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Introduction

Mycobacterium tuberculosis (Mtb) is estimated to have infected one third of the world’s 

population and continues to be a significant cause of mortality and morbidity [1]. There is a 

need for new and improved diagnostics or treatment monitoring tools and blood based 

mRNA diagnostics are a potential solution [2]. Gene expression microarray analysis of 

human blood has been widely used to profile the host transcriptional response in active 

tuberculosis (TB) with the aim of identifying potential biomarkers as well as to better 

understand the host immune response [2]. So far, there has been a relative lack of 

concordance in the actual genes being identified from the published studies [2–4], although 
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there has been agreement in some of the pathways identified. Interferon signalling has been 

identified as a dominant signature in many of the individual studies [2], however when 

significant gene lists were combined from eight publicly available TB data-sets TREM1 

signalling became the most significant pathway [5].

We therefore undertook this study to collectively reanalyse the publicly available datasets 

using differing methodologies to identify robustly differentially expressed genes which 

could distinguish active TB from controls. These identified genes are potential candidates 

for blood based mRNA biomarkers of active disease and additionally could provide valuable 

information regarding the immune and inflammatory response underlying TB pathogenesis.

Methods

In August 2014 a comprehensive search of Pubmed as well as microarray depositories was 

undertaken. Publicly available datasets that had active TB patients and healthy controls, 

latently infected or patients post treatment were identified and retained. The latter three 

cohorts are synonymous transcriptionally at the group level [3, 6–8]. HIV infected 

individuals were excluded from this analysis.

Where possible, data were imported in its raw format, Illumina and Agilent data were 75th 

centile normalised, and Affymetrix data RMA quantile normalised. If raw data were not 

available then the authors’ normalisation was used. All datasets were then filtered for low 

expression transcripts (transcripts with expression 2 fold change (FC) from the median in at 

least 10% of all samples retained) followed by statistical filtering (independent t-test with 

Benjamini Hochberg multiple testing correction q-value <0.05). Probe/transcript IDs were 

matched to Entrez gene identifiers for each dataset. Multiple represented genes were filtered 

and the most significant (by q-value) retained. Venn Mapping [9] was used to check 

significance of the overlaps between any two datasets. Meta-profiling [10] of the significant 

gene lists was then undertaken to identify the number of overlaps required for inclusion in 

the meta-signature, additionally only those genes which were expressed in a consistent 

direction of regulation for at least the number of determined overlaps were retained as the 

meta-signature.

Modular analysis [11] was undertaken of compatible datasets, it was not possible to analyse 

GSE56153, GSE34608 and GSE28623 with this method as their technology platforms were 

not supported by the tool.

The canonical pathway, gene network analysis, gene function annotation and upstream 

analyses were generated through the use of IPA (Ingenuity® Systems, www.ingenuity.com).

Results

Modular and meta-profiling identify a common transcriptional response of patients with TB 
versus healthy controls, patients post-treatment and asymptomatic latently infected 
individuals

Sixteen datasets were identified for inclusion in the meta-analysis (GSE39939, GSE39940, 

GSE54992, GSE37250, GSE31348, GSE36238, GSE42825, GSE42826, GSE42830, 
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GSE40553, GSE56153, GSE34608, GSE28623, GSE19444, GSE19442 and GSE19439). 

Modular analysis of these datasets revealed similarities in the modular profiles with over-

expression of modules annotated as cytotoxic, interferon, inflammation and DC/apoptosis, 

and under-expression of modules annotated as B-cells, T-cells, lymphocyte activation and 

mitochondrial stress (Figure 1A). Two datasets (GSE54992 and GSE36238) had different 

weaker modular patterns with less modules identified as significantly different from the 

control group; these two were also the smallest in terms of total number of individuals 

within the datasets.

Independently for each dataset differentially expressed genes between controls and TB 

groups were identified. There was significant overlap between the differentially expressed 

gene lists across the datasets with no difference in degree of overlap dependent on the choice 

of control group (Figure 1B). Meta-profiling identified 380 genes which were identified in 

nine or more datasets in a consistent direction of regulation (Figure 1C). Upregulated genes 

were more consistently identified across datasets than down-regulated genes (Figure 1D). 

Five genes were identified in all 16 datasets AIM2, BATF2, FCGR1B, HP and TLR5.

IFN-γ was the top predicted upstream regulator of these 380 meta-signature genes with 54 

genes directly or indirectly linked to IFN-γ within the IPA database (Data not shown). The 

380 meta-signature had enrichment for IPA canonical pathways involved in pattern 

recognition, interferon signalling, IL-6 signalling, TREM-1 signalling and complement 

(Data not shown). Based on these findings a curated cartoon summarising the major 

functional groups of genes and their relationships was created (Figure 1E).

Discussion

In this study we have identified a 380 gene meta-signature of active TB compared to healthy 

controls, patients post-treatment and asymptomatic latently infected individuals which 

showed enrichment for both innate and adaptive immune functions.

Two main methodologies were used to analyse the publicly available data: modular analysis 

and meta-profiling. Modular analysis depends on identifying differences in coordinately 

expressed groups of genes (modules) rather than individual genes [11]. We identified 

remarkable similarity between the datasets with over-expression of modules annotated with 

interferon, inflammation functions, monocyte and neutrophil functions, and under-

expression of B and T-cell modules. These findings are in keeping with the individual 

studies which have included grouped modular analysis [7, 8]. Where grouped modular 

profiles were less consistent this may have resulted from the small cohort sizes used and 

emphasises the need for individual studies to be appropriately powered to detect all 

differentially expressed genes.

Using meta-profiling we found that 380 genes were consistently differentially expressed in 

nine or more datasets, with 5 genes identified as differentially expressed in all 16 datasets. 

These 5 genes included AIM2, BATF2, FCGR1B and HP which have been shown to 

potentially play a role following Mtb infection [12–15]. A role for TLR5 has yet to be 

described and identification of such differentially regulated genes may therefore be part of a 
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programmatic response rather than specifically targeted for a tailored response to the 

pathogen.

Analysis of the 380 genes comprising the meta-signature identified IFN-γ as the most 

significant potential upstream regulated molecule, with a large network of IFN-γ regulated 

genes present within the 380 genes. IFN-γ is critical for control of mycobacterial disease in 

humans, with mutations either in the IFN-γ receptor or STAT1 resulting in increased 

susceptibility [16]. However, upregulation of gene expression molecules downstream of 

Type I IFN signalling was also observed, of relevance to TB exacerbation, since Type I IFN 

has been shown to antagonise signalling downstream of IFN-γ [17]. Thus, capturing the 

overall picture of significant enrichment may be more informative than identification of one 

individual pathway, as shown in the summary cartoon (Figure 1E). A number of immune 

pathways/functions are enriched for within the meta-signature including multiple pattern 

recognition receptors, cytokines, the inflammasome, complement and immunoglobulin. This 

supports diverse findings obtained from both mouse and human studies that the immune 

response following Mtb infection is complex and can be cross-regulatory [16].

This study confirms the reproducibility of blood based transcriptional analysis to identify the 

innate and adaptive host response in TB. It also identifies that upregulated mRNA transcripts 

are more reliably identified and highlights several mRNA candidates which could 

collectively be used as potential biomarkers of active disease. These findings have 

implications for the design and implementation of mRNA expression tools to support 

diagnostics and treatment monitoring of TB.
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Figure 1: Modular and meta-profiling identifying common transcriptional response.
(A) Modular analysis of 13 publically available and compatible datasets of TB compared to 

control groups. 38 annotated modules are displayed as a heatmap with red indicating 

significant over-abundance of transcripts and a blue indicating significant under-abundance 

(p <0.05). The colour intensity represents the percentage of genes in that module which are 

significantly differentially expressed. Two datasets with different modular profiles marked 

with asterisks. (B) Venn Mapper used to identify significance of overlap between any two 

differentially expressed gene lists. Significance of overlap between significant gene lists 
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calculated by Venn Mapper programme, with methodology adapted from Smid et al [9]. 

Significant genes identified following filtering of probes for low expression (probes 

eliminated if expression less than 2FC from median normalised value in 10% or more of 

samples), followed by statistical filtering; independent t-test with Benjamini Hochberg 

multiple testing correction between TB and control group. Probes were then matched to 

Entrez gene IDs which was used as the reference “array” for analysis. The fold change 

representation for each gene was the mean fold change of TB group compared to control 

group, where genes were multiply represented on an array the fold change associated with 

the most significant q-value was chosen. (C) Differentially expressed genes (DEGs) were 

identified for each of the sixteen datasets (probes filtered for low expression, followed by 

statistical filtering; independent t-test with Benjamini Hochberg multiple testing correction 

between TB and control group) and then using meta-profiling to simulate the data and 

identify the number of overlaps to define the meta-signature (shaded grey). (D) Genes were 

grouped by number of datasets in which they were significantly identified, and the 

percentage calculated which were upregulated (direction of regulation relative to control 

group; where there were inconsistencies in direction of regulation across datasets the 

direction most often observed was used to determine direction). (E) Curated cartoon of 380 

meta-signature generated using IPA and IPA knowledge base.
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