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ABSTRACT 

All animals have a fundamental and unavoidable requirement for rest, yet we still do not 

fully understand the processes that initiate, maintain, and regulate sleep. The larval zebrafish 

is an optically translucent, genetically tractable model organism that exhibits sleep states 

regulated by conserved sleep circuits, thereby offering a unique system for investigating the 

genetic and neural control of sleep. Recent studies using high throughput monitoring of larval 

sleep/wake behaviour have unearthed novel modulators involved in regulating arousal and 

have provided new mechanistic insights into the role of established sleep/wake modulators. In 

addition, the application of computational tools to large behavioural datasets has allowed for 

the identification of neuroactive compounds that alleviate sleep symptoms associated with 

genetic neurological disorders.  

  
INTRODUCTION 

Work over the past 15 years has demonstrated that sleep is evolutionarily conserved across 

the animal kingdom, indicating that sleep serves an essential, possibly universal, function [1*]. 

Moreover, the negative impact that sleep disruption has on immune, metabolic, cardiac and 

cognitive health demonstrates sleep’s critical role in optimising daily behaviour and general 

physiological well-being.  Many molecular and neuronal control systems are in place to 

regulate sleep’s timing and duration; however, we are still discovering these systems and their 

rules. Two major discoveries have spearheaded advances in the field. First, the discovery that 

the human sleep disease, narcolepsy, is a dysfunction in hypocretin/orexin signalling 

demonstrated that small populations of peptidergic neurons can have profound consequences 

on human and animal sleep [2]. Second, the recognition that genetically tractable non-

mammalian species exhibit sleep states has expanded the models available to sleep 

researchers and have facilitated screens for sleep mutants [3]. 

The study of sleep regulation in zebrafish larvae has taken up a unique model system niche, 

as they offer a sophisticated genetic toolkit coupled with the ability to monitor and manipulate 

the activity of conserved sleep/wake neurons in vivo (see Box 1). In this review, we discuss 

recent insights into sleep in this diurnal vertebrate and highlight novel methods that use the 

special properties of the zebrafish model. 
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MONITORING SLEEP AND AROUSAL IN LARVAL ZEBRAFISH  

To enable relatively high-throughput monitoring of sleep/wake states in zebrafish larvae, 

the animals are tracked by videography in a 96-well plate format for several days on either a 

24-hour light-dark cycle or on constant illumination (Figure 1a). Larval and adult zebrafish are 

diurnal and at night exhibit an increased number and duration of inactive bouts (Figure 1b), 

which have a typical duration around three minutes but can last for hours [4]. Quiescent bouts 

lasting at least one minute fulfill the major criteria used to behaviourally define sleep in non-

mammalian systems, including an increased arousal threshold to multimodal sensory stimuli 

[5–7]. Larval sleep is also under circadian and homeostatic control—larvae exhibit both near-

24 hour sleep/wake rhythms in constant conditions as well as rebound sleep following 

mechanical deprivation [5]. Since pharmacological and genetic interventions can selectively 

perturb components of waking levels and sleep bout structure, larval sleep and arousal are 

likely controlled by distinct mechanisms.  

There are some limitations to using behavioural criteria as a proxy for sleep state. In 

particular, zebrafish sleep has not yet been further sub-divided, for example into rapid eye 

movement (REM) and non-REM (NREM) states as observed in mammals, birds, and recently, 

reptiles [8**], or into deeper and lighter stages of sleep, as suggested using systematic arousal 

threshold responses in Drosophila [9]. The use of more fine-grained analysis of locomotor 

structure, including detailed bout kinematics and head position [10] coupled with a more 

expansive probing of stimulus-evoked behaviour across the 24-hour light-dark cycle [11], may 

reveal dynamic changes in arousal states that could imply variable sleep stages in larvae. 

Leveraging the ability to functionally image whole-brain activity in zebrafish larvae will also give 

more insight into how behavioural readouts relate to brain state. In freely swimming larvae, 

locomotor activity across the day correlates with the activity of wake-promoting hypocretin 

neurons [12], but correlation of behaviour to activity of sleep-active neurons has not yet been 

achieved. Identifying neuronal correlates of sleep during drug-induced and natural sleep states 

in a fictive locomotion preparation may be especially useful in probing brain state switching, 

similar to that achieved for the neural control of locomotor modules during spontaneous and 

visually-evoked navigation [13*–15]. 

NEUROCIRCUITRY OF SLEEP IN ZEBRAFISH 

Classical and modern lesion studies in mammals highlighted numerous brain areas, 

including the basal forebrain, posterior hypothalamus, reticular formation, and hindbrain as 

critical for the regulation of arousal and sleep [16–18]. More recently, systematic searches for 

sleep/wake regulatory neurons using chemo- and optogenetic modulation of putative 

sleep/wake-inducing neurons are more precisely defining many key subpopulations as well as 

unravelling the complex dynamics at play among neurons that control brain state switching 

[19*,20]. Initial zebrafish studies focused on demonstrating the genetic, molecular, 
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pharmacological, and neuronal conservation of these mammalian-defined sleep-regulatory 

systems and are now beginning to reveal novel insights into sleep control in vertebrates. 

 
Wake-promoting 

Hypocretin 

The arousal promoting peptide, Hypocretin/Orexin (Hcrt), is conserved in zebrafish [6,21–

23] and is expressed by approximately 10 pairs of bilateral, glutamatergic neurons in the 

anterior hypothalamus at 5 days post fertilisation (dpf).  Unlike mammals, which have two Hcrt 

receptors (HcrtR1 and HcrtR2), zebrafish possess a single Hcrt receptor (HcrtR) that is most 

similar to HcrtR1 [21]. Hcrt neurons send widespread projections to dopaminergic neurons in 

the diencephalon and norepinephrine (NE) neurons in the locus coeruleus (LC) in the larval 

brain. By adulthood Hcrt neurons project to other components of the ascending arousal system 

where HcrtR is also detected, including the serotonergic neurons of the dorsal raphe and the 

histaminergic neurons of the tuberomamillary nucleus (Figure 1c) [22]. 

Consistent with the neuroanatomical evidence, genetic studies indicate that Hcrt is wake-

promoting in zebrafish. Genetic overexpression of Hcrt increases locomotor activity and 

decreases rest bout length [6] while also sensitizing larvae to changes in illumination (but not 

to other modes of stimulus-induced arousal) [11]. Similarly, optogenetic (with 

channelrhodopsin) and chemogenetic (with capscasin-sensitive TRPV1) activation of Hcrt 

neurons is sufficient to induce wakefulness and reduce sleep in a HcrtR-dependent way [7,24].  

As in mammals, either genetic elimination of the Hcrt receptor or ablation of Hcrt neurons 

causes sleep and activity fragmentation in both adult and larval zebrafish [23,25].  

Analysis of the neuronal targets of Hcrt neurons in zebrafish adds to our understanding of 

Hcrt neurons as integrators of multiple pathways involved in energy balance. For example, 

Hcrt neurons project to the pineal gland (as in mammals), which secretes the sleep-inducing 

molecule, melatonin. Perhaps this circuit component is important for maintaining sleep 

consolidation in addition to Hcrt’s role in wake maintenance [26,27]. In mammals, Hcrt also 

has been implicated in regulating the interplay between arousal and feeding [28]. In zebrafish, 

Hcrt neurons project to and make functional connections with HcrtR-expressing gonadotropin 

releasing hormone 3 (GnRH3) neurons, which are involved in regulating energy status and 

sexual maturation in vertebrates [29]. In an HcrtR-dependent manner, Hcrt hyperpolarises and 

inhibits the firing of GnRH3 cells, thus providing the first evidence for a role of Hcrt signalling 

in feeding and sexual maturation in zebrafish [30]. 

Finally, transcriptional profiling of zebrafish Hcrt neurons has identified several conserved 

molecular components of these neurons’ development and function. For example, the Hcrt-

enriched transcription factor, Lhx9, is both necessary and sufficient for Hcrt neuron 

specification in mice and zebrafish, as genetic overexpression of lhx9 promotes ectopic 
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differentiation of hypocretin neurons in zebrafish and mouse hypothalamus [31]. This is 

consistent with the genetic ablation of Lhx9 in mice, which results in hypersomnolence [32]. In 

another study, transcriptional profiling of isolated zebrafish Hcrt neurons identified the 

repolarising potassium channel Kcnh4a as enriched in these cells. kcnh4a mutant zebrafish 

are slightly hyperactive and have disrupted sleep/wake architecture at night, as would be 

expected if Kcnh4a intrinsically modulates the excitability of wake-promoting Hcrt neurons. 

This study expands the important roles of K+ channels in modulating sleep/wake circuitry, as 

has previously been shown in Drosophila, zebrafish, and mice [33**–35]. 

 

Norepinephrine 

Norephinephrine (NE) neurons of the locus coeruleus (LC) have been shown by 

pharmacological and optogenetic methods to be important regulators of arousal in both 

mammals and fish [36,37]. In contrast to mice, however, genetic knockout of the NE 

synthesising enzyme dopamine-beta-hydroxlase (Dbh) in zebrafish is viable, allowing for more 

detailed studies of NE signalling in mediating arousal. dbh-/- larvae have reduced activity and 

increased daytime sleep, but they are also more sensitive to mechanoacoustic stimuli, 

indicating that NE could also modulate arousal threshold [7]. However, dopamine is the 

biogenic precursor to NE and so this does not preclude the role of increased dopamine levels 

in modulating arousal threshold in dbh-/- larvae. 

As in mammals, NE neurons of the locus coeruleus in zebrafish are stimulated by Hcrt 

(Figure 1c) [7,36]. Furthermore, Hcrt-induced arousal is strongly blunted in dbh-/- larvae, 

demonstrating clearly that NE itself is a critical output effector of wake-promoting Hcrt signals 

[7]. This work lays the groundwork for more detailed analyses of other circuit components 

downstream of Hcrt neurons.  

 

Neuromedin U 

The first genetic overexpression screen for sleep and arousal regulators in a vertebrate 

identified the neuropeptide Neuromedin U (Nmu) as a potent wake-promoting factor across 

the day:night cycle in zebrafish [38*]. Zebrafish nmu mutants show reduced locomotor activity 

and also have reduced body size as adults, indicating that, like Hcrt, Nmu may coordinate 

behaviour and metabolism. Genetic evidence indicates that Nmu mediates arousal through 

only one of three zebrafish Nmu receptors, NmuR2, while adult size is modulated through 

signalling via NmuR1.  In mammals, Nmu was thought to exert its influence on arousal through 

stimulation of the glucocorticoid hypothalamic-pituitary-adrenal (HPA) stress axis, but 

zebrafish glucocorticoid receptor mutants respond normally to Nmu overexpression. Instead, 

a set of corticotropin releasing hormone (Crh) neurons in the brainstem respond to Nmu 

(Figure 1c), while pharmacological blockade of Crh receptor signalling blocks Nmu-mediated 
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arousal in larvae. This study therefore not only identified Nmu as a modulator of vertebrate 

sleep/ wake states, but also mapped this activity onto a set of neurons not previously 

implicated in vertebrate arousal. Whether a similar Nmu-regulated circuit exists in mammals 

has not yet been investigated.  

 

Sleep-promoting 

Melatonin 

An understanding of melatonin’s role in coordinating the circadian clock and the onset of 

sleep has always been complicated by the fact that its levels peak at night in both diurnal and 

nocturnal animals. In zebrafish, exogenous melatonin is a potent hypnotic, but its endogenous 

function was unclear until recently [5]. Zebrafish larvae that lack melatonin either due to a 

genetic lesion in the melatonin-synthesising enzyme (aanat2) or ablation of the melatonin-

producing pineal gland have clock-independent reductions in sleep at night. However, both 

molecular whole-body and locomotor activity rhythms persist in both aanat2 mutants and in 

animals that have their molecular clocks ablated in the pineal gland [39*,40]. Thus, melatonin 

is likely a specific sleep output signal downstream of the circadian clock.  aanat2-/- animals are 

also more sensitive to the soporific effects of adenosine receptor agonists, thus providing an 

intriguing possible mechanism to link the circadian (via melatonin) and homeostatic (via 

adenosine) regulatory arms of sleep [39]. 

 

QRFP  

QRFP is a member of the highly conserved RFamide family of neuropeptides and has been 

implicated in feeding and locomotor activity in rodents, with hyperlocomotion induced upon 

peptide injection in mice [41]. In zebrafish, expression is localised to a small number of 

glutamatergic neurons in the hypothalamus adjacent to the Hcrt neurons (Figure 1c), with 

widespread projections into the hypothalamus and midbrain [42]. In contrast to the rodent 

studies, genetic overexpression of QFRP in zebrafish larvae specifically promotes daytime 

sleep and decreases activity independently of the circadian clock. Conversely, zebrafish 

harbouring mutations in either qrfp or double mutants that lack the QRFP receptors Grp103a 

and Grp103b are more active than wild type siblings. This may represent another example in 

which nocturnal and diurnal animals have conflicting responses to behaviourally relevant 

signals, although a developmental role for QRFP in rodent bone formation has limited genetic 

analysis of behaviour [43]. 

 
SLEEP, DISEASE, AND PREDICTIVE PHARMACOLOGY 

Many neuropsychiatric and neurodevelopmental disorders, including depression, 

schizophrenia, Alzheimer’s disease, and autism, are associated with sleep disturbances 
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[44,45], but it remains unclear in most cases to what extent sleep disruption contributes to 

disease severity and progression. Several studies have now identified sleep and arousal 

endophenotypes in zebrafish genetic models of disease.  For example, a zebrafish model of 

the most common cause of mental retardation, Fragile-X syndrome, shows modest 

hyperlocomotion, especially during light/dark transitions [46]. Imaging studies revealed that 

fmr1 mutant larvae have increased branching of cholinergic and glutamatergic 

mechanosensory and motor neurons, although it is not clear if this phenotype causes the 

hyperactivity. Dravet syndrome, a form of paediatric epilepsy caused by mutations in the 

voltage-gated sodium channel gene SCN1A, has also been modelled in zebrafish by scn1Lab 

mutations. Mutant scn1Lab zebrafish larvae exhibit spontaneous seizures, evident both 

behaviourally and neurologically. Two small molecule screens found the anti-histamine, 

clemizole, and the serotonin agonist, fenfluramine, as attenuators of seizure, although this may 

be due to generalized sedation rather than a selective rescue of epilepsy  [47,48]. 

The complexity of larval zebrafish sleep/wake behavioural dynamics coupled with the 

diversity of response profiles (behavioural fingerprints) found in previous screens of more than 

5000 small molecules affords the possibility of making informed predictions of drug-genotype 

interactions by comparing mutant behavioural fingerprints to the complete drug panel [34]. This 

form of ‘predictive pharmacology’ unbiasedly identified estrogenic compounds as selective, 

non-sedating rescuers of the night-time hyperactivity in zebrafish mutants harbouring 

mutations in the autism-risk gene, cntnap2. Given the sexual dimorphism in autism 

susceptibility, and the proposal of the female protective hypothesis [49], using zebrafish 

imaging techniques to identify estrogen/autism risk gene sensitive circuits responsible for 

night-selective arousal may provide insight into how sleep circuits are disrupted in autism 

[50**].  

 

CONCLUDING REMARKS 

Studies into the genetic and neural components involved in regulating evolutionarily 

conserved behaviours such as sleep have profited from advances in zebrafish genetic and 

imaging tools. Validation of conserved network modules involved in regulating sleep and wake 

in zebrafish has paved the way for genetic and neuropeptide screens that have identified novel 

modulators of vertebrate sleep that are likely to be relevant in mammals. Moving forward, 

studies that combine in vivo neuronal imaging with advanced locomotor kinematic analysis of 

the larval zebrafish will provide detailed insights into zebrafish brain states and the regulatory 

neurocircuitry involved. Finally, the analysis of sleep/wake stages in genetic models of disease 

can be combined with targeted pharmacological screens for behavioural modulators to 

elucidate links between drug targets, neuronal circuits, and behaviour. 
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Figure Legend 

Figure 1 a) Videography for monitoring activity of up to 96 larvae simultaneously. Larvae are 

placed into individual wells of a multi-well plate and illuminated by white and infrared lights to 

allow tracking of larvae over a 14:10 light:dark schedule. b) Representative activity (i) and 

sleep (ii) plots for an individual 6-7dpf larval zebrafish. c) Summary of neuronal nuclei known 

to modulate sleep/wake in larval zebrafish. Many interconnections have been validated by 

anatomical studies, while the Hcrt to LC connection was validated by functional imaging [7]. 
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BOX1: Zebrafish Toolkit: 

Although the zebrafish was established as a model for the study of vertebrate development nearly 40 

years ago, only in the past 15 years has it gained widespread use to study the genetic and neural basis 

of behaviour. This rise in popularity is based on three cornerstones that provide a unique toolkit that is 

well suited for the study of sleep regulation:  

1. High fecundity and rapid external development of free-swimming larvae. Larvae exhibit overt sleep 

stages and other complex behaviours as early as 4dpf [2,3]. During these early larval stages, small 

molecules added to the water are readily absorbed and can access the brain, which lacks a fully 

developed blood-brain barrier [4]. The large number of offspring generated and ease of 

pharmacological manipulation has provided a platform for performing high-throughput screens for 

both drug and gene discovery [5,6]. 

2. A fully sequenced genome and conserved genetics. Up to 80% of disease-associated human genes 

have a clear ortholog in zebrafish, and most genes that have been implicated in mammalian sleep 

are conserved in fish [7]. Genome editing techniques, like Crispr/Cas9, facilitate targeted mutant 

generation, while transgenic techniques enable labelling and controlling neurons [8].    

3. Optical translucency of the larval zebrafish brain. The small number of neurons (about 100,000) in 

the 6dpf larva facilitates in vivo whole brain functional imaging and targeted neuronal 

manipulations [9]. Structures of particular relevance for the study of sleep are the hypothalamus 

and brainstem, which are well conserved between fish and humans, including many 

subpopulations that are relevant for sleep regulation. 
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