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Abstract

Genetic toggle switches consist of two mutually repressing transcription factors. The
switchmotif forms the basis of epigeneticmemory and is found in natural decisionmak-
ing systems, such as cell fate determination in developmental pathways. A synthetic
genetic switch can be used for a variety of applications, like recording the presence of
different environmental signals, for changing phenotype using synthetic inputs and as
building blocks for higher-level sequential logic circuits.
In this thesis, the genetic toggle switch was studied computationally and experiment-

ally. Bayesian model selection methods were used to compare competing model designs
of the genetic toggle switch. It was found that the addition of positive feedback loops
to the genetic toggle switch increases the parametric robustness of the system.
A computational tool based on Bayesian statistics was developed, that can identify

regions of parameter space capable of producing multistable behaviour while handling
parameter and initial conditions uncertainty. A collection of models of genetic switches
were examined, ranging from the deterministic simplified toggle switch to stochastic
models containing different positive feedback connections. The design principles behind
making a bistable switch were uncovered, as well as those necessary to make a tristable
or quadristable switch.
Flow Cytometry was used to characterise a known toggle switch plasmid. A com-

putational tool was developed which uses Bayesian statistics to infer model parameter
values from flow cytometry data. This tool was used to characterise the toggle switch
plasmid and fit a stochastic computational model to experimental data.
The work presented here suggests ways in which the construction of genetic switches

can be enhanced. The algorithms developed were shown to be useful in synthetic system
design as well as parameter inference. The tools developed here can enhance our un-
derstanding of biological systems and constitute an important addition to the systems
approach to synthetic biology engineering.
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1 Introduction

1.1 Introduction to synthetic biology
Synthetic biology is centered around the rational design and construction of bio-
logical parts, devices, and systems in order to engineer organisms to perform new
tasks (Lu, Khalil, & Collins 2009; Andrianantoandro et al. 2006). A part is a basic
unit, like a promoter or a ribosome binding site that when combined with other
parts will make a functional unit, a device (Heinemann & Panke 2006). A device
processes inputs performs functions and produces outputs (Andrianantoandro et al.
2006). A system comprises of a collection of devices.
Emphasis is put on the use of engineering principles such as modularity, stand-

ardisation, use of predictive models and the separation of design and construc-
tion (Agapakis & Silver 2009; Heinemann & Panke 2006). An analogy can be drawn
with the hierarchy used in computer science, with cells, pathways and biochemical
reactions acting as computers, modules and gates respectively (Andrianantoandro
et al. 2006).
Numerous applications of synthetic biology have emerged, from altering existing

metabolisms (Wang & Yu 2007) to producing synthetic drugs (Ro et al. 2006) or
creating new synthetic life forms (Hutchison et al. 2016). Despite the successes
there is still a lack of predictive power due to the stochasticity and lack of complete
knowledge of the cellular environment (Andrianantoandro et al. 2006).

1.2 Quantitative modelling in synthetic biology
Synthetic biology draws from the multidisciplinary work of biologists, mathem-
aticians, computer scientists, physicists and chemists (Vinson & Pennisi 2011) in
order to engineer biology. The randomness of the biological environment, the pleth-
ora of unknowns in the engineered system as well as its surrounding environment
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and their interaction therein makes this task extremely challenging. The field has
made great advancements in recent years, and a collection of simple synthetic cir-
cuits have been built such as toggle switches (Gardner, Cantor, & Collins 2000;
Kramer et al. 2004; Isaacs et al. 2003; Ham et al. 2008; Deans, Cantor, & Collins
2007; Friedland et al. 2009), oscillators (Stricker et al. 2008; Fung et al. 2005; Tigges
et al. 2009) and pulse generators (Basu et al. 2004).
These synthetic circuits have been built to imitate controllers from electrical en-

gineering, like logic gates, switches, and oscillators, but the inherent complexity
and stochasticity of biology and the cellular environment make their predictability
and application challenging. This has highlighted the importance of using more
advanced computational tools to aid in the design, and ultimately the construction,
of novel synthetic biological devices.
This has led to systems and synthetic biology increasingly being merged together

in an effort to understand the inherent complexity of engineering biological sys-
tems (Gramelsberger 2013). Quantitative modelling has been used to aid and im-
prove the systems under consideration. Successful examples include that of Stricker
et al. (2008) and Entus, Aufderheide, & Sauro (2007). Stricker et al. (2008) designed
a genetic oscillator and mathematical modelling of the system allowed them to
identify the parameters of their system that give rise to oscillations. Entus, Auf-
derheide, & Sauro (2007) used modelling to design and construct incoherent feed-
forward loops in E.coli.

The design of genetic circuits has an additional challenge compared to other areas
of genetic engineering. The components of the circuits have to be finely tuned to
work together towards the desired behaviour of the system. This is in contrast to
engineering a cell to produce a single protein where its production has to be max-
imized (Nielsen, Segall-Shapiro, & Voigt 2013). The need to orchestrate a number
of genetic components toward a common goal has made the integration of systems
and synthetic biology all the more important.
In this work I use quantitative modelling to understand a synthetic system. I look

at the problem from two different but related perspectives, design and inference. I
aim to improve on the design of a synthetic biological system and understand the
principles dictating the behaviour of new designs. I also aim to quantitatively study
an existing system and infer the underlying principles that govern its behaviour.
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1.3 Thesis Outline
This thesis will focus on the biochemical modelling and analysis of the genetic
toggle switch. The thesis is organised as follows:

Chapter 2 provides an introduction to biochemical modelling. It contains an over-
view of themathematicalmethods that formed the basis of themethods used through-
out this thesis. It also contains a literature review on the current understanding on
the dynamics of the genetic toggle switch. I provide material that is necessary for
the understanding of the rest of this thesis.

In Chapter 3 I explore the effect that adding feedback loops has on the stability and
parametric robustness of the toggle switch. I develop more realistic biochemical
models of the genetic toggle switch and study their ability to behave like a switch.

In Chapter 4 I develop a parameter estimation algorithm for multistable switches,
called StabilityFinder. I benchmark this algorithm using a toggle switch model with
known results. I then apply it to extensions of the simplified toggle switch as well as
more realistic models of the toggle switch developed in Chapter 3 in order to study
the design principles that make a multistable switch. Finally, I develop an algorithm
for estimating the robustness of a system using the results from StabilityFinder and
use it to study the effect of feedback loops on the robustness of the switch.

In Chapter 5 I develop an algorithm based on Bayesian statistics for parameter es-
timation of flow cytometry data, called ABC-Flow. I also characterise the genetic
toggle switch experimentally and provide an overview of the methods used. Finally,
I apply ABC-Flow to the experimental data collected and infer the parameters that
give rise to the data.

Chapter 6 concludes this thesis with an overview of the work presented here and a
discussion of future directions.

Work carried out throughout my candidature has been published in the following
article:

• Leon, M., Woods, M., Fedorec, J. A., & Barnes, C. P. (2016). ‘A computational
method for the investigation of multistable systems and its application to ge-
netic switches’. BMC Systems Biology 10(130).

• Leon, M. & Barnes, C. P. (2017). ‘Characterising a genetic toggle switch using
Approximate Bayesian Computation’. [In preparation].
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2 Background

2.1 Current understanding of the genetic toggle switch
One of the first successfully constructed synthetic devices is the genetic toggle
switch. A toggle switch consists of a set of transcription factors that mutually
repress each other (Gardner, Cantor, & Collins 2000). Genetic switches play a major
role in binary cell fate decisions like stem cell differentiation, as they are capable
of exhibiting bistable behaviour. Bistability of a system is defined by the existence
of two distinct phenotypic states but no intermediate state. Bistability is a property
that is important in nature and a valuable resource to exploit in synthetic biology.
It allows cells to alter their response to environmental cues and increases the over-
all population fitness by ’hedge-betting’ the response of the population (Veening,
Smits, & Kuipers 2008).

2.1.1 The genetic toggle switch in natural systems
In developmental processes, bistability ensures that the differentiating cell will fol-
low one pathway, or the other, with no possible intermediate phenotypes. This is
vital for the correct development of a cell in a specific pathway. One example is
the trophectoderm differentiation pathway, in which a mutually inhibitory toggle
switch exists between Oct3/4 and Cdx2. This determines whether an embryonic
stem cell will differentiate into a trophectoderm cell, if Cdx2 dominates the system,
or an inner cell mass cell if Oct3/4 dominates (Niwa et al. 2005). Bistability is crit-
ical in this system as a cell must differentiate into either a trophectoderm cell or an
inner cell mass cell and there should not be any intermediate signals.
In the case of the GATA1 and PU.1 toggle switch, the transcription factor pair

controls the fate of the common myeloid progenitors, and the two possible dif-
ferentiation paths are erythroid and myeloid blood cells (Liew et al. 2006). The
double-negative feedback loop created by the mutually repressive pair of transcrip-
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tion factors sustains the system in balance until an external stimulus causes one of
the two transcription factors to increase in concentration. The increased concentra-
tion of one transcription factor causes the increased repression of the production of
the antagonistic transcription factor, tipping the balance towards the dominance of
the first transcription factor. The double negative feedback loop reinforces this dy-
namic and the system remains in the same state until an external stimulus disturbs
it (Ferrell 2002).

2.1.2 Uses in synthetic biology
Despite their simplicity, toggle switches can be powerful building blockswithwhich
to create complex responses in a synthetic network (Lu, Khalil, & Collins 2009).
They can be used in isolation and have the potential to be used tandem to create
complex networks and signalling cascades (Lu, Khalil, & Collins 2009). The toggle
switch has been used for the regulation of mammalian gene expression (Deans, Can-
tor, & Collins 2007; Kramer et al. 2004). Other synthetic applications of the toggle
switch include the construction of a synthetic genetic clock (Atkinson et al. 2003),
of a predictable genetic timer (Ellis, Wang, & Collins 2009), and the formation of
biofilms in response to engineered stimuli (Kobayashi et al. 2004).
These applications are modifications of the classical toggle switch (Gardner, Can-

tor, & Collins 2000), but an application made of a cascade or collection of the switch
would be more challenging. This would make more complex applications possible
and could be used to solve real-life problems. For example, an analog-to-digital
converter to translate external stimuli like the concentration of an inducer into an
internal digital response, or programmable bacteria to move from point to point up
different chemical gradients (Lu, Khalil, & Collins 2009). For a review on current cir-
cuits see (Khalil & Collins 2010) and for possible future applications see (Lu, Khalil,
& Collins 2009). This leap will be difficult to achieve before first being able to build
robust and well characterised individual switches.

2.1.3 Modelling the genetic toggle switch
The toggle switch motif has been studied extensively and there are numerous stud-
ies based on a number of different methods of modelling and analysis of the dynam-
ics, including both deterministic and stochastic approaches. The conclusions drawn
about the stability and robustness of the toggle switch vary between the different
modelling approaches. Numerous studies have concluded that cooperativity is a
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necessary condition for bistability to arise (Gardner, Cantor, & Collins 2000; Wal-
czak, Onuchic, & Wolynes 2005; Warren & ten Wolde 2004; Warren & ten Wolde
2005; Cherry & Adler 2000). However, Lipshtat et al. (2006) found that stochastic ef-
fects can give rise to bistability even without cooperativity in three kinds of switch;
the exclusive switch, in which there can only be one repressor bound at any one
time, a switch in which there is degradation of bound repressors, and the switch in
which free repressor proteins can form a complex, which renders them inactive as
transcription factors (Lipshtat et al. 2006).
In another study, Ma et al. (2012) found that the stochastic fluctuations in a system

involving such a small number of molecules, like the toggle switch, uncovers effects
that cannot be predicted by the fully deterministic case (Ma et al. 2012). In their sys-
tem, the toggle switch was found to be tristable, as small number effects render
the third unstable steady state stable. Biancalani & Assaf (2015) identified multi-
plicative noise as the source of bistability in the stochastic case (Biancalani & Assaf
2015). Warren & ten Wolde (2005) concluded that the exclusive switch is always
more robust than the general switch since the free energy barrier is higher (Warren
& ten Wolde 2005). A summary of the toggle switch models is shown in Table 2.1.
As is clear from above, there is yet to exist a consensus on the stability a switch is
capable of, and the most appropriate method of modelling it. Different methods ar-
rive at different conclusions, creating confusion on which behaviour to be expected
by the experimentalist for even a simple system like the toggle switch, consisting
of just two genes. The toggle switch cannot be used as a building block of larger,
more complex systems until its behaviour can be predicted accurately. Until then,
designing systems with predictable behaviour will be near impossible.
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Table 2.1 Summary of stabilities for the classical switch and the switchwith double
positive feedback found via different modelling approaches
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2.2 Methods in biochemical modelling
Modelling attempts to describe the elements and dynamics of the biochemical sys-
tem of interest. It is a tool used for integrating knowledge and experimental data
as well as for predicting the behaviour of the system (Wilkinson 2006).

2.2.1 Representation of transcription networks
A transcription network can be represented in a number of ways. A network can
be described by using a diagram supplemented by verbal explanations or by a set
of differential equations. A diagram with a lengthy verbal explanation risks the not
providing sufficient clarity whereas a set of differential equations cannot easily be
separated from the underlying assumptions made on the kinetics of the network. A
convenient way of describing sufficient information about a system while avoiding
the addition of the particular interpretation of the underlying kinetics is the use of
coupled chemical reactions (Wilkinson 2006).

2.2.1.1 Coupled chemical reactions and the law of mass action

Coupled chemical reactions are often used to describe transcription networks in
systems biology. They have the advantage of describing a system concisely while
they can be used subsequently for a variety of different simulation methods, each
with their associated interpretation of chemical kinetics (Wilkinson 2006). Coupled
chemical reactions take the form

𝑅 + 𝑅 −→ 𝑃, (2.1)

where 𝑅 represents reactant A, 𝑅 reactant B and 𝑃 a product. Each reaction has an
associated rate constant 𝑘. A biological transcription network can be represented
using the above notations. Some common examples of coupled chemical reactions
used in a biological network are given in Table 2.2. A double headed arrow repres-
ents a reversible reaction.
The law of mass action allows one to derive these reaction rates from the coupled

chemical reactions. The assumption made in the law of mass action is that the
system exists in a well-mixed solution and in dynamic equilibrium. The law of mass
action states that the reaction rate is equal to the concentration of the reactants
multiplied by a rate constant. So for a given chemical equation as the one shown
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Table 2.2 Examples of common genetic coupled chemical reactions. 𝑝 stands for
promoter, and 𝐴 represents a protein. 𝐴 is the dimer of protein 𝐴.

Event Coupled chemical reaction Rates

Transcription 𝑝 −→ 𝑝 + 𝑅𝑁𝐴 𝑘 [𝑝]
Dimerization 2𝐴 −⇀↽− 𝐴 𝑘 [𝐴][𝐴], 𝑘 [𝐴 ]

Promoter repression 𝐴 + 𝑝 −⇀↽− 𝑝 • 𝐴 𝑘 [𝐴 ][𝑝], 𝑘 [𝑝 • 𝐴 ]

Activation 𝐴 + 𝑝 −→ 𝑝 • 𝐴 + 𝑅𝑁𝐴 𝑘 [𝐴 ][𝑝]
Degradation 𝐴 −→ ∅ 𝑘 [𝐴]

in Equation 2.1, the rate of the reaction is defined by:

𝑟𝑎𝑡𝑒 = 𝑘[𝑅 ][𝑅 ],

where 𝑘 is the rate constant.

2.2.1.2 Graphical representation of biochemical systems

It is common to represent coupled biochemical reactions graphically. In a graph, as
shown in Figure 2.1, nodes represent the species and the edges represent an interac-
tion between the species it connects, in which a transcription factor directly affects
the transcription of a gene (Alon 2007). An arrow at the end of an arc represents
activation, i.e. that when the transcription factor binds to the promoter the rate of
transcription of the gene increases. A flat line perpendicular to the arc at the end
of an arc represents repression, i.e. that when the transcription factor binds to the
promoter the rate of transcription of the gene decreases (Alon 2007).

A B

Figure 2.1 A graphical representation of a biochemical system. The two nodes, A
and B represent species and the edges (arrows) a reaction between the two. An
arrow represents activation and a flat line represents repression.

2.2.1.3 Systems Biology Markup Language (SBML)

TheSystems BiologyMarkup Language (SBML)was developed byHucka et al. (2003)
in order to allow for the exchange of biochemical models between software. It is an
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extension of the XML encoding (DuCharme 1999) with additional fields specific to
biochemical models. Software like Copasi (Hoops et al. 2006) can be used to convert
a set of coupled chemical reactions to an SBML model. SBML models have been a
key resource for model sharing within the systems biology community (Wilkinson
2006) in databases like the BioModels database (Le Novère et al. 2006).

2.2.2 Transcriptional binding kinetics
Theprocesses of transcription regulation in prokaryotes are complex and there have
been a number of mathematical descriptions developed to approximate the dynam-
ics observed. These include the Hill equation and the Shea-Ackers formalism.

2.2.2.1 Hill formalism

TheHill formalism is often used to describe a biochemical systemwhere an activator
or repressor is present (Hill 1910). The Hill function is often represented as

𝑑𝑃
𝑑𝑡 = 𝑉 𝑥

1 + 𝑥 ,

if activation is beingmodelled. This is an increasing S-shaped function. Parameter 𝑛
is the Hill coefficient and 𝐾 the dissociation constant. 𝑉 is the maximum amount
of product and 𝑥 = , where S is the substrate concentration. The Hill function
reaches a plateau at high substrate concentrations, as is often seen in biological re-
actions (Alon 2007). 𝐾 represents the substrate concentration that results in half of
the response and the Hill coefficient affects the steepness of the function and rep-
resents the cooperativity of the binding to the promoter (Alon 2007). If repression
is being modelled, the Hill function is represented as

𝑑𝑃
𝑑𝑡 = 𝑉 1

1 + 𝑥 .

An example of the effect that the value of the Hill coefficient 𝑛 has on the shape of
the Hill function in both activation and repression is given in Figure 2.2. The higher
the value of 𝑛, the more step-like the function becomes (Alon 2007).
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Figure 2.2 The effect of different values of 𝑛 on the Hill function when 𝐾 is kept
constant in the case of (A) activation and (B) repression.

2.2.2.2 Shea-Ackers formalism

The Shea-Ackers formalism developed by Ackers, Johnson, & Shea (1982) uses a
statistical thermodynamic model to represent the binding of transcription factors to
their promoters. A system is described by the various states the promoter can have.
An example of possible states is given in Figure 2.3. Each state has an associated
term, or weight, and the probability of transcription is given by the ratio of the
producing states over all possible states. This is referred to as the partition function.

𝑃 = 𝛼 𝑘 + 𝑘 𝐴
1 + 𝑘 + 𝑘 𝑅 + 𝑘 𝐴 . (2.2)

Here I assume that repression and activation is cooperative, thus two transcription
factors must bind to the promoter to repress or activate it.
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Figure 2.3 An example of a promoter regulated by a repressor (R) and an activator
(A) modelled using the Shea-Ackers formalism. Figure adapted fromWoods et al.
(2016)

2.2.3 Simulation of deterministic dynamical systems
Deterministic modelling utilises Ordinary differential equation (ODE)s and models
the concentrations of the species (proteins or other molecules) by time-dependent
variables (de Jong 2002). Rate equations are used to model gene regulation where
the rate of production of a species is a function of the concentrations of the other
species (de Jong 2002).

2.2.3.1 Deterministic mass action kinetics

ODEs are used to represent the quantitative dynamics of a biochemical network.
The ODEs describing a system can be derived from the coupled chemical reactions
describing the system as well as their associated rates. This will be illustrated using
a simple example, the Lotka-Voltera predator-prey model (Lotka 1925). This system
describes the dynamics between two interacting species, a predator and a prey. The
chemical reactions describing the system are given in Table 2.3. The rates of the
system are organised in vector form,

ℎ = ⎛

⎝

𝑘 𝑥
𝑘 𝑥𝑦
𝑘 𝑦

⎞

⎠

.
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Table 2.3 Predator-prey chemical reactions

Name Reaction Rate

prey birth 𝑥 −→ 2𝑥 𝑘 𝑥
predation 𝑥 + 𝑦 −→ 2𝑦 𝑘 𝑥𝑦
predator death 𝑦 −→ ∅ 𝑘 𝑦

The stoichiometry matrix of the system is an 𝑚× 𝑛 matrix, where 𝑚 is the number
of species and 𝑛 the number of reactions and it summarises the stoichiometries of
the system,

𝑆 = 1 −1 0
0 1 −1

. (2.3)

The ODEs can then be constructed by multiplying the stoichiometry matrix 𝑆 by
the matrix containing the rates ℎ. Therefore

𝑠(𝑡) = 𝑑
𝑑𝑡

𝑥
𝑦

= 1 −1 0
0 1 −1

⎛

⎝

𝑘 [𝑥]
𝑘 [𝑥][𝑦]
𝑘 [𝑦]

⎞

⎠

, (2.4)

and thus we get the two ODEs describing the system as

𝑑𝑥
𝑑𝑡 = 𝑘 𝑥 − 𝑘 𝑥𝑦 (2.5)
𝑑𝑦
𝑑𝑡 = 𝑘 𝑥𝑦 − 𝑘 𝑦. (2.6)

These differential equations can be simulated numerically over time using software
packages like Mathematica (Mathematica 2016) and Python.

2.2.3.2 Assumptions of deterministic modelling

Two key assumptions are made when modelling a biochemical system using ODEs.
Firstly, the species present in the system are measured continuously rather than
discretely. This means that the species are measured in concentration over time and
not the number of molecules over time. This assumption requires a large number
of molecules to be present in order to be met (Ingalls & Iglesias 2010). The second
assumption made is that the reactants are in a well-mixed solution. This means that
the species in the system can interact each other constantly and freely.
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2.2.4 Nonlinear dynamical modelling
2.2.4.1 Phase plane analysis

An alternative to studying the trajectory of a dynamical system over time is to study
its behaviour in the phase plane. During a phase plane analysis the dependent vari-
ables 𝑥 and 𝑦 are plotted against each other. An example of a phase plane analysis
of the predator-prey model given in Equations 2.6 is shown in Figure 2.4.

2.2.4.2 Steady states

For a system 𝑠, any point satisfying 𝑠(𝑡) = 0 is considered a fixed point, or steady
state. At that point the dynamics of the system are considered in equilibrium and
will not change with increasing time. Using the example of the predator-prey sys-
tem, a steady state exists when the system of Equations 2.6 are equal to 0:

𝑑𝑥
𝑑𝑡 = 𝑓 (𝑥, 𝑦) = 𝑘 𝑥 − 𝑘 𝑥𝑦 = 0 (2.7)
𝑑𝑦
𝑑𝑡 = 𝑓 (𝑥, 𝑦) = 𝑘 𝑥𝑦 − 𝑘 𝑦 = 0 (2.8)

By solving this system of equations, we get two steady states. One when 𝑥 = 𝑦 =
0 and one when 𝑥 = and 𝑦 = . The stability of each steady state can then be
determined.

2.2.4.3 Steady state stability

A stable steady state is defined as a fixed point whose nearby points approach the
fixed point (Kaplan &Glass 1995). Thismeans that after a small perturbation the sys-
tem will quickly return to the steady state. An unstable steady state is one which if
the system is perturbed slightly then it moves away from the steady state (Konopka
2007). The stability of the fixed points can be determined by the sign of the eigen-
values of the Jacobian matrix at each point. The Jacobian matrix is given by

J = (2.9)

Using the predator-prey system as an example, the Jacobian matrix is given by

J = 𝑘 − 𝑘 𝑦 −𝑘 𝑥
𝑘 𝑦 𝑘 𝑥 − 𝑘

(2.10)
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Figure 2.4 Thepredator-prey system is defined by Equations 2.6. (A)The trajectory
over time (B) Phase plane plot of the predator-prey system of equations. The
parameters used here are 𝑘 = 2, 𝑘 = 1 and 𝑘 = 1.

The eigenvalues λ are given by

det(J− 𝜆I), (2.11)

where det is the determinant and I the identity matrix. If both eigenvalues are real
and negative or imaginary with a negative real part then the steady state is stable.
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If both eigenvalues have a positive real part then the steady state is unstable and if
one has a positive and one has a negative fixed part the steady state is an unstable
saddle node. If both eigenvalues are purely imaginary, the system oscillates around
the fixed point. Solving the above for the fixed points in the predator-prey system,
we find one stable steady state and one oscillatory fixed point.

2.2.4.4 Bifurcation analysis

A bifurcation analysis is carried out in order to study the effect that parameters
have on the dynamical behaviour of the system (Strogatz 1994). In order to create
a bifurcation diagram, all the parameters in the system remain constant while the
value of one parameter is varied. We can then observe any changes in the number
and stability of the steady states of the system, for example, whether a stable equi-
librium in the system becomes unstable. The point where a major change occurs in
the steady states of the system is called a bifurcation point (Ingalls & Iglesias 2010).
The stability of the steady state, as well as its position, is depicted on a bifurcation
diagram. By convention, the unstable branches are denoted by a dashed line and
the stable branches by a solid line (Strogatz 1994).

One example of a bifurcation is the saddle-node bifurcation. This occurs when
two stable states come closer together until they collide and destroy each other (Strog-
atz 1994). This can be illustrated using a simple example from Strogatz (1994). Con-
sider the following system

𝑑𝑥
𝑑𝑡 = 𝑟 + 𝑥 .

A bifurcation diagram of the above can be constructed by varying the value of para-
meter 𝑟. This gives the bifurcation diagram shown in Figure 2.5. This system has
two steady states when 𝑟 <0, one unstable steady state and one stable. When 𝑟 = 0
these collapse into one steady state which then disappears when 𝑟 >0.
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Figure 2.5 An example of a saddle-node bifurcation diagram. Figure adapted
from Strogatz (1994).

2.2.5 Stochastic modelling of dynamical systems
The assumptions that have to be made to model a system deterministically cannot
always be met. This can occur when the molecule numbers in the system are low.
When this is the case, stochastic dynamics are more appropriate to model the dy-
namical system. In stochastic modelling species are measured in discrete amounts
rather than concentrations and a joint probability distribution is used to express the
probability that at time t the cell contains a number of molecules of each species (de
Jong 2002; Khammash 2010). It takes probabilistic effects into account.

Biological processes are well known to include randomness. The source of this
randomness originates from the random collisions between molecules that govern
biological reactions (Khammash 2010). This randomness affects downstream events
and the phenotypic behaviour of cells. This is known as cellular noise and it is
known to be key for various cellular processes (Eldar & Elowitz 2010). Cellular
noise can be classified into two categories, intrinsic noise and extrinsic noise. In-
trinsic noise originates from the inherently random collisions between the species
of the system under consideration. Extrinsic noise originates from fluctuations in
the environment within which the system of interest resides, like the number of
available RNA polymerases or other protein numbers (Khammash 2010). The noisi-
ness of biological processes often makes stochastic dynamics more appropriate for
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modelling cellular systems.

2.2.5.1 Simulating stochastic models

Stochastic models are often analytically intractable but can be studied using numer-
ical simulation. A well known algorithm for the simulation of such models is the
Direct method proposed by Gillespie (1977).

2.2.5.2 The Gillespie algorithm

In stochastic systems, the Gillespie algorithm is widely used to simulate the time-
evolution of the state of the system (Wilkinson 2006). The algorithm, developed
by Gillespie (1977) can be summarised in four steps:

1. Initialise time 𝑡 and number of species 𝑠 and state of system 𝑥

2. Draw a sample time step τ from the (exponential) distribution of time Τ

3. Draw a sample reaction from all reactions 𝑅

4. Update time by 𝑡 = 𝑡 + 𝜏 and state of system by 𝑥 = 𝑥 + 𝑠

5. Repeat from Step 2 until total simulation time reached

This algorithm results in one trajectory of the system. It has to be repeated a num-
ber of times to obtain enough realisations of the trajectory to compute appropriate
summary statistics.

2.2.5.3 Stochastic mass action kinetics

Here I will consider the predator-prey system introduced in Section 2.2.3.1. A set of
reactions is defined, as shown in Table 2.3, and each one has an associated stochastic
rate constant 𝑐 . The rate constant, or hazard function, of each reaction 𝑖 is defined
as ℎ (𝑥, 𝑐 ), where x is the current state of each species in the system. The form of
each hazard function is defined by the order of the given reaction (Wilkinson 2006),
as shown in Table 2.4. When simulating a stochastic system using the Gillespie
algorithm, the state of the system 𝑥 is defined as the sum of all the reaction hazards,
namely ℎ (𝑥, 𝑐) = ∑ ℎ (𝑥, 𝑐 ) (Wilkinson 2006).
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Table 2.4 Defining reaction hazards

Order Reaction Hazard

Zeroth ∅ −→ 𝑋 ℎ (𝑥, 𝑐 ) = 𝑐
First 𝑋 −→ ? ℎ (𝑥, 𝑐 ) = 𝑐 𝑥
Second 𝑋 + 𝑋 −→ ? ℎ (𝑥, 𝑐 ) = 𝑐 𝑥 𝑥
Dimerization 𝑋 + 𝑋 −→ 𝑋 ℎ (𝑥,𝑐 ) = 𝑐 ( )

2.3 The Bayesian approach to parameter inference and
system design
The parameters of a model represent the biochemical rates that are involved in the
system under study, like degradation rates, transcription rates and polymerization
rates. These rates cannot often be measured in vitro and taking generalised estim-
ates from existing literature can be inaccurate. In order to make useful predictions
about the biological system under consideration, the model parameters must be
estimated (Zheng & Sriram 2010).
To address this challenge, statistical optimisation methods have been developed.

These methods aim to infer the parameters of the model that can give rise to some
experimentally observed behaviour. Parameter inference methods have the same
general structure: there is a cost function that compares the model data to the ex-
perimental data and an optimisation function that aims to optimize the cost func-
tion (Toni 2010). There is a wide range of such optimisation algorithms that can
be used like gradient descent (Levenberg 1944; Marquardt 1963), simulated anneal-
ing (Kirkpatrick, CDGelatt, &Vecchi 1983) and evolutionary algorithms (Onbaşoğlu
& Özdamar 2001; Wood, Alexander, & Bulger 2002).
Bayesian approaches to parameter inference have been shown to work well in

biological problems (Barnes et al. 2011; Toni 2010; Liepe et al. 2014). Bayesian ap-
proaches to parameter inference have the advantage of offering a range of values
that give rise to the data, rather than point estimates. In Bayesian approaches the
aim is to obtain the posterior distribution, which is dependent on the prior distribu-
tion, the prior knowledge about the system, and the likelihood, which is obtained
from the data. At the core of Bayesian statistics lies Bayes’ rule which states that,
for a set of data 𝑥 and a model with a set of parameters 𝜃:
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𝑝(𝜃|𝑥) = 𝑝(𝑥|𝜃)𝑝(𝜃)
𝑝(𝑥) ∝ 𝑝(𝑥|𝜃)𝑝(𝜃), (2.12)

where 𝑝(𝑥|𝜃) is the likelihood, and 𝑝(𝜃) is the prior. In continuous problems, Equa-
tion 2.12 becomes

𝑝(𝜃|𝑥) = 𝑝(𝜃)𝑝(𝑥|𝜃)
∫ 𝑝(𝑥|𝜃)𝑝(𝜃)𝑑𝜃 (2.13)

where 𝑝(𝑥|𝜃)𝑝(𝜃)𝑑𝜃 is the evidence. It is often not possible to obtain analyt-
ical expressions of the posterior, but methods to approximate it numerically have
been developed (Barnes, Silk, & Stumpf 2011). One such class of algorithms are
the Markov Chain Monte Carlo methods (Gilks, Richardson, & Spiegelhalter 1996).
These are described in more detail in Section 2.3.1.

Parameter estimation problems typically involve a set of observed data and a
mathematical model describing the biological system. Oftentimes there are a num-
ber of competing models under consideration. The challenge then is to fit the model,
and model parameters in order to reconstruct the observed data (Ma et al. 2009). In
system design a different but related problem must be addressed; Instead of experi-
mental data the researcher has an idea of what the system output should be (Barnes,
Silk, & Stumpf 2011). A set of carefully selected design objectives can then be used
as substitute data (𝑥 ), representing data one would like to observe, in the Bayesian
inference problem (Barnes, Silk, & Stumpf 2011). This method has been successfully
applied in synthetic biology system design (Barnes et al. 2011; Woods et al. 2016).

2.3.1 Approximate Bayesian Computation (ABC)
ABC methods are used for inferring the posterior distribution in cases where it
is too computationally expensive to evaluate the likelihood function. Instead of
calculating the likelihood, ABC methods simulate the data and then compare the
simulated and observed data through a distance function (Toni et al. 2009). Given
the prior distribution 𝑝(𝜃)we can approximate the posterior distribution, 𝑝(𝜃 ∣ 𝑥) ∝
𝑝(𝑥 ∣ 𝜃)𝑝(𝜃), where 𝑝(𝑥 ∣ 𝜃) is the likelihood of a parameter, 𝜃, given the data, 𝑥.
There are a number of different variations of the ABC algorithm depending on how
the approximate posterior distribution is sampled.
The simplest ABC algorithm is the ABC rejection sampler (Pritchard et al. 1999).

In this method, parameters are sampled from the prior and data simulated through
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the data generating model. For each simulated data set, a distance from that of the
data is calculated, and if greater than a threshold, ε, the sample is rejected, otherwise
it is accepted.

Algorithm 1 ABC rejection algorithm

1: Sample a parameter vector θ from prior 𝑝(𝜃)
2: Simulate the model given θ
3: Compare the simulated data with the desired data, using a distance function d

and tolerance ε. if d ≤ ε, accept θ

The main disadvantage of this method is that if the prior distribution is very differ-
ent from the posterior, the acceptance rate is very low (Toni et al. 2009). An alternat-
ivemethod is the ABCMarkov ChainMonte Carlo (MCMC) developed byMarjoram
et al. (2003). The disadvantage of this method is that if it gets stuck in an area of
low probability it can be very slow to converge (Sisson, Fan, & Tanaka 2007).

An alternative method developed by Toni et al. (2009) takes advantage of Sequen-
tial Monte Carlo, and avoids issues faced by the rejection and MCMC methods. It
propagates the prior through a series of intermediate distributions in order to arrive
at an approximation of the posterior. The tolerance, ε, for the distance of the simu-
lated data to the desired data is made smaller at each iteration. When ε is sufficiently
small, the result will approximate the posterior distribution (Toni et al. 2009).
ABC SMC can identify the parameter values within a predefined range of values

that can give rise to the data. It works by first sampling at random from the initial
range set by the researcher, i.e. from the prior distribution of values. Each sample
is called a particle. It then simulates the model given those values and compares
that to the target behaviour. If the distance between the simulation and the target
behaviour is greater than a predefined threshold distance ε, then the parameter
values that produced that simulation are rejected. This is repeated for a predefined
number of samples which are collectively referred to as a population. Each particle
in a population has a weight associated with it, which represents the probability
of it producing the desired behaviour. At subsequent iterations, the new samples
are obtained from the previous populations and the ε is set to a smaller value, thus
eventually reaching the desired behaviour. The algorithm proceeds as follows:
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Algorithm 2 ABC SMC algorithm

1: Select ε and set population t = 0
2: Sample particles (θ). If t = 0, sample from prior distributions (p). If t> 0, sample

particles from the previous population to obtain θ*.
3: If t > 0: Perturb each particle θ* using perturbation kernel 𝐾 to obtain per-

turbed particle θ**
4: Simulate each particle to obtain time course.
5: Reject particles if d > ε.
6: Calculate the weight𝑤 for each accepted particle. At the first population assign

a weight equal to 1 for all particles. In subsequent populations the weight of
a particle is equal to the probability of observing that particle divided by the
sum of the probabilities of the particle arising from each of the particles in the
previous population:

7: 𝑤( ) =
1, if 𝑡 = 0

( ( ))
∑ ( ) ( ( ) , ( ))

, if 𝑡>0.

Details about each module of the ABC SMC algorithm are given in the sections
below.

2.3.1.1 Particle sampling

For the first population, particles are sampled from the prior, which consists of
the boundaries of a distribution for each parameter defined by the user based on
biochemical knowledge or literature. For subsequent populations, particles are
sampled from the previous population. The weight of each particle in the previ-
ous population dictates the probability of it being sampled. The number of samples
to be drawn is specified by the user.

2.3.1.2 Perturbation

Each sampled particle is perturbed by a kernel defined by the distribution of the
previous population, as developed by Toni et al. (2009).

𝐾 (𝜃|𝜃∗) = 𝜃∗ + 𝑈(+𝑠 ,−𝑠 ), (2.14)

where

𝑠 = 1
2 𝑚𝑎𝑥(𝜃 ) − 𝑚𝑖𝑛(𝜃 ) (2.15)

If the θ** falls out of the limits of the priors then the perturbation is rejected and
repeated until an acceptable θ** is obtained. This method is successful in perturbing
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the particles by a small amount in order to explore the parameter space, but can be
slow to complete.

2.3.1.3 Epsilon schedule

The algorithm uses an automated epsilon schedule, where the threshold of the next
iteration is chosen from the range of values of the current population. This method
is the quantile method. Another approach to the epsilon schedule is to use an ad-
aptive epsilon schedule which is efficient in avoiding local minima (Silk, Filippi, &
Stumpf 2013). Throughout this thesis, the quantile method was used with a tight
quantile (0.3) to avoid the problem of local minima.

2.3.1.4 Particle simulation

Each particle is simulated using cuda-sim (Zhou et al. 2011). The model is provided
by the user in SBML format and is converted into CUDA® code by cuda-sim. The
model in CUDA® code format can then be run on NVIDIA® GPUs. This allows the
user to take advantage of the speed of parallelised simulations without any CUDA®

knowledge.

2.3.1.5 Weight calculation

For the first population the weights are all given a value of 1, and then normal-
ised over the number of particles. For subsequent populations, the weights of the
particles are calculated by considering the weights of the previous population (Toni
et al. 2009). The weights are then normalised over the total number of particles.

𝑤( ) = 𝑝(𝜃( ))
∑ 𝑤( ) 𝐾 (𝜃( ) , 𝜃( ))

for n > 0. (2.16)

2.3.1.6 ABC SMC algorithm example

This algorithm is implemented on a simple example for illustration. A simple model
was used, consisting of one species, 𝐴 converting to another, 𝐵. The model is de-
scribed by two differential equations, where 𝐴 is the reactant and B the product,
produced at a rate 𝑝.

𝑑[𝐵]
𝑑𝑡 = 𝑝[𝐴] (2.17)
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𝑑[𝐴]
𝑑𝑡 = −𝑝[𝐴]. (2.18)

The priors were set to 𝑝 ∼ 𝑈(0, 10)𝑛𝑀𝑠 . Initial conditions for 𝐴 and 𝐵 were set to
1 and 0 respectively. The data to which the model was compared to was generated
by simulating the same model with the parameter set to 1, as shown in Figure 2.6.
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Figure 2.6 ABC SMC parameter inference. The true parameter value is equal to 1
and its time course is shown in red in the top left panel. The blue time course
is that of the final population, green is the upper quartile and red is the lower
quartile range of values. The progress of the selection process can be seen the
as the ε schedule proceeds from the top left to the bottom right. The bottom far
right panel is a weighted density plot of the posterior distribution of p at ε = 0.01.

Figure 2.6 illustrates the use of ABC SMC, using a simple example. During the
course of 7 populations, the accepted distance ε of the simulated particles to the
data is incrementally decreased. This leads to a final population where the distance
of the data to the particles is very small, and there is a good agreement between
the two. The algorithm concludes with a set of parameter values that produced this
behaviour, which approximate the posterior distribution. The posterior distribution
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found in this model is in good agreement with the parameter value used to generate
the data.
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2.3.1.7 Visualising posterior distributions

The posterior distribution has as many dimensions are there are parameters, thus
can be challenging to visualise for models containing more than two parameters.
In order to visualise the multi-dimensional posterior distributions in this thesis, the
one and two-dimensional marginal distributions of the parameters will be shown.
An example of such a plot is shown in Figure 2.7. The data shown in Figure 2.7
consists of 10000 random samples drawn from a bivariate normal distribution, of
mean = 0 for all dimensions and variance σ

𝜎 = 1 0.5
0.5 1

.

The two-dimensional distribution is plotted as shown in Figure 2.7.
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Figure 2.7 Visualising a two-dimensional distribution. (A) A bivariate normal dis-
tribution plotted in 3D. (B) A bivariate normal can be visualised by plotting the
one-dimensional marginal distributions on the diagonal and the two-dimensional
marginal distributions are on the off-diagonal. Correlation can be visualised us-
ing the 2D marginal distributions.
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2.3.2 Derivation of model parametric robustness defined via
Bayesian statistics
During this thesis I use the term robustness in its parametric meaning, i.e. as the
ability of a system to retain its function despite parameter perturbations (Stelling et
al. 2004). The robustness of biological systems has been studied extensively (Barkai
& Leibler 1997; Stelling et al. 2004; Prill, Iglesias, & Levchenko 2005; Kim et al. 2006;
Kitano 2007; Hafner et al. 2009; Shinar & Feinberg 2010; Zamora-Sillero et al. 2011;
Woods et al. 2016). Below I show that the robustness of a model can be calculated
by dividing the volume of its functional region by the volume of its priors. Starting
with Bayes’ rule that:

𝑓(𝜃|𝑥) = 𝑓(𝜃)𝑓(𝑥|𝜃)
∫ 𝑝(𝑥|𝜃)𝑝(𝜃)𝑑𝜃 , (2.19)

where 𝑥 is the data, 𝑝(𝑥|𝜃) is the likelihood, 𝑝(𝜃) is the prior, and 𝑝(𝑥|𝜃)𝑝(𝜃)𝑑𝜃
is the evidence. The evidence is the normalisation constant so that the distribution
integrates to 1. For a givenmodel design𝐷 and objective Owe define the functional
region 𝐹 as the region within the prior where O is satisfied. So within the prior we
can assign 1 to any region that falls within 𝐹 and 0 to any region outside that.

𝑝(𝑂|𝐷 ) = 𝑝(𝑂|𝜃, 𝐷 )𝑝(𝜃|𝐷 )𝑑𝜃, (2.20)

for a design with three parameters this becomes

𝑝(𝑂|𝐷 ) = 𝑝(𝑂|𝜃)𝑝(𝜃|𝐷 )𝑑𝜃, (2.21)

where 𝜃 is a vector containing the three parameters = (𝜃 , 𝜃 , 𝜃 ), and each 𝜃 ∈ ℝ.
To calculate the robustness, or model evidence, we integrate this with respect to 𝜃.
We assume all parameters 𝜃 , 𝜃 , 𝜃 have uniform prior, 𝑝(𝜃|𝐷 ) ∼ 𝑈(𝑎, 𝑏). If we
assume a = 0 this integral becomes:

𝑝(𝑂|𝐷 ) = 𝑝(𝑂|𝜃) 1𝑏
1
𝑏

1
𝑏 𝑑Θ , and (2.22)

𝑝(𝑂|𝐷 ) = 1
𝑏

1
𝑏

1
𝑏 𝑝(𝑂|𝜃)𝑑𝜃, (2.23)

since is a constant. Then assuming that the likelihood is uniform Equa-
tion 2.23 becomes
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𝑝(𝑂|𝐷 ) = 1
𝑏

1
𝑏

1
𝑏 1𝑑𝜃 +

�
�

�
��>

0

�

0𝑑𝜃 , (2.24)

since we assign 1 to any region within 𝐹 and 0 to any region outside it. This be-
comes:

𝑝(𝑂|𝐷 ) =

| |
1
𝑏

1
𝑏

1
𝑏 1𝑑𝜃

| |

, (2.25)

∴𝑝(𝑂|𝐷 ) = |𝐹|
|𝑃| , (2.26)

where |P| is the volume of the prior P and |F| the volume of the functional region
F. Therefore, in the case where both the prior and the likelihood are uniform, the
robustness 𝑅 of the design is the ratio of the volumes of the two. If on the other hand
we assume the likelihood is multivariate normal, with priors remaining uniform,
Equation 2.23 becomes:

𝑝(𝑂|𝐷 ) = 1
|𝑃| 𝑓(𝜃; 𝜇, Σ)𝑑𝜃 (2.27)

∴𝑝(𝑂|𝐷 ) = 1
|𝑃|

2𝜋
𝑘Γ( )

𝜒 (𝛼) |Σ|

The volume of an ellipsoid

(2.28)

∴𝑝(𝑂|𝐷 ) = |𝐹|
|𝑃| . (2.29)

We can use the Bayes factor in order to compare the robustness between two model
designs. The Bayes factor is used to determine which model,𝑀 or𝑀 , can explain
the data X better and is defined as follows:

𝐵 = 𝑝(𝑋|𝑀 )
𝑝(𝑋|𝑀 ) , (2.30)

which represents the fraction of the evidence supported by model 𝑎 over the evid-
ence supported by model 𝑏. The evidence against model 𝑀 , and thus in favour of
𝑀 , the Bayes factor, can be interpreted as shown in Table 2.5. For a comprehensive
review on the use of Bayes factors see Kass & Raftery (1995).
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Table 2.5 Bayes factor evidence interpretation. Modified from Kass & Raftery
(1995)

Bayes factor Evidence

1 to 3.2 Not significant
3.2 to 10 Substantial
10 to 100 Strong
>100 Decisive

In a system design model, the Bayes factor is used to determine which design, 𝐷
or 𝐷 can fulfil the design objective O better. Therefore,

𝐵 =
𝑝(𝑥|𝜃, 𝐷 )𝑝(𝜃, 𝐷 )𝑑𝜃

𝑝(𝑥|𝜃, 𝐷 )𝑝(𝜃, 𝐷 )𝑑𝜃
= 𝑝(𝑂|𝐷 )
𝑝(𝑂|𝐷 ) (2.31)

∴𝐵 = |𝐹 |
|𝑃 |/

|𝐹 |
|𝑃 | . (2.32)

We can thus use the ratio of the two robustness measures to calculate the Bayes
factor. If two models have a different number of parameters, the robustness of the
system will only increase if |F| increases by more than the proportion by which |P|
increased (Woods et al. 2016). A model is penalised for an additional parameter if it
does not increase the volume of the functional region by more than the volume that
the added parameter added to the prior. This is also true for nested models, where
one model is wholly contained in the other.
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3 Positive feedback loops can increase
the robustness of a genetic toggle
switch

3.1 Introduction
In this chapter, I examine whether adding feedback loops to the genetic toggle
switch increases its robustness to parameter fluctuations. To do this, I use ABC
SMC to estimate the parameter values that allow the toggle switch model to behave
like a switch. I then study the effect that adding feedback loops has to the toggle
switch bistability, and finally I use model selection to select the most robust switch
model out of the ones considered.
Structurally this chapter is organised as follows: In the first section, I examine the

genetic toggle switch with no added feedback loops. I use a parameter scan to find
the parameter values that make it bistable and then use ABC SMC for parameter
inference for a switch-like behaviour. In the subsequent section, I examine the effect
that the addition of feedback loops to the genetic toggle switch has on its stability,
and select the switch architectures that are capable of bistable behaviour. Finally, I
use ABC-SysBio model selection to select the most robust model out of the bistable
switches.

3.2 Motivation
Creating synthetic devices that are robust to changing cellular contexts will be key
to the success of synthetic biology. Unknown initial conditions and parameter
values as well as the variability of the cellular environment, extracellular noise
and crosstalk make the majority of synthetic genetic devices non-functional (Chen,
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switch
Chang, & Lee 2009). Designing devices robust to this environment will lead to reli-
able behaviour of the systems.
When faced with a set of competing designs for a given genetic circuit, one

is likely to choose the simplest possible model that can achieve the desired beha-
viour. However, simple systems are often the least robust. Feedback loops are well
known key regulatory motifs (Brandman et al. 2005). Negative feedback loops are
essential for homoeostasis and buffering, thus increasing robustness to extrinsic
noise sources, and positive feedback loops can generate multistationarity in a sys-
tem (Thomas, Thieffry, & Kaufman 1995). Incorporating this kind of additional feed-
back interactions can make a design more robust and reliable.
One of the first computational approaches for the tuning of robust synthetic net-

works was that of Batt et al. (2007) where they examined the problem of finding a
subset of the parameter space for which a given property was satisfied for all the
parameters. Chen, Chang, & Lee (2009) used the fuzzy dynamic game method to
solve the minimax regulation design problem of synthetic genetic networks. In that
method, the worst case effect of all disturbances is minimised for a given network.
An evolutionary algorithm has also been used to solve the robust design problem by
evolving the parameters of the system in order to make it more robust to cellular
disturbances by Wu, Lee, & Chen (2011). Here I use Bayesian model selection to
examine the system structure in addition to the system parameters being adjusted
to select a system that can robustly create the desired behaviour.

3.3 The bistable genetic toggle switch
The synthetic genetic toggle switch consists of two mutually repressing transcrip-
tion factors. It was first developed by Gardner, Cantor, & Collins (2000), and con-
sists of the following ODEs:

𝑑𝑢
𝑑𝑡 =

𝑎
1 + 𝑣 − 𝑢 (3.1)

𝑑𝑣
𝑑𝑡 =

𝑎
1 + 𝑢 − 𝑣, (3.2)

where u is the concentration of repressor 1, v the concentration of repressor 2, 𝑎
and 𝑎 denote the effective rates of synthesis of repressors 1 and 2 respectively, β
is the cooperativity of repression of promoter 1 and γ of repressor 2. This model
is capable of bistable behaviour when 𝑎 and 𝑎 are balanced and when β, γ are >
1 (Gardner, Cantor, & Collins 2000). This model is derived from the biochemical rate
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Figure 3.1 Simple toggle switch model using the Shea-Ackers formalism

equations of gene expression for the two promoters in the system. Using the Shea-
Ackers formalism (as described in Section 2.2.2.2), these are shown in Figure 3.1.
The model can thus also be described by the following ODEs:

𝑑𝑢
𝑑𝑡 =

𝑎 𝑙
1 + 𝑙 + 𝑘 𝑣 − 𝑢 (3.3)

𝑑𝑣
𝑑𝑡 =

𝑎 𝑙
1 + 𝑙 + 𝑘 𝑢 − 𝑣, (3.4)

The model shown in Equations 3.1-3.2 is the dimensionless version of the model
shown in Equations 3.3-3.4. This is constructed by measuring 𝑎 and 𝑎 in units
of 𝑘 and 𝑘 respectively (Phillips et al. 2013) and setting leakiness to zero. In
Section 3.3.2 I will use the more realistic Shea-Ackers version of the model to show
that it is also capable of bistable behaviour.

3.3.1 The quasi steady state approximation and the genetic toggle
switch
In order for a system to be able to be studied mathematically, a number of assump-
tions have to be made. The system under consideration has to be reduced to very
few equations and parameters in order tomake the system solvable. This requires as-
sumptions to be made about the system that cannot always be justified, such as the
quasi-steady state approximation (QSSA). The QSSA assumes that the binding/un-
binding processes are much faster than any other process (Loinger et al. 2007) thus
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the bound intermediate is assumed to always be in steady state. The QSSA assump-
tion is met in vitro but often does not hold in vivo. Its misuse can lead to large errors
and incorrectly estimated parameters (Pedersen, Bersani, & Bersani 2007).

Equations 3.1-3.2 of the genetic toggle switch can be derived from the full model
by using the quasi-steady state approximation (QSSA). In this section I will discuss
how Equations 3.1-3.2 can be derived from the full model constructed under the
mass action formalism by using the QSSA. Consider the set of reactions given in
Table 3.1 representing the genetic toggle switch.

Table 3.1 Toggle switch model reactions under mass action kinetics

Equation Description

𝑔𝑢 ⟶ 𝑔𝑣 + 𝑢 gene expression
𝑔𝑣 ⟶ 𝑔𝑢 + 𝑣
𝛽𝑢

Kdu−−⇀↽−−Kmu
𝑢 dimerization

𝛾𝑣 −−⇀↽−− 𝑣

𝑔𝑢 + 𝑣 −−⇀↽−− 𝑣 • 𝑔𝑢 repression
𝑔𝑣 + 𝑢 −−⇀↽−− 𝑢 • 𝑔𝑣

𝑢 ⟶ ∅ degradation
𝑣 ⟶ ∅

Using mass action kinetics, this set of reactions gives us the following ODEs:

𝑑𝑢
𝑑𝑡 = 𝑎 𝑔𝑢 − 𝐾𝑑 𝑢 + 𝐾 𝑢 − 𝐷 𝑢 (3.5)
𝑑𝑣
𝑑𝑡 = 𝑎 𝑔𝑣 − 𝐾𝑑 𝑣 + 𝐾 𝑣 − 𝐷 𝑣 (3.6)

𝑑𝑢
𝑑𝑡 = 𝐾𝑑 𝑢 − 𝐾𝑚 𝑢 − 𝐾𝑓 𝑔𝑣𝑢 (3.7)
𝑑𝑣
𝑑𝑡 = 𝐾𝑑 𝑣 − 𝐾𝑚 𝑣 − 𝐾𝑓 𝑔𝑢𝑣 (3.8)

𝑑𝑔𝑢 • 𝑣
𝑑𝑡 = 𝐾𝑓 𝑔𝑣𝑣 − 𝐾𝑟 𝑔𝑢 • 𝑣 (3.9)

𝑑𝑔𝑣 • 𝑢
𝑑𝑡 = 𝐾𝑓 𝑔𝑢𝑢 − 𝐾𝑟 𝑔𝑣 • 𝑢 . (3.10)

The principal quasi steady state assumption being made is that the rate of binding
and unbinding of the repressor to the promoter happens very fast. We assume that it
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happens so much faster than any other reaction in the system that we can assume
that • and • are constant, i.e. in equilibrium. This assumption is also
known as the separation of timescales in transcriptional regulation. In order for

• and • to be in equilibrium, we must assume that

𝑑𝑔𝑢 • 𝑣
𝑑𝑡 = 𝐾𝑓 𝑔𝑣𝑣 − 𝐾𝑟 𝑔𝑢 • 𝑣 = 0 (3.11)

𝑑𝑔𝑣 • 𝑢
𝑑𝑡 = 𝐾𝑓 𝑔𝑢𝑢 − 𝐾𝑟 𝑔𝑣 • 𝑢 = 0, (3.12)

therefore,

𝐾𝑓 𝑔𝑣𝑣 − 𝐾𝑟 𝑔𝑢 • 𝑣 = 0 (3.13)

𝐾𝑓 𝑔𝑢𝑢 − 𝐾𝑟 𝑔𝑣 • 𝑢 = 0. (3.14)

Nowwe have a set of algebraic equations rather than differential equations. Solving
for • and • respectively we get:

𝑔𝑢 • 𝑣 =
𝐾𝑓 𝑔𝑣𝑣
𝐾𝑟 (3.15)

𝑔𝑣 • 𝑢 =
𝐾𝑓 𝑔𝑢𝑢
𝐾𝑟 . (3.16)

This can now be substituted into the set of Equations 3.5-3.10. The second assump-
tion that is made in this system is that the rate of formation and dissociation of
the polymerised transcription factor is in steady state. This allows us to solve the
system for 𝑢 in a similar way as shown above and substitute it in Equations 3.5-3.10.
This results in a simplified model, with fewer differential equations and parameters.

3.3.2 Phase space and bifurcation analysis
First, I study the model given in Equations 3.3-3.4 by conducting a bifurcation ana-
lysis in order to confirm that it is capable of bistable behaviour. A bifurcation ana-
lysis is used to determine the properties of a system in parameter space (Alon 2007).
Here I used the PyDSTool (Clewley 2012), a python package used for the analysis
of dynamical systems.
The parameters chosen here for the phase space analysis are within the range

suggested by Gardner, Cantor, & Collins (2000). Parameters 𝑎 and 𝑎 are set to 10,
and β, γ set to 2. A vector plot shows that the system has two steady states as shown
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in Figure 3.2. Both states were found to be stable by examining the eigenvalues of
the system at each steady state using Mathematica (Mathematica 2016).

I further study the system by conducting a bifurcation analysis, where all para-
meters remain constant to the values shown above, and only one parameter (𝑎 ) is
varied. The bifurcation diagram, given in Figure 3.2C shows a saddle-node bifurca-
tion. We observe that by varying the parameter for the effective rate of synthesis of
repressor 1 while all other parameters remain constant, the system is bistable when
7 ≥ 𝑎 ≤ 17.
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Figure 3.2 The Gardner, Cantor, & Collins (2000) toggle switch is capable of
bistable behaviour given 𝑎 and 𝑎 = 10, and β, γ = 2. (A) The time course of
the simulated model using multiple initial conditions for 𝑣. (B) The vector plot
of the Gardner switch shows there are two stable steady states at (u, v) = (4.791,
0.208) and (u, v) = (0.208, 4.791). (C) A bifurcation diagram shows that the system
is bistable when 7 ≥ 𝑎 ≤ 17.
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3.4 Designing a simple synthetic switch
It was demonstrated that the model used in Section 3.3.2 is bistable for the paramet-
ers given. Nevertheless, for a switch to be useful in synthetic biological applications,
it must be capable of behaving like a switch over a range of parameter values rather
than just point values, as these fluctuate within the cellular environment. Therefore,
in this section, I study the parameter ranges that can give rise to a bistable switch.
This indicates whether the bistability of the switch models is robust to small para-
meter fluctuations.

3.4.1 Development of the mass action model for the genetic toggle
switch
In order to study the switch system in amore realistic way, I developed an extension
to the Gardner, Cantor, & Collins (2000) switch. This new set of switches does
not use the quasi-steady state approximation (QSSA), as described in Section 3.3.1.
Avoiding the use of the QSSA the model becomes more flexible and does not assume
that the formation of the polymerised transcription factors is in steady state or that
the association and dissociation of the transcription factors to the promoter is in
steady state.
Using mass action, this changes the two-equation system used in Equations 3.1-

3.2 into a system of 18 equations. The equations describing the system are shown
below and illustrated in Figure 3.3. The ODEs are given in Appendix B. The system
consists of two genes, gA and gB. The products of the genes homodimerise and mu-
tually repress each other. A symmetric model, where the parameters for equivalent
reactions are set to be the same, was used for simplicity.
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Figure 3.3 An illustration of the toggle switch model used in the parameter scan.

Table 3.2 Simple mass action switch reactions

Equation Description

gA ge⟶ gA+A gene expression
gB ge⟶ gB+ B

A+A dim⟶ A2 dimerization
B+ B dim⟶ B2

A2
dim_r⟶ A+A monomerization

B2
dim_r⟶ B+ B

gA+ B2
rep⟶ B2gA repression

gB+A2
rep⟶ A2gB

B2gA
rep_r⟶ B2 + gA dissociation

A2gB
rep_r⟶ A2 + gB

A deg⟶ ∅ degradation
B deg⟶ ∅
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3.4.2 Parameter scan for model stability
The bifurcation analysis carried out in Section 3.3.2 can give us the conditions for
bistability of a model with respect to one parameter being varied while all the oth-
ers remain constant. Here I want to determine the range of parameter values for
which the above model is bistable without assuming a specific point value for any
parameter. Therefore I developed a parameter scanning algorithm, that varies all
the parameters in the model over a given range. The algorithm is outlined in Al-
gorithm 3 below. This method involves the scan of parameter values as well as
initial conditions for A2 and B2. Parameter values are sampled randomly from a
uniform distribution, U(0, 10). Here, each set of samples will be referred to as a
particle. For each particle, latin hypercube sampling is used to sample initial condi-
tions (McKay, Beckman, & Conover 2000). The uniform priors of the two species in
consideration represent a rectangular space, which is subdivided into equal parts.
Then a random sample is drawn from each sub-part, as illustrated in Figure 3.4.
This is used to ensure that the whole space is sampled uniformly. Latin hypercube
sampling is done in two dimensions, in order to sample initial conditions for the
two dimers, A2 and B2. All other species have fixed initial conditions, with 𝑔𝐴 = 1
and 𝑔𝐵 = 1 while all other species are equal to zero.

Algorithm 3 Parameter scan algorithm

1: Select 100 sets of parameter values from a randomuniform distribution between
0 and 10.

2: for each set of parameter values do:
3: step ← 1
4: for i in range(0, 10) do
5: for j in range(0, 10) do
6: A2 sample = random sample from U(i, i + step)
7: B2 sample = random sample from U(j, j + step)
8: end for
9: end for
10: for each set of initial conditions do
11: Integrate ODEs of the model to t = 100 mins
12: Let s = {s1, s2, …, s8}, the values of al species at last time point
13: Find roots of system using s as starting estimates
14: end for
15: Plot phase plot of roots for A2, B2
16: end for

The roots of each particle for each initial condition were found using the Python
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Figure 3.4 Latin hypercube sampling ensures that the whole space is sampled
evenly. For the two species concerned, A2 and B2, we assume uniform distri-
butions, shown in grey. The joint space of the two distributions is divided into
smaller equal parts and a random sample is drawn from within each subspace.
Diagram adapted from Youssef et al. (2013).

package SciPy (Jones, Oliphant, & Peterson 2001). A phase plot was made for each
particle, which consists of the last time point value of one dimer plotted against
the other. The parameter scan uncovered the presence of bistable and monostable
systems given a different set of parameter values. An example of the phase plots
for each of the two types of stabilities found during the scan is shown in Figure 3.5.

Figure 3.5 An example of each type of switch found during the parameter scan.
Each graph represents the steady state values of one dimer plotted against the
other, from one parameter set and 100 initial conditions.

A total of 1000 parameter sets were sampled. Out of these, 56% were monostable,
35.2% did not reach steady state and 8.8% where bistable. The distributions of the
parameters that produced each stability are shown in Figure 3.6. From Figure 3.6
it can be seen that the parameter for gene expression (ge) tends to be relatively
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Figure 3.6 The distribution of parameter values that resulted in monostable and
bistable switches in the parameter scan. The one-dimensional marginal distri-
bution of each parameter is plotted on the diagonal and the two-dimensional
marginal distributions are on the off-diagonal.

high when bistability arises. The parameter for repression (rep) tends to be high
whereas the parameter for its reverse reaction (rep_r) tends to be low. From this
analysis I showed that the toggle switch is capable of bistable behaviour for a range
of parameter values.

3.4.3 Toggle switch parameter inference
In this section, I extend the analysis carried out in Section 3.4.2 to study the problem
of how to rationally design a synthetic biological system to perform a behaviour of
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Table 3.3 Toggle switch inducer equations

Equation Description

S+A2
rep_dim⟶ SA2 Inducer repression

R+ B2
rep_dim⟶ RB2

SA2
rep_dim_r⟶ S+A2 Inducer dissociation

RB2
rep_dim_r⟶ R+ B2

R deg⟶ ∅ Inducer degradation
S deg⟶ ∅

choice. In order to address this question, I use a Bayesian approach, known as
Approximate Bayesian Computation and described in Section 2.3.1, implemented
in a software package, ABC-SysBio (Liepe et al. 2010).
This approach is capable of approximating the posterior distribution that gives

rise to the behaviour of choice (Toni et al. 2009). By simulating the model in ques-
tion, this approach can identify an approximate posterior distribution via a series of
intermediate distributions. This method can be used for the rational design of syn-
thetic biological systems by defining some design objectives to which the model is
fitted to (Barnes et al. 2011). By specifying the inputs to the system and the out-
puts required, the posterior of the model that can produce this behaviour can be
identified.
Here I use ABC-SysBio to fit a model to the design objectives of a switch-like

behaviour. I extend the model used in Section 3.4.2 by adding two inducers to the
system, S and R. S removes the A homodimer (A2) from the system by binding to
it thus removing the repression on gene B. R removes B2 from the system with the
same mechanism. These inducers represent the stimuli that will turn the switch ON
and OFF in a biological setting. The equations shown in Table 3.3 are added to the
existing set of equations for the mass action switch:
The range of parameter values shown to produce a bistable switch in Section 3.4.2

was used as priors and are shown in Table 3.4. Initial conditions of the two genes,
𝑔𝐴, 𝑔𝐵 were set to 1, and species 𝐴 and 𝐴 were set to 50 and 10 respectively, in
order to set the starting conditions of the switch to 𝐵 OFF. All other species initial
conditions were set to 0. The system was simulated using ODEs.
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Table 3.4 The prior distributions used for the standard toggle switch parameter
inference. The values indicate the lower and upper limits (inclusive) of a uniform
distribution.

ge rep rep_r dim dim_r deg rep_dim rep_dim_r deg_sr deg_dim
(min-1) (μM-1 min-1) (min-1) (μM-1 min-1) (min-1) (min-1) (μM-1 min-1) (min-1) (min-1) (min-1)
6-9 4-10 1-4 4-10 2-7 2-5 0.05-0.1 0.01-0.05 0.01-0.05 0-1

3.4.4 Design specifications
The following were defined as the design specifications for a bistable genetic toggle
switch. The two inducers, S and R, are used as inputs to flip the switch ON and OFF
respectively. The required output is the switch flipping from the OFF state to the
ON state and then to the OFF state again (Figure 3.7).

Figure 3.7 Design specification for ABC SMC parameter inference. The input to
the system consists of an event turning on the stimulus (S) at t = 20mins and
another turning on the repressor (R) at t = 70mins. The output specification is
the response to the switch to these stimuli.

3.4.4.1 Distance function

In order to fit the switch model to the behaviour specified above, a distance function
must be defined. The distance function defines the quantity that is minimised at
each successive iteration of ABC SMC. Three distances are measured, one for each
state of the switch, OFF-ON-OFF. Each distance is the sum of the distances of the
simulated protein levels to the desired protein levels at each time point. All three
distances must reach the minimum threshold for the process to be complete.
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𝑑 = (𝑠 − 𝑡 ) (3.17)

𝑑 = (𝑠 − 𝑡 ) (3.18)

𝑑 = (𝑠 − 𝑡 ) , (3.19)

where 𝑖 represents the time points, 𝑠 the simulation result at each time point and
𝑡 , 𝑡 , 𝑡 represent each target behaviour. 𝑡 , 𝑡 , 𝑡 were set to 0, 20, 0 respectively.

3.4.5 Results
The results of the parameter inference of the toggle switch are shown in Figure 3.8.
The model was shown to successfully behave like a switch within the parameter
range used here. The resulting time course of the last populationmatches the design
specifications. It can be seen from the posterior distribution that gene expression
rate (ge) must be high relative to the prior. Repression (rep) and degradation must
both be low and the rate of dimerisation (dim) must be high relative to the prior. The
posterior constitutes the specifications that can be used when building a synthetic
switch in the lab, as the appropriate components can be tweaked for a successful
circuit. More generally, the posterior distribution shows that the parameter space
that can give rise to this behaviour is limited. A very small portion of the prior is
capable of producing the desired design specifications. In the next section, I will
examine whether the addition of feedback loops can increase the robustness of this
behaviour.
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Figure 3.8 (A) The time series of the final population (for final ε = 2 ) of the stand-
ard toggle switch ABC-SMC parameter inference. The stimulus, that represses
A2, is added at t = 20mins and the repressor, that represses B2 is added at t =
70mins. (B) The posterior distribution of the toggle switch. The one-dimensional
marginal distribution of each parameter is plotted on the diagonal and the the
two-dimensional marginal distributions are on the off-diagonal.
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3.5 Designing a more robust genetic toggle switch
In this section, I examinewhether the addition of feedback loops to the toggle switch
can increase its robustness to parameter fluctuations. Here I define a robust system
as a device that can withstand fluctuations in parameter values and still produce
the desired behaviour (parametric robustness). Feedback loops are well known key
regulatory motifs (Brandman et al. 2005). As was shown in Section 3.4, the pos-
terior distribution of the simple toggle switch was narrow, and thus the behaviour
of choice will not be robust. Here I examine whether adding feedback loops to
the genetic toggle switch can increase parametric robustness for the desired design
specifications.

3.5.1 Models of the genetic toggle switch
Both positive and negative feedback loops were considered. Therefore 7 models
were examined for their capability to behave like a switch. The simple toggle switch,
switches with positive autoregulation in either or both nodes and switches with neg-
ative autoregulation in either or both nodes. The models considered are illustrated
in Figure 3.9.
In order to study each model mathematically I built extensions to the (Gardner,

Cantor, & Collins 2000) toggle switch in order to incorporate positive and negative
feedback to the system. These were constructed using the Shea-Ackers formalism,
as described in Section 2.2.2.2, as shown in Figure 3.10. The models for the double
autoregulation models are shown below. For the single autoregulation models, the
unnecessary autoregulation term is set to 0.
Double negative autoregulation:

𝑑𝑢
𝑑𝑡 =

𝑎 𝑙
1 + 𝑙 + 𝑘 𝑣 + 𝑘𝑎 𝑢 − 𝑢 (3.20)

𝑑𝑣
𝑑𝑡 =

𝑎 𝑙
1 + 𝑙 + 𝑘 𝑢 + 𝑘𝑎 𝑣 − 𝑣. (3.21)

Double positive autoregulation:

𝑑𝑢
𝑑𝑡 =

𝑎 (𝑙 + 𝑘𝑎 𝑢 )
1 + 𝑙 + 𝑘 𝑣 + 𝑘𝑎 𝑢 − 𝑢 (3.22)

𝑑𝑣
𝑑𝑡 =

𝑎 (𝑙 + 𝑘𝑎 𝑣 )
1 + 𝑙 + 𝑘 𝑢 + 𝑘𝑎 𝑣 − 𝑣, (3.23)

where 𝑘 represents the effective binding of the transcription factor to the other
promoter, 𝑘𝑎 represents the binding rate of the transcription factor dimer to it
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Figure 3.9 Toggle switch designs considered for model selection. A and B are
the two protein species involved in the switch, S is the stimulus inducer turn-
ing the switch ON and R the repressor turning the switch OFF. 7 models were
used: (A) The simple toggle switch (B-D) the switches with positive autoregula-
tion on either or both nodes and (E-G) the switches with negative autoregulation
on either or both nodes.

own promoter and β, γ represent the polymerisation of the bound transcription
factors.
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Figure 3.10 Toggle switchmodels with autoregulation using the Shea-Ackers form-
alism
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3.5.1.1 Autoregulatory switches phase space and bifurcation analysis

In order to use thesemodels for model selection, it must first be determinedwhether
they are capable of behaving like a switch. ABC SMC model selection is used to se-
lect models that can produce the same behaviour, over a greater range of parameter
values. If a model is not capable of producing the desired behaviour for the prior
range, then it will not be used for model selection.
I used the PyDSTool (Clewley 2012) in order to determine whether each of the

7 switches is capable of bistable behaviour. The same analysis as Section 3.3.2 was
used to identify the steady states of the systems and their stabilities. As shown
in Figure 3.11, both single and double positive autoregulation are consistent with
bistable behaviour. Two stable states were found for both cases when 𝑘 = 2 and δ =
1.

On the other hand, negative autoregulation was not consistent with bistable be-
haviour for the parameter values used here. The vector plot of the switch with
single negative autoregulation shows that there is one stable steady state when the
levels of the unregulated protein are high and the levels of the negatively regulated
protein low. The vector plot for the switch with double negative autoregulation
shows one stable steady state when the levels of both proteins are low. A bifurca-
tion plot of the switch with single positive autoregulation highlights this result; the
switch is bistable for only very small amounts of 𝑘𝑎 , the parameter for negative
autoregulation. This is shown in Figure 3.12.
Negative autoregulation occurs when the protein binds to its own promoter and

represses production. Therefore the protein levels rise to a lower level than what
would be expected for an unregulated system (Alon 2007). In the case of the double
negative autoregulation, the concentration levels of either protein would therefore
not be sufficient to dominate over the other and create bistability. In the case of the
single negative autoregulation, only the protein without autoregulation is able to
reach sufficient levels to dominate the system, and thus the only steady state of the
system is when the unregulated protein is high.
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Figure 3.11 Both single and double positive autoregulation are consistent with
bistable behaviour. (A) Single positive autoregulation. Two stable steady states
are found in the single positive autoregilation model at (u, v) = (9.89, 0.55) and
(u, v) = (0.1, 4.36). (B) Double positive autoregulation. The model with double
positive autoregulation has two stable steady states at (u, v) = (0.051, 9.89) and (u,
v) = (9.89, 0.051).
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Figure 3.12 (A) Time course of the single negative autoregulation switch, when
𝑘 = 2 with varying initial conditions. The system is monostable. (B) Bifurcation
diagram with respect to parameter 𝑘𝑎 of the switch with single negative autore-
gulation. The system is bistable only for very small amounts of 𝑘𝑎 . (C) One
stable steady state is found for the single negative autoregulation switch when
𝑘 = 2 at u = 0.208 and v = 4.79. (C) The vector plot of the switch with double
negative autoregulation has one steady state at u = 1.346 and v = 1.346.
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The models shown here to be capable of bistable behaviour will be used in the

following section for model selection, to determine whether the addition of positive
feedback loops increases the robustness of the system to parameter fluctuations.

3.5.2 ABC SMC for model selection
In Section 3.4.3 I used ABC SMC to infer the parameters of a model that can produce
the desired behaviour. In this Section I extend the analysis by asking which model,
out of the 5 candidate models shown above, can best produce the desired behaviour.
Bayesian model selection can be used to rank models according to their posterior
distributions.
ABC SMC model selection works by treating each model as another ’parameter’.

ABC SMC then proceeds to approximate the posterior distribution over the joint
space of all models (Toni et al. 2009). The marginal posterior distribution (also
known as model evidence) for each model (𝑚) can then be used to rank all the
models (𝑀).

𝑝(𝑚|𝐷) = accepted particles from 𝑚
all accepted particles (3.24)

ABC SMCmodel selection accounts for model complexity and parametric robust-
ness in order to avoid the problem of overfitting. It automatically applies the rule of
parsimony, or Occam’s razor, which dictates the simplest model to account for the
data is the best model (Toni 2010). This is done by penalising the addition of a para-
meter, corresponding to an increase in the volume of the prior if it does not result in
a larger increase in the volume of the approximated posterior distribution (Woods
et al. 2016). Bayesian model selection can be used to rank models according to how
well they describe the data, or how likely they are to give rise to the data we wish
to see in a system design setting.

Here I apply ABC SMC model selection using the package ABC-SysBio (Liepe
et al. 2010). I study whether the addition of feedback loops to the standard toggle
switch can increase its parametric robustness. The standard toggle switch was com-
pared to switches with positive autoregulation in one or both nodes, which were
shown to be capable of bistable behaviour in Section 3.5.1.1. Themass actionmodels
were used for model selection, in order to represent the system in a more realistic
way. The equations shown in Table 3.5 are added to the equations of the simple
toggle switch used in Section 3.4.3. Toggle switches with autoregulation on both
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nodes have both sets of equations added. The same design specifications as used in
Section 3.4.3 were used.

Table 3.5 Autoregulated switches additional equations

Equations Description

Positive autoregulation A

A2 + gA aut_1⟶ A2gA dimer self-association
A2gA

aut_2⟶ A+A2gA self-induced expression
A2gA

aut_3⟶ A2 + gA dimer self-dissociation

Positive autoregulation B

B2 + gB aut_1⟶ B2gB dimer self-association
B2gB

aut_2⟶ B+ B2gB self-induced expression
B2gB

aut_3⟶ B2 + gB dimer self-dissociation

Given the models shown above and the parameter priors shown in Table 3.6,
ABC SMC model selection was carried out. The priors for model selection were set
to wider that in the ones used during parameter inference of the simple switch in
order to make them more flexible for the additional models. For all models initial
conditions of the two genes, 𝑔𝐴, 𝑔𝐵 were set to 1, and species 𝐴 and 𝐴 were set
to 50 and 10 respectively, in order to set the starting conditions of the switch to 𝐵
OFF. All other species initial conditions were set to 0.

Table 3.6 The prior distributions used for model selection. The values indicate the
lower and upper limits of a uniform distribution.

ge rep rep_r dim dim_r deg rep_dim rep_dim_r deg_sr deg_dim aut_1 aut_2 aut_3
(min-1) (μM-1 min-1) (min-1) (μM-1 min-1) (min-1) (min-1) (μM-1 min-1) (min-1) (min-1) (min-1) (μM-1 min-1) (min-1) (min-1)
1-10 1-10 0-5 1-10 0-5 1-5 0.05-0.1 0.01-0.1 0.01-0.1 0-1 0-10 0-2 0-10
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Figure 3.13 (A)The simulated time course of the last population of the switch with
double positive autoregulation. (B) The toggle switch with positive autoregula-
tion on both nodes was found to be the most robust to parameter fluctuations.
Three repeats of the model selection were carried out, and the median values are
shown here. Upper and lower quartile error bars are included but are too small
to be visible. (C) The posterior distribution of the toggle switch with positive
autoregulation on A and B.
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The results are shown in Figure 3.13. The toggle switch with positive autoregu-
lation on both nodes was found to be the most robust model. This indicates that
although all the models considered are capable of behaving like a switch, the model
with double positive autoregulation could do that over a greater parameter range.

3.6 Discussion
Here I developed a more realistic model for the genetic toggle switch, using mass
action which does not use the QSSA. In Chapter 4 I explore this model further and
show that the QSSA cannot always be justified. I showed that this model is capable
of bistable behaviour, within a given parameter range. I further studied this by using
ABC SMC parameter inference to fit the toggle switch to a switching behaviour of
choice. The parameter inference revealed the range of parameter values that can
produce the behaviour of choice. These parameter values can be used to design a
synthetic toggle switch that will behave in a specified manner.
Further, I showed that negative autoregulation is not consistent with bistable

behaviour for the parameter values examined here. Adding small levels of single
negative autoregulation to the system caused it to revert to monostability. The
only steady state was when the unregulated protein was high and the negatively
regulated protein was low. This makes sense, as the negatively regulated protein
cannot reach high enough levels to repress the other protein and dominate the sys-
tem, whereas the unregulated protein is free to reach a higher steady state. In the
case of double negative autoregulation, neither protein is free to reach sufficient
levels to dominate the other, and the only steady state was when the levels of both
proteins are low. This indicates that the system reaches a deadlock situation where
both proteins are repressed and cannot reach a higher steady state. Themodels used
here are deterministic and simplified down to two equations. Stochastic dynamics
where noise is added to the system or a more complex model could be capable of
overcoming this deadlock situation. More specifically, if transcriptional or transla-
tional bursting is included, the protein that receives the first boost can dominate
the system in time and escape the deadlock situation (Strasser, Theis, & Marr 2012).
Finally, I showed that the addition of positive feedback loops makes the genetic

toggle switchmore robust to parameter fluctuations. Thismeans that themodel was
capable of producing the desired behaviour over a greater parameter range. This
indicates that small fluctuations in parameters in the cellular environment will not
affect the system’s ability to be bistable, and thus makes it more suitable for use



76 Positive feedback loops can increase the robustness of a genetic toggle
switch
in synthetic biological applications where a very constrained parameter set can be
too restrictive. This makes it a better candidate for building new synthetic devices
based on the toggle switch design.
The volume of the posterior distribution of even the most robust switch out of

the ones examined here was still not large. This means that the behaviour of choice
is still constrained, even after the addition of the positive feedback loops. A caveat
of the analysis used here that has to be considered is that the parameter space is not
searched for simply combinations that can produce a bistable switch. The behaviour
that is required is very specific, and it is probable that the plethora of constraints
put on the system result in the discarding of parameter combinations that create
a bistable switch. Firstly, a specific steady state level is required, for both the ON
and OFF states. When the switch is OFF, the protein levels must be as close to zero
as possible, and when the switch is ON, the protein levels are required to approach
20μM. This requirement will discard any switches that have a higher or lower ON
state, or a slightly higher OFF state. Additionally, the design specifications used
here dictate that the time to reach steady state has to be quick. There is not much
transition time allowed between the ON and OFF states, and the protein is required
to reach steady state within a few time points. Here, model timewas taken to repres-
ent minutes, thus a time point in the simulation represents a minute. This dictates
that the switch has to occur very fast. This results in the exclusion of systems that
reach steady state more slowly, but still act as a bistable switch. Therefore, the
switches examined here, follow a very constrained behaviour. In the next Chapter
I develop a method that is more flexible in the type of switches it can analyse.
It is important to discuss the assumptions made in the models presented in this

Chapter. As was discussed in Chapter 2, the assumptions made about the underly-
ing model can affect the behaviour observed in the model. Firstly, the numerous
steps involved in transcription and translation have been condensed into one gene
expression step. This simplifies the model by reducing the number of parameters
and reactions included, and it has been shown that it does not affect the stabil-
ity of the switch (Warren & ten Wolde 2005). The other assumption being made
here is that repression is cooperative. This means that a transcription factor di-
mer has to bind to the promoter region to repress it successfully. This has been
shown to be critical for a bistable switch (Gardner, Cantor, & Collins 2000; Warren
& ten Wolde 2005; Warren & ten Wolde 2004; Cherry & Adler 2000), as discussed in
Chapter 2. Lipshtat et al. (2006) found that a switch can be exhibit bistability without
cooperativity, only if stochasticity is taken into account. Since the switch models
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were simulated using deterministic dynamics here, the assumption of cooperativity
was necessary to make it bistable. Finally, the models used here correspond to a
general switch, i.e. a switch where both repressors A2 and B2 are free to bind to
the promoters simultaneously. This is in contrast to the exclusive switch, where
the two promoters are assumed to overlap and the two proteins cannot bind at the
same time (Loinger et al. 2007). The exclusive switch can be found in natural sys-
tems (Ptashne 1992) and has been shown that the exclusive switch is more robust
than the general switch (Loinger et al. 2007; Barnes et al. 2011). Nevertheless, here
I model a synthetic genetic switch, like the one build by Gardner, Cantor, & Collins
(2000), which consists of two separate promoters, making the general switch model
more appropriate.

3.7 Summary
In this chapter, I studied the Gardner, Cantor, & Collins (2000) toggle switch and
showed that it is bistable. I further studied the genetic toggle switch model using
mass action. I identified the parameter ranges that produce a bistable behaviour and
could be used as prior distributions for parameter inference. Further, I studied the
effect of adding feedback loops has on the robustness of the genetic toggle switch.
I found that the switch with double positive autoregulation is the most robust to
parameter fluctuations. In the next chapter I address some of the shortcomings of
the method used here by developing a new algorithm, StabilityFinder.
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4 Dynamics of multi-stable switches

4.1 Introduction
In this chapter, I aim to uncover the underlying principles that govern the stability
of a given switch. To do this, I developed an algorithm, called StabilityFinder, that
can identify the parameter value ranges that can produce the desired stability in a
given model. I use this algorithm to examine a variety of switch architectures using
different modelling abstractions.
Structurally, this chapter is organised as follows: In the first section I examine

the current understanding of the stability landscape of the genetic toggle switch.
Then, I discuss the development of StabilityFinder, justify the choices made and the
drawbacks of this method. In the sections following I apply StabilityFinder to a
variety of models and finally I discuss the implications these findings have to the
overall understanding of the toggle switch stability.

4.2 Contributions to this Chapter
The phase plots of the Lu switch and the characterisation of their steady states
shown in Figure 4.6 was carried out by Mae Woods, PhD.

4.3 Motivation
Synthetic biology puts an emphasis on creating modular, standardized parts that
can be used to create larger systems (Agapakis & Silver 2009). When faced with
the creation of a new model design, the researcher can select the appropriate parts
from the BioBrick registry (Müller & Arndt 2011) and combine them to create the
system of choice. Synthetic circuit design presents a challenge as the collection
of assembled parts have to work together to create the target behaviour (Nielsen,
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Segall-Shapiro, & Voigt 2013). Parts can be fine tuned by developing component
libraries (Lu, Khalil, & Collins 2009), but this will be of little use if the required
parameter ranges for parts to make a functional system are unknown, and will only
perpetuate the cycles of trial-and-error. A computational method to find the range
of parameter values that will produce the behaviour of choice is crucial to the design
process by enabling the informed selection of appropriate parts from the libraries.
For example, if it is known that gene expression must be low for a given stability,
one can select a weak promoter or a low copy plasmid for the desired construct.
Both analytical and computational approaches have been deployed for the study

of the toggle switch. Analytical approaches are limited to simpler models and thus
require a number of assumptions to be made. The system under consideration has
to be reduced to very few equations and parameters in order to make the system
solvable. This requires assumptions to be made about the system that cannot al-
ways be justified, such as the quasi-steady state approximation (QSSA). The QSSA
assumes that the binding/unbinding processes are much faster than any other pro-
cess (Loinger et al. 2007), thus the bound intermediate is assumed to always be in
steady state. The QSSA assumption is met in vitro but often does not hold in vivo
and its misuse can lead to large errors and incorrectly estimated parameters (Peder-
sen, Bersani, & Bersani 2007). Moreover, it is generally not possible to solve even
simple stochastic models analytically, and these methods are restricted to determ-
inistic models. The computational and graph-theoretic approaches developed for
the study of multistationarity generally focus on deciding on whether a given sys-
tem is incapable of producing multiple steady states (Conradi et al. 2007; Banaji
& Craciun 2010; Feliu & Wiuf 2013). For example, Feliu & Wiuf (2013) developed
an approach using chemical reaction theory and generalised mass action modelling
(Feliu & Wiuf 2013). No approach exists that can handle both deterministic and
stochastic systems in an integrated manner.
For this purpose, I developed a computational framework based on sequential

Monte Carlo that takes a model and determines whether it is capable of producing
a given number of steady states and the parameter space that gives rise to the be-
haviour. Uniquely, this can be done for both deterministic and stochastic models,
and also complex models with many parameters, thus removing the need for sim-
plifying assumptions. This framework can be used for comparing the conclusions
drawn by various modelling approaches and thus provides a way to investigate ap-
propriate abstractions. I have made this framework into a python package, called
StabilityFinder.
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I use this methodology to investigate genetic toggle switches and uncover the
design principles behind making a bistable switch, as well as those necessary to
make a tristable and a quadristable switch (4 steady states). The number of stable
steady states will be referred to as the desired stability of the model in this thesis.
I also demonstrate the ability of StabilityFinder to examine more complex systems
and examine the design principles of a three gene switch. The examples I used
demonstrate that StabilityFinder will be a valuable tool in the future design and
construction of novel gene networks.

4.4 StabilityFinder algorithm
To investigate the multistable behaviour of systems, I had to make a number of ex-
tensions to existing approaches. Firstly, a wide range of initial condition samples
are required in order to determine the stability of a system. For a given set of para-
meter values, sample points are taken across initial conditions using latin hypercube
sampling (McKay, Beckman, & Conover 2000), and the ensemble system simulated
in time until steady state. As a distance function I use the desired stability of the
simulated model. An overview of the algorithm is given in Section 4.4.1.

4.4.1 Algorithm overview
The StabilityFinder algorithm is summarised below. StabilityFinder is available
as a Python package, and can be downloaded from https://github.com/ucl-cssb/
StabilityFinder.git.

https://github.com/ucl-cssb/StabilityFinder.git
https://github.com/ucl-cssb/StabilityFinder.git
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Figure 4.1 Using sequential Monte Carlo to examine system stability. The al-
gorithm takes as input a model (A) and evolves it (B) to the stability of choice
via (C) intermediate populations. In this example model shown in (A), There are
two species and two parameters. For the model to be bistable, the phase plot
of the two species of interest must have two distinct densities, as shown in (D).
The parameter space of the model is searched through our algorithm until the
resulting simulations give rise to bistability. The parameter values for the model
that demonstrated the desired behaviour are given as an output (D). The output
consists of the accepted values for each parameter, as well as each density plotted
against the other. This allows us to uncover correlations between parameter val-
ues. This algorithm is available as a python package, called StabilityFinder. The
overview of the algorithm is shown in (E).
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The user provides an SBML model file (Hucka et al. 2003) and an input file that
contains all the necessary information to run the algorithm, including the desired
stability and the final tolerance, ε, for the distance from the desired behaviour ne-
cessary for the algorithm to terminate. The flow of execution is illustrated in Fig-
ure 4.1E. Since the algorithm is computationally intensive, all deterministic and
stochastic simulations are performed using algorithms implemented on Graphical
Processing Units (GPU)s, which are used for mutli-threaded computation (Kirk &
Hwu 2010).

4.4.2 Initial condition sampling
In StabilityFinder, latin hypercube sampling is used to sample initial conditions (McKay,
Beckman, & Conover 2000). This is used to ensure that the whole space is sampled
uniformly. Latin hypercube sampling is done in two dimensions in StabilityFinder.
This is the same algorithm used for initial condition sampling in Chapter 3, and
the reader is referred to Section 3.4.2 for a description of this algorithm. Stability-
Finder could easily be implemented to be used for a larger number of species, but
here it has only been used for stability analyses concerning two species. Stability
landscapes involving more that two species are beyond the scope of this thesis.
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4.4.3 Clustering methods
Whether the model was simulated using ODEs or the Gillespie algorithm (Gillespie
1977) dictated the method of clustering that I used. For the deterministic models
I used an algorithm I developed, that will be referred to as the delta clustering al-
gorithm in this thesis. This algorithm consists of defining the number of clusters
by counting a new cluster every time a data point is more than a distance δ away
from any existing clusters. The benefits of the delta clustering algorithm are that it
is fast and can be used on deterministic solutions, where steady state values tend to
be identical if all the particles have reached steady state.
Steady states of stochasticmodels are clustered using the K-means clustering (Lloyd

1982) and the number of clusters determined using the Gap statistic (Tibshirani,
Walther, & Hastie 2001). This method is more suited to stochastic solutions, where
the delta clustering method would fail as the steady state solutions tend to be more
widely dispersed than in the deterministic case. The detailed algorithms used are
shown in Appendix D.
The method used for clustering can be altered by the user if he/she wants to add

their own preferred clustering algorithm that might be more appropriate for their
specific purposes. For the models I used here, the above methods were successful
in clustering the steady state solutions.

4.4.4 Distance function
The distance function is used to compare the desired behaviour to the behaviour
observed in each particle (Toni et al. 2009). In StabilityFinder the distance function
consists of three distances. The first one is the difference between the number of
desired clusters and the number of clusters observed in the phase plot. For this
distance metric the number of clusters in the phase plot must be calculated. The
clustering methods used are outlined in Section 4.4.3.
The other two distance metrics used in StabilityFinder are the variance within

each cluster and the overall (between cluster) variance. The within cluster variance
ensures that the clusters are tight, and the between cluster variance is used to en-
sure the clusters are far apart from each other. In the context of this thesis, the
ideal behaviour of a system is tight, widely separated clusters. This means that the
genetic system has distinct steady states, and the difference in the protein levels
between each steady state is observable.
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𝑑 = 𝐶 = 𝑀 (4.1)

𝑑 = 𝑉 = 1
𝑛 (𝑥 − 𝜇) (4.2)

𝑑 = 𝑉 = median{ 1
𝑛 (𝑥 − 𝜇 )}, (4.3)

where 𝑛 denotes the total number simulations per particle, 𝑥 refers to each simu-
lation steady state of a given particle and μ the mean value of all the simulations
steady states in each particle. 𝑀 denotes the total number of clusters per particle
and 𝑚 refers to each cluster. 𝑥 and 𝜇 represent the simulation steady state of a
given particle in the current cluster and the mean of the current cluster respectively.
Once the distance from the desired behaviour has been calculated, the algorithm

rejects any particles whose distance is farther than the current ε. The distances
taken into account are the number of clusters (𝐶), the total variance (Vtot) and the
within cluster variance (Vcl) as outlined in Equations 4.2-4.3. In addition to these
distances I have included another two checks for the particles. Firstly, Stability-
Finder checks if the simulation of a particle has reached steady state. If the stand-
ard deviation of the last ten time points in the simulation (denoted as 𝑆𝑆 ) is larger
than a user-specified value, then the particle is rejected. This is to ensure that only
particles that have reached steady state are considered. Secondly, there is a check
for the minimum level of the steady states (denoted as 𝑆𝑆 ). This is to allow the user
to select for steady states whose protein levels are above a certain threshold. This
has to be added as an additional check as the steady state levels must be experiment-
ally observable if they are to be used to design new systems. Two steady state levels
of very low levels would be biologically indistinguishable and thus meaningless in
an experimental setup. This check is optional to the user, and can be set to zero if
not desired. In summary, a particle must satisfy all of the criteria given below in
order to be accepted:

𝑀 ≤ 𝜀
𝑉 ≤ 𝜀
𝑉 ≤ 𝜀

𝑆𝑆 ≤ 𝜀
𝑆𝑆 ≤ 𝜀
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4.4.5 Model checking
Aproblem that can arise by using this methodwith stochastic simulations is that the
behaviour observed may not be the true behaviour but it might be a result of noise.
We need to ensure that the resulting behaviour is reproducible. Therefore, I added
model checking to the algorithm. Model checking consists of resampling from the
posterior distribution and simulating each sample. If the resulting behaviour is the
same as what we expected we can be confident that it is the true behaviour of the
system and not a result of noise.

Algorithm 4 StabilityFinder algorithm

1: Initialise 𝑡 = 0,
2: 𝑖 = 0
3: if t = 0 then
4: Sample particle from prior, 𝜃∗∗ ∼ 𝜋(𝜃)
5: else
6: Sample 𝜃∗ from the previous population {𝜃 } with weights 𝑤 .
7: Perturb the particle, 𝜃∗∗ ∼ 𝐾 (𝜃|𝜃∗) where 𝐾 is the perturbation kernel.
8: end if
9: Sample 𝑘 initial conditions {𝑥 } via latin hypercube sampling.
10: Simulate 𝑘 datasets to steady state, {𝑥∗ }, from the the model, 𝑥∗ ∼ 𝑓(𝑥|𝜃, 𝑥 )
11: Apply clustering in phase space on {𝑥∗ }
12: Calculate the distance 𝑑 = 𝜌({𝑥∗ }, 𝑦).
13: if 𝑑 ≤ 𝜖 then
14: 𝜃 = 𝜃∗∗. 𝑖 = 𝑖 + 1
15: if 𝑖 ≤ 𝑁 then GoTo step 3
16: else
17: Calculate weight for each accepted 𝜃

18: 𝑤( ) =
1, if 𝑡 = 1

( ( ))
∑ ( ) ( ( ) , ( ))

, if 𝑡 ≥ 1.
19: Normalise weights
20: 𝑡 = 𝑡 + 1.
21: if 𝑡 ≤ 𝑁 then
22: GoTo step 3
23: end if
24: end if
25: end if
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4.5 Calculating robustness
Unlike Toni et al. (2009), StabilityFinder does not have model selection integrated
into the method. This is because the purpose of StabilityFinder is not necessarily to
compare models for robustness but to elucidate the stability a given model is cap-
able of. Nevertheless, robustness analysis is an outcome that Bayesian methods are
well suited for. Therefore, here I discuss another algorithm I developed in order to
extract robustness information from the results of StabilityFinder and apply model
selection.
As discussed in Section 2.3.2, two models 𝑀 and 𝑀 can be compared for their

robustness using the Bayes factor, defined as follows:

𝐵 = 𝑝(𝐷|𝑀 )
𝑝(𝐷|𝑀 ) , (4.4)

which represents the fraction of the evidence supported by model 𝑎 over the evid-
ence supported by model 𝑏. This can be interpreted as the ratio of the fraction of
the volume of the functional region to the volume of its prior of model 𝑎 and model
𝑏:

𝐵 = |𝐹 |
|𝑃 |/

|𝐹 |
|𝑃 | , (4.5)

where |𝐹| is the volume of the functional region of model and |𝑃| the volume of the
prior. Equation 4.5 represents the ratio of the robustness measure of each model
which in turn is defined as the ratio between the volume of functional region 𝐹
and the volume of the prior 𝑃. The reader is referred to Section 2.3.2 for a further
discussion.
In order to calculate the Bayes factor we must first be able to approximate the

volume of the viable parameter space. The viable parameter space is the space that
approximates the posterior distribution that can give rise to the desired behaviour.
I tested two methods of approximating the volume of the viable space, which are
outlined in Algorithm 5. The first method is based on the method used by (Hafner
et al. 2009), where the volume of the cuboid containing all the viable space is calcu-
lated. I modified this part of their method by only including the area of the viable
space where the majority of the last population lies. Therefore only the 1st and 99th

percentile of the viable space are taken into account. This is necessary in order to
exclude outliers in the distribution that would skew the volume calculation signi-
ficantly. Each parameter represents a side in the cuboid and since the volume of a
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cuboid is equal to the product of its sides, the volume of the viable space is equal to
the product of the ranges of all the parameters. This cuboid method will be prone
to overestimating robustness especially in cases of correlation between parameters.
This caveat could be alleviated if a Principal component analysis (PCA) (Fukunaga
2013) is done on the data before the cuboid is calculated (Hafner et al. 2009). This
would align the axes of the cuboid to the major axes of the distribution. This would
still be a crude estimation of the volume, since if the posterior distribution is as-
sumed to be normally distributed the volume would still be overestimated.
Thus I used a second method, where the volume of the viable space was represen-

ted by a hyper-ellipsoid, an ellipse in higher dimensions. This method should not
be as prone to overestimation of robustness as the cuboid method as an ellipsoid
can take correlation into account. For this method the distribution of the viable
space is assumed to be normal. The method calculates the covariance matrix of the
distribution, whose volume is given by Equation 4.6. Just as in the cuboid method,
the 1st and 99th percentile of the data is ignored.

𝑉 = 2𝜋
𝑘Γ( )

𝜒 (𝛼) |Σ| , (4.6)

where k is the number of dimensions, Γ is the Gamma function, α is the confidence
interval required and |Σ| is the determinant of the covariance matrix.
To validate these methods I compare them to ABC-SysBio model selection (Liepe

et al. 2014). ABC-SysBio has been used extensively for model selection (Toni et al.
2009; Toni et al. 2011; Barnes et al. 2011) and is thus used as a benchmark to the
algorithm used here. I use two examples used in the ABC-SysBio package (Toni
et al. 2009) as well as in Toni (2010).
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Algorithm 5 Approximating robustness
1: k ← number of parameters
2: i ← marginal prior distribution of each parameter

3: for each model 𝑚 of 𝑀 do
4: Prior∼ 𝑈(𝑎, 𝑏)
5: 𝑉 = ∏ (𝑖 − 𝑖 )

6: Get 1 < 𝑑𝑎𝑡𝑎 < 99 percentiles
7: if Cuboid calculation then
8: 𝑉 = ∏ (𝑖 − 𝑖 )
9: end if
10: if Ellipsoid calculation then
11: Calculate data covariance matrix
12: 𝑉 =

( )
𝜒 (𝛼) |Σ|

13: end if

14: 𝑅 =

15: 𝑅 =
∑

16: end for
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4.5.1 Case study 1: Infectious diseases
As described in Toni et al. (2009), the models used for the first case study describe
the spread of an infectious disease through a population over time. The population
is made up of susceptible, infected or recovered individuals, denoted as 𝑆, 𝐼 and
𝑅 respectively. Three models are compared for the robustness of their posterior
distributions. The first model (Model 1), is the simplest model of the three. Each
individual 𝑆 or 𝑅 can be infected once and then it can immediately infect other
individuals (Toni et al. 2009).
Model 1:

𝑑𝑆
𝑑𝑡 = 𝛼 − 𝛾𝑆𝐼 − 𝑑𝑆
𝑑𝐼
𝑑𝑡 = 𝛾𝑆𝐼 − 𝜐𝐼 − 𝑑𝐼
𝑑𝑅
𝑑𝑡 = 𝜐𝐼 − 𝑑𝑅,

where 𝛼 denotes the birth rate, 𝑑 the death rate, γ the infection rate, and 𝜐 the
recovery rate. The second model, Model 2, includes a time delay between an indi-
vidual getting infected and being infectious. δ denotes the rate of transition of a
non-infectious infected individual to an infectious one.
Model 2:

𝑑𝑆
𝑑𝑡 = 𝛼 − 𝛾𝑆𝐼 − 𝑑𝑆
𝑑𝐿
𝑑𝑡 = 𝛾𝑆𝐼 − 𝛿𝐿 − 𝑑𝐿
𝑑𝐼
𝑑𝑡 = 𝛿𝐿 − 𝜐𝐼 − 𝑑𝐼
𝑑𝑅
𝑑𝑡 = 𝜐𝐼 − 𝑑𝑅,

Finally the third model, Model 3, extends Model 1 and includes the recovered indi-
viduals being able to become susceptible again. This is denoted by rate 𝑒.
Model 3:

𝑑𝑆
𝑑𝑡 = 𝛼 − 𝛾𝑆𝐼 − 𝑑𝑆 + 𝑒𝑅
𝑑𝐼
𝑑𝑡 = 𝛾𝑆𝐼 − 𝜐𝐼 − 𝑑𝐼
𝑑𝑅
𝑑𝑡 = 𝜐𝐼 − 𝑑𝑅 − 𝑒𝑅,

The three models are simulated using ODEs. In ABC-SysBio model selection is used.
Parameter inference is also used for eachmodel separately without the use of model
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selection. I used the two methods outlined in Algorithm 5 to calculate the robust-
ness of the posterior distributions of all three models resulting from the parameter
inference. This robustness measure was then compared to the result of ABC-SysBio
model selection of the same models. As shown in Figure 4.2, there is good agree-
ment between the three measures of robustness. The posterior distributions of all
three models are also shown in Figure 4.2.

4.5.2 Case study 2: Population growth
The second example I will use to demonstrate the effectiveness of the methods used
here for robustness calculation is a population growthmodel. This is example is also
used in the ABC-SysBio package (Toni et al. 2009). The data was obtained by sim-
ulating an immigration-death model shown in Equation 4.7. This model (referred
to as Model 1) and a model of logistic growth are compared for robustness of their
posterior distributions.
Model 1:

𝑑𝐼
𝑑𝑡 = 𝛼 − 𝛽𝐼 (4.7)

Logistic growth, Model 2:

𝑑𝐼
𝑑𝑡 = 𝛾 − 𝐼(𝛿 − 𝜖𝐼) (4.8)

As in Section 4.5.1, two analyses were carried out on these two models. First, ABC-
SysBio model selection was used to find the most robust model. Then parameter
inference was done on each model. The resulting posterior distributions (shown
in Figure 4.3), were compared for robustness using the cuboid and the ellipsoid
approximation methods. All three robustness measures find that Model 1 is the
most robust model. The analysis was repeated for ODE, Markov jump process (MJP)
and Stochastic differential equation (SDE) simulations, all arriving to the same result
of Model 1 being the most robust. The results are shown in Figure 4.3.
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Figure 4.2 Robustness analysis of the three models for the spread of infectious dis-
eases. (A-C) The posterior distributions of the three models compared. (D) I use
three methods to calculate robustness, ABC-SysBio model selection, the volume
of the hyper-cuboid approximation of the posterior distribution and the volume
of the hyper-ellipsoid approximation of the posterior distribution. Each analysis
was repeated three times. The height of the bars indicate the mean robustness
from the three repeats and the error bars represent the standard deviation. There
is good agreement between all threemethods. All threemethods show thatModel
1, the simplest model, is the most robust model.
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Figure 4.3 Robustness comparison of two population growth models. (A) The
posterior distributions of the twomodels. (B-D)Themodels were simulated using
ODE, MJP and SDE. Both the cuboid and the ellipsoid approximations agree with
ABC-SysBio model selection results. Each analysis was repeated three times. The
height of the bars indicate the mean robustness from the three repeats and the
error bars represent the standard deviation.
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The two case studies used above show that the cuboid and the ellipsoid approxim-
ation of model robustness agree with the results obtained from ABC-SysBio model
selection. A point I must draw attention to is that for ABC-SysBio model selection
where model selection is incorporated in the process, each model is also considered
a particle with an associated weight (Toni et al. 2009). If a model is performing
poorly it does not proceed in the algorithm and is dropped when the weight falls
low enough so that the model is not sampled (Toni et al. 2009). This can save time
in the analysis as computational resources are not wasted on ’dead’ models, mod-
els that perform the required behaviour poorly. Using StabilityFinder for model
selection, each model must reach the given final ε in order for the cuboid and el-
lipsoid methods to be valid. This means that time and computational power will be
spent on models that are potentially a bad fit, or that have posterior distributions
so small compared to the prior that it will take a long time for StabilityFinder to
find it. Despite this, the results agree between the all three methods of model se-
lection. This shows that the requirement for all models to reach the final ε does
not affect the results for the models used in the above case studies. The potentially
wasted computational resources on ’dead’ models is a compromise made in order to
be able to run the models separately, as model selection is not the primary purpose
of StabilityFinder.

4.6 Applications of StabilityFinder
In this section I apply StabilityFinder to toggle switch models in order to find the
design principles underlying their stabilities. First I apply it to a simple model with
known results, the Gardner, Cantor, & Collins (2000) toggle switch. This model
can serve as a test for StabilityFinder, as the conditions for bistability are derived
in Gardner, Cantor, & Collins (2000).

4.6.1 StabilityFinder used on the Gardner toggle switch
Gardner, Cantor, & Collins (2000) constructed the first synthetic genetic toggle
switch (Gardner, Cantor, & Collins 2000). Their model consisted of two mutually
repressing transcription factors, as shown in Figure 4.4, and in the deterministic
case is defined by the following ODEs:

𝑑𝑢
𝑑𝑡 =

𝑎
1 + 𝑣 − 𝑢 (4.9)
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𝑑𝑣
𝑑𝑡 =

𝑎
1 + 𝑢 − 𝑣, (4.10)

where u is the concentration of repressor 1, v the concentration of repressor 2, 𝑎
and 𝑎 denote the effective rates of synthesis of repressors 1 and 2 respectively,
β is the cooperativity of repression of promoter 1 and γ of repressor 2. Gardner,
Cantor, & Collins (2000) studied the deterministic case and concluded that there
are two conditions for bistability for this model; that 𝑎 and 𝑎 are balanced and
that β, γ >1 (Gardner, Cantor, & Collins 2000). I test StabilityFinder by using it
to find the posterior distribution for which this model exhibits bistable behaviour.
Therefore, the desired behaviour is set to two steady states, and using a wide range
of values as priors as shown in Table 4.1, I used StabilityFinder to find the parameter
values necessary for bistability to occur. The posterior distribution calculated by
StabilityFinder for the Gardner deterministic case is shown in Figure 4.5.

Table 4.1 Gardner switch priors in the deterministic and stochastic cases

Parameters Species
𝑎 𝛽 𝑎 𝛾 𝑠 𝑠
0-60 0-5 0-60 0-5 0-100 0-100

μM time-1 μΜ-1 time-1 μM time-1 μM-1 time-1 (μM) (μM)

These results agree with the results reported by Gardner, Cantor, & Collins (2000).
For this switch to be bistable 𝑎 and 𝑎 must be balanced while β and γ must both
be >1, as can be seen in the marginal distributions of β and γ in Figure 4.5A.

I next applied StabilityFinder to the case of the Gardner switch under stochastic
dynamics using the same priors as the deterministic case, and again searched the
parameter space for bistable behaviour. The posterior distribution is shown in Fig-
ure 4.5B.We can see that the conditions on the parameters required for bistability in
the deterministic case generally still stand in the stochastic case. There appears to be
slightly looser requirements on the parameters of the stochastic model (wider mar-
ginal distributions). Some difference between the deterministic and stochastic pos-
teriors is expected as different clustering algorithms are used for the stochastic and
the deterministic cases. The Gap statistic is used in the case of the stochastic case,
as it is capable of dealing with noisier data whereas a simpler and faster algorithm
is used for clustering the deterministic solutions. These results demonstrate that
StabilityFinder can be used to find the parameter values that can produce a desired
stability and can be confidently applied to more complex models.
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Figure 4.4 The Gardner switch model used to test StabilityFinder. The Gardner
model (A) consists of two mutually repressing transcription factors. (B) It can
be reduced to a two-equation system, where 𝑢 and 𝑣 are the two transcription
factors, 𝑎 ,𝑎 are their effective rates of synthesis, 𝑢, 𝑣 are their concentrations
and 𝛽, 𝛾 represent the cooperativity of each promoter. (C) Two samples of de-
terministic simulated time courses of the Gardner switch and (D) The resulting
phase plot. (E) Two samples of time courses of the stochastic simulations and (F)
the resulting stationary distributions.
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Figure 4.5 Elucidating the stability of the Gardner switch. The Gardner model
has four parameters, for which I want to find the values for which this system
is bistable. I use StabilityFinder to find the posterior distribution of the bistable
Gardner switch, deterministically (A) and stochastically (B). The posterior distri-
butions are shown as the density plots of each parameter as well as each one
plotted against the other.
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4.6.2 Lu toggle switch models
Next I analyzed an extension of theGardner switchmodel developed by Lu, Onuchic,
& Ben-Jacob (2014). I use these models as they are of increased complexity from the
Gardner model. Lu, Onuchic, & Ben-Jacob (2014) considered two types of switches,
the classic switch consisting of twomutually repressing transcription factors (model
CS-LU), as well as a double positive switch DP-LU. The CS-LU switch was found to
be bistable given the set of parameters used, while the DP-LU switch was found to
be tristable (Lu, Onuchic, & Ben-Jacob 2014). The CS-LU model used in their study
is given by the following system of ODEs, as given in Lu, Onuchic, & Ben-Jacob
(2014).

�̇� = 𝑔 𝐻 (𝑦) − 𝑘 𝑥 (4.11)

�̇� = 𝑔 𝐻 (𝑥) − 𝑘 𝑦, (4.12)

where:

𝐻 (𝑥) = 𝐻 (𝑥) + 𝜆 𝐻 (𝑥) (4.13)

𝐻 (𝑥) = 1/ [1 + (𝑥/𝑥 ) ] (4.14)

𝐻 (𝑥) = 1 − 𝐻 (𝑥), (4.15)

and the DP-LU model is given by

�̇� = 𝑓 (𝑥, 𝑦) = 𝑔 𝐻 (𝑦)𝐻 (𝑥) − 𝑘 𝑥 (4.16)

�̇� = 𝑓 (𝑥, 𝑦) = 𝑔 𝐻 (𝑥)𝐻 (𝑦) − 𝑘 𝑦, (4.17)

𝑔 represents the production rate, 𝑘 the degradation rate, 𝑛 the Hill coefficient, 𝑥
the Hill threshold concentration and 𝜆 the fold change of the transcription rates,
and 𝐼 ∈ {𝑥𝑦, 𝑦𝑥, 𝑥𝑥, 𝑦𝑦}.
For the parameter values used in the Lu study, the CS-LU switch exhibits three

steady states, two of which are stable and one is unstable. The CS-LU switch exhib-
its five steady states, of which three are stable and two are unstable. Bifurcation
diagrams of the two Lu models are shown in Figure 4.6.
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Figure 4.6 Stream plot of the vector plot of the (A) CS-LU and (B) DP-LU switches.
The colours indicate the magnitude of the vectors, with yellow indicating high
and red low values. The blue points represent stable steady states and the grey
points represent unstable steady states.
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Figure 4.7 The three LU toggle switch models. (A) CS-LU, (B) SP-LU and (C) DP-
LU.

4.6.2.1 Extending the Lu models

I start the analysis of the Lu models by extending their analytical approach to solv-
ing the system. I use StabilityFinder to explore a larger parameter space which al-
lows us to distinguish between rare events and robust behaviours. The advantage of
using StabilityFinder over solving the system analytically is that the full parameter
space is explored rather than solving the system for a single set of parameters. This
allows us to deduce model properties that could not otherwise be identified. Robust-
ness to parameter fluctuations can be explored, as well as parameter correlations
and restrictions on the values they can take while still producing the desired beha-
viour.

It is known that that the addition of positive autoregulation to the classical toggle
switch can induce tristability (Lu, Onuchic, & Ben-Jacob 2014). Here I investigate
the interplay of positive autoregulation on the values of the other parameters in
the model. I extended the analysis presented in Lu, Onuchic, & Ben-Jacob (2014)
by including the switch with single positive autoregulation (model SP-LU), where
an asymmetry of positive feedbacks is present between the two genes. The three
switches considered in this analysis are shown in Figure 4.7. The SP-LU switch is
modelled using the following ODE system

�̇� = 𝑔 𝐻 (𝑦)𝐻 (𝑥) − 𝑘 𝑥 (4.18)

�̇� = 𝑔 𝐻 (𝑥) − 𝑘 𝑦. (4.19)

Using StabilityFinder with priors centred around the parameter values used in
the original paper (see Table 4.2), we can identify the most important parameters
for achieving the models’ stability. The phase plots of the final populations of the
models are shown in Figure 4.8 and the posterior distribution of these models are
shown in Figure 4.9A.We find that the parameters representing the rates of degrada-
tion of the transcription factors in the system (𝑘 , 𝑘 ) must both be large in relation
to the prior ranges for bistability to occur. Protein degradation rates have been
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shown to be important for many system behaviours including oscillations (Woods
et al. 2016).

Table 4.2 Priors of the classical (CS-LU), single positive (SP-LU) and double posit-
ive (DP-LU) models.

Parameter Symbol CS-LU SP-LU DP-LU

Production rate
(Proteins/Minute)

gx 30-50 1-2 1-100
gy 30-50 20-25 1-100

Degradation rate
(Minute-1)

kx 0-0.5 50-55 0-1
ky 0-0.5 48-52 0-1

Hill coefficient nxy 1-5 30-35 0-10
nyx 1-5 0.1-0.2 0-10

Hill thresholds
concentration (Proteins)

xxy 100-300 2-3 100-1000
xyx 100-300 0.4-0.6 100-1000

Transcription rate fold
change

lxy 0-0.5 0.02-0.04 0-1
lyx 0-0.5 0.02-0.04 0-0.2

Hill coefficient nXX - 25-30 0-10
nYY - 0.01-0.02 0-10

Hill thresholds
concentration (Proteins)

xXX - 0.4-0.5 50-500
xYY - 1-3 50-500

Transcription rate fold
change

lXX - 65-72 1-20
lYY - 0.02-0.04 1-20
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Figure 4.8 The phase plots of 100 particles from the last population of the three
Lu switches. (A) The bistable CS-LU (B) The bistable SP-LU and (C) The tristable
DP-LU. There are two types of tristable behaviour, one where the third steady
state is zero-zero and one where the third state is high (non-dead).
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Figure 4.9 The three variants of the Lu models. (A) The CS-LU switch is bistable.
The most restricted parameters for this behaviour are 𝑘𝑥 and 𝑘𝑦which both have
to be high relative to the prior. (B) The extended Lu model with a single positive
autoregulation on 𝑋. This model is bistable when 𝑔𝑥 is small, but the net produc-
tion of protein is equal for the two nodes. (C) The Lu model with double positive
autoregulaiton is tristable, and its posterior distribution shown here.
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We find that the switch with single positive autoregulation is capable of bistable
behaviour as seen in Figure 4.9B, but this is only possible when the strength of the
promoter under positive autoregulation, 𝑔𝑥, is small (Figure 4.9). There appear to
be no such constraints on the strength of the original, unmodified, promoter, 𝑔𝑦.

Upon examination of the DP-LUmodel, we also find that tristability in the switch
is relatively robust, as tristability is found across a large range of parameter values,
with no parameters strongly constrained. Two types of tristable behaviour are iden-
tified, one where the third steady state is at (0,0) and and one where the third steady
state has non-zero values, as seen in Figure 4.8. This result agrees with previous
work by Guantes & Poyatos (2008), who found that a switch can exhibit two kinds
of tristability, one in which the third steady state is high (III ) and one in which it
is low (III ) (Guantes & Poyatos 2008).

4.6.2.2 Multistability in the Lu models

The DP switch is capable of both bistable and tristable behaviour as well as 4 co-
existing states under deterministic dynamics (quadristability) (Guantes & Poyatos
2008). It is of great interest to understand the conditions under which these three
behaviours occur. A bifurcation analysis of the DP switch was carried out using the
PyDSTool (Clewley 2012) in order to get an indication of the stabilities this model
is capable of, and at which parameter ranges these are found.
Since the Lu models can be solved analytically, the bifurcation diagram of the DP-

LU can be obtained by keeping all parameters constant apart from gene expression
(𝑔𝑥). The result shown in Figure 4.10B, the system can exhibit 2, 3 or 4 steady states
depending on the value of the gene expression rate. We observe that if 100 ≤ 𝑔𝑥 ≤
120 the system exhibits four steady states, if 9 ≤ 𝑔𝑥 ≤ 10 the system is tristable
and if 10 ≤ 𝑔𝑥 ≤ 100 the system is bistable. I use the whole range tested above
(0 ≤ 𝑔𝑥 ≤ 140) as prior distributions in StabilityFinder and searched parameter
space for 2, 3 and 4 steady states.
Using StabilityFinder a more complex picture of the parameter space that can

produce each behaviour can be obtained. This is because, unlike the bifurcation
analysis, StabilityFinder does not require any of parameters to be fixed. Since there
are no such restraints on the value each parameter can takewe obtain a bigger range
of parameters that can produce each behaviour than the ranges found during the
bifurcation analysis. The priors used for each analysis are identical and include the
whole range of values found in the bifurcation diagram, varying only the required
number of steady states. In addition, unlike the bifurcation analysis the values for
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𝑔𝑥 and 𝑔𝑦 are not forced to be equal in the analysis done on StabilityFinder.
Using StabilityFinder, the posterior distributions for bistable, tristable and quad-

ristable behaviours in the DP-LU model were obtained and then the posterior para-
meter distributions compared (Figure 4.10). Upon examination of the posterior dis-
tributions for all three switches we observe that a subset of the posterior parameter
values is different under the three behaviours. Differences are found in the uni-
variate distribution of the parameters for gene expression, 𝑔𝑥, as highlighted in
Figure 4.10, box 1. This parameter must be small for a quadristable switch to occur
but there are no such restraints for a bistable or a tristable switch. Furthermore,
parameter 𝑥𝑋𝑋 must be small for three and four steady states to be achieved but
there are no such restraints for a bistable switch, as can be seen in Figure 4.10, box
2. Parameter 𝑥𝑋𝑋 represents the Hill threshold concentration, and is equivalent to
to the Hill constant described in Section 2.2.2.1. This parameter dictates the sub-
strate concentration at which the switch occurs. We find that the Hill constant has
to be small in order to observe three or four steady states.
We also find a difference in the bivariate distributions in the posterior. Most

notably, we find that parameters 𝑥𝑋𝑋 and 𝑔𝑋 are tightly constrained in the tristable
and the four steady state cases, where both parameters are required to be small,
but less so in the bistable case (Figure 4.10, box 3). Another notable difference is
between parameters 𝑥𝑋𝑋 and 𝑛𝑋𝑋 shown in Figure 4.10, box 5, where they are
constrained in the tristable and quadristable cases but not the bistable case. There
parameters represent the Hill constant and the Hill coefficient respectively. TheHill
constant dictates the substrate concentration that results in half of the response, i.e.
it is substrate concentration at which switching is observed. The Hill coefficient
affects the steepness of the switching curve, as a higher Hill coefficient results in a
steeper response, as illustrated in Figure 2.2.

Interestingly, we also find parameter correlations conserved between the three
behaviours, as seen in Figure 4.10, box 4, where parameters 𝑙𝑋𝑋 and 𝑔𝑥, positive
autoregulation and gene expression are negatively correlated in both cases. This
highlights the importance of treating unknown parameters as distributions rather
than fixed values when studying the parameter values of a model, as they are cap-
able of uncovering not only the ranges and values needed but also the correlations
between parameters that would not have otherwise been detected.
I further analyse these models by studying the phase plots resulting from simu-

lating the particles from the posterior distribution to steady state. The phase plots
from 100 particles from each posterior are shown in Figure 4.11. We find that there
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Figure 4.10 Design principles of multistable switches. (A) Using the Lu model
with added positive autoregulationwe uncover the design principles dictating if a
switchwill be bistable, tristable, or will have 4 steady states. (B-D) By considering
the bivariate distributions of the parameters we can uncover the differences in
the parameters of a bistable switch compared to a tristable switch, compared to
a quadristable switch . The posterior distribution of the bistable switch is shown
in blue, of the tristable switch in red and of a quadristable in green. The bivariate
distributions for which a difference is observed between the stabilities are in black
boxes. An example of a phase plot from each behaviour is shown next to the
corresponding posterior distribution.
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is a strong conservation on the locations of the steady states between each particle.
This indicates that the steady states in a two-node toggle switch tend to be symmet-
rical. This gives rise to the patterns seen in Figure 4.11. It is important to highlight
that this was not set as a requirement for the behaviour of the switch in Stability-
Finder, but the behaviour that these models gave rise to. There were no constraints
on the level or location of the steady states.
The symmetrical steady states are especially evident in the quadristable switch.

For every steady state at (0, 0) there is another steady state on its diagonal, at 𝑋𝑋
= 𝑌𝑌. All the combinations of these two steady states form the straight line seen
in Figure 4.11C. This indicates that two of the four steady states exist where 𝑋𝑋 =
𝑌𝑌. The other two exist where one of the two proteins dominates the other. There
are four distinct states of the system: both proteins high, both low, XX high/YY low
and XX low/YY high.
This same principle can be seen in the bistable and the tristable switches. In the

bistable switch the two steady states are also symmetrical and one never completely
dominates the other. For the tristable case we observe that two of the steady states
exist where the levels of one protein is much larger than the other, and a third
steady state exists where 𝑋𝑋 = 𝑌𝑌. This finding can be exploited in a synthetic
biology application. Building a switch whose states are always symmetrical makes
it easy to distinguish which state the system is in. By measuring one of the proteins
in the system it can be inferred what the levels of the other are. We also observe
that the third steady state is not necessarily a ’dead’ state, but they can exist over a
range of values for 𝑋𝑋 and 𝑌𝑌.
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Figure 4.11 The phase plots from 100 particles from each posterior. (A) The CS-
LU (B) SP-LU and (C) DP-LU. Each particle is represented by a different shade of
blue. There is a strong conservation on the location of the steady states between
particles.
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4.6.2.3 Extending the Lu switch to three nodes

To further demonstrate the flexibility of StabilityFinder I investigated a system cap-
able of higher stabilities. Multistability is found in differentiating pathways, like
the myeloid differentiation pathway (Ghaffarizadeh, Flann, & Podgorski 2014; Cin-
quin & Demongeot 2005). I allow for these more complex dynamics by extending
the DP-LU model by adding another gene, making it a three gene switch. This new
system is depicted in Figure 4.12A. This model has symmetric parameters, which
means that the parameters for equivalent reactions (e.g. gene expression) are the
same. In StabilityFinder I look for six steady states, the output being in nodes 𝑋
and 𝑌 and using the priors shown in Table 4.3. The system is capable of six steady
states, as shown in Figure 4.12C.

Table 4.3 Priors used in the three-node switch

Parameter Symbol Range

Production rate (Proteins/Minute) gx 3-5
Degradation rate (Minute-1) kx 0-0.2
Hill coefficient nxy 0-2
Hill thresholds concentration (Proteins) xxy 140-160
Transcription rate fold change lxy 0-0.2
Hill coefficient nxx 2-4
Hill thresholds concentration (Proteins) xxx 90-110
Transcription rate fold change lxx 8-12

We find that the most constrained parameters for this behaviour are again the
degradation rate of the proteins, 𝑘𝑥. If they are too large or too small the system
will not exhibit hexa-stability. Additionally we find that the Hill coefficients for the
repressors, 𝑛𝑥𝑦, are constrained to be smaller than 1.5 as seen in Figure 4.12D.

Consistently with the results found in Section 4.6.2.2, we find that the steady
states are symmetric (Figure 4.12B). Each of six steady states exists in symmetry
with another one, in tightly constrained regions. This example demonstrates that
StabilityFinder can be used to elucidate the dynamics of more complex network
architectures, which will be key to the successful design and construction of novel
gene networks as synthetic biology advances.
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Figure 4.12 The three-node mutual repression model, with added positive auto-
regulation on each node. (A) The model. The model is studied in two dimen-
sions using StabilityFinder, for nodes 𝑋 and 𝑌. (B) The phase plot of 100 particles
from the posterior found by StabilityFinder. (C) An example phase plot from one
particle. There are 6 steady states. (D) The posterior distribution of the 6-steady
state three-node system. Parameters 𝑘𝑥 and 𝑛𝑥𝑦 are the most constrained.
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4.6.3 StabilityFinder used on the more general mass action switches
In order to study the switch system in a more realistic way, I developed an exten-
sion to the switches used in Sections 4.6.1 and 4.6.2. This new set of switches does
not use the quasi-steady state approximation (QSSA) that is often used in modelling
the toggle switch. Using mass action, this changes the two-equation system used
in Gardner, Cantor, & Collins (2000) and Lu, Onuchic, & Ben-Jacob (2014) into a sys-
tem of 8 ODEs and 10 parameters in the classical switch case with no autoregulation
(model CS-MA). The equations describing the system are shown below.

gA geA⟶ gA+A

gB geB⟶ gB+ B

A+A dim⟶ A2

A2
dim r⟶ A+A

B+ B dim⟶ B2

B2
dim_r⟶ B+ B

gA+ B2
repA⟶ B2gA

B2gA
rep_r⟶ B2 + gA

gB+A2
repB⟶ A2gB

A2gB
rep_r⟶ A2 + gB

A deg⟶ ∅

A2
deg_dim⟶ ∅

B2
deg_dim⟶ ∅

For the model with added double positive autoregulation (model DP-MA) the fol-
lowing equations are added to the system:

A2 + gA aut_1⟶ A2gA

A2gA
aut_2⟶ A+A2gA

A2gA
aut_3⟶ A2 + gA

B2 + gB aut_1⟶ B2gB

B2gB
aut_2⟶ B+ B2gB

B2gB
aut_3⟶ B2 + gB

TheODEs describing the above switches are shown inAppendix B.Thesemodels are
too complex to be solved analytically and I use StabilityFinder to fit the models to a
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bistable behaviour using the prior distributions shown in Table 4.4. The prior values
were chosen using the parameter scan used in Chapter 3. All priors given assume a
uniform distribution. The two models used and the resulting phase plots are shown
in Figure 4.13 and the posterior distributions obtained are shown in Figure 4.14.

Table 4.4 The priors used in the classic (CS) and double positive (DP) mass action
deterministic and stochastic models
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gA gB
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B2
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gA gB

(B)
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Figure 4.13 Illustrations of the two mass action switches I developed. (A) The
simple switch CS-MA (B)The switch with double positive autoregulation DP-MA.
(C, D) The phase plots of 100 particles simulated from the posterior distributions
of the bistable mass action switches.

By examining the posterior distributions shown in Figure 4.14 we see that the
CS-MA is much more constrained that the DP-MA switch. We find that gene ex-
pression must be low for bistability to occur in the CS-MA model but there is no
such constraint in the DP-MA model. We also find that the monomerization rate
𝑑𝑖𝑚_𝑟 and the monomer degradation rate 𝑑𝑒𝑔 must both be larger than 2. This is
not found in the DP-MA model.
Next I compare the two models for robustness using the ellipsoid method de-

scribed in Section 4.5. We find that the addition of positive feedback loops greatly
increases the system’s robustness to parameter fluctuations as seen in Figure 4.14A,
The Bayes factor of ( | )

( | ) , where 𝐵 is bistable behaviour, was found to be 9.14.
Adding positive feedback loops to the model allows it to be bistable over a greater
range of parameter values. This indicates that small fluctuations in parameters in
the cellular environment will not revert it to monostability and thus makes it more
suitable for use in synthetic biological applications where inconsistent stability pro-
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Figure 4.14 (A) Robustness comparison of the CS-MA and DP-MA switches. The
Bayes factor of ( | )

( | ) was found to be 9.14. The posterior distributions of (B)
CS-MA and (C) DP-MA switches.
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file of a system could be detrimental. This makes it a better candidate for building
new synthetic devices based on the toggle switch design. We identified the para-
meter region within which these models are bistable, information that is important
when building such a device in the lab.

The models used in the above analysis assume the parameters for equivalent re-
actions are equal. This is a constraint that simplifies the model. When building this
model into a synthetic system in the lab, this assumption is not necessarily justi-
fied. When choosing promoters to build this synthetic system two promoters can
be chosen to have similar strength but their strengthwill not necessarily be identical.
In order to study how this might affect the results, I further eliminate modelling as-
sumptions made in the toggle switch by making the parameters representing gene
expression (𝑔𝑒) and repression (𝑟𝑒𝑝), as well as the protein degradation paramet-
ers asymmetric (independent parameters for each protein, versus fixed to be equal).
We find that the features of the posterior distributions of the symmetric and the
asymmetric models remain the same. The reader is referred to Appendix E for the
posterior distributions of the asymmetric models.
I further study the asymmetric mass action models by examining the QSSA. As

stated in Section 3.3.1, the QSSA is a common analytical tool for model simplific-
ation. By examining the posterior distributions of the CS-MA we can determine
whether the QSSA is justified in these models. As stated in Section 3.3.1, the as-
sumption that has to be made for the QSSA to hold is that the rate of binding and
unbinding of the transcription factors to the promoters is very fast. The rates have
to be much faster than the rates of their production and decay in the system in or-
der to justify that the reaction take place in separate time scales and can thus be
assumed to always be at steady state. The QSSA is also made for the dimerization
of the transcription factors. Therefore, for the QSSA to be justified in the toggle
switch, the rates for association (𝑟𝑒𝑝) and dissociation (𝑟𝑒𝑝_𝑟) of the transcription
factors to the promoters, as well as the rates for dimerization (𝑑𝑖𝑚) and monomer-
ization (𝑑𝑖𝑚_𝑟) of the transcription factors have to be much larger than any other
rate.
In order to determine whether this is the case here, I plot the marginal distribu-

tions of each of the parameters assumed to be very large (𝑟𝑒𝑝, 𝑟𝑒𝑝_𝑟, 𝑑𝑖𝑚, 𝑑𝑖𝑚_𝑟)
against each of the parameters involved in the expression and decay of the proteins.
This is shown in Figure 4.15. We find that the QSSA can be justified only with re-
spect to the rate of degradation of the transcription factor dimers (𝑑𝑒𝑔_𝑑𝑖𝑚). All
parameters under consideration for the QSSA (𝑟𝑒𝑝, 𝑟𝑒𝑝_𝑟, 𝑑𝑖𝑚, 𝑑𝑖𝑚_𝑟) are found
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to be much larger than 𝑑𝑒𝑔_𝑑𝑖𝑚. On the other hand, the QSSA cannot be justified
with respect to gene expression (𝑔𝑒) or protein degradation (𝑑𝑒𝑔). It is seen in Fig-
ure 4.15 that the rates under consideration for the QSSA are not much larger than
the rates of protein production and decay, and thus it cannot be assumed that they
are always at steady state. This means that the CS-MA model functions as a switch
even when the QSSA does not hold. These assumptions, necessary for the reduction
of the model, are therefore not always justified in real systems.

Figure 4.15 The QSSA cannot be justified for the CS-MA model. The dotted line
denotes the line where 𝑥 = 𝑦. The posterior distributions of the rates under con-
sideration, 𝑟𝑒𝑝, 𝑟𝑒𝑝_𝑟, 𝑑𝑖𝑚, 𝑑𝑖𝑚_𝑟, are all much larger than the rate of degrada-
tion of the transcription factor dimer. (A) The rate of binding of the repressors
to the promoter is not much larger than the rate of protein expression and de-
gradation. (B) The rate of protein expression and decay are both larger than the
rate of dissociation of the dimer to the promoter. (C) The rate of transcription
factor dimerization is larger than the rates of protein production and decay, but
not by a big amount. (D) The rate of monomerization of the transcription factors
is smaller than the rates of protein expression and decay.
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Table 4.5 Design principles of the stochastic MA bistable and tristable switches

CS-MA DP-MA

Bistable Tristable Bistable Tristable

dimerisation High Low High Low
protein degradation - - - Low
dimer degradation Low - Low -

4.6.3.1 Multistability in the stochastic mass action switches

To investigate how the level of abstraction affects switch design principles, I expand
the analysis under the assumption of mass action kinetics and stochastic dynamics.
The asymmetric CS-MA and DP-MA models are simulated using the Gillespie al-
gorithm (Gillespie 1977). The priors used are given in Table 4.4.

Ma et al. (2012) found that the stochastic fluctuations in a system involving such
a small number of molecules, like the toggle switch, uncovers effects that can not
be predicted by the fully deterministic case (Ma et al. 2012). We find that in the
stochastic case, both the simple switch, CS-MA , and positive autoregulation switch,
DP-MA, are capable of both bistable and tristable behaviour. The fact that tristabil-
ity can occur in the classical model is consistent with the effect of small molecule
numbers; if gene expression remains low, it provides the opportunity for small num-
ber effects to be observed, and the third steady state to stabilise (Ma et al. 2012). In
order to ensure that the tristable switches found in the stochastic case are truly
tristable, I re-sample the posterior distributions and simulate to steady state. If the
resulting phase plots are tristable then we know that the posterior truly represents
tristability.
As can be seen in Figure 4.16, differences in the parameter values are observed

between the bistable and tristable switches, in both CS-MA and DP-MAmodels. We
find that the simple switch is tristable when dimerisation rate is low and bistable
when it is high. The degradation of the dimer proteins must have a low rate for
bistability but there are no restraints in the case of the tristable switch. For the case
of the DP switch, we find that the rates for dimerisation, degradation and dimer
degradation are different for the bistable and tristable behaviours (Figure 4.16). The
rate of dimerisation must be low for tristability to occur and large for bistability,
as observed for the simple switch. The parameter for protein degradation must be
low for tristability whereas there are no constraints for the bistable case. Finally,
the parameter for dimer degradation must be low for bistability whereas it has no
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constraints for tristability, as observed in the simple switch. The design principles
for both the CS-MA model and the DP-MA model are summarised in Table 4.5
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Figure 4.16 : Tristability is possible in the mass action toggle switch models when
simulated stochastically. (A) The simple toggle switch with no autoregulation
can be both bistable and tristable. The two posteriors are shown, where the pos-
terior distribution of the bistable switch is shown in blue and of the tristable
switch in red. From the posterior distribution we can deduce the the dimeriza-
tion parameter must be small for tristability to occur but large for bistability. The
switch with double positive autoregulation and its posterior distributions for the
bistable and tristable case are shown in (B). (C) A sample phase plot of a stochastic
tristable and bistable mass action switch.
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4.6.3.2 Bayes factors depend on the choice of priors

An important aspect of Bayes factors, and thus robustness, thatmust be investigated
is its dependence on the prior distributions. From Equation 2.32 we can expect
that the measure for robustness will depend on the size of the prior. The prior
distributions for model comparison are ideally chosen by using related data that can
inform the choice. But this situation can be rare and priors are selected by using
information from the literature in combination with rough guesses (Kass & Raftery
1995). Often simplifications are made and the choice of large prior ranges can seem
like like an attractive option, as to impose less bias to the priors. Nevertheless this
can have an effect on the Bayes factors calculated. The choice of improper, or very
large priors can skew Equation 2.32 to favour one model over the other (Kass &
Raftery 1995). In this section I demonstrate that the choice of priors for the toggle
switch models has a significant effect on the calculated robustness of the models.
This has to be taken under consideration when analysing candidate models for use
in synthetic biology applications, as a poor choice of priors can skew the robustness
analysis in favour of one model over the other, when no such robustness gain will
be observed in vivo.
In order to demonstrate the effect of prior choice on robustness, I use the CS-MA

model. I use StabilityFinder to approximate the posterior distribution that makes
this model bistable using two ranges of prior distributions. The two sets of prior
distributions used here are denoted as very narrow (VN2) and wide (W) in Table 4.6.
The posterior distributions obtained corresponding to the VN priors and W priors
are shown in Figure 4.17A and B respectively. It can be seen that the posterior
distribution of the model with VN2 priors is more constrained than the model with
W priors. This indicates that if one of the parameters is able to have a larger value,
then the constraints on the rest of the parameters are not necessary any more. This
results in the unconstrained posterior distribution observed in Figure 4.17B.
Furthermore, I test the effect of the prior range to the robustness of the model

for each parameter separately. For each test, the prior distributions of all the para-
meters correspond to the range given in column VN2 in Table 4.6 except for the
parameter being tested. For each run one parameter is being tested and has a prior
range equal to the range given in column W in Table 4.6. StabilityFinder is then
used to approximate the posterior distribution of the model, given the priors and
bistable behaviour. Therefore, there are 7 posterior distributions of the bistable CS-
MA switch, each one corresponding to one parameter having a wide prior range.
For each run, the Bayes factor of the model compared to the DP-MA model used in
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Table 4.6 Priors used for studying the effect of priors to robustness

VN2 N1 W

ge 5 - 10 1 - 10 1 - 100
rep 2 - 10 1 - 10 1 - 100
rep_r 0 - 5 1 - 10 0 - 10
dim 5 - 10 1 - 10 0 - 10
dim_r 0 - 5 0 - 5 0 - 10
deg 1 - 5 0 - 10 0 - 100

deg_dim 0 - 0.1 0 - 0.5 0 - 1

Figure 4.14 is calculated, using Algorithm 5. The posterior distribution for DP-MA
remains the same every time. Figure 4.17C shows the Bayes factors calculated for
the DP-MAmodel against each run of the CS-MA.We can see from Figure 4.17C that
when the priors for 𝑔𝑒 are much larger, the Bayes factor increases. The evidence
for choosing DP-MA over CS-MA changes from substantial to strong, as defined
in Table 2.5, by using a larger prior for parameter 𝑔𝑒. This change is attributed to
the fact the 𝑔𝑒 is constrained to be low. If the prior range is much larger, it is evid-
ent that the ratio of the volumes of the functional region to the prior will be much
smaller for CS-MA.
In Section 4.6.3 we found that the DP-MA is more robust than the CS-MA model.

Here I want to test whether this result still remains when the priors of the models
are made wider. In order to test that, I change the prior ranges of both models and
measure their robustness each time using Algorithm 5. The classes of priors used
are given in Table 4.6. The robustness measures calculated, which corresponds to
the fraction of the volume of the functional region over the volume of the prior, are
shown in Figure 4.18A.

We find that the robustness measure changed as the priors of the models changed.
When both models have very narrow or when both models have wide priors then
their robustness measures are very similar. When both models have vary narrow
priors the Bayes factor is equal to 1.32 and when the priors are wide the Bayes factor
is equal to 1.06. In both these cases the Bayes factor is less than 3.2, and therefore is
considered not significant (Kass & Raftery 1995). When the priors for both models
are narrow, the Bayes factor is equal to 2.25, which is still considered not significant.
Most notably, when the priors for the CS-MAmodel are very narrow and the priors
of the DP-MA model are narrow, the Bayes’ factor is at 9.14. The Bayes factor is
now greater than 3.2, but less than 10, and is thus considered substantial (Kass &
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Figure 4.17 The volume of the priors has an effect on the posterior distribution ob-
tained. (A) The CS-MA model with VN2 priors and (B) the CS-MA with W priors.
(C) The increase in robustness seen is due to the gene expression parameter prior
being wide while the functional region remains constrained.

Raftery 1995). These results are summarised in Table 4.7.
It is evident that the robustness measure depends on the prior volume. It is there-

fore useful to think of the Bayes factor in terms of the difference in the volume
of the priors of the models that are being compared. I carry out this analysis for
the above priors and the results are shown in Figure 4.18B. Here we see that even
though the prior difference is within the same order of magnitude, the Bayes factor
increases significantly. This point corresponds to the case where the priors of CS-
MA are very narrow and the priors of DP-MA are narrow, and that is where we see
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Table 4.7 Bayes factors of the DP-MA against the CS-MA model using different
volumes of priors

Prior volume Bayes factor ( ( |
( | ) )

CS-MA DP-MA

VN2 VN2 1.32
VN2 N1 9.14
N1 N1 2.25
W W 1.06

the Bayes factor between the two models is maximised.
These results highlight the importance of choosing the ranges of priors for the

models under consideration carefully. A balance has to be struck between restrict-
ing the prior ranges too much, where interesting behaviour in the model can be
missed, and making the prior range too wide, where it becomes uninformative.
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Figure 4.18 Changing the priors in both models affects the robustness measure.
(A) Using different prior ranges for the CS-MA and the DP-MA models yields
different robustness for each. (B) The Bayes factor as a function of the prior
volume difference.
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4.7 Discussion
Here I developed a novel framework, StabilityFinder, that can be used to infer para-
meter values that can produce a desired system multistable behaviour. The novelty
in the framework I developed over existing methodology is that complex models
can be analyzed assuming either deterministic or stochastic dynamics. I have used
StabilityFinder to uncover the design principles of a bistable, a tristable and a quad-
ristable switch. I found key parameters that are important in determining the num-
ber of steady states a system is capable of. This is important in the design of novel
synthetic switches, where the genetic parts chosen, with their corresponding reac-
tion rates can have an effect on the stability of the system. A bistable, a tristable or
a quadristable switch could each be used for different functions within a synthetic
system.
Being able to in silico determine the stability a given system will aid in the design

of novel synthetic circuits. In the future, by selecting the system components ac-
cordingly during sequence design, the parameter values can be selected in vivo. For
example, the parameter value corresponding to the translation initiation rate can
be chosen by selecting the appropriate RBS sequence which given a nucleotide se-
quence will produce the desired rate (Salis, Mirsky, & Voigt 2009). Another method
to tweak the parameter values in vivo is to select the promoter to have the strength
corresponding to the levels of gene expression and repression desired. Activity of
each promoter can be measured and standardised (Kelly et al. 2009) making this
process possible. For a system requiring more than one promoter, these can be ef-
ficiently selected from a promoter library using a genetic algorithm created by Wu,
Lee, & Chen (2011). These standardised interchangeable components with known
sequence and activity constitute the ultimate goal of synthetic biology.
Nevertheless, it is important to note that the work carried out here using Stability-

Finder predicts the stability of the toggle switch in isolation. Recent body of work
has shown that modules like the one studied here are not independent of down-
stream processes (Del Vecchio, Ninfa, & Sontag 2008; Ventura et al. 2010; Jiang et al.
2011; Lyons et al. 2014). Lyons et al. (2014) showed that adding a downstream load
to the genetic toggle switch can render it monostable. In order for multi-module
systems to be successful, the effect of downstream loads to the system under study
will have to be considered. The system including additional loads should be studied
using StabilityFinder in order to determine the stability it is capable of. Therefore
extrapolation of the conclusions of StabilityFinder for a givenmodule studied in isol-
ation would not be justified when the module is part of a larger system of modules
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working in tandem.
The methodology used here can only be used to study the presence of a given

stability and not its absence. If the algorithm is not converging it cannot be con-
cluded that the given model is not capable of the desired stability under these priors.
For example, the mass action switches were found to be both bistable and tristable
when stochastic effects were taken into account. Using deterministic dynamics the
algorithm did not converge using priors within the ranges used in this work. Never-
theless this does not permit the conclusion of absence of tristability in the determ-
inistic classic or double positive mass action switch models. StabilityFinder only
permits the interpretation of models that have converged to a given stability.

StabilityFinder can also be used to study the topology ofmore complexmultistable
switches that exist in natural biological systems such as developmental pathways. I
limited this framework to the objective behaviour of a given number of stable steady
states. This could be extended to examine systems with a given switching rate or
systems robust to a particular set of perturbations, both of which could be of great
importance for building more complex genetic circuits.

Importantly I find that the prior distributions used during such an analysis greatly
affect the robustness observed. More generally, the assumptions made when build-
ing a model can have a significant effect on the predictions made. This is consistent
with current understanding (Babtie, Kirk, & Stumpf 2014) and highlights the import-
ance of the combination of experimental work and systems modelling, in order to
understand the rules of thumb for abstraction in model based design of synthetic
biological systems.

4.8 Summary
In this chapter I discussed the algorithm I developed and demonstrated how it can
identify the parameter regions necessary for a model to achieve a given number of
stable steady states. I used it to uncover the underlying principles that govern the
stability of a given switch.
I first tested StabilityFinder on a known switch and then proceeded to apply it to

more complex models. I uncovered the design principles that make the Lu switch
bistable, tristable or quadristable. I extended the Lu models to a three-node switch
and showed how it can achieve 6 steady states.
Furthermore, I built two novel models of the toggle switch which do not use the

QSSA and showed that the QSSA cannot be justified in these models. Using these
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models I studied the effect positive autoregulation has on the robustness of a model.
I also studied the effect the priors have on the posteriors and on the robustness
of a model. Finally, using stochastic modelling I showed that these switch models
are capable of both bistable and tristable behaviour. In the next chapter I study
the genetic toggle switch in the lab and fit the toggle switch models used here to
experimental data.
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5 Bayesian model fitting for flow
cytometry data

5.1 Introduction
In this chapter I aim to fit the toggle switchmodel to experimental data. This chapter
is organised as follows: In the first section I provide an overview of the framework
developed to fit models to flow cytometry data (ABC-Flow). In the subsequent sec-
tion I test ABC-Flow on simulated flow cytometry data. Next I use flow cytometry
to study the toggle switch experimentally and examine the concentrations of the
inducers and the time needed to flip the switch. Finally, I use ABC-Flow to fit a
computational model to the experimental data acquired.

5.2 Contributions to this Chapter
The R code used to pre-process the flow cytometry data was provided by Alex J.
Fedorec. The R code to fit the Hill function to the flow cytometry concentration
assays was adapted from code provided by David T. Gonzales.

5.3 Flow cytometry
Flow cytometry detects the fluorescent intensity levels in individual cells. It can
also provide physical information about the size and granularity of a cell via the
forward and side scattering respectively. An overview of flow cytometry is shown
in Figure 5.1. A laser excites the fluorochrome present in the bacterial cells. The
fluorochromes emit a signal that is detected by channels in the optics. The signals
are then all collected and analysed. A sample typically consists of single cell meas-
urements of 10 -10 cells. Flow cytometry is a powerful tool for synthetic biology
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Figure 5.1 Flow cytometry. A laser excites the fluorescent proteins present in each
cell. The cytometer has up to 4 lasers, violet (V), red (R), yellow (Y) and blue (B).
The detectors in the optics, FL1-4 pick up the signals. The cytometer also picks
up size and granularity information via the forward scatter (FSC) and side scatter
(SSC) detectors. Diagram adapted from (What is Flow Cytometry n.d.)

as it can measure multiple parameters in single cells, and process up to 35,000 cells
sec-1 (Attune NxT Acoustic Focusing Cytometer 2015).

5.4 Flow cytometry and model fitting
Computational modelling is well known to aid the understanding of complex sys-
tems by fitting experimental data and providing further insights and testable pre-
dictions. Experimental data is used to fit the model parameters and then the model
can provide further understanding of the system and aid in the design of further
experiments. Flow cytometry is used in synthetic biology for BioBrick character-
isation (Kelly et al. 2009), enzyme screening (Choi et al. 2014) and industrial biopro-
cesses (Dıáz et al. 2010) among others.
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Flow cytometry data presents a challenge to computationalmodelling as the fluor-
escence intensity per cell is measured rather than number of proteins. The problem
with measuring fluorescence intensity is that it is a relative and not an absolute
measurement. This makes the inference of parameter values challenging (Rosenfeld
et al. 2006). Absolute measurements would increase the predictive power of com-
putational models (Bower, McClintock, & Fong 2010; Cooling et al. 2010), but this
type of biological data cannot be directly measured (Kelwick et al. 2014). The fluor-
escence intensity values can vary between experiments due to instrument settings
so they can only be used in relative terms within the same experiment. Efforts have
been made to alleviate this problem by standardizing experimental methods (Kelly
et al. 2009), or using bead-based calibration to convert the arbitrary units of fluor-
escent proteins to MEFLs (Molecules of equivalent fluoresceine) (Beal et al. 2016).
Another approach to the problem is converting the model output of GFP cell-1 s-1

to relative fluorescence intensity. This approach was first developed by Lillacci &
Khammash (2013). The converted model output can then be compared to the data
output from the flow cytometer. The fluorescence intensity measurements acquired
via flow cytometry are treated as a sample from the distribution of the fluorescence
present in the cell (Lillacci & Khammash 2013). This means that the flow cytometry
fluorescence distribution at each time point can be compared to the model fluores-
cence distribution. Here I expand the method developed by Lillacci & Khammash
(2013) in order to be able to apply it to flow cytometry data including two fluores-
cent proteins simultaneously. This new framework, ABC-Flow, can be used to fit
stochastic models to flow cytometry data involving multiple species like the genetic
toggle switch, but could be applied to any synthetic biology system.

5.5 ABC-Flow algorithm development
The algorithm used in ABC-Flow is based on the same ABC algorithm as ABC-
SysBio and Stability Finder described in Algorithms 2 and 4 respectively. ABC-Flow
uses the same fundamental ABC SMC algorithm but has been adapted to be used for
flow cytometry data, which required two main adaptations: Firstly, the output of
the simulation module, in number of proteins, has to be converted to fluorescence
intensity in order to compare it to flow cytometry data. Secondly, the distance
function, measuring how close the simulated data is from the experimental data,
had to be adapted in order to compare the distance between distributions of values
rather than point values. This is because flow cytometry data typically involves



132 Bayesian model fitting for flow cytometry data

measurements from a large number of individual cells. The algorithm of ABC-Flow
is outlined in Algorithm 6 and illustrated in Figure 5.2. The modified modules of
the ABC algorithm are outlined in the sections that follow.
ABC-Flow uses stochastic dynamics to simulate the model under consideration.

Gene regulation is known to exhibit stochastic dynamics (Elowitz 2002) due to
the often low number of protein molecules involved. This can cause genetically
identical cells to exhibit different phenotype and behaviour (Weinberger et al. 2005).
Therefore, ABC-Flow uses stochastic dynamics to account for this variability ob-
served in single cell behaviour. Just as the same genetic code can produce different
phenotypes in different individual cells, the same parameter values in the model
will be able to produce a different behaviour due to the added intrinsic noise to the
system. The assumption is made that the cells are in identical conditions and have
the same genetic code, thus extrinsic noise is not taken into consideration here.
All models are simulated stochastically using the Gillespie algorithm (Gillespie

1977). ABC-Flow simulations are implemented on GPUs. The user provides an
SBML model file and an input file to specify the information needed to run ABC-
Flow, such as the final epsilon threshold and the priors to the parameters. The
user must also provide a data file containing the flow cytometry data to which the
model will be fitted. The data files used here were generated from .fcs files, which
is the standard output of flow cytometers, using the R bioconductor packages flow-
Core (Ellis et al. 2016b). ABC-Flow is available as a Python package, and can be
downloaded from https://github.com/ucl-cssb/ABC-Flow.git.

https://github.com/ucl-cssb/ABC-Flow.git
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Figure 5.2 Overview of ABC-Flow. (A) ABC-Flow is used to fit models to experi-
mental flow cytometry data. (B) The algorithm can be applied to 1D and 2D flow
data. (C) ABC-Flow uses Approximate Bayesian Computation.
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Algorithm 6 ABC-Flow

1: Initialise ε
2: population p ← 1
3: beta ← each stochastic trajectory
4: if p = 1 then
5: Sample particles (θ) from priors
6: else
7: Sample particles from previous population
8: Perturb each particle θ* using perturbation kernel 𝐾 to obtain perturbed

particle θ**
9: end if
10: Simulate model using the Gillespie algorithm.
11: Convert signal to intensity:
12: for each particle do
13: for each beta do
14: for each time point do
15: for each fluorescent protein do

16: Intensity ∼ N signal×𝜇, (𝑠𝑖𝑔𝑛𝑎𝑙 × 𝜎 )
17: end for
18: end for
19: end for
20: end for
21: Measure distance to data
22: Reject particles if d > ε.
23: Calculate weight for each accepted 𝜃

24: 𝑤( ) =
1, if 𝑝 = 0

( ( ))
∑ ( ) ( ( ) , ( ))

, if 𝑝 ≥ 0.
25: Normalise weights
26: Repeat steps 3 - 15 until 𝜀 ≤ 𝜀
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Figure 5.3 Converting the number of fluorescent proteins (nFP) to the intensity
(iFP) is done by drawing from a normal distribution, as shown in Equation 5.1.

5.5.1 Intensity Calculation
The units of the result of the stochastic simulations is in number of molecules. On
the other hand, flow cytometry data units are in the form of fluorescence intensity.
For ABC-Flow, the simulation results are converted to intensity in order to be able
to compare the data to the simulations. In order to do this two additional parameters
are defined, intensity μ and intensity σ, for each fluorescent protein used. To convert
the number of fluorescent proteins to intensity, random samples are drawn from a
normal distribution

𝑋 ∼ 𝑁 𝑛 𝜇, (𝑛 𝜎 ) , (5.1)

where 𝑛 is the number of fluorescent proteins. These parameters are estimated
from the data along with the model parameters. An illustration of the intensity
calculation is shown in Figure 5.3. The intensity conversion also includes the ad-
dition of background signal. This represents the intensity signal detected by flow
cytometers when no fluorescent proteins are present (Lillacci & Khammash 2013).
The level of background fluorescence is determined by using controls during the
flow cytometry experiment, and is added to the intensity signal of each fluorescent
protein in the model.
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5.5.2 Distance Calculation
In order to compare the flow cytometry data to the model generated data, I de-
veloped a distance measure. This distance measure should be able to determine
whether two datasets are sufficiently close to each other to be able to be assume
that they have been drawn from the same distribution. The measure should also
give an estimate of how different the two data sets are, and thus get larger as two
data sets are drawn from increasingly different distributions.
In order to select an appropriate distance metric, I tested three methods using

simulated distributions. First, the calculation of the kernel distance between the
simulated and experimental data was considered. As can be seen in the results
shown in Section 5.5.2.1 the distance value did not monotonically decrease with
increasingly similar distributions therefore it was not considered a good method
for this application. I then implemented the Kolmogorov-Smirnov (KS) distance,
as used in Lillacci & Khammash (2013). The KS test is a non-parametric statistic
test that determines whether two data sets were drawn from the same underlying
distributions by computing the largest distance between the empirical distribution
functions of the two datasets. This was shown to work well when comparing sim-
ulated data to flow cytometry data (Lillacci & Khammash 2013). Nevertheless, the
KS test does not scale well for multidimensional distributions. This is because there
is no unique way to order the data points to calculate the largest distance. As is
discussed in Section 5.5.2.2, the KS test did not perform well on two-dimensional
distributions. Finally, I tested the Wald-Wolfowitz test for two-dimensional distri-
butions. This was found to work well during the theoretical tests. Therefore, I im-
plemented the Kolmogorov-Smirnov distance for one-dimensional datasets and the
Wald-Wolfowitz for two-dimensional datasets in ABC-Flow. Each distance metric
is described in more detail in the following sections.

5.5.2.1 Kernel distance

In order to measure the distance between the flow cytometry data and the fitted
model, Algorithm 7 was developed. The algorithm consists of defining a grid from
the minimum to the maximum value of the data. A gaussian kernel was then fit to
the flow and simulated data. The distance between the two kernels is given by:

𝑑 = (𝑓𝐷 − 𝑓𝑆 ) ,
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Figure 5.4 Calculating the distance between two distributions using the kernel
distance in (A) 1D and (B) 2D.

Algorithm 7 1D Kernel distance calculation

1: xx ← min(data):max(data):ngrid
2: kD = kernel density estimation(data)
3: kS = kernel density estimation(simulations)
4: fD = kD(xx)
5: fS = kS(xx)
6: 𝑑 = ∑(𝑓𝐷 − 𝑓𝑆)

where 𝑓𝐷 is the kernel of the flow data at each value of x and 𝑓𝑆 the kernel of the
simulated data. An illustration of the distance calculation is shown in Figure 5.4.
In order to test this distance metric samples were drawn from two uniform dis-

tributions with varying mean and standard deviation. Algorithm 7 was then used
to calculate the distance between the different distributions. First, Algorithm 7 was
tested by drawing samples from two distributions with an increasingly different
mean. This is done to determine the dynamical range of the distance calculation.
From Figure 5.5 we see that the distance value decreases with increasing mean

difference of the two distributions. As the difference between the means increases,
the distance value reaches a peak when the difference is at 3. From that point, as
the mean difference increases, distance values decrease until they reach a plateau at
epsilon = 0.38 in the 1D case and epsilon = 0.14 in the 2D case. Next I tested the dis-
tance calculation by comparing bimodal distributions. Two bimodal distributions
are generated with increasingly different mean, in 1D and 2D.
Similar to the normal distribution, for the bimodal distributions shown in Fig-

ure 5.6 we find that the distance values do not increase linearly. There are two
peaks in the distances distribution, one at mean difference = 3 and one at mean
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Figure 5.5 (A) The range by which distance varies as the difference between the
means of the distributions increases. (B)The median of the distance distributions
varies by a small amount with increasing difference in the standard deviation of
the distributions.

difference = 6. The distance values then decline until they reach a plateau. The dis-
tance values do not have a large range of values, for either the 1D or 2D cases. We
also find that the difference in the distance values between the 1D and 2D cases is
not constant. Finally, I studied how these distance functions perform when compar-
ing a bimodal with a normal distribution. A bimodal distribution is generated and a
series of normal distributions with increasing mean, in 1D and 2D. From Figure 5.7
we find that the distance calculation is the lowest when the mean of the normal dis-
tribution corresponds to the μ of one of the two peaks in the bimodal distribution
and the highest when there is no overlap between the distributions.

From Figures 5.5-5.7 I conclude that Algorithm 7 is not a good measure for dis-
tance to be used in ABC-Flow. If Algorithm 7 was used in order to minimize the
distance between two distributions that start off with very different means, the dis-
tance between the two distributions will not be sufficiently minimized. This stems
from the fact that ABC-Flowworks by iterativelymaking the epsilon threshold smal-
ler. As can be seen in Figure 5.5, if the two distributions have a large difference in
the means, (>6) it would not be possible to overcome the peak that is created when
the mean difference is at 3. Distance values increase before the decrease again,
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Figure 5.6 Comparing the 1D and 2D distances between bimodal distributions. (A)
and (B) show samples of the bimodal distributions compared in 1D and 2D respect-
ively with a mean difference of 4 between simulations and data. (C) The range
by which the distance median varies as the difference between the mean of the
distributions increases. (D) The difference between the distances calculated in
1D and 2D is not constant.

which will be a problem in ABC-Flow. Therefore a different distance calculation
was developed.

5.5.2.2 Kolmogorov-Smirnov distance

In order to avoid the problems that arose from the distance calculation described in
Section 5.5.2.1 I implemented a different distance calculation for ABC-Flow. I used
a Python implementation of the Kolmogorov-Smirnov two sample test for the 1D
case (Kolmogorov 1933). The KS distance between two distributions is equal to the
largest distance between the empirical distribution functions of the two samples, as
shown in Equation 5.2.
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Figure 5.7 Comparing a multimodal to a normal distribution, in 1D and 2D. (A, B)
The mean of the normal distribution is varied from equal to the mean of the first
peak of the bimodal distribution to beyond the range of the bimodal distribution.
(C) Distance median and variance are at the lowest when the mean of the normal
distribution is equal to the mean of one of the peaks of the bimodal distribution.

𝐷 , = sup |𝐹 , (𝑥) − 𝐹 , (𝑥)|. (5.2)

For the 2D case the distance was calculated by using the 2D Kolmogorov-Smirnov
two sample test. The algorithm was developed by Fasano & Franceschini (1987) and
the Python implementation developed by Major (2016).

This distance calculation was tested to determine whether it is an appropriate
distance function to use in ABC-Flow. Two datasets were drawn from normal dis-
tributions with increasingly different means. The KS test was then used to calculate
the distance between the data sets. This was carried out in 1D and 2D. The results
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Figure 5.8 TheKolmogorov-Smirnov distance function was tested in 1D (blue) and
2D (green). Two data sets were generated with increasing mean difference, and
the Kolmogorov-Smirnov two-sample test was applied to compute the distance
between the two.

are shown in Figure 5.8. The distances of the 1D Kolmogorov-Smirnov calculation
increased with increasing mean difference until it reached a plateau when the two
distributions were very different. This distance function is therefore preferable over
the kernel distance tested above. As the epsilon threshold is lowered at each it-
eration the difference between the two data sets decreases. Therefore the 1D KS
statistic was used in ABC-Flow.
This test did not scale well in two dimensions. The variability in the calculation

of the distance between data sets originating from distributions with known dis-
tance is large relative to the range of values the calculation can take. The KS is
problematic in higher dimensions as there are 2 − 1 ways of ordering the data
points and defining a cumulative distribution function, where 𝑑 is the number of
dimensions (Lopes, Reid, & Hobson 2007). To alleviate the above shortcomings of
the multi-dimensional generalisation of the Kolmogorov-Smirnov test, a different
distance calculation was used for the 2D case. The Kolmogorov-Smirnov test for
the 1D case was used in ABC-Flow as it performed well in the testing shown here.
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5.5.2.3 Wald-Wolfowitz distance

For the 2D case the distancewas calculated by using themultivariateWald-Wolfowitz
test (Friedman & Rafsky 1979). This is a generalisation of the Wald-Wolfowitz test
proposed by (Wald &Wolfowitz 1940), a non-parametric test to determine whether
two data sets were drawn from the same distribution. This test works by computing
the minimum spanning tree of the pooled samples. Any edge whose nodes origin-
ated from different samples are removed, and the number of runs (R) is then defined
by the number of disjointed subtrees (Friedman & Rafsky 1979). If the number of
runs is small, then the null hypothesis that the two samples originated from the
same distribution cannot be rejected. The quantity W for two samples of length m
and n is given by

𝑊 = 𝑅 − 2 − 1
( )
( )

, (5.3)

where 𝑁 = 𝑚+𝑛 and 𝑅 is the number of runs. A Python implementation of the mul-
tivariate Wald-Wolfowitz test by Monaco (2014) was used here. This is a variation
of the Wald-Wolfowitz test that can be efficiently applied to larger data sets.
I tested this distance calculation in a similar way as Section 5.5.2.1. First, the

two data sets are drawn from increasingly different distributions, and the distance
between them calculated. As shown in Figure 5.9D, the distance is 0 when the two
datasets are drawn from the same distribution. The distance calculation reached a
plateau at distance = 140 when the mean difference was 4 or larger. The 1D dis-
tance is also shown in Figure 5.9C in order to compare the two calculations, but
the 1D distance was computed using the Kolmogorov-Smirnov distance described
in Section 5.5.2.2.
To further study the distance calculation used in ABC-Flow, two normal distribu-

tions were simulated, with 𝜇 = 0 and 𝜎 = 1 and distance between them calculated
using the Kolmogorov-Smirnov test in the 1D case and the Wald-Wolfowitz test in
the 2D case. Doing this multiple times, the expected variation in distance values
for identical distributions can be calculated. This represents the variation that can
be expected when measuring distance in ABC-Flow. As can be seen in Figure 5.10,
the range of distance values obtained in the 1D case is small. For the 2D case, the
distance values obtained vary more than in the 1D case, but it is still small relative
to the range of values that the Wald-Wolfowitz test can take shown in Figure 5.9.
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Figure 5.9 The distance calculation for data sets drawn from increasingly different
distributions. Two examples are shown of distributions compared in (A) 1D and
(B) 2D. (C) As the difference between the means of the two 1D distributions in-
creases, the KS distance calculation increases until it plateaus at 1. (D) In the 2D
case the distance plateaus at 140.

Using the Wald-Wolfowitz test the distance value increased with increasing dis-
tance between the distributions with relatively small variability between repeats.
Since the 2D Wald-Wolfowitz test performed well in the test carried out above, it
was implemented in ABC-Flow as the distance function for the 2D calculations.
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Figure 5.10 The distance between two data sets drawn from the same distribu-
tion are compared using (A) the Kolmogorov-Smirnov in 1D and (B) the Wald-
Wolfowitz distance in 2D. (C) The distance is calculated for 1000 data sets. A
larger variation of values is found for the 2D distance calculation, but still small
relative to the overall range of values that the 2D distance can take. (D) As the
number of samples in the datasets increase the distance calculation becomesmore
accurate in the 1D case. It has no effect on the 2D case.
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5.6 ABC-Flow model fitting to simulated data
In this section I apply ABC-Flow to simulated data, where the parameter values
used to produce the data are known. This analysis will serve as a verification test
for ABC-Flow.

5.6.1 Toggle switch model development
Themodel used to produce the simulated data is an extension of the Gardner, Cantor,
& Collins (2000) switch. The model consists of two mutually repressing transcrip-
tion factors. The model used here has additional parameters allowing for gene ex-
pression to be leaky aswell as include repression from an external stimulus. In order
to produce the data set the model was simulated stochastically using the Gillespie
algorithm (Gillespie 1977). The model used is defined by the following hazards:

ℎ = 𝑢 (5.4)

ℎ = 𝑎 𝑙
1 + 𝑙 + 𝑣 (5.5)

ℎ = (1 + 𝛼)𝑣 (5.6)

ℎ = 𝑎 𝑙
1 + 𝑙 + 𝑢 , (5.7)

where 𝑢 and 𝑣 are the two proteins in the system, 𝑎 and 𝑎 represent the effective
gene expression of 𝑢 and 𝑣 respectively, 𝛽 and 𝛾 represent the cooperativity of 𝑢
and 𝑣 respectively and 𝑙 and 𝑙 represent the leakiness of the promoters for each
species. Parameter α represents the addition of an inducer molecule that binds to
repressor 𝑣, effectively increasing its degradation. This has been used previously to
successfully represent the addition of the IPTG repressor to the system (Lillacci &
Khammash 2013).

In addition, the system included a fluorescence intensity model. Each fluorescent
molecule was assumed to emit a fluorescent signal and the signal was assumed to
be normally distributed around a mean μ and standard deviation σ. The fluores-
cent signal emitted by each molecule was described using Equation 5.1. There was
also a background fluorescence signal added to each calculation. This represents
the intensity signal detected by flow cytometers when no fluorescent proteins are
present (Lillacci & Khammash 2013). The background fluorescence can bemeasured
using control samples (Lillacci & Khammash 2013), but in the case of the simulated
data it was set to 0.01 (a.u.).
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Table 5.1 The priors used for the 1D and 2D ABC-Flow model fitting to simulated
data

Parameters

Units 1D 2D

a1 molecules h-1 80 - 120 80 - 120
β molecules-1 h-1 1 - 4 1 - 4
l1 h-1 750 - 850 750 - 850
a2 molecules h-1 80 - 120 80 - 120
γ molecules-1 h-1 1 - 5 1 - 4
l2 h-1 750 - 850 750 - 850
α h-1 μM-1 1 - 4 1 - 4

Species

u 9 - 11 9 - 11
v 90 - 110 90 - 110

Intensity parameters

μ fpu AU 0 - 2 0 - 2
μ fpv AU 0 - 2
σ fpu AU 4 - 6 4 - 6
σ fpv AU 4 - 6

5.6.2 Parameter inference for simulated flow cytometry data
The model given in Equations 5.4-5.7 was simulated in order to obtain the time
course for the two fluoscent molecules in the system, 𝑢 and 𝑣. The time course data,
themodel and the prior distributions shown in Table 5.1 were supplied to ABC-Flow.
ABC-Flow was then used to infer the parameters that gave rise to the data using
one (1D) or both (2D) fluorescent molecule time courses to fit to the data. We can
therefore determine whether there is an added benefit on fitting both fluorescent
proteins to the data. In order to compare the 1D and 2D fits, equivalent epsilon dis-
tance values were used. These were determined by comparing the distance value
obtained when measuring the distance between two 1D distributions with the dis-
tance value obtained when measuring the distance between two 2D distributions
using the appropriate distance measure for each one. This was done using the theor-
etical distance values shown in Figure 5.9 for the 1D and 2D case, for distributions
where the difference in the means is 0.2 or less. Therefore they were set to 0.27 for
the 1D fit and 2.82 for the 2D fit.
The fit resulting from the 1D fit is shown in Figure 5.11A, together with Q-Q
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Table 5.2 The parameters inferred from simulated data

Parameters True value
Posterior 95% credible region

1D 2D
0.025 Median 0.975 0.025 Median 0.975

a1 100 83.507 96.586 114.485 80.064 93.539 104.940
β 2 1.873 2.003 2.167 1.926 2.063 2.131
l1 800 755.923 807.885 836.913 761.972 791.912 840.872
a2 100 80.162 98.570 108.148 83.362 93.726 109.974
γ 2 1.195 1.642 2.163 1.679 1.93 2.233
l2 800 752.757 801.021 838.058 758.759 803.549 845.507
α 1 0.495 1.055 1.507 0.607 0.932 1.359
μ fpu 1.5 1.126 1.749 2.542 1.762 2.164 2.546
μ fpv 1.5 0.826 1.067 1.413
σ fpu 4 3.086 3.786 5.712 3.028 4.053 4.121
σ fpv 4 4.005 4.211 4.396

plots to assess the fit to the data. A Q-Qplot is a plot where the quantiles of two
distributions are plotted against each other. If the two datasets were drawn from the
identical distributions then the pointswill lie on the x = y line (Wilk&Gnanadesikan
1968). The fit resulting from the 2D fit is shown in Figure 5.12, while the posterior
distributions obtained from both fits are shown in Figure 5.13 and Table 5.2. Com-
paring the 1D and 2D fits, we find that both fits inferred the parameters necessary to
produce the simulated data. From the posteriors we find that the most identifiable
parameters in this model are parameters 𝛽 and 𝛾, the parameters representing the
cooperativity of the repressors. We find that the 2D fit resulted in a better inference
of the parameter values. This is most prominent in parameters 𝛽, 𝛾 and 𝛼 as can be
seen in Table 5.2. Parameters 𝑙 and 𝑙 , the parameters representing the leakiness
of the promoters, remained unidentifiable for both fits. For a system involving two
fluorescent proteins, like the toggle switch, it would therefore be beneficial to use
a two-dimensional fit to the data. The 2D fit performed better in the simulated test
used here, with priors centred closely around known parameter values and clean
data. This will become more evident when ABC-Flow is used on real experimental
data where less information is known for the priors. Therefore, a system involving
two fluorescent proteins should be fit using the 2D fit in ABC-Flow. The 1D fit
should be used in cases where there is only one fluorescent protein of interest in
the system.
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Figure 5.11 (A) Time course produced by the 1D ABC-Flow fit (shown in blue) to
data (shown in red) produced by simulating the same model. (B) Q-Qplot of each
time point fit. The quantile of the two distributions are plotted against each other.
If the distributions are identical, the points would lie on the x = y line, shown in
red.
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Figure 5.12 2D ABC-Flow fit (shown in blue) to data (shown in red) produced by
simulating the same model.
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Figure 5.13 Posterior distributions of inferred parameters from (A) 1D and (B) 2D
simulated data. The parameters used to produce the simulated data set were well
inferred in both cases. The parameter values used to produce the data are marked
on the marginal posterior distributions as a black line.
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These results demonstrate that ABC-Flow can successfully fit a computational
model to flow cytometry data. It can identify the parameter values necessary to
produce the observed behaviour. ABC-Flow can now be confidently applied to real
flow cytometry data of the genetic toggle switch. This allows the inference of the
parameter values of the toggle switch model producing the data observed.

5.7 Toggle switch data collection
In this section I describe the collection of experimental data on the genetic toggle
switch. Using flow cytometry and the necessary inducers to flip the switch I study
the dynamics over time as well as over different inducer concentrations.

5.7.1 Circuit overview
The toggle switch plasmid I used here was provided by Litcofsky et al. (2012). All
the switch components were contained in one plasmid, pKDL071. An overview of
the plasmid is shown in Figure 5.14A. The circuit consists of two promoters, Ptrc2
and PLtetO-1 (Lutz & Bujard 1997). Ptrc2 is a LacI repressible promoter. PLtetO-1 is also
a TetR repressible promoter, as shown in Figure 5.14B. mCherry (Shaner et al. 2004)
and GFP (Shimomura, Johnson, & Saiga 1962) are fluorescent proteins, under the
control of the same promoters as the repressors, and thus reflect the levels of TetR
and LacI in the system. The plasmid contains kanamycin antibiotic resistance and
is high copy (ColE1 origin of replication).
This system is capable of two states, GFP high/mCherry low and GFP low/mCh-

erry high. When IPTG is added to the system, it represses the repression of TetR
and mCherry and thus the cells transition to the mCherry high state. When aTc
is added to the system, it represses the repression of LacI and GFP and thus the
cells transition to the GFP high state. If no inducer is added to the system it will
randomly go to the GFP high or mCherry high states.
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Figure 5.14 The genetic toggle switch circuit used in this chapter. (A) The plasmid
map of pKDL071, the plasmid containing the genetic toggle switch used in Litcof-
sky et al. (2012) (B) The interactions between each element of the circuit.
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5.7.2 Methods
The toggle switch plasmid was provided by the James J Collins lab in the form of a
stab culture in E. coli K-12 MG1655.

5.7.2.1 Escherichia coli culturing conditions

Lysogeny broth (LB) was made by diluting LB in deionized water to a concentration
of 25 g L 1 and subsequently autoclaved at 121 ∘C for 15 minutes. LB agar plates
were made by adding bacteriological agar to the above solution to a concentration
of 45mgmL 1 before autoclaving. The solutionwas then cooled down to 55 ∘Cusing
a water bath. If antibiotic was required it was added to the correct concentration
to the cooled solution. The solution was then aliquoted to petri dishes and left to
solidify at room temperature. The plates were stored in the fridge for up to 1 month.
Overnight cultures were made by picking a single colony from a static culture on

an agar plate. Each colony was placed in 15mL Falcon tubes (Fisher Scientific, MA,
U.S.A) with 5mL LB with kanamycin antibiotic at a concentration of 50 μgmL 1.
The tubes were then screwed loosely and taped securely in order to allow for aer-
ation. The falcon tubes were put in an incubator at 37 ∘C with orbital shaking at
200 rpm for 12-16 hours.

5.7.2.2 Glycerol stock preparation

To preserve the transformed cultures long-term glycerol stocks weremade. 5mL LB
and Kanamycin overnight cultures were made as described in Section 5.7.2.1. The
cultures were kept on ice and 70% glycerol was added to the cultures in a ratio of
glycerol to culture of 1:7. These were aliquoted into cryovials and transferred to a
−80 ∘C freezer for long-term storage.

5.7.2.3 Revival

For subsequent revival of the frozen cultures, a 1.5mL eppendorf tube was removed
from the −80 ∘C freezer and put on ice. A small amount was streaked onto an agar
plate containing LB and kanamycin. The plates were stored in an incubator at 37 ∘C
overnight. Then the plates were sealed using parafilm and stored at 4 ∘C for up to
two weeks.
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5.7.2.4 Plasmid construction

Plasmids were constructed via PCR cloning. PCR primers were chosen to add re-
striction enzyme sites on the 5’ and 3’ where needed. Following PCR amplification,
the amplified DNA was purified using the Qiagen PCR cleanup kit (Qiagen, Craw-
ley, U.K). Double digests were carried out and the desired fragment isolated via
gel extraction. The relevant fragments were subsequently ligated. Following con-
struction, each plasmid was isolated using the QIAprep Spin Miniprep Kit (Qiagen,
Crawley, U.K). Plasmid concentration was determined using the Thermo Scientific
NanoDrop 1000 Spectrophotometer (Fisher Scientific, MA, U.S.A).

5.7.2.5 Polymerase Chain Reaction

In order to amplify DNA and add the restriction enzyme sites required, a Polymerase
Chain Reaction (PCR) reaction was carried out with mutagenic primers. A list of
primers can be found in Appendix C. Q5® DNA Polymerase (NEB, MA, U.S.A) was
used with its associated buffer, dNTPs and Q5® enhancer, as specified in Table 5.3.
PCR reactions were run in a T100TM thermal cycler (Bio-Rad Laboratories, Inc., UK)
as per the Q5® recommendations, and as outlined in Tables 5.3 and 5.4.

Table 5.3 PCR recipe

Reagent Final concentration 50 μL reaction

Q5® buffer 5X 1X 10 μL
dNTPs 200mM each 1 μL

Forward primer 0.5 μM 2.5 μL
Reverse primer 0.5 μM 2.5 μL
Template DNA 2 μg/50 μL -

Q5® DNA polymerase 0.02UμL 1 0.5 μL
Q5® enhancer 1X 10mL

H2O - to 50 μL
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Table 5.4 Thermocycling conditions

Step Cycles Temperature Time

Initiation 1 98 ∘C 30 s
Denaturation

30
98 ∘C 10 s

Annealing 55 ∘C -72 ∘C 20 s
Extension 72 ∘C 2min

Final extension 1 72 ∘C 30 s/kb
Hold 1 4 ∘C ∞

5.7.2.6 Digestion

All enzymes, buffers and Bovine Serum Albumin (BSA) were supplied by NEB. Di-
gestion controls were carried out by adding H2O instead of DNA in the digestion
reaction. Additionally, during agarose gel electrophoresis uncut plasmid was run
alongside the digested plasmid as a further control.
1 μg digests were set up by mixing the plasmid with 0.5 μL of each restriction

enzyme as per the recipe shown in Table 5.5. The reactions were placed in an in-
cubator at 37 ∘C for 4 hours. Finally, the solutions were analysed using agarose gel
electrophoresis (Section 5.7.2.7).

Table 5.5 Digestion recipe

Reagent Volume

PstI 0.5 μL
HindIII 0.5 μL

NEB Buffer 2.1 2 μL
BSA 0.2 μL
DNA 1 μg
H2O to 20 μL

5.7.2.7 Agarose gel electrophoresis

To make a 0.8% agarose gel, 0.4 g agarose were diluted in 50mL 1X TAE buffer. It
was further dissolved by microwaving for 1-3 minutes. The solution was left to cool
for 5 minutes and then 1.5 μL GelRedTM (Biotium, Fremont, CA) was added. Gel
trays were prepared by putting the well comb in place and taping the ends shut.
The solution wast then poured into the prepared gel trays and left to solidify for
20-30 minutes at room temperature.
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Agarose gel electrophoresis was carried out by placing the poured gels into the
gel tanks. The tank was then flooded with 1X TAE buffer. The DNA was prepared
to be analysed by adding 4 μL loading dye to 20 μL sample. A negative control was
usedwith H2O instead of sample. TheDNA ladder of choice was prepared by adding
1 μL H2O and 1 μL dye to 2 μL ladder. The agarose gel was ran at 90 V between 45 -
60 minutes.
To purify the fragments from the agarose gel, a sterile razor blade was used to

cut out the desired fragment. This was placed in a clean eppendorf tube. The DNA
was isolated from the gel using the QIAquick Gel Extraction Kit.

5.7.2.8 Ligation

A ratio of 3:1 of insert to recipient plasmid was used, 1 μL T4® DNA ligase (NEB,
MA, U.S.A) and 2 μL ligase buffer. Molecular biology grade H2O was added to make
the reaction up to 20 μL. The controls used for each ligation reaction, are shown in
Table 5.6. Control 1 is used to detect competent cell viability, control 2 background
due to uncut vector, control 3 re-circularization and control 4 contamination.

The ligation reactions were placed at 4 ∘C for 12 hours. The reactions were then
placed at 65 ∘C for 10 minutes to heat inactivate the T4 DNA ligase enzyme. A
transformation was then carried out as per Section 5.7.2.9.

Table 5.6 Ligation controls

Control 1 Control 2 Control 3 Control 4

Vector Uncut 3 3 7

Insert 7 7 7 3

Buffer 3 3 3 3

H2O 3 3 3 3

Ligase 7 7 3 3

5.7.2.9 Transformation

Thermocompetent E.coliDH5αwas transformedwith the constructed plasmids. Each
ligation reaction was added to 50 μL of thawed competent cells. The cells were sub-
sequently kept on ice for 30 minutes, then placed at a 42 ∘C water bath for 45 s. The
cells were then placed back on ice for 15 minutes. Then 500 μL of Super Optimal
broth with Catabolite repression (SOC) was added to each ligation and placed in
a 37 ∘C shaking incubator for 3 hours. 500 μL and 50 μL were subsequently pipet-
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ted of each ligation onto petri dishes with LB agar and the appropriate antibiotic.
The plates were incubated at 37 ∘C for 12-16 hours. Two controls were used for the
transfection protocol, a positive control with no antibiotic in the LB agar and non-
transfected cells and a negative control of non-transformed cells and LB agar with
antibiotic. These ensure that the cells are viable and not contaminated respectively.
Individual colonies were then selected from each transfection and grew each sep-

arately in 5mL LB medium for 12-16 hours at 37 ∘C, 200 rpm. Glycerol stocks were
then prepared from each culture, as per Section 5.7.2.2.

5.7.2.10 Colony PCR

In order to determine if the fragment was successfully inserted into the vector DNA
plasmid, diagnostic colony PCR was then carried out. Primers were designed that
amplified the multiple cloning site of the vector DNA plasmid. These can be found
in Appendix C. A PCR master mix was made for the number of colonies to be amp-
lified, 32, with an added 10% to account for pipetting error. GoTaq® Flexi DNA
polymerase (Promega Corp., WI, U.S.A.) was used with its associated buffer, dNTPs
and MgCl2and H2O. The recipe for the master mix is shown in Table 5.7.

Table 5.7 Colony PCR master mix recipe

Reagent Final concentration Master mix

GoTaq® green Flexi buffer 1X 141 μL
dNTPs 200mM each 14.1 μL

Forward primer 0.5 μM 1.4 μL
Reverse primer 0.5 μM 1.4 μL

GoTaq® Flexi polymerase 0.02UμL 1 3.5 μL
MgCl2 1X 42.2 μL
H2O - 465 μL

19 μLwere then added from themastermix to each PCR tube. Each of the colonies
was then lifted from the transformation from the agar plate using a 20 μL pipette tip
and added it to a PCRmix bymixing. The pipette tip was subsequently used to make
a scratch into a clean agar plate, and labelled. A PCRwas then carried out according
to GoTaq® Flexi polymerase recommendations, and as shown in Table 5.8.
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Table 5.8 Thermocycling conditions for colony PCR

Step Cycles Temperature Time

Cell lysis 1 95 ∘C 10minutes
Denaturation

35
95 ∘C 30 s

Annealing 55 ∘C -72 ∘C 1minute
Extension 72 ∘C 30 s/kb

Final extension 1 72 ∘C 5min
Hold 1 4 ∘C ∞

Finally a diagnostic agarose gel electrophoresis was carried out as outlined in
Section 5.7.2.7.

5.7.2.11 Sequencing

In order to confirm plasmid identity, all plasmids were sequenced using Source Bios-
cience, Cambridge UK. 10 μL of each plasmid DNA were submitted at a minimum
of 100 ng μL 1 as per the requirements. Primer sequences were also submitted and
manufactured by Source Bioscience. Primers can be found in Appendix C.

5.7.2.12 Inducers

Anhydrotetracycline (aTc) solution was made by diluting aTc from Cayman Chem-
ical Company in 100% ethanol to a concentration of 1mgmL 1. Isopropyl-beta-D-
thiogalactopyranoside (IPTG) solution was made by dissolving IPTG in deionized
water to a concentration of 1M. The solution was sterilised by passing the solu-
tion through a 0.22 μm syringe filter. Both inducers were stored in 1mL aliquots at
−20 ∘C.

5.7.2.13 Growth rate measurement

Plate reader analysis was carried out in order to measure the growth of E.coli over
time. Overnight cultures were made using the method shown in Section 5.7.2.1.
Overnight cultures were then diluted by a 1:1000 ratio into a 5mL LB + kanamycin
solution. The diluted cultures were grown at 37 ∘C with shaking at 200rpm for 1
hour. These cultures were then further diluted by a 1:100 ratio. 200 μl aliquots of
the dilutions were then transferred to a clear flat bottom, black-walled 96-well plate.
Wells with only LB and kanamycin were also added in order to be used as blanks.
The plate was then sealed using a gas permeable membrane and placed in a BMG



Toggle switch data collection 159

FLUOstat OPTIMA plate reader to measure absorbance. The plate reader was set
to a constant 37 ∘C, with 30 seconds orbital shaking at 150 rpm and 4mm shaking
width every ten minutes. Absorbance was measured at 540 nm. Data was exported
as a CSV file and analysed using Python.

5.7.2.14 Flow cytometry

Flow cytometry experiments were carried out in order to get fluorescence levels in
single cells. Flow cytometry data was exported as FCS files and analysed using the
R bioconductor packages flowCore (Ellis et al. 2016b), flowViz (Ellis et al. 2016a) and
Ggplot2 (Wickham 2009). Prior to analysis the raw data was processed to remove
any debris or instrument noise detected. The data was also processed to removed
any doublets, which occurs when more than one bacterial cell passes through the
detector at a time. This will skew the data by including datapoints with double the
fluorescent intensity that the rest of the population. The pre-processing was done
by using the side scattering data. The height and the area of the sample forward
scattering distribution is recorded during an experiment. The cells that lie in the
diagonal where the area equals the height are single bacterial cells. If the area of
the signal exceeds the height it is indicative of a doublet, or cluster of cells, and
is removed from the data. This pre-processing was carried out using autoGate, de-
veloped by Fedorec (2016).

5.7.2.15 Concentration assays

Concentration assays were carried out in order to determine the concentration of
each inducer (aTc and IPTG) at which the switch changes state. Separate overnight
cultures were prepared as per Section 5.7.2.1 with added IPTG at a concentration
of 1mM or added aTc at a concentration of 100 ngmL 1 (Litcofsky et al. 2012). The
cultures were then diluted by 1:1000 into fresh LB medium with varying concen-
trations of the opposite inducer than what the cells were grown in overnight. The
concentrations used are shown in Table 5.9. For each concentration, triplicate cul-
tures were made.
The cultures were placed in an incubator at 37 ∘C, 200rpm for 5 hours. The

cultures were then placed in a centrifuge and spun at 13,000rpm for 5 minutes.
The supernatant was discarded and replaced it with 1mL PBS solution. The BD
LSRFortessaTM cell analyzer (Becton, Dickinson and Company) was used at the St.
Mary’s Flow Cytometry Core Facility at Imperial College London for flow cyto-
metry analysis. GFP was excited using the 488 nm laser and detected using the
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Table 5.9 Concentrations used for flow cytometry assay

aTc (ng/ml) IPTG (M)

0.05 1e-7
0.06 6e-7
0.07 1e-6
0.08 6e-6
0.09 1e-5
0.1 1e-3
1.0 0.1

533/30 filter. mCherry was excited using the 561 nm laser and detected using the
620/10 filter. Data was obtained at n=10000 events per experiment.

5.7.2.16 Time course assays

Time course assays were carried out to measure the time it takes for the switch to
flip to each state. Separate overnight cultures of pKDL071 were prepared as per
Section 5.7.2.1 with added IPTG at a concentration of 1mM or added aTc at a con-
centration of 100 ngmL 1 (Litcofsky et al. 2012). Overnight cultures of pSEVA281G
and pSEVA281C were also made. The cultures were then diluted by a ratio of 1:1000
into fresh LB medium. Separate cultures for each time point were made, in trip-
licate. For cultures grown overnight in IPTG, aTc was added at a concentration of
100 ngmL 1 and for cultures grown overnight in aTc, IPTG was added at a concen-
tration of 1mM. All cultures were placed at 37 ∘C, 200rpm incubator. At 30 minutes,
1 hour and then every hour up to 6 hours flow cytometry was carried out for the
corresponding cultures. Triplicates for each induction were removed from the in-
cubator and placed in a centrifuge at 13, 000rpm for 10 minutes. The supernatant
was discarded and replaced with 1mL PBS solution. These cultures were then ana-
lysed in an AttuneTM NxT Flow Cytometer (Thermo Fisher Scientific) at University
College London. GFP was excited using the 488 nm laser and detected using the
533/30 filter. mCherry was excited using the 561 nm laser and detected using the
620/10 filter. Data was obtained at n=10000 events per experiment. pSEVA281G
and pSEVA281C cultures were used to set the laser voltages and pKDL071 cultures
to detect the bacteria population.
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5.7.3 Results
5.7.3.1 pKDL071 plasmid alteration

The pKDL071 plasmid contains all the elements of the switch. The two states of the
switch are LacI high and TetR high. These are detected by using the fluorescent pro-
teins that are controlled by the same promoters, and thus mirror the levels of LacI
and TetR.The concentration of LacI can be estimated by GFP intensity and TetR con-
centration by mCherry intensity. In order to detect GFP and mCherry levels within
each cell simultaneously, flow cytometry can be used. The lasers needed to excite
GFP andmCherry are 488 nm blue and 561 nm yellow respectively. Since the yellow
laser was not available for use in the BD AccuriTM C6 or the BD LSRIITM (Becton,
Dickinson and Company) flow cytometers available, an alternative construct had
to be made in order to be able to detect the levels of both sides of the switch.
In order to alter the switch construct to be able to detect both sides, the mCherry

genewas swapped for the YFP gene. The yellow fluorescent protein is excited by the
blue laser and could thus be detected using the equipment available. The YFP gene
was available from BioBrick registry of standard biological parts as BBa_K592101.
PCR cloningwas used to introduce the flanking sequences of EcoRV andKasI restric-
tion enzymes in the 5’ and 3’ ends respectively. The primers used are given in Ap-
pendix C . A double digest was performed on plasmids pKDL071 and BBa_K592101,
as well as positive and negative controls. Following gel extraction and ligation, the
pKDL071-YFP plasmid was complete. The plasmid map is shown in Figure 5.15.

GFP and YFP have overlapping emission spectra, which have to be compensated
during flow cytometry data acquisition (Shapiro 1941). This is because the signal
from GFP can be detected at the YFP detector and vice versa. Due to the high level
of compensation needed to be carried out and the relatively dim signal given by
the bacteria used here, the different stages of the switch, ON and OFF, could not
be resolved (data not shown). In order to be able to acquire toggle switch flow
cytometry data, an alternative facility was found that was able to detect GFP and
mCherry fluorescence.

5.7.3.2 Control plasmids construction

I constructed two plasmids in order to use them for the flow cytometry mCherry-
/GFP experiments. The first plasmid, pSEVA281G contains the promoter PLtetO-1
and GFP and the other, pSEVA281C contains the promoter Ptrc2 and mCherry from
PKDL071, shown in Figure 5.16. These two plasmids were used to determine the
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Figure 5.15 pKDL071-YFP plasmid map.

appropriate voltages for the lasers that excite GFP and mCherry.
pSEVA281G was constructed by digesting pKDL071 and pSEVA281 using the pro-

tocol outlined in Section 5.7.2.6. pSEVA281 (supplied by Esteban Martinez García)
is a plasmid backbone containing kanamycin resistance, a high copy origin of rep-
lication (pUC) and a multiple cloning site. The digested fragments were isolated
using gel purification (Section 5.7.2.7) and then the isolated fragments were ligated
(Section 5.7.2.8). Escherichia coli DH5α was then transformed with each plasmid
(Section 5.7.2.9).

pSEVA281C was constructed via PCR cloning. PCR was carried out using the
pKDL071 plasmid as a template DNA using the protocol outlined in Section 5.7.2.5.
Primers were chosen so that Ptrc2 and mCherry were copied and a HindIII restric-
tion enzyme recognition sequence added to the fragment. The rest of the cloning
procedure followed as per plasmid pSEVA281G.

5.7.3.3 Growth rate investigation

I carried out a growth rate analysis to determine whether the aTc or IPTG added
to pKDL071 or pSEVA281G E. coli cultures affected the growth of the bacteria. Cul-
tures were grown without any inducer overnight as described in Section 5.7.2.13.
Assays for the cultures were ran with and without added inducers. As can be seen
in Figure 5.17, there is no difference between the conditions. The addition of either
aTc or IPTG does not affect the growth rate of E. coli K-12 MG1655. Additionally,
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Figure 5.16 The plasmids used to calibrate GFP and mCherry fluorescence. (A)
pSEVA281G plasmid map (B) pSEVA281C plasmid map.

Figure 5.17 Growth rate analysis of E. coli K-12MG1655 pKDL071 and E. coliDH5α
pSEVA281G cultures with and without inducers. The inducers do not affect the
growth of the bacteria.
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aTc does not affect the growth rate of E. coli DH5α. Since the addition of aTc flips
the switch to the GFP high state, and IPTG to the mCherry high state, we can also
conclude that the growth rate of the chassis is not affected by which side of the
switch is in the high state. The growth rate of E. coli DH5α was consistently lower
than that of E. coli K-12 MG1655.

5.7.3.4 Toggle switch concentration assays

I carried out a concentration assay using flow cytometry, as described in Section 5.7.2.15.
As can be seen in Figure 5.18A, during aTc induction the switch flips to a GFP high
state when aTc concentration is at 0.09 ngmL 1 or higher. We observe a bimodal
distribution at concentrations 0.07 ngmL 1 and 0.08 ngmL 1 close to the instantan-
eous switching point (at 0.09 ngmL 1) where noise creates two simultaneous states.
Therefore we observe part of the population switched to the GFP high state. In the
case of IPTG induction (Figure 5.18B) we find that the switch flips to the mCherry
high state when the concentration of IPTG is higher or equal to 0.001M. A decrease
in GFP fluorescence is also observed. We do not observe a bimodal distribution in
this case. The Hill functions for repression and activation were used to obtain the
characterisation curves of the two inductions, aTc and IPTG and are given below.

𝐹 = 𝑃 + (𝑃 − 𝑃 )
[ ]

1+ [ ]
, (5.8)

𝐹 = 𝑃 +(𝑃 −𝑃 ) (1)
1+ [ ]

(5.9)

where F is the median fluorescent unit and [I] is the concentration of inducer. 𝑃
and 𝑃 are the minimum and maximum fluorescence respectively, and Kd and n
are the dissociation constant, and Hill coefficient respectively. I fit the Hill function
by using the nonlinear least squares estimation in the R statistical environment (R
Core Team 2008). The inferred values of the Hill function parameters 𝑃 , 𝑃 ,
𝐾𝑑, and 𝑛 are given in Table 5.10.

For the case of the aTc induction we observe a sharp switch between the GFP
low to the GFP high state, as well as between the mCherry high to the mCherry low
states, as can be seen in the characterisation curves in Figure 5.19B andD.This sharp
switch made the fitting of the Hill function challenging. The parameters producing
the best fit of the Hill function found are given in Table 5.10. The cooperativity
parameter n is very high in this model, in order to be able to fit the data collected.
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Table 5.10 Inferred values from the Hill equations in aTc and IPTG inductions

Parameters aTc induction IPTG induction
GFP mCherry GFP mCherry

Pmin 18.3 330.45 139.69 7.3
Pmax 1541.3 974.46 1392.822 687.3
kd 0.097 0.09917 0.000019 0.00012
n 56.7 135.006 2.59 0.98
fold change 84.1 2.94 9.97 94.15

This could be caused by discontinuous switching, which would mean that the Hill
function is not appropriate for modelling its behaviour.
During IPTG induction we observe an increase in mCherry fluorescence, as seen

in Figure 5.20. The parameters obtained via the nonlinear least squares estimation
are given in Table 5.10. There is a 94.5 fold increase in mCherry fluorescence. We
also observe a decrease in GFP fluorescence with increasing IPTG concentrations.
Figures 5.19 and 5.20 demonstrate that the genetic toggle switch present on the

pKDL071 plasmid is capable of behaving like a switch. By adding the appropriate
inducers at increasing concentrations I observed the switch flipping between its
two states, GFP high/mCherry low and GFP low/mCherry high. I observed a big-
ger fold increase in fluorescence in mCherry during IPTG inductions compared to
GFP during aTc inductions. Both inductions resulted in a large overall change in
fluorescence for the two fluorescent proteins GFP and mCherry.
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Figure 5.19 (A) Flow cytometry density plots of the logged GFP fluorescence ob-
tained for each aTc induction. (B) There is an 84.1 fold increase in GFP fluores-
cence with increasing aTc concentration. (C) Flow cytometry density plots of the
logged mCherry fluorescence obtained for each aTc induction. (D) The medians
of the flow cytometry densities of the triplicates of aTc induction. We observe a
decrease in mCherry fluorescence.
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Figure 5.20 (A) Flow cytometry density plots of the logged mCherry fluorescence
obtained for each IPTG induction. (B) There is a 94.5 fold increase in mCherry
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plots of the logged GFP fluorescence obtained for each IPTG induction. (D) The
medians of the flow cytometry densities of the triplicates of IPTG induction. We
observe a decrease in GFP fluorescence.
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5.7.3.5 Toggle switch time course assay

I further analysed the pKDL071 toggle switch by investigating the time it takes for it
to switch from one high state to the other. To do that I used the method outlined in
Section 5.7.2.16. I obtained separate time courses for the IPTG and aTc inductions.

As can be seen in Figure 5.21 pKDL071 aTc induction begins switching 1 hour
after induction. Complete induction is seen at 6 hours. During the IPTG induction
(Figure 5.22) we see a bimodal distribution at 4 hours, and induction is complete at
6 hours. We observe that during aTc induction there is an increase in GFP fluores-
cence and a decrease in mCherry fluorescence, in the case of IPTG induction the
increase in mCherry fluorescence is not as prominent. A decrease in GFP fluores-
cence is observed during IPTG induction.
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Figure 5.21 aTc induction of pKDL071 over time (in hours)
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Figure 5.22 IPTG induction of pKDL071 over time (in hours)
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In the next section I use ABC-Flow to fit a computational model to the time course
data obtained. Prior to fitting a model to it, I process the data by removing the
unresponsive populations. This ensures that themodel is fitted only to the data from
cells that respond to the inducers. As seen in Figure 5.21, during the aTc induction
there is an unresponsive population of cells where GFP and mCherry fluorescence
are both less that 10 . This population is excluded from further analysis of the data.
During the IPTG induction there is a population of cells that does not respond to
the addition of IPTG by switching from GFP high to mCherry high. This population
of cells was also excluded from further analysis.

5.8 ABC-Flow parameter inference for experimental
data
In this section I apply ABC-Flow to the experimental flow cytometry data collected
in Section 5.7.3.5. The data set is comprised of time course data of the Litcofsky et
al. (2012) toggle switch. The two states of the switch are represented by the levels
of GFP and mCherry intensity in each bacterial cell. Using aTc inducer, each cell
transitions from a GFP low/mCherry high state to a GFP high/mCherry low state
and using IPTG each cell transitions from a GFP high/mCherry low state to an GFP
low/mCherry high state.

5.8.1 Toggle switch model developed to fit to flow cytometry data
Themodel used to fit the toggle switch time course assays was developed using the
Shea-Ackers formalism which represents the probability of a given promoter ex-
pressing (Ackers, Johnson, & Shea 1982), as shown in Figure 5.23. The Shea-Ackers
formalism is described in Section 2.2.2.2. The model represents the two promoters,
Ptrc2 and PLtet-O expressing mCherry and GFP respectively. The switch present in
plasmid pKDL071 has been simplified to only take into account two genes, one for
GFP and one for mCherry and it does not include LacI and TetR. Therefore in the
model GFP represses the expression of mCherry and vice versa.
In order to take into account the stochastic dynamics of the system, the Gillespie

algorithm is used in ABC-Flow, and thus the toggle switch model is described by
the following hazards:

ℎ = 𝐾𝐷 (1 + 𝐾𝐼 )𝐺𝐹𝑃 (5.10)
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Figure 5.23 pKDL071 switch model using the Shea-Ackers formalism

ℎ = 60 𝑅 𝐾𝐿
1 + 𝐾𝐿 + 𝐾𝑅 𝑚𝐶ℎ𝑒𝑟𝑟𝑦 (5.11)

ℎ = 𝐾𝐷 (1 + 𝐾𝐼 )𝑚𝐶ℎ𝑒𝑟𝑟𝑦 (5.12)

ℎ = 60 𝑅 𝐾𝐿
1 + 𝐾𝐿 + 𝐾𝑅 𝐺𝐹𝑃 , (5.13)

where GFP and mCherry represent the two fluorescent proteins in the system. The
cooperativity of the repressors (GFP and mCherry) is assumed in the model as well
as the dimerisation of the repressors. Parameters KIu and KIv increase the degrad-
ation of one of the species, and simulate the addition of a repressor, IPTG and aTc
respectively. When using this model to fit to the post-aTc induction time course
data, KIu was set to 0. KIv was set to 0, until t = 0.01h where the prior distribution
was used. This was done to simulate the addition of the inducer. When using this
model to fit the post-IPTG induction time course, KIv was set to 0 and KIu sampled
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from the prior after t = 0.01h.
The two production hazards, ℎ2 and ℎ4 are multiplied by 60 to reflect the copy

number of the toggle switch plasmid in each cell. The plasmid containing the toggle
switch used here, pKDL071, contains the ColE1 origin of replication, and thus 50-70
copies of the plasmid are present in each cell (Milo et al. 2010). The priors used in
ABC-Flow for this model are given in Table 5.11. All priors given assume a uni-
form distribution. The values of the prior were chosen in agreement with (Lillacci
& Khammash 2013) and in reference to http://bionumbers.hms.harvard.edu/, the
database of useful biological numbers (Milo et al. 2010).

The model also included a fluorescence intensity component. The fluorescent
signal emitted by each individual fluorescent molecule was assumed to be normally
distributed around a mean μ and standard deviation σ, as defined in Equation 5.1. In
order to account for background fluorescence I used the OFF state of each side of the
switch. Overnight inductions of the plasmid pKDL071, with aTc or IPTG, resulted in
the switch fully flipped to each state mCherry low/GFP high andmCherry high/GFP
low respectively. The fluorescence levels of the fluorescent proteins in the low state
were assumed to be the background fluorescence detected by the flow cytometer.
This was assumed to be a sample from a normal distribution with μ = 100 and σ2 =
50 that was added to the signal at each time point. The populations were allowed
to progress until the reduction in epsilon started to plateau and the acceptance rate
became very low. This indicates that the fit will not improve significantly with
subsequent populations.

http://bionumbers.hms.harvard.edu/
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Table 5.11 The priors used for the 1D and 2D ABC-Flow model fitting to flow cyto-
metry data
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5.8.2 Model fitting to the genetic toggle switch post aTc induction
The priors shown in Table 5.11, the hazard functions defining the model and the
flow cytometry time course data were supplied to ABC-Flow. ABC-Flow was used
to infer the parameter values that could produce the best fit to the experimental
data. The resulting simulated time course data and posterior distributions are given
in Figures 5.24 and 5.28 respectively. The model was also simulated stochastically
without converting the number of molecules to fluorescence intensity in order to
confirm that the model behaves like a switch. This is shown in Figure 5.24B. Fol-
lowing aTc induction, the number of GFP molecules increases and the number of
mCherry molecules decreases.
The inferred parameters, and the 95% credible intervals, are given in Table 5.12.

In order to validate these results I compare the 95% confidence intervals of the in-
ferred parameters to values reported in the literature. First, the half-lives of the two
proteins in the system, GFP and mCherry, are estimated. The half-life of a protein
is given by

𝑡 = 𝑙𝑛(2)
𝑘

where 𝑘 is the decay rate of the protein. The half-life of GFP was estimated to
be (7.788, 43.322) hours which is consistent with the >24 hours half life that has
been previously reported for the variant of GFP used here, GFPmut3b (Andersen
et al. 1998). The half-life for mCherry was estimated to be (9.242, 31.507) hours
which is consistent with the long half-life of mCherry, reported to be more than
24 hours (Shaner et al. 2004). We find that the inferred parameter for GFP gene
expression, Ru is (1.055, 1.979) molecules h-1, whereas the parameter for gene ex-
pression of mCherry (Rv) was inferred to (8.970, 42.611) molecules h-1. These val-
ues correspond to the promoter strengths of PLtetO-1 and Ptrc2 respectively. This is
in agreement with characterisation data on the strength of these two promoters,
which report that there is a difference in strengths, Ptrc2 being a stronger promoter
than PLtetO-1 (Litcofsky et al. 2012). By simulating the system using the median in-
ferred values of the system, we find that when the switch is in the GFP high state,
there are approximately 600 GFP molecules in the cell. Further, we find that the
values of the intensity parameters μ and σ, which represent the settings on the flow
cytometer, to be inferred better for GFP than for mCherry.
The inferred parameters can be used to study the switch system present in the

pKDL071 plasmid. Here I examined the effect that the values of the most well in-
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Table 5.12 The inferred parameter values of the toggle switch post-aTc induction

Parameter Units 0.025 Median 0.975

Ru molecules h-1 1.055 1.298 1.979
KLu molecules h-1 19.606 40.466 49.138
KDu h-1 0.016 0.0834 0.089
KRu molecules-1 h-1 0.006 0.013 0.093
Rv molecules h-1 8.970 31.057 42.611
KLv molecules h-1 5.807 35.396 38.333
KRv molecules-1 h-1 0.095 0.386 0.947
KDv h-1 0.022 0.043 0.075
KIv h-1 μM-1 21.690 54.214 89.937
μGFP AU 53.424 76.229 84.055
μmCherry AU 91.329 108.691 176.058
σGFP AU 154.373 193.198 196.525
σmCherry AU 68.178 115.581 139.816

ferred parameters, Ru and KRu aswell as the initial conditions have on the behaviour
of the system. The results are shown in Figure 5.26. First, I studied the effect of the
initial conditions of the dominant protein, in this case mCherry has on the system.
In order to do that I simulated the model using the median values from the posterior
distribution, and increased the initial condition value of mCherry. We do not find
this to have had an effect on the final state of the system, as GFP reaches a similar
value at 6 hours as the one produced using inferred initial condition values (shown
in Figure 5.26B). On the other hand, decreasing the initial condition values of GFP to
10 molecules, destabilises the switch, as shown in Figure 5.26B. The switch happens
at a later time point, and it does not take place for all stochastic trajectories.
The value of Ru represents the strength of the promoter driving GFP expression.

It is therefore important to understand the effect that the promoter strength has
on the behaviour of the system. In order to do that, I simulated the model with
values that exceeded the 95% credible region of the values inferred from ABC-Flow.
The results are shown in Figure 5.26C and D. We find that if the promoter strength
is lower than the range of the 95% credible region of the inferred value then the
system stops behaving like a switch. If the value is much higher, GFP reaches a
much higher value after 6 hours. Further, I examined the effect that the strength of
KRu, the parameter representing the mCherry-induced GFP repression rate, has to
the behaviour of the system. We find that KRu affects the ability of the system to
behave like a switch. If KRu is set to 0.1, the switch occurs at a later time point, and
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does not take place for all stochastic trajectories. If KRu is set to much higher than
the 95% credible region, the system does not switch. These findings are important
in the understanding the system under study as they allow the above predictions to
be made about the behaviour of the system.
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Figure 5.24 (A) The post-aTc induction flow cytometry time course data (blue)
and the resulting model fit from ABC-Flow (red). (B) The model simulation us-
ing parameters sampled from the posterior distribution shows that this model
has a high and low state for GFP. A solid line depicts the median value of the
trajectories and the dotted line depict 0.025 and 0.975 quartiles. (C) The particle
acceptance rate from ABC-Flow (D) The progression of epsilon threshold values
at each population.
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Figure 5.25 The posterior distributions of the 13 parameters fitted to post-aTc
induction time course data using ABC-Flow. We find that the parameters for
GFP expression (Ru) and repression (KRu) are the most identifiable.
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Figure 5.26 (A) Increasing the initial condition value of mCherry does not affect
the state of the system. (B) When the initial condition value of GFP is decreased,
the system no longer exhibits a high and low state for GFP and mCherry. (C) De-
creasing parameter Ru to a value outside the 95% credible region stops the model
from behaving like a switch. (D) Increasing the value of Ru, the rate representing
the transcription rate of GFP, causes GFP to reach higher levels. (E) Increasing
the value of KRu, the parameter representing the mCherry-induced GFP repres-
sion rate causes the switch to happen at a later time point and not all stochastic
trajectories switch state. (F) If the value of KRu is set to larger than the 95% cred-
ible region, the system does not switch states. For all plots, a solid line depicts
the median value of the trajectories and the dotted line depict 0.025 and 0.975
quartiles.
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5.8.3 Model fitting to the genetic toggle switch post IPTG induction
ABC-Flow was further used to fit the experimental time course obtained from the
toggle switch IPTG induction. The prior densities used are given in Table 5.11, the
hazard functions of the model as well as the flow cytometry data were provided to
ABC-Flow. The resulting time course of the model fitted to the experimental flow
cytometry data is shown in Figure 5.27 and themedian and 95% confidence intervals
of the inferred parameters are shown in Table 5.13.
The median values of the marginal posterior distribution of each parameter were

used to simulate the model without the conversion to fluorescent intensity in order
to confirm that the model behaved like a switch. As can be seen in Figure 5.27B,
the model does not behave like a switch within the timeframe given from the ex-
perimental data (0 - 6 hours). We find a rapid decay of GFP without an increase in
mCherry fluorescence as would be expected. This could be attributed to the exper-
imental time course obtained. As shown in Figure 5.27A, over a period of 6 hours
post induction there is a decrease in GFP fluorescence. mCherry can be seen in-
creasing after two hours post induction but then not maintaining that high level.
Over the 6 hours, there is no overall increase in mCherry fluorescence. This time
course is challenging to fit using the model used here as it does not behave like a
switch as expected. The epsilon progression of the fit for the IPTG induction of the
switch further confirms that the fit to the data is not as good as expected. Epsilon
reduction levels off at a high epsilon value compared to the aTc induction, while the
acceptance rate is very low. This indicates that continuing with the fit of the above
model to the IPTG induction data will not produce a better fit.
The posterior density obtained from by ABC-Flow is given in Figure 5.28. Para-

meter Ru, representing GFP expression, was inferred to be (1.057, 9.707) molecules
h-1, within the 95% credible region of the posterior. This is in good agreement with
the inferred values obtained for the post-aTc induction. The half-life values obtained
for GFP and mCherry were found to be (8.35, 46.20) and (7.61, 77.016) respectively,
which are in good agreement with reported literature values (Shaner et al. 2004;
Andersen et al. 1998).
The two fits obtained from the post-aTc and post-IPTG induction represent the

different sides of the switch from the same genetic system and should thus be con-
sidered together. Comparing the fits we find a good agreement for the inferred
parameters Ru and KDu. On the other hand we find that the inferred values for KRu

and KDv do not agree. This could be caused by the fact that the switch is not per-
fectly symmetric on the two sides, as can be seen from the experimental data. The
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Figure 5.27 (A) The time course data obtained of the post-IPTG induced toggle
switch is shown in blue and the resulting fit from ABC-Flow is shown in red.
(B) The model was simulated by using parameter sampled from the posterior dis-
tribution. The resulting model did not behave like a switch. (C) The particle
acceptance rate from ABC-Flow (D) The progression of epsilon threshold values
at each population.
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Figure 5.28 The posterior distribution obtained from ABC-Flow for the post-IPTG
time course data. The parameter for GFP expression (Ru) was found to be the
most well inferred.
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Table 5.13 The inferred parameter values of the toggle switch post-IPTG induction

Parameter Units 0.025 Median 0.975

KIu h-1μM-1 11.767 33.094 59.814
Ru molecules h-1 1.057 1.818 9.707
KLu molecules h-1 1.161 4.986 28.258
KDu h-1 0.015 0.031 0.083
KRu molecules-1 h-1 0.146 0.839 1.183
Rv molecules h-1 1.119 3.223 21.715
KLv molecules h-1 1.396 11.515 33.369
KRv molecules-1 h-1 0.461 0.758 1.136
KDv h-1 0.009 0.061 0.091
μGFP AU 19.371 34.634 46.499
μmCherry AU 17.082 34.943 138.208
σGFP AU 151.169 179.357 197.939
σmCherry AU 9.907 52.085 89.492

system responds to aTc faster than to IPTG. This difference in the data could lead
to different values inferred for the underlying parameters. In the future this could
be incorporated in to ABC-Flow to improve the accuracy of the inference.
In this section I used ABC-Flow to fit a toggle switch model to experimental

flow cytometry data. Both sides of the switch were examined, aTc induction which
flips the switch from mCherry high/GFP low to mCherry low/GFP high and IPTG
induction, which flips the switch from GFP high/mCherry low to GFP low/mCherry
high. The model was successfully fit to the data set obtained from the aTc induction
of the switch but less so to the data obtained from the IPTG induction of the switch.

5.9 Discussion
In this Chapter I characterised the genetic toggle switch experimentally. First I
studied the effect of the two inducers aTc and IPTG on the growth rate of the se-
lected chassis E. coli K-12 MG1655. I find that there is no detrimental effect to the
bacterium by the inducers. I further characterised the switch by determining the
minimum inducer concentration necessary to change the state of the switch. I find
that for aTc induction, a minimum of 0.09 ngmL 1 is required to cause the switch
to go to a GFP high state. For IPTG induction I find that a minimum of 0.001M is
required to flip the switch to an mCherry high state. This information is critical for
using this switch in other applications. Both sides of the switch are very sensitive
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to inducer concentrations, as the concentrations required to observe a change in
fluorescence are very small. Further, I found that the switch is instantaneous for
both GFP and mCherry, with no intermediate fluorescence levels observed.
Furthermore I found that this toggle switch, pKDL071, is faster to respond to

a change in aTc concentration that to a change in IPTG concentration. For IPTG
induction we observe a change in fluorescence after 3-4 hours of induction. For
aTc induction we can see a difference within an hour of induction. This result is
in agreement with Litcofsky et al. (2012). This difference in response times must
be taken into account when using the pKDL071 switch for other applications. This
difference could be attributed to maturation times of the fluorescent proteins. Mac-
donald, Chen, & Mueller (2012) found that mCherry half-maturation time is 150
mins, whereas the GFP variant used here, GFPmut3b has been especially mutated
for fast action (Cormack, Valdivia, & Falkow 1996). Cormack, Valdivia, & Falkow
(1996) found that whereas wild type GFP is detectable 1-2 hours after induction,
GFPmut3b is detectable 8 minutes after induction. This difference could account
for the different response times observed.
Here I also developed a Bayesian framework, ABC-Flow, that is used to fit stochastic

models to flow cytometry data. Fitting computational models to flow cytometry
data can be challenging; fluorescence intensity is measured in arbitrary units and
there can be a big variability between experiments depending on instrument set-
tings. This poses a challenge for model fitting as the fluorescence intensity emitted
by each individual fluorophore molecule cannot be reliably estimated (Kelwick et
al. 2014). ABC-Flow converts the number of molecules obtained via simulations to
fluorescence intensity in order to overcome current limitations in fitting computa-
tional models to flow cytometry data. The novelty of ABC-Flow is that it can be
used on two-dimensional flow cytometry data. Unlike Lillacci & Khammash (2013),
it can be used to infer the parameter values of systems involving one or two fluores-
cent molecules. This makes it ideal to be used on the genetic toggle switch, whose
behaviour is reflected by the levels of two fluorescent proteins, GFP and mCherry.
I have used ABC-Flow to fit the toggle switch model to simulated flow cytometry

data in one and two dimensions. This demonstrated the effectiveness of ABC-Flow
in parameter identifiability of intensity data. Further, I used ABC-Flow to fit a
stochastic computational model to flow cytometry time course data obtained by in-
ducing the genetic toggle switch to its two states. This was done using both sides of
the switch, GFP high/mCherry low to GFP low/mCherry high using IPTG and vice
versa using aTc. Themodel parameters were inferred from the data obtained via aTc
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induction, representing the flip from GFP low/mCherry high to GFP high/mCherry
low. The inferred parameter values were used to make predictions on the behaviour
of the toggle switch system under different initial conditions, promoter and repres-
sion strengths. The parameters were not inferred as well for the data obtained via
IPTG induction. This could be attributed to the experimental data obtained. Post-
IPTG induction we observed a decrease in GFP but the increase in mCherry was
not as prominent. This result could be improved by a repetition of the time course
experiment, which was not carried out due to time constraints.
The model fits to experimental data presented here could be improved by a num-

ber of ways in the future. Firstly, the toggle switch model used here was a simpli-
fied version of the system. The model consisted of two proteins, GFP and mCherry
and used the Shea-Ackers formalism. A more flexible and detailed model, like one
built using mass action kinetics and including LacI and TetR, as well as mRNA and
the maturation of GFP could lead to more accurate inference. It would also allow
the testing of more aspects of the system via simulations using the inferred para-
meters. In addition, the model fits would be improved if the flow cytometry data
was further pre-processed by calibration using commercially available calibration
beads. Computational methods like FlowCal, developed by Tabor et al. (2009) can
be used to convert fluorescence arbitrary units (a.u.) to MEFs (molecules of equival-
ent fluorophore). This can account for instrument gain settings as well as day to day
instrument variability. Future improvements on ABC-Flow could also include the
simultaneous fitting of the toggle switch model to both time courses, post-aTc and
post-IPTG induction. Both of these time courses are obtained from the same genetic
system, and the accurate characterisation of said systemwould have to include both
functions. This would allow us to obtain parameter estimates for components that
can respond to both inducers. ABC-Flow could be also be further developed to be
able to fit computational models to more fluorophores simultaneously. This would
enable the effective characterisation of more complex systems.
The framework developed here can aid the advance of the understanding of ge-

netic systems. ABC-Flow can be used to characterise a system, and infer the para-
meter values that give rise to the experimental flow cytometry data. This will al-
low the accurate parameterisation of computational models describing the system,
a known bottleneck in quantitative model building (Le Novère 2015). A paramet-
erised model can be used to further the understanding of the system and make
testable predictions for its behaviour. It can be used to study how the fluxes and
concentrations of the species are influenced by the parameter values (Li et al. 2010),
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such as transcription or translation rate. This allows for the prediction of the re-
sponse of the system under different stresses in silico. The different parts of the
system under study, working together to produce the response observed, can be
disentangled, understood and studied separately without the need for numerous
laborious and time consuming experiments.

5.10 Summary
In this chapter I developed ABC-Flow, a Bayesian framework used to fit computa-
tional models to flow cytometry data. I tested the method using simulated data.
I summarised the experiments carried out for the analysis of the genetic toggle
switch. I used the pKDL071 plasmid and characterised its switching behaviour over
various inducer concentrations and over time. I found the concentration of each
inducer necessary to flip the switch as well as the time it takes for the change to be
observed. The time course experiments were used as input to ABC-Flow in order
to fit a computational model to the data and infer the parameter values. In the next
Chapter I outline an experimental design to construct more robust genetic toggle
switches.
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6 Conclusions

Synthetic biology aims at using engineering principles for the construction of new
biological systems. A parallel is drawn between the design and construction process
in engineering and synthetic biology. Emphasis is put on modularity and standard-
isation of the parts in play as well as on the separation of design and construc-
tion (Agapakis & Silver 2009). Ideally, synthetic biology would have a toolkit of
interchangeable parts that can be chosen for each application. Like nuts and bolts
whose functions and features are well known and characterised, the synthetic bio-
logist aims to have an equivalent toolkit of fully characterised promoters and genes
that can be selected to produce the system of choice. Nevertheless, biology does not
conform with this idealised scenario. The cell is a noisy environment with a large
number of unknowns and biological parts exhibit crosstalk, making the system un-
predictable. This only highlights the need for the use of better computational tools
for the understanding of a given biological system. Better tools are needed not only
for the design of new synthetic systems but also for the better understanding of
existing systems.
Here I have addressed both of these issues by applying Bayesian statistics to syn-

thetic biology problems. An existing package for Bayesian model selection was
used, as well as two new computational tools developed. The first tool that was
constructed, StabilityFinder, is used for the design of synthetic systems and the
second, ABC-Flow, is used for the inference of the parameters of existing biological
systems. I applied the above tools to the understanding of a commonly found motif,
the genetic toggle switch. The genetic toggle switch is an essential part of the syn-
thetic biology toolkit and understanding its features is of great importance for the
success of future applications of this motif. The methods developed for this simple
system can be expanded to larger and more complex systems.
The first synthetic system design problem that was approached here was the

design of a robust toggle switch. Bayesian model selection was used to determ-
ine that the addition of feedback loops to the classic design of the toggle switch can
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increase its parametric robustness and improve the system’s ability to realise the
set of predefined design objectives. This finding can be used for the construction of
a reliable synthetic toggle switch, and aid in moving this motif from the lab onto a
real word application.
The first tool developed here, StabilityFinder, uses Bayesian statistics to identify

the parameter values that give rise to the desired stability for a given model and can
be used to design novel synthetic switches. StabilityFinder was used to gain further
insights into the stability the genetic toggle switch is capable of. It was shown that
the genetic toggle switch is capable of multistable behaviour, and the design prin-
ciples behind each behaviour were uncovered. This insight can be used to construct
new synthetic switches that can behave in the desired way. The successful construc-
tion of switches with more than two possible steady states can extend the number
of applications the switch can be used for. StabilityFinder was also used to study
the genetic toggle switch under different modelling abstractions. It was shown that
the QSSA cannot always be justified in the study of system behaviour. More gen-
eral mass action models were used to study the switch model using deterministic
and stochastic dynamics and it was found that it is capable of multistationarity.
Robustness of the bistable toggle switch was examined using StabilityFinder and

it was found that the addition of double positive feedback loops increases the para-
metric robustness of the system. This result complements the first conclusion drawn
in this thesis. Both methods look at the ability of this model to behave like a switch,
but define the behaviour in different ways. Using ABC-SysBio a switch-like be-
haviour was defined as three design objectives that needed to be fulfilled, with a
predefined time to reach each state and level of protein. The models were ranked
for their ability to fit this very specific behaviour. StabilityFinder defined a switch-
like behaviour as two clusters of steady state values of the two proteins in the sys-
tem within a predefined time frame. It does not automatically rank the models
under consideration, and the robustness analysis is applied after-the-fact. The two
methods agree that the addition of positive feedback loops increases the parametric
robustness of the switch, thus strengthening the argument.
The toggle switch was also studied experimentally. The sensitivity of the switch

to both inducers was investigated. The switch was also observed switching states
over time for both sides of the switch. The problem of parameter inference for
flow cytometry data was addressed by developing ABC-Flow. ABC-Flow is used to
fit stochastic computational models to data obtained from flow cytometry. It was
shown that it can be used to infer the parameter values that give rise to the observed
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experimental data collected here. A computational model of the toggle switch was
fit to one and two dimensional data. This enables the parameterisation of quantitat-
ive models using 2D flow cytometry data. This can provide further insights into the
system under study that could not be otherwise obtained. The behavioural proper-
ties owed to different sub-parts can be untangled and further our understanding of
the underlying effects at play in a given system.
The next step will be to move towards the testing of the predictions made here

experimentally. The realisation of the switches with added positive feedback - us-
ing the construction strategy described in Appendix A - would enable the testing
of system robustness. Further, using the design principles of multistable switches
predicted here, a switch with three or four states could be constructed in the lab.
This will expand the toolkit of modules that can be used for synthetic biology ap-
plications.
Another important step from here would be to move towards the integration of

multiple devices. For synthetic biology to move into real clinical and industrial ap-
plications, the systems we can design and build will have to become more complex
and reliable. This will require the successful interplay between multiple devices like
the one studied here. In the future multiple switch modules can be combined to cre-
ate more complex system behaviours. Switches can be combined to work in tandem
with other kinds of modules like actuators and oscillators to perform complex func-
tions in the cell. This will not be a trivial process due to retroactivity and crosstalk
between devices (Del Vecchio, Ninfa, & Sontag 2008) and thus further testing will
be required.
In this thesis I studied the genetic toggle switch computationally and experiment-

ally. I developed two computational tools that can be used for the study of genetic
systems in systems and synthetic biology. I used them to uncover important aspects
of the toggle switch system, a known regulatory motif in natural and synthetic sys-
tems. The work presented here advances our understanding of the design of novel
switches as well as of an existing synthetic genetic toggle switch. These approaches
are a necessary first step in transforming synthetic biology into a a true engineering
discipline.





193

Bibliography

Ackers, G. K., Johnson, A. D., & Shea, M. A. (1982). ‘Quantitative model for gene
regulation by lambda phage repressor.’ Proceedings of the National Academy of
Sciences of the United States of America 79(4), 1129–1133.

Agapakis, C. M. & Silver, P. A. (2009). ‘Synthetic biology: exploring and exploiting
genetic modularity through the design of novel biological networks’. Molecular
BioSystems 5(7), 704.

Alon, U. (2007). An Introduction To The Systems Biology. Chapman & Hall/CRC.
Andersen, J. B., Sternberg, C., Poulsen, L. K., Bjorn, S. P., Givskov, M., & Molin, S.
(1998). ‘New unstable variants of green fluorescent protein for studies of
transient gene expression in bacteria.’ Applied and Environmental Microbiology
64(6), 2240–2246.

Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). ‘Synthetic biology:
new engineering rules for an emerging discipline.’ Molecular systems biology
2(1), 1–14.

Atkinson, M., Savageau, M., Myers, J., & Ninfa, A. J. (2003). ‘Development of
genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia
coli’. Cell 113(5), 597–607.

Attune NxT Acoustic Focusing Cytometer (2015). CO016625.
Babtie, A. C., Kirk, P., & Stumpf, M. P. H. (2014). ‘Topological sensitivity analysis
for systems biology.’ Proceedings of the National Academy of Sciences of the
United States of America 111(52), 18507–18512.

Banaji, M. & Craciun, G. (2010). ‘Graph-theoretic criteria for injectivity and
unique equilibria in general chemical reaction systems’. Advances in Applied
Mathematics 44(2), 168–184.

Barkai, N. & Leibler, S. (1997). ‘Robustness in simple biochemical networks.’
Nature 387(6636), 913–917.



194 Bibliography

Barnes, C. P., Silk, D., Sheng, X., & Stumpf, M. P. H. (2011). ‘Bayesian design of
synthetic biological systems.’ Proceedings of the National Academy of Sciences of
the United States of America 108(37), 15190–15195.

Barnes, C. P., Silk, D., & Stumpf, M. P. H. (2011). ‘Bayesian design strategies for
synthetic biology.’ Interface Focus 1(6), 895–908.

Basu, S., Mehreja, R., Thiberge, S., Chen, M.-T., & Weiss, R. (2004). ‘Spatiotemporal
control of gene expression with pulse-generating networks.’ Proceedings of the
National Academy of Sciences of the United States of America 101(17), 6355–6360.

Batt, G., Yordanov, B., Weiss, R., & Belta, C. (2007). ‘Robustness analysis and tuning
of synthetic gene networks.’ Bioinformatics (Oxford, England) 23(18), 2415–2422.

Beal, J., Haddock-Angelli, T., Gershater, M., de Mora, K., Lizarazo, M.,
Hollenhorst, J., Rettberg, R., & iGEM Interlab Study Contributors (2016).
‘Reproducibility of Fluorescent Expression from Engineered Biological
Constructs in E. coli.’ PLoS ONE 11(3), e0150182.

Biancalani, T. & Assaf, M. (2015). ‘Noise Can Induce Bimodality in Positive
Transcriptional Feedback Loops Without Bistability’. Physical review letters
327(5969), 1142–1145.

Bower, A. G., McClintock, M. K., & Fong, S. S. (2010). ‘Synthetic biology: a
foundation for multi-scale molecular biology.’ Bioengineered Bugs 1(5), 309–312.

Brandman, O., Ferrell, J. E., Li, R., & Meyer, T. (2005). ‘Interlinked fast and slow
positive feedback loops drive reliable cell decisions.’ Science 310(5747), 496–498.

Chen, B.-S., Chang, C.-H., & Lee, H.-C. (2009). ‘Robust synthetic biology design:
stochastic game theory approach.’ Bioinformatics (Oxford, England) 25(14),
1822–1830.

Cherry, J. L. & Adler, F. R. (2000). ‘How to make a biological switch.’ Journal of
Theoretical Biology 203(2), 117–133.

Choi, S.-L., Rha, E., Lee, S. J., Kim, H., Kwon, K., Jeong, Y.-S., Rhee, Y. H., Song, J. J.,
Kim, H.-S., & Lee, S.-G. (2014). ‘Toward a generalized and high-throughput
enzyme screening system based on artificial genetic circuits.’ ACS Synthetic
Biology 3(3), 163–171.

Cinquin, O. & Demongeot, J. (2005). ‘High-dimensional switches and the modelling
of cellular differentiation’. Journal of Theoretical Biology 233(3), 391–411.

Clewley, R. (2012). ‘Hybrid models and biological model reduction with PyDSTool.’
PLoS Computational Biology 8(8), e1002628–e1002628.



Bibliography 195

Conradi, C., Flockerzi, D., Raisch, J., & Stelling, J. (2007). ‘Subnetwork analysis
reveals dynamic features of complex (bio)chemical networks’. PNAS 104(49),
19175–19180.

Cooling, M. T., Rouilly, V., Misirli, G., Lawson, J., Yu, T., Hallinan, J., & Wipat, A.
(2010). ‘Standard virtual biological parts: a repository of modular modeling
components for synthetic biology.’ Bioinformatics (Oxford, England) 26(7),
925–931.

Cormack, B. P., Valdivia, R. H., & Falkow, S. (1996). ‘FACS-optimized mutants of
the green fluorescent protein (GFP)’. Gene 173(1), 33–38.

De Jong, H. (2002). ‘Modeling and simulation of genetic regulatory systems: a
literature review.’ Journal of Computational Biology 9(1), 67–103.

Deans, T. L., Cantor, C. R., & Collins, J. J. (2007). ‘A Tunable Genetic Switch Based
on RNAi and Repressor Proteins for Regulating Gene Expression in Mammalian
Cells’. Cell 130(2), 363–372.

Del Vecchio, D., Ninfa, A. J., & Sontag, E. D. (2008). ‘Modular cell biology:
retroactivity and insulation.’ Molecular systems biology 4, 161–161.
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A Designing new switches

A.1 Introduction
In the previous Chapters I studied the effect that adding positive feedback loops to
the genetic toggle switch has on the robustness of the system. I found that adding
two positive feedback loops to the simple toggle switch can increase its parametric
robustness. The next step in this analysis would be to test these predictions exper-
imentally. Therefore, here I provide the experimental design for the construction
of the genetic toggle switch with single and double positive autoregulation. The
constructed switches could then be compared to the simple Litcofsky et al. (2012)
toggle switch experimentally. Their robustness could be tested by varying the ex-
perimental conditions, like temperature and pH, and measuring the response of the
switch.

A.2 Cloning overview
The Litcofsky et al. (2012) toggle switch plasmid, pKDL071, used in Chapter 5 is
modified to construct three new switches. Two switches will have single positive
autoregulation, one on each gene, and one switch will have positive autoregulation
on both genes. An overview of the cloning stages to be carried out is shown in Fig-
ure A.1. The three stages required for the cloning plan to be completed are outlined
in the sections below.



208 Designing new switches

Figure A.1 An overview of the cloning plan to produce three new switches, two
with single positive autoregulation and one with double positive autoregulation.
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A.2.1 Resulting switches
The three switches shown in Figure A.2 will be constructed through this cloning
process. The first switch, on plasmid pKDL071-plac/ara-araC is a toggle switch
with positive autoregulation on the TetR/mCherry side of the switch. The second
plasmid, pKDL071-pLuxTet-luxR consists of a toggle switch with positive autoregu-
lation on the LacI/GFP side of the switch. Finally, the switch with positive autoreg-
ulation on both sides of the switch is on the pKLD0713a plasmid. The plasmid maps
and a schematic of their components’ interactions are shown in Figure A.2.

A.3 Experimental design
The construction of the three switches shown in Figure A.2 is broken down in three
stages, one for the construction of each switch. In this section I will outline the
necessary cloning steps that need to be carried out in order to construct each switch.
The detailed methods that will have to be used for each cloning step are described in
Section 5.7.2. All primer sequences have been designed and are given in Appendix C.
Following the construction of each plasmid outlined below, competent E.coli cells
will be transformed following the method outlined in Section 5.7.2.9.

A.3.1 Stage 1 - Construction of pKDL071-plac/ara-araC
In order to construct plasmid pKDL071-plac/ara-araC with single positive autoregu-
lation on the mCherry/TetR side, the Ptrc2 promoter will be swapped for the Plac_ara-1
and AraC added upstream of TetR. Plac_ara-1 is activated by arabinose (AraC) and
repressed by LacI (Lutz & Bujard 1997), and is thus ideal. The Plac_ara-1 promoter is
present in the pJS167 plasmid, which is provided by Jeff Hasty (Addgene plasmid #
48881) (Stricker et al. 2008). This promoter is also present in the BioBrick registry
of standard biological parts as BBa_K1713000.
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gLacIPLtetO-1 gTetRgAraC

LacI

TetR

AraC

gTetRgAraC

TetR

AraC

gLacIPLuxTet Ptrc2
gTetRgLuxR

LacI

TetR

LuxR

gLacIPLuxTet Plac/ara-1

Plac/ara-1

gLuxR

LacILuxR

(A)

(B)

(C)

Figure A.2 The plasmid maps of three new switches to be constructed. The first
two switches, (A, B) have a single positive autoregulation on each side of the
switch respectively. (C) The switch with double positive autoregulation.
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Figure A.3 Stage 1 cloning procedure. The pKDL071-plac/ara-araC plasmid is con-
structed via PCR cloning from the pJS167 and pKDL071 plasmids.
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Using PCR cloning, the Plac_ara-1 promoter will be cloned from pJS167, with ad-
ded XmaI and KasI restriction enzyme sequences on each end. Both pKDL071 and
the PCR product will be digested with XmaI and KasI restriction enzymes. After
gel electrophoresis and gel extraction, the two will be subsequently ligated. The
resulting plasmid should have the Plac_ara-1 promoter instead of the Ptrc2 promoter
upstream of mCherry.
Following that, PCR cloning will be used to clone Plac_ara-1 and AraC from the

pJS167 plasmid. EagI and SalI flanking sequences will be added via PCR on the 5’
and 3’ ends. Plasmid pKDL071 and the PCR product will be digested using EagI
and SalI. Following gel electrophoresis and gel extraction, the two products will
be ligated in order to complete the pKDL071-plac/ara-araC plasmid. The detailed
methods for each cloning technique mentioned here can be found in Section 5.7.2.

A.3.2 Stage 2 - Construction of pKDL071-pluxtet-luxR
In order to construct the plasmid pKDL071-pluxtet-luxR, the PLux/tet promoter is
necessary. The PLux/tet promoter is present in the BioBrick registry of standard
biological parts as BBa_K934024. PLux/tet is a hybrid promoter activated by LuxR
and repressed by TetR. This promoter will be added in exchange of PLtetO-1 to the
pKDL071 plasmid. The LuxR gene will also be added upstream of LacI, in order to
construct a switch with positive autoregulation on the LacI/GFP side.
First, the PLux/tet promoter is synthesised as the reverse complement of BBa_K934024

with added flanking sequences of EcoO1091 and SphI on the 5’ side and AclI and
Eag1 at the 3’ side. These are added to aid with further cloning steps. The sequence
synthesised is given below:

5’- TTGGGACCTGCATGCTAATCTCTATCACTGATAGGGATAATACGAGTATCTC
TATCACTGATAGGGAGTAAACCTGTACGATCCTACAGGTAACGTTCGGCCG -3’

The pLux/tet and pKDL071 plasmids will subsequently be digested with SphI and
AclI. Following gel extraction and ligation, the PLux/tet promoter will be added up-
stream of GFP, replacing the PLtetO-1 promoter. Then, the plux/tet and pKDL071
plasmids will be digested with EcoO109I and EagI restriction enzymes. Following
gel extraction and digestion, the PLux/tet promoter will be added upstream to LacI,
replacing the PLtetO-1 promoter.

The final stage of constructing the pKDL071-pluxtet-luxR plasmid consists of
PCR cloning of the pTD103aiiA(Cm) plasmid with added BsGI flanking sequences
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at both ends. The pTD103aiiA(Cm) is provided by Jeff Hasty (Addgene plasmid
# 48886) (Prindle et al. 2012). The plasmid constructed in the previous step and
the PCR product will be digested with BsGI restriction enzyme. Following gel ex-
traction and ligation, the pKDL071-pluxtet-luxR should be complete. The ligated
products will be transformed into thermocompetent E.coli.

Figure A.4 Stage 2 cloning procedure. The pKDL071-pluxtet-luxR plasmid is con-
structed via PCR cloning from the synthesised PLux/tet promoter, pKDL071 and
pTD103aiiA(Cm) plasmids.
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A.3.3 Stage 3 - Construction of pKDL0713a
The final construction stage requires the complete pKDL071-plac/ara-araC plasmid,
as well as the synthesised PLux/tet promoter and pTD103aiiA(Cm) plasmid used in
Stage 2. The plux/tet plasmid and pKDL071-plac/ara-araCwill be digestedwith SphI
and AclI restriction enzymes. This will be followed by gel extraction to isolate the
fragments of interest. These will then be ligated to result in the modified pKDL071-
plac/ara-araC plasmid, (pKDL071-plac/ara-araC-pluxtetA) with PLux/tetupstream of
GFP instead of PLtetO-1.
Then, the plux/tet plasmid and the plasmid created above (pKDL071-plac/ara-

araC-pluxtetA) will be digested with EcoO109I and EagI. Following gel extraction
and ligation, the PLux/tet promoter will be added upstream of LacI instead of PLtetO-1
to make a new plasmid, pKDL071-plac/ara-araC-pluxtet. Subsequently, the PCR
product produced above of pTD103aiiA_Cmwith BsGI flanking sequences and pKDL071-
plac/ara-araC-pluxtet will be digested using BsGI. The fragments of interest will
then be extracted following gel electrophoresis of the digested products and ligated.
The ligates should be screened for the correct orientation of the insert.
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Figure A.5 Stage 3 cloning procedure. The pKDL0713a plasmid is constructed via
PCR cloning from the synthesised PLux/tet promoter, pKDL071-plac/ara-araC and
pTD103aiiA(Cm) plasmids.
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A.4 Discussion
The switches described in this Appendix will enable the testing of the predictions
on system robustness made in this thesis. Once the new toggle switches are con-
structed, they will be able to be characterised using ABC-Flow. This will allow the
inference of the parameter values in the models describing these systems and ulti-
mately a better understanding of the effect that adding positive autoregulation has
to the switch.
I started implementing the experimental plan outlined above. In Stage 1 all

the PCRs and digestions described were completed successfully (data not shown).
Transformation of the ligated products into thermocompetent E.coliwas carried out,
but the transformation was not successful. In Stage 2 the PLux/tet promoter was syn-
thesised. Synthesis was carried out by Integrated DNA Technologies, Inc. (Leuven,
Belgium, http://eu.idtdna.com/CodonOpt). E.coli DH5α was transformed with the
synthesised plasmid. Themethod is outlined in Section 5.7.2.9. All subsequent PCRs
and digestions described in Section A.3.2 were carried out successfully. Due to time
constraints, the rest of the experimental plan was not carried out.

A.5 Summary
Here I designed the experimental protocol to be followed in order to construct three
novel switches. These switches can be used in the future in synthetic biology ap-
plications. The execution of the experimental protocol described has not been com-
pleted to date but constitutes the future directions of this project.

http://eu.idtdna.com/CodonOpt
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B.1 Ordinary differential equations

B.1.1 Standard toggle switch with inducers
d([A] ⋅ cell)

d = +𝑉cell ⋅ ge ⋅ [gA] −𝑉cell ⋅ deg ⋅ [A] − 2 ⋅ 𝑉cell ⋅ (dim ⋅ [A] ⋅ [A])

+2 ⋅ 𝑉cell ⋅ (dim_r ⋅ [A2])

d [gA] ⋅ cell
d = −𝑉cell ⋅ rep ⋅ [gA] ⋅ [B2] +𝑉cell ⋅ rep_r ⋅ [B2gA]

d([B] ⋅ cell)
d = +𝑉cell ⋅ ge ⋅ [gB] −𝑉cell ⋅ deg ⋅ [B] − 2 ⋅ 𝑉cell ⋅ (dim ⋅ [B] ⋅ [B])

+2 ⋅ 𝑉cell ⋅ (dim_r ⋅ [B2])

d [gB] ⋅ cell
d = −𝑉cell ⋅ rep ⋅ [gB] ⋅ [A2] +𝑉cell ⋅ rep_r ⋅ [A2gB]

d([A2] ⋅ cell)
d = −𝑉cell ⋅ rep_dim ⋅ [S] ⋅ [A2] +𝑉cell ⋅ rep_dim_r ⋅ [SA2] +𝑉cell ⋅ (dim ⋅ [A] ⋅ [A])

−𝑉cell ⋅ (dim_r ⋅ [A2])−𝑉cell ⋅ rep ⋅ [gB] ⋅ [A2] +𝑉cell ⋅ rep_r ⋅ [A2gB]

d([B2] ⋅ cell)
d = −𝑉cell ⋅ rep_dim ⋅ [R] ⋅ [B2] +𝑉cell ⋅ rep_dim_r ⋅ [RB2] +𝑉cell ⋅ (dim ⋅ [B] ⋅ [B])

−𝑉cell ⋅ (dim_r ⋅ [B2])−𝑉cell ⋅ rep ⋅ [gA] ⋅ [B2] +𝑉cell ⋅ rep_r ⋅ [B2gA]

d [A2gB] ⋅ cell
d = +𝑉cell ⋅ rep ⋅ [gB] ⋅ [A2] −𝑉cell ⋅ rep_r ⋅ [A2gB]

d [B2gA] ⋅ cell
d = +𝑉cell ⋅ rep ⋅ [gA] ⋅ [B2] −𝑉cell ⋅ rep_r ⋅ [B2gA]
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d([S] ⋅ cell)
d = −𝑉cell ⋅ rep_dim ⋅ [S] ⋅ [A2] +𝑉cell ⋅ rep_dim_r ⋅ [SA2] −𝑉cell ⋅ deg_sr ⋅ [S]

d([SA2] ⋅ cell)
d = +𝑉cell ⋅ rep_dim ⋅ [S] ⋅ [A2] −𝑉cell ⋅ rep_dim_r ⋅ [SA2]

d([R] ⋅ cell)
d = −𝑉cell ⋅ rep_dim ⋅ [R] ⋅ [B2] +𝑉cell ⋅ rep_dim_r ⋅ [RB2] −𝑉cell ⋅ deg_sr ⋅ [R]

d([RB2] ⋅ cell)
d = +𝑉cell ⋅ rep_dim ⋅ [R] ⋅ [B2] −𝑉cell ⋅ rep_dim_r ⋅ [RB2]
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Positive autoregulation on B with inducers
d([A] ⋅ cell)

d = +𝑉cell ⋅ ge ⋅ [gA] − 2 ⋅ 𝑉cell ⋅ (dim ⋅ [A] ⋅ [A])+2 ⋅ 𝑉cell ⋅ (dim_r ⋅ [A2])

−𝑉cell ⋅ deg ⋅ [A]

d [gA] ⋅ cell
d = −𝑉cell ⋅ rep ⋅ [gA] ⋅ [B2] +𝑉cell ⋅ rep_r ⋅ [B2gA]

d([B] ⋅ cell)
d = +𝑉cell ⋅ ge ⋅ [gB] − 2 ⋅ 𝑉cell ⋅ (dim ⋅ [B] ⋅ [B])+2 ⋅ 𝑉cell ⋅ (dim_r ⋅ [B2])

−𝑉cell ⋅ deg ⋅ [B] +𝑉cell ⋅ aut_2 ⋅ [B2gB]

d [gB] ⋅ cell
d = −𝑉cell ⋅ rep ⋅ [gB] ⋅ [A2] +𝑉cell ⋅ rep_r ⋅ [A2gB] −𝑉cell ⋅ aut_1 ⋅ [B2] ⋅ [gB]

+𝑉cell ⋅ aut_3 ⋅ [B2gB]

d([A2] ⋅ cell)
d = +𝑉cell ⋅ (dim ⋅ [A] ⋅ [A])−𝑉cell ⋅ (dim_r ⋅ [A2])−𝑉cell ⋅ rep ⋅ [gB] ⋅ [A2]

+𝑉cell ⋅ rep_r ⋅ [A2gB] −𝑉cell ⋅ rep_dim ⋅ [S] ⋅ [A2] +𝑉cell ⋅ rep_dim_r ⋅ [SA2]

d([B2] ⋅ cell)
d = +𝑉cell ⋅ (dim ⋅ [B] ⋅ [B])−𝑉cell ⋅ (dim_r ⋅ [B2])−𝑉cell ⋅ rep ⋅ [gA] ⋅ [B2]

+𝑉cell ⋅ rep_r ⋅ [B2gA] −𝑉cell ⋅ aut_1 ⋅ [B2] ⋅ [gB] +𝑉cell ⋅ aut_3 ⋅ [B2gB]

−𝑉cell ⋅ rep_dim ⋅ [R] ⋅ [B2] +𝑉cell ⋅ rep_dim_r ⋅ [RB2]

d [B2gA] ⋅ cell
d = +𝑉cell ⋅ rep ⋅ [gA] ⋅ [B2] −𝑉cell ⋅ rep_r ⋅ [B2gA]

d [A2gB] ⋅ cell
d = +𝑉cell ⋅ rep ⋅ [gB] ⋅ [A2] −𝑉cell ⋅ rep_r ⋅ [A2gB]

d [B2gB] ⋅ cell
d = +𝑉cell ⋅ aut_1 ⋅ [B2] ⋅ [gB] −𝑉cell ⋅ aut_3 ⋅ [B2gB]
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d([S] ⋅ cell)
d = −𝑉cell ⋅ rep_dim ⋅ [S] ⋅ [A2] +𝑉cell ⋅ rep_dim_r ⋅ [SA2] −𝑉cell ⋅ deg_sr ⋅ [S]

d([SA2] ⋅ cell)
d = +𝑉cell ⋅ rep_dim ⋅ [S] ⋅ [A2] −𝑉cell ⋅ rep_dim_r ⋅ [SA2]

d([R] ⋅ cell)
d = −𝑉cell ⋅ rep_dim ⋅ [R] ⋅ [B2] +𝑉cell ⋅ rep_dim_r ⋅ [RB2] −𝑉cell ⋅ deg_sr ⋅ [R]

d([RB2] ⋅ cell)
d = +𝑉cell ⋅ rep_dim ⋅ [R] ⋅ [B2] −𝑉cell ⋅ rep_dim_r ⋅ [RB2]
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Positive autoregulation on A with inducers
d([A] ⋅ cell)

d = +𝑉cell ⋅ aut_2 ⋅ [A2gA] −𝑉cell ⋅ deg ⋅ [A] + 2 ⋅ 𝑉cell ⋅ (dim_r ⋅ [A2])

−2 ⋅ 𝑉cell ⋅ (dim ⋅ [A] ⋅ [A])+𝑉cell ⋅ ge ⋅ [gA]

d [gA] ⋅ cell
d = +𝑉cell ⋅ aut_3 ⋅ [A2gA] −𝑉cell ⋅ aut_1 ⋅ [A2] ⋅ [gA] +𝑉cell ⋅ rep_r ⋅ [B2gA]

−𝑉cell ⋅ rep ⋅ [gA] ⋅ [B2]

d([B] ⋅ cell)
d = −𝑉cell ⋅ deg ⋅ [B] + 2 ⋅ 𝑉cell ⋅ (dim_r ⋅ [B2])−2 ⋅ 𝑉cell ⋅ (dim ⋅ [B] ⋅ [B])

+𝑉cell ⋅ ge ⋅ [gB]

d [gB] ⋅ cell
d = +𝑉cell ⋅ rep_r ⋅ [A2gB] −𝑉cell ⋅ rep ⋅ [gB] ⋅ [A2]

d([A2] ⋅ cell)
d = +𝑉cell ⋅ rep_dim_r ⋅ [SA2] −𝑉cell ⋅ rep_dim ⋅ [S] ⋅ [A2] +𝑉cell ⋅ aut_3 ⋅ [A2gA]

−𝑉cell ⋅ aut_1 ⋅ [A2] ⋅ [gA] +𝑉cell ⋅ rep_r ⋅ [A2gB] −𝑉cell ⋅ rep ⋅ [gB] ⋅ [A2]

−𝑉cell ⋅ (dim_r ⋅ [A2])+𝑉cell ⋅ (dim ⋅ [A] ⋅ [A])

d([B2] ⋅ cell)
d = +𝑉cell ⋅ rep_dim_r ⋅ [RB2] −𝑉cell ⋅ rep_dim ⋅ [R] ⋅ [B2] +𝑉cell ⋅ rep_r ⋅ [B2gA]

−𝑉cell ⋅ rep ⋅ [gA] ⋅ [B2] −𝑉cell ⋅ (dim_r ⋅ [B2])+𝑉cell ⋅ (dim ⋅ [B] ⋅ [B])

d [B2gA] ⋅ cell
d = −𝑉cell ⋅ rep_r ⋅ [B2gA] +𝑉cell ⋅ rep ⋅ [gA] ⋅ [B2]

d [A2gB] ⋅ cell
d = −𝑉cell ⋅ rep_r ⋅ [A2gB] +𝑉cell ⋅ rep ⋅ [gB] ⋅ [A2]

d [A2gA] ⋅ cell
d = −𝑉cell ⋅ aut_3 ⋅ [A2gA] +𝑉cell ⋅ aut_1 ⋅ [A2] ⋅ [gA]
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d([S] ⋅ cell)
d = −𝑉cell ⋅ deg_sr ⋅ [S] +𝑉cell ⋅ rep_dim_r ⋅ [SA2] −𝑉cell ⋅ rep_dim ⋅ [S] ⋅ [A2]

d([SA2] ⋅ cell)
d = −𝑉cell ⋅ rep_dim_r ⋅ [SA2] +𝑉cell ⋅ rep_dim ⋅ [S] ⋅ [A2]

d([R] ⋅ cell)
d = −𝑉cell ⋅ deg_sr ⋅ [R] +𝑉cell ⋅ rep_dim_r ⋅ [RB2] −𝑉cell ⋅ rep_dim ⋅ [R] ⋅ [B2]

d([RB2] ⋅ cell)
d = −𝑉cell ⋅ rep_dim_r ⋅ [RB2] +𝑉cell ⋅ rep_dim ⋅ [R] ⋅ [B2]
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B.1.2 Positive autoregulation on A and B with inducers
d([A] ⋅ cell)

d = +2 ⋅ 𝑉cell ⋅ (dim_r ⋅ [A2])−2 ⋅ 𝑉cell ⋅ (dim ⋅ [A] ⋅ [A])+𝑉cell ⋅ ge ⋅ [gA]

+𝑉cell ⋅ aut_2 ⋅ [A2gA] −𝑉cell ⋅ deg ⋅ [A]

d [gA] ⋅ cell
d = +𝑉cell ⋅ aut_3 ⋅ [A2gA] +𝑉cell ⋅ rep_r ⋅ [B2gA] −𝑉cell ⋅ rep ⋅ [gA] ⋅ [B2]

−𝑉cell ⋅ aut_1 ⋅ [A2] ⋅ [gA]

d([B] ⋅ cell)
d = +2 ⋅ 𝑉cell ⋅ (dim_r ⋅ [B2])−2 ⋅ 𝑉cell ⋅ (dim ⋅ [B] ⋅ [B])+𝑉cell ⋅ ge ⋅ [gB]

+𝑉cell ⋅ aut_2 ⋅ [B2gB] −𝑉cell ⋅ deg ⋅ [B]

d [gB] ⋅ cell
d = −𝑉cell ⋅ rep ⋅ [gB] ⋅ [A2] +𝑉cell ⋅ aut_3 ⋅ [B2gB] −𝑉cell ⋅ aut_1 ⋅ [B2] ⋅ [gB]

+𝑉cell ⋅ rep_r ⋅ [A2gB]

d([A2] ⋅ cell)
d = +𝑉cell ⋅ aut_3 ⋅ [A2gA] −𝑉cell ⋅ rep ⋅ [gB] ⋅ [A2] −𝑉cell ⋅ (dim_r ⋅ [A2])

+𝑉cell ⋅ (dim ⋅ [A] ⋅ [A])−𝑉cell ⋅ aut_1 ⋅ [A2] ⋅ [gA] −𝑉cell ⋅ rep_dim ⋅ [S] ⋅ [A2]

+𝑉cell ⋅ rep_dim_r ⋅ [SA2] +𝑉cell ⋅ rep_r ⋅ [A2gB]

d([B2] ⋅ cell)
d = +𝑉cell ⋅ rep_r ⋅ [B2gA] −𝑉cell ⋅ rep ⋅ [gA] ⋅ [B2] −𝑉cell ⋅ (dim_r ⋅ [B2])

+𝑉cell ⋅ (dim ⋅ [B] ⋅ [B])+𝑉cell ⋅ aut_3 ⋅ [B2gB] −𝑉cell ⋅ rep_dim ⋅ [R] ⋅ [B2]

+𝑉cell ⋅ rep_dim_r ⋅ [RB2] −𝑉cell ⋅ aut_1 ⋅ [B2] ⋅ [gB]

d [B2gA] ⋅ cell
d = −𝑉cell ⋅ rep_r ⋅ [B2gA] +𝑉cell ⋅ rep ⋅ [gA] ⋅ [B2]
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d [A2gB] ⋅ cell
d = +𝑉cell ⋅ rep ⋅ [gB] ⋅ [A2] −𝑉cell ⋅ rep_r ⋅ [A2gB]

d [B2gB] ⋅ cell
d = −𝑉cell ⋅ aut_3 ⋅ [B2gB] +𝑉cell ⋅ aut_1 ⋅ [B2] ⋅ [gB]

d [A2gA] ⋅ cell
d = −𝑉cell ⋅ aut_3 ⋅ [A2gA] +𝑉cell ⋅ aut_1 ⋅ [A2] ⋅ [gA]

d([S] ⋅ cell)
d = −𝑉cell ⋅ rep_dim ⋅ [S] ⋅ [A2] +𝑉cell ⋅ rep_dim_r ⋅ [SA2] −𝑉cell ⋅ deg_sr ⋅ [S]

d([SA2] ⋅ cell)
d = +𝑉cell ⋅ rep_dim ⋅ [S] ⋅ [A2] −𝑉cell ⋅ rep_dim_r ⋅ [SA2]

d([R] ⋅ cell)
d = −𝑉cell ⋅ rep_dim ⋅ [R] ⋅ [B2] +𝑉cell ⋅ rep_dim_r ⋅ [RB2] −𝑉cell ⋅ deg_sr ⋅ [R]

d([RB2] ⋅ cell)
d = +𝑉cell ⋅ rep_dim ⋅ [R] ⋅ [B2] −𝑉cell ⋅ rep_dim_r ⋅ [RB2]
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B.1.3 CS-MA
d([A] ⋅ cell)

d = +2 ⋅ 𝑉cell ⋅ (dim_r ⋅ [A2])−2 ⋅ 𝑉cell ⋅ (dim ⋅ [A] ⋅ [A])+𝑉cell ⋅ geA ⋅ [gA]

−𝑉cell ⋅ deg ⋅ [A]

d [gA] ⋅ cell
d = +𝑉cell ⋅ rep_r ⋅ [B2gA]

−𝑉cell ⋅ repA ⋅ [gA] ⋅ [B2]

d([B] ⋅ cell)
d = +2 ⋅ 𝑉cell ⋅ (dim_r ⋅ [B2])−2 ⋅ 𝑉cell ⋅ (dim ⋅ [B] ⋅ [B])

+𝑉cell ⋅ geB ⋅ [gB] −𝑉cell ⋅ deg ⋅ [B]

d [gB] ⋅ cell
d = +𝑉cell ⋅ rep_r ⋅ [A2gB] −𝑉cell ⋅ repB ⋅ [gB] ⋅ [A2]

d([A2] ⋅ cell)
d = −𝑉cell ⋅ (dim_r ⋅ [A2])+𝑉cell ⋅ (dim ⋅ [A] ⋅ [A])−𝑉cell ⋅ deg_dim ⋅ [A2]

+𝑉cell ⋅ rep_r ⋅ [A2gB] −𝑉cell ⋅ repB ⋅ [gB] ⋅ [A2]

d([B2] ⋅ cell)
d = −𝑉cell ⋅ (dim_r ⋅ [B2])+𝑉cell ⋅ (dim ⋅ [B] ⋅ [B])−𝑉cell ⋅ deg_dim ⋅ [B2]

+𝑉cell ⋅ rep_r ⋅ [B2gA] −𝑉cell ⋅ repA ⋅ [gA] ⋅ [B2]

d [A2gB] ⋅ cell
d = −𝑉cell ⋅ rep_r ⋅ [A2gB] +𝑉cell ⋅ repB ⋅ [gB] ⋅ [A2]

d [B2gA] ⋅ cell
d = −𝑉cell ⋅ rep_r ⋅ [B2gA] +𝑉cell ⋅ repA ⋅ [gA] ⋅ [B2]

The CS-MA switch was simulated using stochastic dynamics. The stoichiometry
matrix and hazards defining the model are shown below:

ℎ[1] = 𝑔𝑒𝐴 × 𝑔𝐴
ℎ[2] = 𝑔𝑒𝐵 × 𝑔𝐵
ℎ[3] = 𝑑𝑖𝑚 × 𝐴
ℎ[4] = 𝑑𝑖𝑚 × 𝐵
ℎ[5] = 𝑑𝑖𝑚_𝑟 × 𝐵2
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Table B.1 CS-MA stoichiometry matrix

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
-2.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 -2.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 2.0 0.0 0.0 -1.0 0.0 0.0
2.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0
0.0 -1.0 0.0 0.0 0.0 -1.0 0.0 1.0
0.0 1.0 0.0 0.0 0.0 1.0 0.0 -1.0
0.0 0.0 0.0 -1.0 -1.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0 1.0 0.0 -1.0 0.0
-1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0

ℎ[6] = 𝑑𝑖𝑚_𝑟 × 𝐴2
ℎ[7] = 𝑔𝑒𝐴 × 𝑔𝐴 × 𝐵2
ℎ[8] = 𝑟𝑒𝑝_𝑟 × 𝐵2𝑔𝐴
ℎ[9] = 𝑟𝑒𝑝𝐵 × 𝑔𝐵 × 𝐴2
ℎ[10] = 𝑟𝑒𝑝_𝑟 × 𝐴2𝑔𝐵
ℎ[11] = 𝑑𝑒𝑔 × 𝐴
ℎ[12] = 𝑑𝑒𝑔 × 𝐵
ℎ[13] = 𝑑𝑒𝑔_𝑑𝑖𝑚 × 𝐴2
ℎ[14] = 𝑑𝑒𝑔_𝑑𝑖𝑚 × 𝐵2
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B.1.4 DP-MA
d([A] ⋅ cell)

d = −𝑉cell ⋅ deg ⋅ [A] + 2 ⋅ 𝑉cell ⋅ (dim_r ⋅ [A2])−2 ⋅ 𝑉cell ⋅ (dim ⋅ [A] ⋅ [A])

+𝑉cell ⋅ geA ⋅ [gA] +𝑉cell ⋅ aut_2 ⋅ [A2gA]

d [gA] ⋅ cell
d = −𝑉cell ⋅ aut_1 ⋅ [A2] ⋅ [gA] +𝑉cell ⋅ rep_r ⋅ [B2gA] −𝑉cell ⋅ repA ⋅ [gA] ⋅ [B2]

+𝑉cell ⋅ aut_3 ⋅ [A2gA]

d([B] ⋅ cell)
d = +𝑉cell ⋅ aut_2 ⋅ [B2gB] −𝑉cell ⋅ deg ⋅ [B] + 2 ⋅ 𝑉cell ⋅ (dim_r ⋅ [B2])

−2 ⋅ 𝑉cell ⋅ (dim ⋅ [B] ⋅ [B])+𝑉cell ⋅ geB ⋅ [gB]

d [gB] ⋅ cell
d = +𝑉cell ⋅ aut_3 ⋅ [B2gB] −𝑉cell ⋅ aut_1 ⋅ [B2] ⋅ [gB] +𝑉cell ⋅ rep_r ⋅ [A2gB]

−𝑉cell ⋅ repB ⋅ [gB] ⋅ [A2]

d([A2] ⋅ cell)
d = −𝑉cell ⋅ aut_1 ⋅ [A2] ⋅ [gA] +𝑉cell ⋅ rep_r ⋅ [A2gB] −𝑉cell ⋅ repB ⋅ [gB] ⋅ [A2]

−𝑉cell ⋅ (dim_r ⋅ [A2])+𝑉cell ⋅ (dim ⋅ [A] ⋅ [A])+𝑉cell ⋅ aut_3 ⋅ [A2gA]

−𝑉cell ⋅ deg_dim ⋅ [A2]

d([B2] ⋅ cell)
d = +𝑉cell ⋅ aut_3 ⋅ [B2gB] −𝑉cell ⋅ aut_1 ⋅ [B2] ⋅ [gB] +𝑉cell ⋅ rep_r ⋅ [B2gA]

−𝑉cell ⋅ repA ⋅ [gA] ⋅ [B2] −𝑉cell ⋅ (dim_r ⋅ [B2])

+𝑉cell ⋅ (dim ⋅ [B] ⋅ [B])−𝑉cell ⋅ deg_dim ⋅ [B2]

d [B2gA] ⋅ cell
d = −𝑉cell ⋅ rep_r ⋅ [B2gA] +𝑉cell ⋅ repA ⋅ [gA] ⋅ [B2]

d [A2gB] ⋅ cell
d = −𝑉cell ⋅ rep_r ⋅ [A2gB] +𝑉cell ⋅ repB ⋅ [gB] ⋅ [A2]

d [B2gB] ⋅ cell
d = −𝑉cell ⋅ aut_3 ⋅ [B2gB] +𝑉cell ⋅ aut_1 ⋅ [B2] ⋅ [gB]

d [A2gA] ⋅ cell
d = +𝑉cell ⋅ aut_1 ⋅ [A2] ⋅ [gA] −𝑉cell ⋅ aut_3 ⋅ [A2gA]
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The stoichiometry matrix and hazards defining the DP-MA model are given be-
low.

Table B.2 DP-MA stoichiometry matrix

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-2.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 -2.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 2.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0
2.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0
0.0 -1.0 0.0 0.0 0.0 -1.0 1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 1.0 -1.0 0.0 0.0 0.0
0.0 0.0 0.0 -1.0 -1.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0 1.0 0.0 0.0 -1.0 0.0 0.0
-1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 -1.0 0.0 -1.0 0.0 0.0 1.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 -1.0 0.0
0.0 -1.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 1.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 -1.0
0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0

ℎ[1] = 𝑟𝑒𝑝𝐴 × 𝑔𝐴
ℎ[2] = 𝑟𝑒𝑝𝐵 × 𝑔𝐵
ℎ[3] = 𝑑𝑖𝑚 × 𝐴
ℎ[4] = 𝑑𝑖𝑚_𝑟 × 𝐵
ℎ[5] = 𝑑𝑖𝑚_𝑟 × 𝐵2
ℎ[6] = 𝑑𝑒𝑔 × 𝐴2
ℎ[7] = 𝑟𝑒𝑝_𝑟 × 𝑔𝐴 × 𝐵2
ℎ[8] = 𝑟𝑒𝑝_𝑟 × 𝐵2𝑔𝐴
ℎ[9] = 𝑟𝑒𝑝𝐵 × 𝑔𝐵 × 𝐴2
ℎ[10] = 𝑑𝑖𝑚 × 𝐴2𝑔𝐵
ℎ[11] = 𝑑𝑒𝑔 × 𝐴
ℎ[12] = 𝑑𝑒𝑔 × 𝐵
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ℎ[13] = 𝑎𝑢𝑡_1 × 𝐵2 × 𝑔𝐵
ℎ[14] = 𝑎𝑢𝑡_2 × 𝐵2𝑔𝐵
ℎ[15] = 𝑎𝑢𝑡_3 × 𝐵2𝑔𝐵
ℎ[16] = 𝑎𝑢𝑡_1 × 𝐴2 × 𝑔𝐴
ℎ[17] = 𝑎𝑢𝑡_2 × 𝐴2𝑔𝐴
ℎ[18] = 𝑎𝑢𝑡_3 × 𝐴2𝑔𝐴
ℎ[19] = 𝑑𝑒𝑔_𝑑𝑖𝑚 × 𝐴2
ℎ[20] = 𝑑𝑒𝑔_𝑑𝑖𝑚 × 𝐵2
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C Primers

C.1 Primers used during PCR and sequencing

Table C.1 List of primers used for PCR amplification

Direction Amplifies Added site Sequence
Forward Plac/ara-1 NcoI TAAGCACCATGGCTCGAGCATAGCATTTTTATCCAT
Reverse Plac/ara-1 SalI AAGCAGGTCGACTTCTGTGTGAAATTGTTATCCGC
Forward Plac/ara-1 XmaI TAAGCACCCGGGCTCGAGCATAGCATTTTTATCCAT
Reverse Plac/ara-1 KasI AAGCAGGGCGCCCTTTCTCCTCTTTAATGAATTCTGTGT
Forward Plac/ara-1, AraC EagI TAAGCACGGCCGCTCGAGCATAGCATTTTTATC
Reverse Plac/ara-1, AraC SalI AAGCAGGTCGACCTAATTAAGCTTTCACGCTG
Forward LuxR BsGI TAAGCATGTACAAGGCCCTTTCGTCTTCAC
Reverse LuxR BsGI AAGCAGTGTACAAGCGATACAATAGTGTGACAA
Forward mCherry XmaI CTCCATATGCTCGTTCCCGGGC
Reverse mCherry PstI CGCTGTCTGCAGCTGCGTTATCCCCTGATTCTGTGGATA
Forward YFP EcoRV ATAGGGAGGCGCCGATGCGTAAAGGGAG
Reverse YFP KasI GCCATAGATATCTTATTATTTGTATAGTTCATCC
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D Algorithms

D.1 Clustering algorithms

D.1.1 Deterministic case

Algorithm 8 Clustering the steady state deterministic simulation results

1: for each data point do
2: if first point then
3: Make first cluster
4: cluster counter = 1
5: else
6: for each cluster do
7: if cluster within cluster means ± delta then
8: Add to existing cluster
9: Update means of clusters
10: end if
11: if reached_end and not assigned to cluster then
12: cluster counter += 1
13: Add new cluster
14: end if
15: end for
16: end if
17: end for

D.1.2 Stochastic case
Gap statistic
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Algorithm 9 Choosing the optimal number of clusters

1: function Wk(clusters, cluster_centres)
2: for each cluster do
3: for each point in cluster do
4: a = matrix norm (cluster_centre − point)
5: end for
6: 𝑑𝑘 = ∑((𝑎) ) × (2× number of points in cluster)
7: end for
8: 𝑤𝑘 = ∑( )

×( )
9: return wk
10: end function

11: function Gap_statistic(data, cutoff)
12: ks = [1,2,3,4]
13: for k in ks do
14: cluster_centres, clusters = Kmeans(data, k, cutoff)
15: 𝑊𝑘 = log(Wk(clusters, cluster_centres))
16: Create references datasets
17: for each references dataset do
18: cluster_centres, clusters = Kmeans(data, k, cutoff)
19: 𝐵𝑊𝑘 = log(Wk(clusters, cluster_centres))
20: end for
21: 𝑊𝑘𝑏 = ∑( )

22: 𝑠𝑘 = ∑( ( ) )
23: end for

24: 𝑠𝑘 = 𝑠𝑘 × 1+
25: return ks, Wk, Wkb, sk, data_centres, clusters
26: end function

27: function Distance(data, cutoff)
28: ks, logWks, logWkbs, sk, clusters_means, clusts = gap_statistic(data,

cutoff)
29: gaps = logWks − logWkbs
30: optimum number of clusters = 𝑔𝑎𝑝𝑠[𝑖] ≥ (𝑔𝑎𝑝𝑠[𝑖 + 1] − 𝑠𝑘[𝑖 + 1])
31: return cluster_counter, clusters_means
32: end function
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D.2 K-means clustering

Algorithm 10 Clustering stochastic case

1: function Kmeans clustering(data, k, cutoff)

2: function Update_centres(old_centres, values)
3: centre_coords = mean for each dimension
4: shift = getDistance(centre_coords, old_centres)
5: return shift, centre_coords
6: end function

7: function getDistance(𝑎, 𝑏)
8: 𝑑𝑖𝑠𝑡 = (𝑎[𝑥] − 𝑏[𝑥]) + (𝑎[𝑦] − 𝑏[𝑦])
9: return 𝑑𝑖𝑠𝑡
10: end function

11: while True do
12: for each point in data do
13: for each cluster do
14: 𝑑𝑖𝑠𝑡 =getDistance(point, cluster centre)
15: end for
16: Find cluster with minimum distance
17: Repopulate clusters
18: end for
19: biggest_shift ← 0
20: for as many times as there are clusters do
21: shift, cluster centres = Update_centres(old_centres, clusters)
22: biggest_shift = max between shift, biggest_shift
23: end for
24: if biggest_shift ≤ cutoff then
25: break
26: end if
27: end while
28: return cluster_centres, clusters
29: end function
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E Additional posterior distributions

E.1 Asymmetric mass action toggle switch posterior
distributions
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Figure E.1 Asymmetric CS-MA posterior distribution
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Figure E.2 Asymmetric DP-MA posterior distribution
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