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Background: Aneuploidy and chromosomal instability (CIN) are common features of human malignancy that fuel genetic
heterogeneity. Although tolerance to tetraploidization, an intermediate state that further exacerbates CIN, is frequently
mediated by TP53 dysfunction, we find that some genome-doubled tumours retain wild-type TP53. We sought to understand
how tetraploid cells with a functional p53/p21-axis tolerate genome-doubling events.

Methods: We performed quantitative proteomics in a diploid/tetraploid pair within a system of multiple independently
derived TP53 wild-type tetraploid clones arising spontaneously from a diploid progenitor. We characterized adapted and acute
tetraploidization in a variety of flow cytometry and biochemical assays and tested our findings against human tumours
through bioinformatics analysis of the TCGA dataset.

Results: Cyclin D1 was found to be specifically overexpressed in early but not late passage tetraploid clones, and this
overexpression was sufficient to promote tolerance to spontaneous and pharmacologically induced tetraploidy. We provide
evidence that this role extends to D-type cyclins and their overexpression confers specific proliferative advantage to tetraploid
cells. We demonstrate that tetraploid clones exhibit elevated levels of functional p53 and p21 but override the p53/p21
checkpoint by elevated expression of cyclin D1, via a stoichiometry-dependent and CDK activity-independent mechanism.
Tetraploid cells do not exhibit increased sensitivity to abemaciclib, suggesting that cyclin D-overexpressing tumours might not
be specifically amenable to treatment with CDK4/6 inhibitors.

Conclusions: Our study suggests that D-type cyclin overexpression is an acute event, permissive for rapid adaptation to a
genome-doubled state in TP53 wild-type tumours and that its overexpression is dispensable in later stages of tumour progression.
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Introduction

Despite significant advances in the management of human can-

cers over the past 20 years, the majority of patients with meta-

static disease or tumours not amenable to surgical resection

remain incurable. Intratumour heterogeneity (ITH) contributes

significantly to this unsatisfactory outcome [1].

ITH can be generated by chromosomal instability (CIN),

which is characterized by an elevated rate of karyotypic change

through numerical and structural chromosomal defects. CIN is

accompanied by a tolerance mechanism, such as loss of TP53,

and an increase in chromosome segregation error rate resulting

in aneuploidy, a state of abnormal chromosome number [2].

Tetraploidy is a specific state characterized by genome-

doubling and has been proposed to be an aneuploidy intermedi-

ate [3]. It has been demonstrated that tetraploid cells can be gen-

erated by mitotic slippage or cytokinesis failure and as

mammalian cells have evolved systems to abrogate the prolifer-

ation of tetraploid cells, these cells normally arrest in the G1 phase

of the cell cycle [4, 5].

In human tumours, TP53 mutations have been shown to correl-

ate with polyploidy or tetraploidy, highlighting its integral role in
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the tetraploidy checkpoint [6, 7]. TP53�/� tetraploid, but not dip-

loid, cells generated through cytokinesis failure have been shown

to form tumours that exhibit an array of chromosomal abnormal-

ities, suggesting that tetraploidy is highly tumourigenic [8].

Previous work from our laboratory has shown that spontaneously

arising, TP53 wild-type, HCT116 tetraploid clones tolerate segre-

gation errors better than diploid clones and are subject to increased

CIN over time in culture [9]. Understanding how tetraploidy and

chromosome segregation errors are tolerated in cells with a func-

tional p53 axis could provide opportunities for therapeutic inter-

vention to limit cancer diversity, adaptation and evolution.

In this study, we report that D-type cyclins can override the

p53/p21-dependent checkpoint in tetraploid cells and that TP53

wild-type tumours associate with increased expression levels of

D-type cyclins. Importantly, we provide evidence that cyclin D-

overexpressing cells do not show enhanced sensitivity to CDK4/6

inhibition and thus question their therapeutic potential in target-

ing cyclin D-overexpressing tumours.

Materials and methods

Cell culture

HCT116 and RPE-1 cells were obtained and authenticated by STR profiling with

16 STS markers, by Cell Services at the Francis CRICK Institute, UK (see also,

“Supplementary Materials and Methods”, available at Annals of Oncology online).

Parental cell lines and their derivatives were grown in Dulbecco’s Modified Eagle

Medium supplemented with 10% Foetal Bovine Serum and 1/10 000 units penicil-

lin/streptomycin (Sigma–Aldrich) at 37�C in a 5% CO2 atmosphere.

SILAC

DC14 and TC13 (passage five and 42) were cultured in DMEM supplemented

with 150 mg/l L-Proline (Sigma–Aldrich) and ‘heavy’ or ‘light’ isotopes. Each

clone, at both early and late passages, was cultured in heavy or light media, as

replicate experiments that could be inversely correlated after analysis. Cells

were lysed and mixed at a 1:1 ratio. Next, lysates were quantified by Bradford

assay before being separated by SDS–PAGE and stained with EZ blue (Sigma–

Aldrich). Gel slices were prepared for mass spectrometric analysis using the

Janus liquid handling system (Perkin–Elmer).

Bionformatics analysis of TCGA data

Mutation data and segmented copy number data from TCGA were obtained

from [10]. Genome doubling and wGII was estimated as previously described

[9]. Pre-processed RNA-seq data, normalized using the RSEM method and

summarized to gene level, were downloaded from the TCGA data portal.

RNA-seq data was log2 transformed, and expression levels of CCND1,

CCND2, CCND3, CDKN1A, CDKN2A and TP53 were further normalized

relative to expression of TBP. Correlation analysis was performed using a

Spearman’s Rank correlation, while expression differences in TP53 wild-type

versus mutant were compared using a Wilcoxon test.

Clonogenic assays

Clonogenic assays were performed as described [1]. Equal number of cells were

seeded in the absence or presence of drug and allowed to form colonies for a min-

imum of 10 days. Plates were fixed in 4% PFA, washed with PBS and stained with

crystal violet (0.05% w/v) in methanol (20% v/v). Plates were imaged with a flat-

bed scanner and either counted manually or by automated colony counting using

Mathematica v10.3 (Wolfram Research). Following plate alignment, individual

wells were cropped and background subtracted. Objects were segmented using

automatic thresholding (Otsu’s cluster method) and touching objects separated

using a watershed algorithm. Objects smaller than the expected size for a colony of

50 cells were excluded from the count.

Statistical analysis

Statistical analysis of experiments, unless otherwise indicated, was performed

by unpaired Student’s t-test. P values are indicated as follows: NS> 0.05,

*� 0.05, **� 0.01, ***� 0.001).

Results

Spontaneously arising HCT116 tetraploid clones
overexpress cyclin D1

Chromosomal missegregation normally leads to activation of the

p53 pathway, induction of p21 and ultimately to cell cycle arrest

[2]. Consistent with p53 playing a key role in tetraploidy toler-

ance, an analysis of eight tumour types revealed that genome

doubling is more likely to occur in TP53 mutant than wild-type

tumours [10]. Further analysis of these tumour types revealed

that 47% of all genome-doubled tumours were TP53 wild-type

(Figure 1A), suggesting the existence of additional tolerance

mechanisms in addition to p53 inactivation.

We have previously shown that spontaneously arising TP53 wild-

type tetraploid HCT116 clones have an increased tolerance to both

CIN and segregation errors relative to diploid clones [9]. Whole

exome sequencing (WES) identified no coding mutations in TP53,

CDKN1A or RB1, another gene commonly mutated in tetraploid

cells [11]. When investigating the TCGA dataset, we identified

genome-doubled tumours that were wild-type for both TP53 and

RB1 (supplementary Figure S1a, available at Annals of Oncology on-

line), similar to the isogenic HCT116 model used in this study. In

fact, no mutations in any other components of the G1/S checkpoint

were found to be specific to the tetraploid clones (Figure 1B).

To investigate global differences between diploid and tetraploid

HCT116 clones we performed quantitative proteomics (SILAC).

SILAC analysis of an early passage diploid clone (DC14) compared

to a tetraploid (TC13) revealed an enrichment of several proteins in

the early tetraploid clone (Figure 1C). Validation experiments

showed that in the four tetraploid clones investigated, only cyclin D1

was consistently upregulated both at the protein and mRNA level,

relative to the three diploid clones and parental HCT116 cells

(Figure 1D and supplementary Figure S1b and c, available at Annals

of Oncology online). This observation was specific to cyclin D1, as

protein levels of cyclin A1, B1 and E1 remained unchanged between

all clones (Figure 1D).

The elevation of cyclin D1 protein levels seemed to be of a tran-

sient nature, as SILAC experiments of tetraploid clones at later

passages failed to show consistently high levels of cyclin D1 (sup

plementary Figure S1d, available at Annals of Oncology online).

Indeed, immunoblotting analysis confirmed that cyclin D1 pro-

tein levels were indistinguishable between late tetraploid and dip-

loid clones (Figure 1E).

Cyclin D-overexpression allows tetraploid
tolerance after cytokinesis failure

The continuous acquisition of mutations in HCT116 cells, driven

by microsatellite instability [12], has the potential to compromise

Original article Annals of Oncology

150 | Crockford et al. Volume 28 | Issue 1 | 2017

http://annonc.oxfordjournals.org/lookup/suppl/doi:10.1093/annonc/mdw612/-/DC1
http://annonc.oxfordjournals.org/lookup/suppl/doi:10.1093/annonc/mdw612/-/DC1
http://annonc.oxfordjournals.org/lookup/suppl/doi:10.1093/annonc/mdw612/-/DC1
http://annonc.oxfordjournals.org/lookup/suppl/doi:10.1093/annonc/mdw612/-/DC1
http://annonc.oxfordjournals.org/lookup/suppl/doi:10.1093/annonc/mdw612/-/DC1


the functional determination of the role of cyclin D1-

overexpression in tetraploid tolerance. We therefore generated an

alternative experimental system by using the retinal pigment epi-

thelial (RPE) cell line, a stable diploid immortalized non-

transformed cell line with a functional p53 response and G1/S

pathway. Importantly, as RPE cells undergo G1 arrest upon

pharmacological induction of tetraploidy [13], this system would

demonstrate the direct effect of cyclin D1 overexpression on the

tetraploidy checkpoint.

RPE cells were virally infected with vectors of the FUCCI re-

porter system (supplementary Figure S2a, available at Annals of

Oncology online), providing an elegant method to distinguish

between cell cycle phases, with G1 cells stained red (mCherry)

and G2 cells stained green (Venus) [13, 14]. These cells were sub-

sequently infected to stably overexpress cyclin D1 (supplemen

tary Figure S2b, available at Annals of Oncology online).

Treatment with dihydrocytochalasin B (DCB), an inhibitor of

actin polymerization and contractile ring formation [8], resulted

in cytokinesis failure and formation of a tetraploid (4N) popula-

tion arrested in G1, whereas cells that had escaped the checkpoint

and replicated their DNA comprised an 8N peak (Figure 2A).

Control cells exhibited only a small background level of 8N tetra-

ploid cells, whereas RPE-cyclin D1 cells displayed a significant in-

crease in the 8N population after DCB treatment (Figure 2A and
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Figure 1. Tetraploidy tolerance in a TP53 WT background. (A) The proportion of genome-doubled (GD) versus non-genome-doubled (nGD) tumours is indicated for each cancer type. (B)
Schematic representation of major genes involved in the G1/S pathway and p53 response pathways. (C) SILAC correlation plot displaying two inversely labelled replicate experiments. Early
TC13 cells were labelled ‘heavy’ (H) on the horizontal axis and ‘light’ (L) on the vertical axis, while early DC14 cells were labelled inversely. In either case, ‘heavy’ species were divided by ‘light’
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experiments. Cyclin D1 is indicated. (D) Immunoblot (IB) of all major cyclins in diploid (DC) and tetraploid clones (TC). (E) Immunoblot of cyclin D1 levels in diploid and tetraploid, early and
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B). Cyclin D1-overexpression did not increase the basal tetra-

ploid fraction in this system (supplementary Figure S2c, available

at Annals of Oncology online), suggesting a specific role for cyclin

D1 in tetraploidy tolerance and that tetraploid cyclin D1-

overexpressing cells are able to override the tetraploidy-induced

G1 arrest.

To investigate a role of cyclin D1 in the survival of tetraploid

cells, we assessed the ability of DCB-generated tetraploid cells to

form colonies (Figure 2C). Although untreated cyclin D1-

overexpressing cells demonstrated comparable plating efficien-

cies (PE) to control cells, the colony forming potential after DCB

treatment was significantly increased in cyclin D1-overexpressing

tetraploid RPE cells (Figure 2D). Cyclin D1-overexpression after

DCB treatment also provided a marked growth advantage, as

shown by the accumulation of Venus-positive G2/M subpopula-

tions (supplementary Figure S2d, available at Annals of Oncology

online). Interestingly, although knockdown of either p53 or p21

increased the proliferation of tetraploid cells, as depletion of ei-

ther abrogates the G1 checkpoint [13], overexpression of cyclin

D1 did not have a significant additive effect, suggesting that it

may function in a linear pathway with p53 and p21 (supplemen

tary Figure S2d, available at Annals of Oncology online).

As mammalian cells express three members of the cyclin D fam-

ily [15], we also generated RPE cells overexpressing cyclin D2 in

order to investigate functional redundancy within the family (sup

plementary Figure S3a, available at Annals of Oncology online). As

with cyclin D1-overexpressing RPEs, a large proportion of DCB-

induced RPE-cyclin D2 tetraploid cells were able to overcome p53/

p21-mediated arrest (supplementary Figure S3b and c, available at

Annals of Oncology online). In addition, both cyclin D1 and cyclin

D2-overexpressing cells survived better than control cells after

DCB-induced tetraploidization (supplementary Figure S3d, avail-

able at Annals of Oncology online and Figure 2E). Interestingly, we

found that the cyclin D-dependent survival advantage was specific

to tetraploid cells, as cyclin D-overexpressing diploid cells showed

negligible differences in colony formation, relative to control cells

(Figure 2E). This was recapitulated in HCT116 cells, where cyclin

D1 and cyclin D2-overexpression only increased the survival of

spontaneously occurring tetraploid cells (supplementary Figure

S3e and f, available at Annals of Oncology online).

Collectively, these data demonstrate that overexpression of D-

type cyclins overrides tetraploidy-induced G1 arrest in TP53

wild-type cells and provides a specific survival advantage in the

tetraploid state.

p53 and p21 are elevated in tetraploid clones

In order to confirm functional p53 signalling, diploid and tetra-

ploid HCT116 clones were treated with 5-FU, a member of the

fluoropyrimidine compound family known to activate p53 [16].

Although there was variability in the response, all clones demon-

strated elevated levels of p53, p53 serine-15 phosphorylation

(Ser15) and induction of p21 after 5-FU treatment (Figure 3A),

indicating a functional p53-mediated DNA damage response

[17]. Interestingly, there was a significant increase in basal pro-

tein levels of both p53 and p21 in all tetraploid compared to dip-

loid clones (Figure 3A and supplementary Figure S4a–c, available

at Annals of Oncology online). Although the basal protein levels of

p53 were increased, we were unable to detect p53-Ser15 phos-

phorylation in the absence of 5-FU (Figure 3A), suggesting that
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basal p53 accumulation in tetraploid cells was not DNA damage-

induced.

Consistent with post-translational regulation of p53 [17], basal

p53 mRNA levels remained largely unchanged between diploid

and tetraploid clones (supplementary Figure S4d and e, available

at Annals of Oncology online). In contrast, p21 mRNA levels were

generally elevated in the tetraploid clones (supplementary Figure

S4f and g, available at Annals of Oncology online) and consistent

with p21 being a transcriptional target of p53 [17], siRNA-

mediated p53-knockdown eliminated p21 expression (supple

mentary Figure S4h, available at Annals of Oncology online), con-

firming that p21 expression is driven by p53 in this system.

Similarly, during acute tetraploidization in the RPE-FUCCI cell

system, p53 and p21 levels followed a time-dependent increase in

response to DCB treatment (supplementary Figure S4i, available

at Annals of Oncology online).

As HCT116 tetraploid clones exhibited high basal levels of p53

and p21, a phenotype associated with cell cycle arrest in G1 [2],

we investigated whether tetraploid clones exhibited distinct cell

cycle kinetics, compared to diploid clones, using a nocodazole

trap. Nocodazole prevents microtubule polymerization and spin-

dle formation, leading to a G2/M arrest [18]. In the event of a

p21-mediated G1 arrest, cells would be blocked from progressing

to G2/M and, therefore, fewer cells would be ‘trapped’ by nocoda-

zole. Untreated diploid and tetraploid clones were found to be

cycling with comparable kinetics and there was no significant dif-

ference in the levels of G1 populations between the clones when

subjected to the mitotic ‘trap’ (supplementary Figure S5a, avail-

able at Annals of Oncology online). In addition, downstream

phosphorylation of pRb at Ser807/811, which takes place early

during G1 by active cyclin D-CDK4/6 complexes and triggers G1/

S progression [19], was similar between the diploid and tetra-

ploid clones (supplementary Figure S5b and c, available at Annals

of Oncology online). To exclude the possibility that p21 protein

upregulation was unable to arrest cells by occurring in other cell

cycle phases outside G1, we measured p21 levels by antibody-

coupled flow cytometry. We found that tetraploid cells exhibited

significantly higher levels of p21 compared to diploids
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throughout all stages of the cell cycle with the largest relative in-

crease in G1 (Figure 3B).

Taken together, these data suggest that HCT116 tetraploid cells

maintain normal cell cycle kinetics and cyclin D-CDK4/6 medi-

ated Rb phosphorylation despite elevated p53 and p21 in a

genome-doubled state.

Cyclin D1-overexpression permits proliferation of
genome-doubled cells through CDK-independent
sequestration of p21

The normal cell cycle kinetics of tetraploid cells prompted us to

investigate how this could be achieved in the presence of high lev-

els of both p53 and p21. The anti-proliferative activity of p53 can

be inhibited by cytoplasmic sequestration [17]. Similarly, p21 can

also be sequestered in the cytoplasm, where it inhibits cytoplas-

mic pro-apoptotic regulators instead of nuclear CDK2, therefore

promoting proliferation [20]. Subcellular fractionation of

HCT116 clones demonstrated no specific enrichment of cyto-

plasmic p53 or p21 in the tetraploid clones (Figure 3C), suggest-

ing that neither of these proteins were being sequestered in the

cytoplasm.

A non-catalytic role of cyclin D1 involves the sequestration

and, subsequently, inhibition p21 [15,21,22]. As p21 basal levels

were elevated in cyclin D-overexpressing tetraploid clones

(Figure 3A and supplementary Figure S4a, available at Annals of

Oncology online), we speculated that cyclin D1-overexpression

could mediate tetraploidy tolerance by sequestering p21 in cyclin

D/p21 complexes with cyclin D in excess, counteracting the

growth-inhibitory effects of p21. We tested this hypothesis by

depleting p21 with multiple rounds of sequential immunopreci-

pitations in diploid (DC14) and tetraploid (TC13) lysates. Under

these conditions, we found cyclin D1 to be in excess of p21, as

high levels of cyclin D1 were still immunoprecipitated from lys-

ates depleted of p21 (Figure 3D).

Currently, multiple CDK4/6 inhibitors are in phase III clinical

trials [23] and cyclin D-overexpressing tumours have been sug-

gested to be a potential selective biomarker [15]. In order to gain

further mechanistic insights of the tolerance mechanism of cyclin

D-overexpressing cells, we performed colony forming assays in

the presence of increasing doses of the CDK4/6 inhibitor, abema-

ciclib. All diploid and tetraploid clones were equally sensitive to

the drug, indicating that high cyclin D1 expression levels in tetra-

ploid cells did not did not confer increased sensitivity to CDK4/6

inhibition (Figure 3E).

Taken together, these data suggest that cyclin D1-

overexpressing cells overcome the inhibitory effects of p21, via a

stoichiometric effect mediated by the ability of cyclin D to allow

cell cycle progression in the presence of elevated p21, and not

through a direct effect to the kinase activity of the cyclin

D–CDK4/6 complex.

TCGA analysis of D-type cyclin expression in
genome-doubled tumours

In order to explore if the relationship between D-type cyclins and

the p53/p21 axis is reflected in vivo, we investigated the TCGA

dataset.

In TP53 wild-type tumours, D-type cyclin and p21 expression

did not generally correlate with either genome-doubling (supple

mentary Figure S6, available at Annals of Oncology online) or with

genome stability (supplementary Figure S7, available at Annals of

Oncology online), as measured by wGII score [9]. As late passage

HCT116 tetraploid clones did not express the high levels of cyclin

D1 and p21 observed in the early clones (Figure 1E and supple

mentary Figure S1d, available at Annals of Oncology online), it is

possible that tumours which have undergone genome-doubling

during their evolutionary history more closely resemble these

later passage clones, and that high cyclin D1 expression is transi-

ent and dispensable with time.

Nevertheless, gene expression analysis in colorectal adenocar-

cinomas (COAD) revealed that the expression levels of p21 and

cyclin D1 were significantly higher in TP53 wild-type compared

to TP53 mutant tumours (Figure 4A) and at least one D-type cyc-

lin was significantly overexpressed in most other tumour types

(supplementary Figure S8, available at Annals of Oncology on-

line). Also, the correlation between the expression levels of p21

(CDKN1A), D-type cyclins (CCDN1-3) and p53 (TP53) was sig-

nificant in TP53 wild-type, colorectal adenocarcinoma (Figure

4B) and was maintained in other tumours types, for at least one

D-type cyclin (supplementary Figure S9, available at Annals of

Oncology online).

Discussion

The importance of the p53 pathway in preventing tetraploi-

dization has been well documented in vitro [4, 5] and more re-

cently in vivo [13], in a variety of chemically induced and

spontaneously arising tetraploid systems. Although mutations in

TP53 are significantly associated with genome-doubling in tu-

mours [6, 7], we show that a large proportion of genome-

doubled tumours have a functional p53 axis and no other known

genetic aberrations that could permit tetraploidization.

We chose to investigate differences between naturally occur-

ring HCT116 tetraploids and their isogenic diploid counterparts

by quantitative proteomics. Our analysis identified cyclin D1 to

be specifically elevated in tetraploid clones both at the protein

and mRNA level. Interestingly, during the preparation of our art-

icle, transcriptome analysis was used to identify cyclin D2 as a fa-

cilitator of adaptation to genome-doubling, where both mRNA

and protein levels were elevated in tetraploid cells [24]. We pro-

pose that although mRNA levels could follow a dosage-

dependent regulation, the expression of specific genes such as the

cyclin D family, involved in tetraploidization, might be selected

for resulting in elevated protein levels and tetraploidy tolerance.

Here, using a combination of adapted and acute tetraploi-

dization systems, we show that both cyclin D1 and D2 can confer

a proliferative and survival advantage specifically to tetraploid

cells, demonstrating the important role of D-type cyclins in tetra-

ploidization. These findings are also consistent with recent data

that demonstrate that tetraploid cells are more sensitive to deple-

tion of cyclin D2 than diploid cells [24]. Our findings are reca-

pitulated in tumours, where high expression of D-type cyclins is

strongly associated with TP53 wild-type tumours.

We show that spontaneously formed tetraploid clones are

characterized by elevated p53, p21 and cyclin D1 protein levels
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but resist p21-mediated arrest, suggesting that the inhibitory ef-

fects of this CDK inhibitor are suppressed. Previous studies have

demonstrated that cyclin D1 binds and sequesters p21, thus

allowing progression from G1 to S phase [22, 25]. Consistently,

in the isogenic HCT116 system, cyclin D1 protein levels are in ex-

cess of p21, suggesting that p21 is sequestered stoichiometrically.

As overexpression of D-type cyclins is sufficient to allow tetra-

ploidization in our acute chemically induced system, we propose

that increased D-type cyclin expression is an important licensing

event occurring early during the tetraploidization process.

Tumour data shows that TP53 wild-type tumours exhibit signifi-

cantly higher D-type cyclin and p21 expression levels, which also

correlate strongly with each other, compared to TP53 mutant tu-

mours. We speculate that high cyclin D levels are needed to coun-

ter the elevated levels of p21, which are induced by the functional

p53 axis in these tumours. However, our isogenic HCT116 sys-

tem offers a unique advantage to study tetraploidization longitu-

dinally and indeed, comparing late to early tetraploid clones, we

find that not only do cyclin D1 protein levels specifically decrease

to diploid levels in late clones, but this is also apparent for p21.

Based on these findings, we propose that the functions of D-type

cyclins comprise an acute response to tetraploidization, which

could explain why D-type cyclin expression is not found to cor-

relate with either genome-doubled or genetically unstable TP53

wild-type tumours.

Finally, we demonstrate that tetraploid cells do not exhibit

enhanced sensitivity to CDK4/6 inhibition, compared to diploid

cells, suggesting that tetraploids are not ‘addicted’ to the catalytic

activity of active CDK4/6 complexes. D-type cyclins are overex-

pressed in various cancer types and several studies are focusing

on CDK4/6 inhibition to target these tumours [15, 23]. Data

emerging from our analysis question specifically targeting D-type

cyclin-overexpressing tetraploid tumours as an attractive thera-

peutic strategy.

Based on the work presented here, we propose a model for the

development of genome-doubled tumours from a normal diploid

precursor on a TP53 wild-type background, where the first step

would select for a cycling diploid cell with high cyclin D-expres-

sion. In the event of genome-doubling, for instance by failed

cytokinesis, selection of a rare D-type cyclin-overexpressing cell

could override p53-induced, p21-dependent G1 arrest by seques-

tering p21. The newly formed tetraploid cells would subsequently

be allowed to enter S phase and complete mitosis. It is tempting

to speculate that targeting the interaction between cyclin D1 and

p21 through a protein–protein interaction small molecule inhibi-

tor, an area that has recently seen substantial advances [26], may

increase the levels of unbound p21, which in turn could block

G1/S transition and promote cell cycle arrest and propagation of

tetraploid cells.
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