A) Demographics and phenotype **	Men ($n = 4661$)	Women (<i>n</i> = 2454) ***
Age at diagnosis: ****	$\frac{1}{1001} (n - \frac{1001}{1001})$	women (<i>n</i> = 2434)
- Mean	37 yrs. (SD: 15)	40 yrs. (SD: 16)
- <= 20 yrs.	660 (14·2%)	278 (11.4%)
-21 - 30 yrs.	1065(22.8%)	442 (18.0%)
-31 - 40 yrs.	1003 (22 876)	532 (21.7%)
-31 - 40 yrs. -41 - 50 yrs.	904 (19.4%)	532 (21 77%)
-51 - 60 yrs.	550 (11.8%)	403 (16.4%)
> 60 yrs.	397 (8.5%)	266 (10.8%)
PSC sub-phenotype: ****	577 (8 570)	200 (10 870)
- classical PSC	4231 (90.8%)	2160 (88.0%)
- small duct PSC	158 (3·4%)	96 (3.9%)
- Small duct PSC - PSC / AIH variant	271 (5.8%)	96 (3.9%) 198 (8·1%)
	2/1 (3.8%)	198 (8.1%)
Diagnosis year:	144 (2 10/)	72 (2,00/)
-1980 - 1984	144 (3.1%)	73 (3.0%)
- 1985 - 1989	304 (6.5%)	120 (4.9%)
- 1990 - 1994	524 (11.2%)	248 (10.1%)
- 1995 – 1999	937 (20.1%)	477 (19·4%)
- 2000 - 2004	1176 (25·2%)	623 (25.4%)
- 2005 - 2010	1576 (33.8%)	913 (37·2%)
IBD phenotype at baseline: ****		
- ulcerative colitis	1935 (45.4%)	823 (36.0)
- Crohn's disease	362 (8.5%)	233 (9.5)
- indeterminate colitis	76 (1.8%)	37 (1.6)
- no IBD	1890 (44.3%)	1190 (52.1)
IBD phenotype at end of follow-up: ****		
- ulcerative colitis	2818 (61.0)	1168 (48.1)
- Crohn's disease	466 (10.1)	318 (13.1)
- indeterminate colitis	143 (3.1)	67 (2.8)
- no IBD	1193 (25.5)	874 (36.0.7)
B) Clinical events ****	· · · · · · · · · · · · · · · · · · ·	er-100-pt. yrs. (95%. C
Liver transplantation or death	5.58 (5.34-5.82)	5.16 (4.83-5.48)
Hepatopancreatobiliary malignancy	1 55 (1 /1 1 60)	1 10 (0 04 1 25)
- overall	1.55 (1.41-1.68)	1.10 (0.94-1.25)
-cholangiocarcinoma	1.28 (0.86-1.71)	0.90 (0.43-1.37)
* Data presented as absolute number (%) un	ess otherwise indicate	d.

Supplementary Table 1: Patient Characteristics by Gender *

View metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

**** Indicates statistically significant differences of covariate the fundation of the provent o (p < 0.05).

A) Demographics and phenotyp	e **		
	Classical PSC (n= 6397)	Small-duct PSC (n = 254)	$\frac{PSC / AIH \text{ variant}}{(n = 470)}$
No. of men	4232 (66.2%)	158 (62.2%)	271 (57.8%)
Age at diagnosis:			
- Mean	39 yrs. (SD: 15·4)	37yrs. (SD: 14.8)	32 yrs. (SD: 15)
- < 20 yrs.	779 (12.2%)	35 (13.8%)	126 (26.8%)
-21 - 30 yrs.	1323 (20.7%)	59 (23.2%)	126 (26.8%)
-31 - 40 yrs.	1456 (22.8%)	68 (26.8%)	93 (19.8%)
-41-50 yrs.	1327 (20.8%)	43 (16.9%)	65 (13.8%)
-51-60 yrs.	884 (13.8%)	32 (12.6%)	37 (7.9%)
> 60 yrs.	625 (9.8%)	17 (6.7%)	23 (4.9%)
Diagnosis year:			
- 1980 – 1984	213 (3.3%)	2 (0.8%)	2 (0.4%)
- 1985 – <mark>198</mark> 9	404 (6.3%)	9 (3.5%)	11 (2.3%)
- 1990 – <mark>1994</mark>	723 (11.3%)	18 (7.1%)	32 (6.8%)
- 1995 – <mark>199</mark> 9	1287 (20.1%)	47 (18.5%)	80 (17.0%)
- 2000 - 2004	1603 (25.1%)	79 (31.1%)	120 (25.5%)
- 2005 - 2010	2167 (33.9%)	99 (39.0%)	225 (47.9%)
IBD phenotype at baseline:			
- ulcerative colitis	2535 (43.2%)	67 (27.9%)	159 (36.2%)
- Crohn's disease	545 (9.3%)	24 (10.0%)	26 (5.9%)
- indeterminate colitis	98 (1.7%)	6 (2.5%)	9 (2.1%)
- no IBD	2694 (45.9%)	143 (59.6%)	245 (55.8%)
IBD phenotype at end of study:			
- ulcerative colitis	3682 (58.1%)	85 (33.5%)	222 (47.7%)
- Crohn's disease	718 (11.3%)	30 (11.8%)	38 (8.2%)
- indeterminate colitis	185 (2.9%)	7 (2.8%)	18 (3.9%)
- no IBD	1750 (27.6%)	132 (52.0%)	187 (40.2%)
B) Clinical events **	Incidence rate pe	er-100-pt. yrs. (95%	5. C.I.)
Liver transplantation or death	5.62 (5.42 - 5.83)	2.32 (1.67 - 3.00)	4.70 (3.97 - 5.43)
Hepatopancreatobiliary malignancy			
-overall	1.52 (1.41 -1.63)	0.20 (0.00 -0.39)	0.43(0.20-0.65)
- cholangiocarcinoma	1.25 (0.90–1.60)	No cases	0.37(0.16 - 0.58)

Supplementary Table 2: Patient Characteristics by PSC Sub-phenotype *

* Data presented as absolute number (%) unless otherwise indicated.
 ** Data presented only for patients in whom complete respective data are available.

	Ulcerative colitis	Crohn's Disease	Indeterminate	No IBD
	(n = 2761)	(n=595)	(n = 113)	(n = 3082)
No. of men	1935 (70·2)	362 (60.8)	76 (67.3)	1890 (61.4)
Age at diagnosis:				, í
- Mean	37 yrs. (SD: 15)	38 yrs. (SD: 16)	35 yrs. (SD: 14)	40 yrs. (SD: 16)
- <= 20 yrs.	410 (14.8%)	91 (15.3%)	17 (15.0%)	350 (11.4%)
-21 - 30 yrs.	646 (23.4%)	125 (21.0%)	36 (31.9%)	585 (19.0%)
-31 - 40 yrs.	671 (24.3%)	136 (22.9%)	24 (21.2%)	660 (21.4%)
-41-50 yrs.	510 (18.5%)	116 (19.5%)	17 (15.0%)	664 (21.6%)
-51-60 yrs.	336 (12.2%)	74 (12.4%)	13 (11.5%)	452 (14.7%)
> 60 yrs.	188 (6.8%)	53 (8.9%)	6 (5.3%)	368 (12.0%)
PSC sub-phenotype:				
- classical PSC	2535 (91.8%)	545 (91.6%)	98 (86.7%)	2694 (87.4%)
- small duct PSC	67 (2.4%)	24 (4.0%)	6 (5.3%)	143 (4.6%)
- PSC / AIH variant	159 (5.8%)	26 (4.4%)	9 (8.0%)	245 (7.9%)
Diagnosis year:				
- 1980 - 1984	75 (2.7%)	9 (1.5%)	4 (3.5%)	91 (3.0%)
- 1985 - <mark>198</mark> 9	166 (6.0%)	23 (3.9%)	6 (5.3%)	167 (5.4%)
- 1990 – <mark>1994</mark>	327 (11.8%)	41 (6.9%)	16 (14.2%)	299 (9.7%)
- 1995 – <mark>1999</mark>	561 (20.3%)	104 (17.5%)	15 (13.3%)	620 (20.1%)
- 2000 - 2004	705 (25.5%)	165 (27.7%)	27 (23.9%)	783 (25.4%)
- 2005 - 2010	927 (33·6%)	253 (42.5%)	45 (39.8%)	1122 (36.4%)
B) Clinical events **	· /	er-100-pt. yrs. (95		
Liver transplantation or death	5.36 (5.06-5.67)	3.89 (3.30-4.47)	4.47 (3.07-5.88)	5.82 (5.51-6.13)
Hepatopancreatobiliary malignancy				
-overall	1.48 (1.31-1.64)	1.21 (0.88-1.55)	1.43 (0.62-2.24)	1.34 (1.19-1.50)
- cholangiocarcinoma	1.22 (0.72-1.72)	1.02 (0.03-2.02)	1.19 (0.00-3.07)	1.11 (0.60-1.62)

Supplementary Table 3: Patient Characteristics by IBD phenotype (at baseline) *

* Data presented as absolute number (%) unless otherwise indicated.
 ** Data presented only for patients in whom complete respective data are available.

Event: liver ti	ransplan 	tation / de	ath		1			
		ľ	Male			Fe	male	
	UC	CD	IC	No- IBD	UC	CD	IC	No- IBD
Classical PSC								
IR:	5.5	4.3	4.6	6.3	5.3	3.4	5.5	5.7
1y survival:	94%	96%	97%	92%	95%	96%	100%	94%
5y survival:	77%	80%	82%	71%	79%	85%	73%	77%
10y survival:	59%	67%	73%	55%	61%	72%	62%	60%
20y survival:	30%	52%	37%	31%	23%	67%	40%	35%
sdPSC								
IR:	2.5	0.0	0.0	2.2	2.7	4.0	0.0	2.5
1y survival:	96%	100%	100%	99%	100%	100%	100%	95%
5y survival:	96%	100%	100%	89%	100%	88%	100%	86%
10y survival:	96%	100%	100%	89%	75%	88%	-	80%
20y survival:	84%	-	-	82%	56%	-	-	67%
PSC/AIH-								
overlap								
IR:	4.1	4.8	2.1	3.9	5.2	6.6	0.0	5.5
1y survival:	96%	100%	100%	96%	97%	92%	100%	96%
5y survival:	86%	92%	83%	78%	79%	61%	-	81%
10y survival:	73%	69%	83%	68%	69%	41%	-	56%
20y survival:	45%	69%	-	55%	30%	41%	-	29%

Supplementary Table 4: Incidence Rates (IR) per-100-pt. yrs. of Liver transplantation / Death According to Phenotype

Supplementary Table 5: Incidence Rates (IR) per-100-pt. yrs. of HPB malignancy According to Phenotype

Event: hepatopancreatobiliary (HPB) malignancy *								
	Male			Female				
	UC	CD	ІС	No-IBD	UC	CD	IC	No- IBD
Classical PSC								
IR; 1 st yr. only:	3.1	2.2	3.5	3.8	2.2	2.1	1.9	2.6
IR; overall:	1.6	1.6	1.4	1.7	1.5	0.6	1.5	1.1
1y survival:	96%	97%	95%	94%	97%	97%	97%	96%
5y survival:	92%	92%	93%	90%	92%	96%	91%	92%
10y survival:	86%	87%	93%	86%	86%	95%	78%	90%
20y survival:	70%	73%	82%	75%	68%	95%	78%	83%
sdPSC								
IR; 1 st yr. only:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IR; overall:	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.5
1y survival:	100%	100%	100%	100%	100%	100%	100%	100%
5y survival:	100%	100%	100%	100%	100%	100%	100%	98%
10y survival:	100%	100%	100%	100%	89%	100%	-	92%
20y survival:	100%	-	-	100%	89%	-	-	92%
PSC/AIH-								
overlap								
IR; 1 st yr. only:	1.5	6.5	0.0	0.7	0.0	0.0	0.0	0.8
IR; overall:	0.7	2.0	0.0	0.2	0.2	1.2	0.0	0.1
1y survival:	96%	92%	100%	99%	100%	100%	100%	99%
5y survival:	94%	81%	100%	98%	98%	89%	-	99%
10y survival:	94%	81%	100%	98%	98%	89%	-	99%
20y survival:	94%	81%	-	98%	98%	-	-	99%

* For HPB malignancy, IR are provided for events in the 1st year only as well as overall

Supplementary Table 6: Univariate Risk Factors for Disease Progression *

Risk factor	Crude Hazard Ratio (95% C.I.)	<i>p</i> value
	- 4h	
A) Liver transplantation / de	eath	
Age at diagnosis **	1.022(1.019 - 1.025)	< 0.0001
Gender		
Male	1 (reference)	
Female	0.88 (0.81–0.96)	0.002
PSC sub-phenotype		
- classical PSC	1 (reference)	
- small duct PSC	0.30(0.21 - 0.42)	< 0.001
- PSC / AIH variant	0.81 (0.068 - 0.96)	0.015
IBD phenotype (baseline)		
- ulcerative colitis	1 (reference)	
- Crohn's disease	0.64 (0.53 – 0.76)	<0.0001
- indeterminate	0.86 (0.61 – 1.22)	0.40
- no IBD	1.01 (0.93 - 1.10)	0.89
IBD phenotype		
(prior-to-endpoint) ***		
- ulcerative colitis	1 (reference)	
- Crohn's disease	0.62(0.52-0.72)	< 0.001
- indeterminate	0.91(0.68 - 1.21)	0.52
- no IBD	0.90(0.83 - 0.99)	0.03
B) Hepatopancreatobiliary n	nalignancy	
Age at diagnosis **	1.03(1.03 - 1.04)	< 0.001
Gender		
Male	1 (reference)	
Female	0.68(0.57 - 0.80)	< 0.001
PSC biliary phenotype		
- classical PSC	1 (reference)	
- small duct PSC	0.15(0.06 - 0.40)	< 0.001
- PSC / AIH variant	0.26(0.15-0.44)	< 0.001
IBD phenotype		
(baseline)		
- ulcerative colitis	1 (reference)	
- Crohn's disease	0.73(0.54-0.96)	0.04
- indeterminate	1.09(0.61 - 1.94)	0.77
- no IBD	0.88(0.75 - 1.04)	0.14
IBD phenotype		
		1

IBD phenotype		
(prior-to-endpoint) ***		
ulcerative colitis	1 (reference)	
- Crohn's disease	0.68 (0.51 - 0.91)	0.008
- indeterminate	0.94(0.55 - 1.61)	0.82
- no IBD	0.77(0.65 - 0.92)	0.004

*All analysis stratified by geographical region of participating centre and adjusted by patient year of diagnosis. ** Per 1-yr. increase in age. *** Assessed as a time-dependent covariate

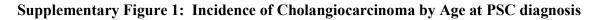
Supplementary Table 7: Previously published clinical outcome studies in 1	PSC *
---	-------

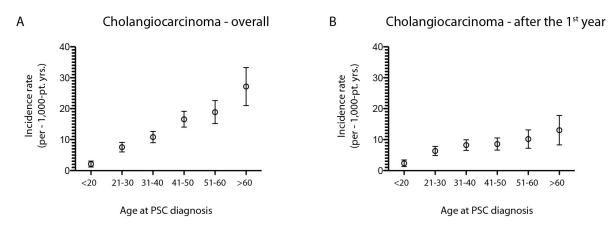
Geographical location	Study type	Study period or last reported follow-up date	Maximum No. pts.	
		– previously reported	– previously reported	
Multi-national				
Italy, Norway, Spain, Sweden, UK	Observational	1998 1,2	394	
Scandinavia	Clinical trial	2009 3-5	219 **	
Finland, the Netherlands, Norway, UK	Investigative biomarker	2012 6	305	
Germany and Sweden	Observational	1989 – 2008 (Germany) ^{7,8} 1992 – 2005 (Sweden)	345	
Germany and Norway	Observational	2014 11	638	
Germany and Norway	Investigative biomarker	2006 – 2015 (Germany) ¹² 2008 – 2012 (Norway)	318	
Belgium				
Leuven	Observational	1975 - 2012 13,14	240	
Canada				
Toronto, ON	Observational	2009 15	168	
France				
Paris	Observational	2008 16	150	
Germany				
Heidelberg	Observational / investigative biomarker	2012 17-21	281 ***	
Hannover	Observational	2006 ¹⁰	273	
Hamburg and Hannover	Observational	20139	509	
Italy				
Multi-regional	Observational	1994 22	117	
The Netherlands				
Multi-regional	Observational	2008 23-27	590 ***	
Sweden				
Multi-regional	Observational	1992 28	305	
Stockholm	Observational	1970 - 2004 29-31	604	
USA	1	1	1	
Multi-regional	Clinical trial	2009 32-34	150	
Multi-regional	Observational	1995 - 2005 33	784	
Minnesota	Observational	1970 - 1997 36,37	174	
California	Observational	$2000 - 2006^{-38}$	169	
UK				
London	Observational	2011 39	128	
London	Observational	1990 - 2009 40	96	
London	Observational	1972 – 1989 ⁴¹	169	

* Comprises PSC cohorts $\sim / \ge 100$ patients, which have contributed data to the international PSC Study Group (IPSCSG). Presented reports are likely to include those wherein more than one publication stems from a given cohort. ** Includes post-hoc outcome analysis of patients included in prior clinical trials. *** Includes a subset of patients subject to an open-label study of endoscopic biliary intervention.

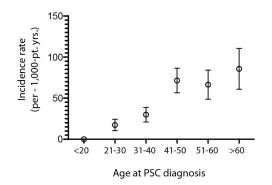
Supplementary References

- 1 Boberg KM, Rocca G, Egeland T, *et al.* Time-dependent Cox regression model is superior in prediction of prognosis in primary sclerosing cholangitis. *Hepatology* 2002; **35**: 652–7.
- 2 Boberg KM, Bergquist A, Mitchell S, *et al.* Cholangiocarcinoma in primary sclerosing cholangitis: risk factors and clinical presentation. *Scand J Gastroenterol* 2002; **37**: 1205–11.
- Lindström L, Boberg KM, Wikman O, *et al.* High dose ursodeoxycholic acid in primary sclerosing cholangitis does not prevent colorectal neoplasia. *Aliment Pharmacol Ther* 2012;
 35: 451–7.
- 4 Lindström L, Hultcrantz R, Boberg KM, Friis–Liby I, Bergquist A. Association Between Reduced Levels of Alkaline Phosphatase and Survival Times of Patients With Primary Sclerosing Cholangitis. *Clin Gastroenterol Hepatol* 2013; **11**: 841–6.
- 5 Olsson R, Boberg KM, Schaffalitsky de Muckadell O, *et al.* High-Dose Ursodeoxycholic Acid in Primary Sclerosing Cholangitis: A 5-Year Multicenter, Randomized, Controlled Study. *Gastroenterology* 2005; **129**: 1464–72.
- 6 Vesterhus M, Hov JR, Holm A, *et al.* Enhanced liver fibrosis score predicts transplant-free survival in primary sclerosing cholangitis. *Hepatology* 2015; **62**: 188–97.
- 7 Benito de Valle M, Müller T, Björnsson E, *et al.* The impact of elevated serum IgG4 levels in patients with primary sclerosing cholangitis. *Dig Liver Dis* 2014; **46**: 903–8.
- 8 de Valle MB, Björnsson E, Lindkvist B. Mortality and cancer risk related to primary sclerosing cholangitis in a Swedish population-based cohort. *Liver Int* 2012; **32**: 441–8.

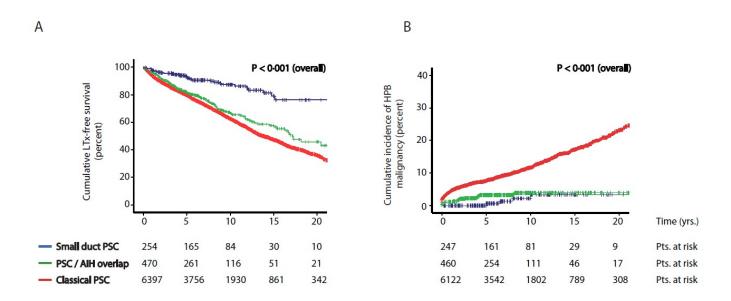

- 9 Zenouzi R, Weismüller TJ, Hübener P, *et al.* Low risk of hepatocellular carcinoma in patients with primary sclerosing cholangitis with cirrhosis. *Clin Gastroenterol Hepatol* 2014;
 12: 1733–8.
- 10 Tischendorf JJW, Hecker H, Krüger M, Manns MP, Meier PN. Characterization, Outcome, and Prognosis in 273 Patients with Primary Sclerosing Cholangitis: A Single Center Study. Am J Gastroenterol 2007; 102: 107–14.
- 11 Zenouzi R, Weismüller TJ, Jørgensen KK, et al. No Evidence That Azathioprine Increases Risk of Cholangiocarcinoma in Patients With Primary Sclerosing Cholangitis. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc 2016; 14: 1806–12.
- 12 Jendrek ST, Gotthardt D, Nitzsche T, *et al.* Anti-GP2 IgA autoantibodies are associated with poor survival and cholangiocarcinoma in primary sclerosing cholangitis. *Gut* 2016; : gutjnl – 2016–311739.
- 13 Fevery J, Henckaerts L, Van Oirbeek R, et al. Malignancies and mortality in 200 patients with primary sclerosering cholangitis: a long-term single-centre study: Malignancies and mortality in PSC. *Liver Int* 2012; **32**: 214–22.
- 14 Fevery J, Van Steenbergen W, Van Pelt J, *et al.* Patients with large-duct primary sclerosing cholangitis and Crohn's disease have a better outcome than those with ulcerative colitis, or without IBD. *Aliment Pharmacol Ther* 2016; **43**: 612–20.
- 15 Alswat K, Al-Harthy N, Mazrani W, Alshumrani G, Jhaveri K, Hirschfield GM. The spectrum of sclerosing cholangitis and the relevance of IgG4 elevations in routine practice. *Am J Gastroenterol* 2012; **107**: 56–63.


- 16 Garioud A, Seksik P, Chrétien Y, *et al.* Characteristics and clinical course of primary sclerosing cholangitis in France: a prospective cohort study. *Eur J Gastroenterol Hepatol* 2010; **22**: 842–7.
- 17 Gotthardt DN, Rudolph G, Klöters-Plachky P, Kulaksiz H, Stiehl A. Endoscopic dilation of dominant stenoses in primary sclerosing cholangitis: outcome after long-term treatment. *Gastrointest Endosc* 2010; **71**: 527–34.
- 18 Rudolph G, Gotthardt D, Kloeters-Plachky P, Rost D, Kulaksiz H, Stiehl A. In PSC with dominant bile duct stenosis, IBD is associated with an increase of carcinomas and reduced survival. *J Hepatol* 2010; **53**: 313–7.
- 19 Rupp C, Rössler A, Halibasic E, *et al.* Reduction in alkaline phosphatase is associated with longer survival in primary sclerosing cholangitis, independent of dominant stenosis. *Aliment Pharmacol Ther* 2014; **40**: 1292–301.
- 20 Rupp C, Bode KA, Chahoud F, *et al.* Risk factors and outcome in patients with primary sclerosing cholangitis with persistent biliary candidiasis. *BMC Infect Dis* 2014; **14**: 562.
- Gauss A, Sauer P, Stiehl A, *et al.* Evaluation of Biliary Calprotectin as a Biomarker in
 Primary Sclerosing Cholangitis. *Medicine (Baltimore)* 2016; 95.
 DOI:10.1097/MD.00000000003510.
- Okolicsanyi L, Fabris L, Viaggi S, Carulli N, Podda M, Ricci G. Primary sclerosing cholangitis: clinical presentation, natural history and prognostic variables: an Italian multicentre study. The Italian PSC Study Group. *Eur J Gastroenterol Hepatol* 1996; 8: 685–91.

- 23 Boonstra K, Weersma RK, van Erpecum KJ, et al. Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. *Hepatology* 2013; 58: 2045–55.
- 24 Claessen MMH, Vleggaar FP, Tytgat KMAJ, Siersema PD, van Buuren HR. High lifetime risk of cancer in primary sclerosing cholangitis. *J Hepatol* 2009; **50**: 158–64.
- 25 Ponsioen CY, Vrouenraets SME, Prawirodirdjo W, *et al.* Natural history of primary sclerosing cholangitis and prognostic value of cholangiography in a Dutch population. *Gut* 2002; **51**: 562–6.
- 26 Ponsioen CY, Lam K, van Milligen de Wit AW, Huibregtse K, Tytgat GN. Four years experience with short term stenting in primary sclerosing cholangitis. *Am J Gastroenterol* 1999; **94**: 2403–7.
- 27 Ponsioen CY, Reitsma JB, Boberg KM, Aabakken L, Rauws EA, Schrumpf E. Validation of a cholangiographic prognostic model in primary sclerosing cholangitis. *Endoscopy* 2010;
 42: 742–7.
- 28 Broomé U, Olsson R, Lööf L, *et al.* Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. *Gut* 1996; **38**: 610–5.
- 29 Bergquist A, Said K, Broomé U. Changes over a 20-year period in the clinical presentation of primary sclerosing cholangitis in Sweden. *Scand J Gastroenterol* 2007; 42: 88–93.
- 30 Bergquist A, Ekbom A, Olsson R, *et al.* Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. *J Hepatol* 2002; 36: 321–7.


- 31 Bergquist A, Glaumann H, Persson B, Broomé U. Risk factors and clinical presentation of hepatobiliary carcinoma in patients with primary sclerosing cholangitis: A case-control study. *Hepatology* 1998; 27: 311–6.
- Imam MH, Silveira MG, Sinakos E, *et al.* Long-term Outcomes of Patients With Primary
 Biliary Cirrhosis and Hepatocellular Carcinoma. *Clin Gastroenterol Hepatol* 2012; 10: 182–
 5.
- 33 Lindor KD, Kowdley KV, Luketic VAC, *et al.* High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. *Hepatology* 2009; **50**: 808–14.
- 34 Eaton JE, Silveira MG, Pardi DS, *et al.* High-dose ursodeoxycholic acid is associated with the development of colorectal neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. *Am J Gastroenterol* 2011; **106**: 1638–45.
- 35 Imam MH, Thackeray EW, Lindor KD. Colonic neoplasia in young patients with inflammatory bowel disease and primary sclerosing cholangitis. *Colorectal Dis* 2013; 15: 198–203.
- 36 Wiesner RH, Grambsch PM, Dickson ER, *et al.* Primary sclerosing cholangitis: natural history, prognostic factors and survival analysis. *Hepatology* 1989; **10**: 430–6.
- Burak K, Angulo P, Pasha TM, Egan K, Petz J, Lindor KD. Incidence and Risk Factors for Cholangiocarcinoma in Primary Sclerosing Cholangitis. *Am J Gastroenterol* 2004; 99: 523–6.

- 38 Toy E, Balasubramanian S, Selmi C, Li C-S, Bowlus CL. The prevalence, incidence and natural history of primary sclerosing cholangitis in an ethnically diverse population. *BMC Gastroenterol* 2011; **11**: 83.
- 39 Chapman MH, Webster GJ, Bannoo S, Johnson G, Wittmann J, Pereira SP. Cholangiocarcinoma and dominant strictures in patients with primary sclerosing cholangitis; a 25 year single centre experience. *Eur J Gastroenterol Hepatol* 2012; 24: 1051–8.
- 40 Marelli L, Xirouchakis E, Kalambokis G, Cholongitas E, Hamilton MI, Burroughs AK. Does the severity of primary sclerosing cholangitis influence the clinical course of associated ulcerative colitis? *Gut* 2011; **60**: 1224–8.
- 41 Farrant JM, Hayllar KM, Wilkinson ML, *et al.* Natural history and prognostic variables in primary sclerosing cholangitis. *Gastroenterology* 1991; **100**: 1710–7.


C Cholangiocarcinoma - within the 1st year

Incidence rates of cholangiocarcinoma (CCA) according to the age at PSC diagnosis are presented for all cases in [A], excluding CCA cases diagnosed in the first year of PSC diagnosis [B] and restricted analysis to events within the first year of PSC diagnosis [C].

Supplementary Figure 2: Incidence of Clinical Events According to PSC Phenotype

Kaplan-Meier estimates illustrating [A] transplant-free survival and [B] incidence rate of hepatopancreatobiliary malignancy, stratified according to PSC phenotype at diagnosis (unadjusted) Patients with unknown malignancy status at time of study completion were excluded from analysis in [B].

