activity in broad areas of cerebral cortex including the 

superior and inferior parietal lobule, the occipital cortex (middle occipital gyrus and lingual 

gyrus), the precuneus, the premotor and motor regions (supplementary motor area, frontal 

operculum, precentral cortex), the middle and superior temporal gyrus. At subcortical level, 

the bilateral posterior thalamus, the basal ganglia and brainstem were negatively correlated 

with the posterior alpha power (Fig. 2, Panel A). These findings are concordant with those of 

previous reports (Goldman et al, 2002; Moosman et al, 2003; Goncalves et al, 

2006; DiFrancesco et al, 2008; Tyvaert et al, 2008; Liu et al, 2012; Omata et al, 

2013).  The Supplementary Table 1 shows the details of the positively and negatively 

correlated areas.   

In addition, we used the digital version of the Morel Atlas of human thalamus (Morel et al, 

1997) based on the MNI template (Krauth et al, 2010) to further relate EEG-fMRI findings to 

specific thalamic nuclei (Fig. 2, Panel B). The subcortical thalamic negative correlate of the 

alpha rhythm was clearly localized at the pulvinar level without involving the lateral geniculate 

nucleus.   

  

ALPHA-BOLD CORRELATION: SUBPOPULATION FINDINGS AND COMPARISONS  

The brain regions that correlated with alpha power in each single sub-population are illustrated 

in the Fig. 3 and summarized in the Supplementary Table 2.  

GGE PS+ group shown positive BOLD correlation at the bilateral dorsal cingulate cortex and 

caudate nucleus. A negative correlation between alpha predictor and BOLD signal was found 

predominantly in the parietal and frontal (motor-premotor) cortical areas. Conversely, the 

posterior occipital regions [Brodmann Area (BA) 18-19] demonstrated a decrease alpha power-

related BOLD signal in all the other epileptic populations (GGE PS- and FE) as well as in the 



healthy controls.  Parietal, temporal and frontal (motor-premotor) cortical areas were 

negatively correlated to the alpha in all these three subgroups with substantial uniformity 

between them.   

The comparisons of alpha-power BOLD maps between the patients’ groups and between 

patients and controls revealed significant differences only in the GGE PS+ population. 

Specifically, with respect to all other comparisons, GGE PS+ showed a relative increased 

BOLD signal in a broad and symmetrical network that includes the pre-post central gyrus, the 

supplementary motor area, the insula, the precuneus and the temporal (BA 20-22) and occipital 

cortex (BA 18-19) (Fig. 4). This result is the consequence of a decreased anti-correlation 

between BOLD signal and the alpha power in patients with photosensitivity. No other 

differences were observed at the considered statistical threshold either in terms of increased or 

reduced BOLD correlation to the alpha power. Table 2 illustrates in details the results of the 

between-groups comparisons.    

  

FUNCTIONAL CONNECTIVITY MAPS  

At the population level (N=60) the maps for the functional connectivity with the seeds in 

the MDN and PUL are depicted in the Supplementary Figure 2.   

Statistical comparison of the MDN-related functional connectivity maps between controls and 

epilepsy sub-populations revealed an increased correlation between resting state BOLD 

activity in the MDN and bilateral orbitofrontal cortex (OFC) in GGE PS+ compared to both 

healthy controls and focal epilepsy patients (Fig. 5). No further differences in functional 

connectivity maps were detected.    

The formal comparison of the PUL-related functional connectivity maps between the epilepsy 

populations and between patients and controls, revealed again significant differences only for 

the GGE PS+ subgroup. GGE PS+ demonstrated consistent increased correlation from 

the PUL to the basal ganglia (putamen and caudate), the anterior cingulate cortex, the 

dorsolateral prefrontal and the parietal cortex with respect to all the other subgroups (GGE PS-

, FE and CRT). A significant decreased connectivity between the PUL and 

the somatosensory and visual cortex was observed in the GGE PS+ versus healthy subjects at 

the considered threshold (Fig. 6).   

DISCUSSION  

This is the first EEG-fMRI investigation of the resting-state alpha rhythm in patients with non-

lesional focal and genetic generalized epilepsy, with and without photosensitivity. As 

predicted, our findings indicate that the cortical-subcortical network generating the alpha 

oscillation at rest is different in people with epilepsy and visual sensitivity. Such difference is 

independent from the occurrence of overt epileptic activity on scalp EEG and is characterized 

by: (1) an abnormal hemodynamic coupling between the EEG alpha power fluctuation and the 

BOLD signal; and (2) an altered functional connectivity between the pulvinar, which is highly 

implicated in the alpha rhythm generation, and the rest of the brain. The main finding of the 

study indicates a reduced alpha-related inhibition in photosensitive epilepsy (i.e. lower BOLD 

deactivation when alpha power increases) that involves not only the occipital cortex but rather 

extending also to the supplementary motor area, the 

sensorimotor and the premotor cortex.  Coherently, the same brain regions demonstrated an 

abnormal connectivity with the visual thalamus only in GGE PS+.   

  

 THE ALPHA RHYTHM IN PHOTOSENSITIVE EPILEPSY  

The EEG analysis of the alpha rhythm features showed a significant higher alpha power 

in GGE PS+ versus other epilepsy groups and controls, hence confirming a peculiar “alpha 

phenotype” of this epileptic trait, at least for the investigated group of photosensitive patients.  



Changes of the alpha rhythm features have been associated with epilepsy in several 

neurophysiological studies (Stoller 1949; Larsson et al., 2005, 2012; Clemens et al., 2007, 

2008; Pyrzowski et al., 2015). The majority of the studies reported a peak alpha frequency 

reduction in a heterogeneous population of mixed epilepsy phenotypes, rather than changes in 

alpha power (Miyauchi et al., 1991; Larsson et al., 2005; Clemens et al., 2007; Visani et al., 

2010). However, very few studies investigated the alpha rhythm features in selected patients 

with photosensitive epilepsy and compared it with other epilepsy syndromes without 

photosensitivity (Visani et al., 2010). It should also be underscored that our EEG analysis is 

based on an Independent Component Analysis of the EEG signal and that the ‘alpha regressor’ 

and all alpha calculations were based on the selection of the  ‘posterior alpha component’ on 

ICA EEG decomposition. This means that the reported alpha features index the oscillatory 

activity of EEG signal generated from the posterior occipital (calcarine/pericalcarine) cortex. 

To our knowledge no other study has used this approach to investigate alpha rhythm fluctuation 

in epilepsy. Considering that this methodology is quite simple and reproducible, and that it 

could be applied also to routine EEG recordings, it should be relatively straightforward for 

future studies to test our findings on a larger cohort of photosensitive patients. This also implies 

that at present it is difficult to directly compare our results with previous studies.   

Remarkably, the majority of the investigated patients were under antiepileptic drug (AED) 

treatment at the time of the study. In previous studies, changes in the intrinsic brain rhythms 

power have been attributed to AED, especially to valproate (Larsson et al., 2005, 2012; 

Clemens et al., 2007). However, in the current research, an AED effect on alpha power 

estimation appears unlikely, as valproate and levetiracetam, the most common drugs used in 

our patients with genetic generalized epilepsy, were homogenously distributed 

across PS+ and PS- patients. In particular, the average oral dose of valproic acid across the 

different patients’ groups was similar.   

  

REDUCED INHIBITION IN THE SENSORY-MOTOR SYSTEM IN PHOTOSENSITIVITY     

BOLD correlates of the posterior alpha activity under rest indicated a reduced anti-correlation 

between the sensory-motor system and the alpha power in patients with photosensitivity (Fig. 

4). Classically, BOLD-fMRI studies reported predominantly negative hemodynamic responses 

to the alpha oscillations in the occipital lobe (primary and secondary visual cortex) and fronto-

parietal cortex (Laufs et al., 2003; Goncalves et al., 2006; DiFrancesco et al., 2008). Overall, 

negative correlation between the alpha power and the BOLD signal coincides with a decrease 

of cortical neuronal activity, i.e. a state of inhibition. Indeed, during large-scale synchrony as 

in alpha rhythm, activity in just a small fraction of neurons within a cortical column may be 

sufficient to give rise to a strong EEG signal, while the inactive majority maintains overall 

metabolism low and thus the BOLD effect small (Laufs et al., 2003). In this light, the higher 

hemodynamic signal in the sensory-motor system in GGE PS+ during spontaneous alpha, 

reflects an increased neuronal activity and consequently, we suggest, a lack of inhibition of 

these regions. This view support previous observations in photosensitivity by means of 

neurophysiological and neuroimaging studies, as well as the clinical correlates of PPR that 

often consist of motor phenomena (i.e. myoclonus). Studies using transcranial magnetic 

stimulation documented increased visuo-motor hyperexcitability during photic stimulation in 

GGE patients (Strigaro et al, 2015, 2013; Groppa et al, 2008) and even in healthy individuals 

with PPR (Siniatchkin et al, 2007). Advanced EEG connectivity analyses show an abnormal 

pattern, with increased coupling between posterior and anterior frontal areas both at rest and 

during PPR in patients with GGE PS+ (Varotto et al, 2012; Moeller et al, 2013).   Finally, 

functional EEG-fMRI studies have detected increased neuronal activity of parietal and 

premotor cortices during paroxysmal activity evoked by visual stimuli (Moeller et al, 2009; 

Bartolini et al, 2014).    



The brain nodes that demonstrated abnormal behaviour in GGE PS+ under spontaneous alpha 

oscillations included, beyond the sensory-motor cortex in strictu sensu, the premotor regions 

(supplementary motor area, middle and inferior frontal gyrus) and also non-motor areas in the 

temporal, parietal and occipital lobes. Notably, the same premotor areas were involved in the 

abnormal response to eye-closure in patients with EMA (Vaudano et al, 2014), even in the 

absence of paroxysmal activity on EEG.   Overall, our findings confirm and complete the 

hypothesis of an intrinsic “visuo-motor hyperexcitability” in GGE PS+. The fact that this up-

regulation is present under resting (unstimulated) conditions and even during the alpha rhythm, 

which is considered a hallmark of the brain resting state (Goncalves et al, 2006), indicates 

probably a genetic predisposition to generate synchronous paroxysmal activity.  

  

THALAMIC CONTRIBUTION TO ALPHA RHYTHM GENERATION   

The correlation between the posterior alpha modulation and the BOLD signal in the thalamus 

has been reported to be positive (de Munk et al., 2007; Fiege et al., 2005; Goldman et al., 2002; 

Moosmann et al., 2003; Goncalves et al., 2006; Omata et al., 2013), negative (Lindgren et al., 

1999; Moosmann et al., 2003), or even near zero (Laufs et al., 2003). Recently, Liu and 

colleagues (2012) described both positive and negative correlations between the thalamic 

nuclei and spontaneous modulation of posterior alpha. Our study is the first that replicates and 

thus confirms that different thalamic nuclei have a different behaviour during alpha rhythm 

fluctuations. In particular, the negative correlation covers the posterior visual thalamus while 

positive hemodynamic changes were constrained to the medial dorsal nuclei of the 

thalamus.  The exact contribution of thalamic activity to the cortical oscillations that determine 

the EEG alpha rhythm is still under investigation. A plausible scheme includes a complex 

interplay between the primary visual cortex and the visual part (pulvinar and lateral geniculate 

nucleus, LGN) and reticular nuclei of the thalamus (Lopes da Silva et al., 1973, 1980; 

Fuentealba and Steriande 2005; Lorincz et al., 2009). Within the posterior thalamic nuclei, the 

pulvinar, rather than lateral geniculate nucleus, is more likely associated with the spontaneous 

modulation of posterior alpha rhythm. Animals showing alpha equivalent activity, such as dogs 

and cats, all have a pulvinar in their visual system, whereas the pulvinar does not seems to exist 

in brains, such as those of rodents, whose visual system also shows little alpha activity (Highes 

and Crunelli, 2005; Pessoa and Adolph, 2010). In addition the extensive connections of the 

pulvinar with the entire cortex (see supplementary Figure 2, and Kaas and Lyon, 2007), make 

this thalamic nucleus well suitable to behave as the subcortical control hub for the widespread 

cortical alpha activity.  Consistently, we also found the involvement of the posterior thalamus 

with preference for the pulvinar over the lateral geniculate nucleus. Furthermore, the cortical 

regions that were functionally connected to the seed in the pulvinar largely coincided with the 

cortical regions that were negatively correlated with the posterior alpha rhythm (Figure 2). As 

far as the medial dorsal nuclei, the increased neuronal activity during increased alpha power 

probably is not directly linked to alpha waves generation, but rather reflects activity related to 

the arousal level, which is indirectly linked to cortical alpha rhythm fluctuations (Liu et al., 

2012; Omata et al., 2013).  Indeed, these thalamic nuclei are considered to be part of the 

ascending reticular activating system, and in particular its dorsal pathways (Moruzzi and 

Magoun, 1949; Brown et al, 2012).   

  

THALAMO-CORTICAL FUNCTIONAL CONNECTIVITY IN PHOTOSENSITIVE EPILEPSY  

Given the above reported assumptions in normal subjects and moving to the main objective of 

our work, the question is if the thalamic contribution to the alpha power is different in GGE 

PS+. The whole-brain functional connectivity of the posterior and medial thalamic nuclei was 

different in photosensitive patients with respect to controls and other epilepsy 

groups. Notably, it has been recently demonstrated in healthy subjects (Sheeringa et al., 2012) 



that the increased local alpha synchronization originating from the early visual cortex is 

associated with decreased fMRI resting-state connectivity within the visual system. The fact 

that alpha-band neuronal synchronization is inversely related to connectivity between the 

primary visual cortex and closely connected regions in both the dorsal and ventral visual stream 

regions suggests that local alpha-band synchronization in healthy people serves to reduce the 

communication between closely connected regions.  

Conversely, GGE PS+ presented an increased resting connectivity of the medial dorsal 

thalamus-orbitofrontal cortex circuit (Fig. 5). The orbitofrontal cortex (OFC) is a functionally 

complex structure, which is implicated in high-level cognition processes as well as mediating 

aspects of emotions and behaviour. Different functions have been linked to OFC activity, 

including executive control, decision-making, and top-down modulation of bottom-up 

processes (for review see Elliott et al., 2000; Damasio, 1995). This brain region, and particular 

the lateral OFC portion (BA11, BA47), has strong connection with the amygdala and insula, 

structures that are involved in emotional experience and expression (Augustine, 1996; Fink et 

al, 1996). The fact that this thalamic-prefrontal network is hyper-coupled during rest in patients 

with photosensitivity might reflect a disruption of cognitive and emotional processes linked to 

these physiological functions. Notably, JME, in which photosensitivity is commonly observed, 

has been correlated with psychiatric, behavioral and cognitive deficits, including those of 

decision-making and executive control (for review see Wolf et al, 2015).  This conclusion 

remains speculative and further data linking the functional connectivity pattern and 

neuropsychological and psychiatric profile in GGE PS+ needs to be obtained.   

When the seed was placed in the pulvinar, GGE PS+ patients demonstrated again a different 

pattern of cortical resting-state connectivity compared to the other populations. Increased 

connectivity was constrained to the prefrontal cortex (anterior cingulate, dorsolateral prefrontal 

cortex) and basal ganglia. This visual thalamus-basal ganglia hyper-connectivity could be a 

promoter of motor cortex hyper-excitability representing a biomarker of increased visuo-

motor outflow, which could facilitate myoclonus triggered by visual stimuli. On the contrary, 

the visual thalamus showed a reduced functional connectivity with the sensory and visual 

cortex.   

The disrupted connectivity between the pulvinar and the visuo-parietal/motor-premotor system 

further supports the view that photosensitivity in epilepsy is due to abnormal activity of the 

occipito-frontal circuits, that persists even during rest and independently of visual stimulation 

and/or pathological paroxysmal activity. Notably, we recently demonstrated by voxel-based 

morphometry in patients with EMA that the pulvinar has also an abnormal grey matter 

concentration in these patients, suggesting that microstructural alterations can act over the same 

pulvinar-fronto-occipital circuit (Vaudano et al, 2014).  

  

METHODOLOGICAL CONSIDERATION  

In the present work, the alpha-related fMRI data analyses have been performed by means of a 

parametric approach within the SPM package, using a statistical threshold of p < 0.05 corrected 

for FWE or FDR. Recent reports have reported a high risk of inflated false positive rate in 

fMRI group analyses using parametric methods with common fMRI software tools (i.e. SPM, 

FSL), even when applying a conservative FWE statistical threshold control (Eklund et al., 

2012, 2016). These arguments speak to the need of using nonparametric permutation 

approaches to controls properly the rate of false positive BOLD changes (Eklund et al., 2016).   

As far as our findings, the reproducibility of the fMRI results across different analyses 

strengthens our main conclusion about alpha generators in GGE-PS+ population. Nevertheless, 

given the high concerns risen by these recent studies, we have re-analyzed the second-level 

alpha-related fMRI data and the groups’ comparisons by means of non-parametric permutation 

method for multiple-comparisons correction (AFNI, 3dClustSim 



function; http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dClustSim.html) to achieve a 

family-wise error rate (FWER) at p=0.05 at the cluster level. We applied the updated version 

(May, 2015) of the 3dClustSim function (Cox et al., 2016). This program takes into account 

the smoothness of the residual dataset and whole-brain mask as inputs, and creates Monte-

Carlo simulations (10,000) of noise-datasets with the specified smoothness. It then creates a 

frequency distribution of noise-cluster sizes and advises the p value and cluster extent required 

to control the FWER at a chosen level. Group-level analyses were thresholded at the voxel-

level at p< 0.001 and cluster size of 210, which provides p < 0.05 (corrected).   

Second-level whole-population analysis (N=60), as well as sub-population groups findings did 

not demonstrated any difference between the applied statistical methods (parametric versus 

non-parametric). In particular, we did not found clusters mismatches between the two 

approaches. The groups’ comparison analyses results shown instead a few differences in term 

of total number of clusters identified and relative Z-score. Nevertheless, although a few clusters 

disappeared, the main BOLD changes survived. In particular, the comparison between GGE-

PS+ and the other cohorts confirmed, in the former, an increased excitability under spontaneous 

alpha oscillations over the premotor-motor and parieto-occipital cortices (Supplementary 

Table 3 and Supplementary Figure 3). Thus, this additional statistical analysis do not change 

the principal findings of our parametric SPM approach and hence the main conclusions of the 

present work, i.e. that people with epilepsy and visual sensitivity, compared to other epileptic 

syndromes and healthy controls, present a decreased alpha-related inhibition of the sensory-

motor and visual networks at rest.   

  

STUDY LIMITATION  

As a limit of the present work, we did not explore the hemodynamic correlates of other 

endogenous EEG frequency bands (i.e. delta, gamma or theta). This additional analyses would 

be interesting, especially in relation to gamma band activity for the well-known influence of 

this frequency band in photosensitivity. However, because the data presented here are the first 

to explore the relationships between spontaneous brain rhythmicity and epilepsy in term of 

generating networks, we decide to focus to the alpha rhythm, as first step. A cautionary note 

concerns the generalization of the observed alpha rhythm findings. Indeed, it should be noted 

that about 70% of the GGE PS+ was constituted by subjects affected by Jeavons syndrome 

(EMA). This means that our EEG (and BOLD) findings could be strongly driven by this 

subpopulation of photosensitive patients. This is relevant also in consideration of the recent 

genetic findings of a high incidence of CHD2 mutations in EMA [Galizia et al., 2015]. The 

influence of sub-syndromes’ effects (i.e. JME versus EMA), as well as the effects of specific 

genetic defects should be tested in future studies. Finally, although we clearly demonstrated 

that there is a correlation between alpha rhythm and the BOLD signal (and that this relationship 

is different in different epilepsy populations), our results do not imply direct causality in either 

direction.   

  

CONCLUSIONS  

The findings of our works provide for the first time, the existence of a functional link between 

the circuits demonstrated to trigger the PPR phenomenon and the ones implicated in the 

generation of the posterior alpha rhythm. As a general conclusion, we suggest that the 

“enduring propensity” to generate seizures and/or epileptic activity in patients with 

photosensitivity is due to the intrinsic susceptibility of a complex thalamo-cortical system, 

which is indexed by the resting EEG alpha oscillations. One important point of strength of the 

present work is that a multimodal approach of investigating the characteristics of alpha power 

and the intrinsic networks generating it, results in a concordant picture.  Our results represent 



an additional important piece of evidence regarding photosensitivity and contribute to expand 

the “system epilepsy” concept (Avanzini et al., 2012) for this epileptic trait.   
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Supplementary materials  

Supplementary Figure 1: Single-subject main steps of individual alpha band calculation. (A) 

Representative image of EEG trace recorded inside the scanner after the correction of the 

gradient and cardiac artifact. The EEG trace is shown in double banana montage. (B) ICA 

analysis decomposition related to the same EEG page shown in (A). The 30 EEG channels (the 

ECG and EMG channels are not considered) are decomposed in 30 components (between F0 

to F29). Within them, the components F07, F09, F11 and F13 (underlined in blue), were 

visually identified as the alpha activity of the subject and marked as alpha-related IC (αIC). 

(C) FFT analyses of all the 30 components. The red dotted lines identify the power spectrum 

with a clear peak in the alpha band range that in this case corresponds to the IC F07, F09, F13. 

(D) 3D brain, spatial topography of the posterior central component selected for subsequent 

fMRI analysis (in this case F13).   

  

Supplementary Figure 2: Functional connectivity maps with seed regions at medio-dorsal 

thalamic nuclei (MDN) (A) and Pulvinar (PUL) (B) (p< 0.05 corrected for FWE). The 

functional maps are overlaid onto the canonical T1 image as implemented in SPM, axial slices. 

Correlations with the MDN seed are observed at the anterior and posterior cingulate cortex, the 

brainstem, the cerebellum, the supplementary motor area, and the limbic mesial structures 

(insula, hippocampus and parahippocampal gyrus). The cortical regions that were functionally 

connected to the PUL seed included the brainstem, the striate and peristriate cortex, the regions 

belonging to the sensory-motor and default-mode networks, the anterior cingulate cortex, the 

hippocampus, the amygdala and parahippocampal structures, and the cerebellum.  

   

Supplementary Figure 3. Comparisons of alpha-power BOLD maps between the patients’ 

groups and between patients and controls obtained using non-parametric permutation method 

(AFNI’s 3dClustSim function). Only regions survived to statistical 

threshold of α < 0.05 (voxel-wise p < 0.001 and cluster size ≥ 210 voxels) are showed. The 

functional maps are shown on the normalized SPM-glass brain (left images) and warped to the 

PALS-B12 atlas in caret (mesial and dorsal view) for right (R) and left (L) hemisphere (right 

images). The red arrow on the SPM-glass brain indicates the global maximum. The white lines 

on the PALS-B12 atlas show the surface landmarks as implemented in Caret: the Central 

Sulcus, the medial wall dorsal segment, and the medial wall ventral segment, the sylvian fissure 

and calcarine sulcus. See text for details.   
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Figures Legend  

  

Figure 1: Alpha power estimation and analysis. Panel A: individual alpha band identification 

and calculation in a representative example. After visual identification of the αIC (top image), 

the posterior alpha component is selected based on the power spectrum (left bottom image) and 

average topography (right bottom image). Panel B to D represents histograms of alpha 

parameters recorded outside (grey) and inside the scanner (black). Panel B: histograms show 

the Gaussian distribution of individual peak alpha frequency within alpha band. Panel C: 

histograms illustrate the mean individual alpha frequency in the different subgroups of patients 

and in controls. Panel D: histograms display the mean alpha power in the different subgroups 

of patients and in controls. The GGE PS+ shown significantly higher alpha power compared 

to others both during scanning and outside. The mean alpha power was significantly lower 

inside then outside the scanner in all the studied population. The bars represent the Standard 

Error. **p<0.01.   

  

Figure 2: Whole-population BOLD findings. Panel A: Alpha-BOLD correlation map related 

to all the subjects considered together (p<0.05 corrected for FWE). The functional maps have 

been warped to the PALS- B12 atlas in caret (dorsal view) for right (R) and left (L) hemisphere 

(left side images) and overlaid onto representative canonical slices, axial, coronal and sagittal 

view (right side images) for visualization purposes. The yellow colour indentifies the positive 

correlations to alpha power, the light-blue colour the negative correlations. See text for details.  

Panel B and C: Relationship between BOLD thalamic changes and thalamic nuclei as provided 

by digital version of the Morel’s atlas of human thalamus (Morel et al, 1997; Krauth et al, 

2010). Thalamic positive (Panel B) (p< 0.05 corrected for FDR) and negative (Panel C) (p< 

0.05 corrected for FWE) BOLD correlations are overlaid onto the MNI template (1mm) (axial 

slices) as provided by FSL (FMRIB Software Library) after linear transformation using FMRIB 

Linear Image Registration Tool [FLIRT]. For each panel, the localization of the BOLD change 

is compared with the thalamic atlas. The thalamic atlas is displayed onto the canonical T1-1mm 

image as implemented in FSL (FMRIB Software Library).  Canonical T1 slices have been 

zoomed for visualization purposes. The thalamic nuclei have been indicated by different colors 

for visualization purposes and grouped according to Morel, 1997. LGn, green color: lateral 

group of thalamic nuclei which includes the ventroposterior complex, ventral lateral 

posterior/anterior, and ventral anterior and ventral medial nuclei. AGn, red color: anterior 

group of thalamic nuclei which includes anteroventral, anteromedial, anterodorsal, and lateral 

dorsal nuclei. PGn, blue color: the posterior group of thalamic nuclei which includes medial 

and lateral geniculate nuclei, posterior, suprageniculate/limitans, lateral pulvinar 

nucleus (PuL), Medial pulvinar nucleus (PuM) and Anterior Pulvinar nucleus (PuA). Pink 

color shows the mesial group of thalamic nuclei: MDmc: Mediodorsal nucleus, magnocellular 

division; MDpc: Mediodorsal nucleus, parvocellular division; CL: Central lateral 

nucleus. Scale Bar of 10 mm. R= right; L= left.   

  

Figure 3: Alpha-BOLD correlation maps related to each single population of subjects (p<0.05, 

FDR corrected). The functional maps have been warped to the PALS-B12 atlas in caret (mesial 



and dorsal view) for right (R) and left (L) hemisphere. The yellow-red colour indentifies the 

positive correlations to alpha power, the light-blue colour the negative correlations. See text 

for details.   

  

Figure 4: Comparisons of alpha-power BOLD maps between the patients’ groups and between 

patients and controls (p<0.05, FDR corrected). The functional maps are shown on the 

normalized SPM-glass brain (left images) and warped to the PALS-B12 atlas in caret (mesial 

and dorsal view) for right (R) and left (L) hemisphere (right images). The red arrow on the 

SPM-glass brain indicates the global maximum. The white lines on the PALS-B12 atlas show 

the surface landmarks as implemented in Caret: the Central Sulcus, the medial wall dorsal 

segment, and the medial wall ventral segment, the sylvian fissure and calcarine sulcus. See text 

for details.   

  

  

  

Figure 5: BOLD changes (derived from statistical comparison p<0.05 corrected for FDR) 

between functional connectivity with seed region at MDN in GGE PS+ versus CRT.  The 

resulted map has been warped to the PALS-B12 atlas in caret (dorsal and ventral view) for 

right (R) and left (L) hemisphere. For localization purposes, functional results on the right 

hemisphere were plotted and compared against six Brodmann Areas indicated by the white 

numbers. The displayed Brodmann Areas cover part of the pre-central regions and the 

orbitofrontal cortex subdivisions (Henssen et al., 2016). Only increases of functional 

connectivity in GGE PS+ population were detected.  See text for details.   

  

Figure 6: BOLD changes derived from statistical comparison (p< 0.05 corrected for FDR) 

between functional connectivity with seed regions at Pulvinar in GGE PS+ versus CRT and 

other epileptic populations.  Panel A: differences in functional connectivity between GGE 

PS+ and controls. The resulted map has been warped to the PALS-B12 atlas, dorsal view for 

right (R) and left (L) hemisphere (left image) and to flat template for the right hemisphere (right 

image). For localization purposes, functional results on the right hemisphere (RH) were plotted 

and compared against Brodmann Areas indicated by the white numbers. Increases in functional 

connectivity are shown in yellow-red, decreases in blue. See text for details. Panel B: Decreases 

in functional connectivity in GGE PS+ versus all other population of subjects (p< 0.05, 

uncorrected). Each subjects’ subgroup in indicated by a specific colour. The regions coloured 

in pink represent the overlapping clusters from all the comparisons. R= right.   

 


