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Abstract 

Norovirus is acknowledged to be a leading cause of acute gastroenteritis worldwide and its 

importance as a cause of chronic infection in immune deficient hosts is increasingly 

recognised. Current evidence suggests that a co-ordinated response of innate immune 

mechanisms, CD8+ cytotoxicity and a humoral response, with CD4+ orchestration, is 

necessary for norovirus clearance. We explain how primary immune deficiency impairs 

these host defences and predisposes to chronic infection, associated with protracted 

diarrhoea, weight loss, and requirement for parenteral nutrition. The mucosal villous 

atrophy frequently seen in norovirus infection appears to be immune-mediated, suggesting 

that some functional immune response is required in order for chronic norovirus infection 

to become symptomatic in primary immune deficiency. 

We provide a comprehensive summary of published cases of norovirus infection in patients 

with primary immune deficiency. Spontaneous viral clearance has been described, however 

the majority of reported cases have had prolonged and severe illness. Treatment strategies 

are discussed in detail. Approaches which have been tried in patients with primary immune 

deficiency include exclusion diets, enteral and intravenous immunoglobulins, breast milk, 

immunosuppressants, ribavirin, and nitazoxanide. To date, only ribavirin has been used with 

apparent success to achieve clearance of chronic norovirus in primary immune deficiency 

and randomised controlled trials are needed to evaluate a number of promising therapies 

that are discussed.  
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Abbreviations 

 RNA – ribonucleic acid 

 HBGA – histo-blood group antigen 

 SCID – severe combined immunodeficiency 

 IEL – intra-epithelial lymphocyte 

 NKG2D – natural killer group 2D 

 MIC – MHC class I chain-related protein 

 HSCT – haematopoietic stem cell transplant  

 CVID – common variable immune deficiency 

 IVIG – intravenous immunoglobulin 

 AML – acute myeloid leukaemia 

 mTOR – mammalian target of rapamycin   

 2CMC – 2’-C-methylcytidine  

 

Introduction 

Noroviruses are positive-stranded RNA viruses from the family Caliciviridae [1]. Human 

norovirus is a leading cause of epidemic gastroenteritis worldwide, and is often associated 

with outbreaks in healthcare institutions [2]. In the United States, norovirus is recognised as 

the leading contributor to acute gastroenteritis across all age groups and causes on average 

19-21 million total illnesses each year [3]. There are at least 6 genogroups and greater than 

40 genotypes of noroviruses [4]; human infections are most frequently caused by 

genogroups GII, GI, and to a lesser extent, GIV [5]. Norovirus enters human cells via blood 
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group antigens (including ABO and sialyl-Lewis X), but other receptors such as heparan 

sulphate may also be important [6]. The mean duration of symptoms in the normal human 

population is 1.2-2.8 days [7], however significantly more prolonged and severe disease can 

occur in immune deficient hosts, associated with small bowel villous atrophy and 

malabsorption [8, 9]. Indeed, this pathogen may be of especial concern for patients with 

genetic immune deficiencies which cannot be easily corrected. 

Understanding the pathophysiology of human norovirus infection has historically been 

hampered by a lack of in vitro infection models, as human norovirus cannot be propagated 

in standard cell culture. Murine norovirus has been widely studied as a surrogate in cell 

culture and mouse models, although infection only causes clinical disease in 

immunocompromised mice [10]. Large animal models of human norovirus infection include 

those created in chimpanzees [11], gnotobiotic pigs [12] and gnotobiotic calves [13], but 

none of these parallel immunocompromised patients. Recent advances in human norovirus 

research have included the development of an immune deficient mouse model which can 

be infected with human norovirus [14] and a human B cell model which can be infected by 

human norovirus in the presence of histo-blood group antigen (HBGA) -expressing enteric 

bacteria [15], although this is yet to be successfully replicated in other laboratories [16].  

Notwithstanding these limitations, we present here the current understanding of the 

immune response to norovirus and how primary immune deficiency might subvert host 

defences to predispose to chronic infection. We summarise clinical reports of norovirus 

infection in primary immunodeficiency conditions, and discuss potential options for therapy 

in this challenging population. At the current time, no vaccine or antiviral therapy has been 

licensed [17].  
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The immune response to norovirus and its compromise in patients with primary immune 

deficiency 

The immunological response to norovirus infection remains incompletely understood (as 

recently reviewed [18]), with progress thwarted by the lack of available in vitro models. 

Indeed, even the types of host cell infected by norovirus are not well established – although 

varying evidence exists for tropism towards mucosal epithelial cells, B cells and antigen-

presenting cells [18, 19]. Nevertheless, it is clear from human studies that there is rapid and 

broad immune activation in response to infection in immunocompetent hosts, both 

systemically [20] and in stool [21], with subsequent development of antibody responses. 

Newman et al document a rise in Th1 (eg IFNγ), pro-inflammatory (eg IL-1β, IL-6, IL-8) and 

Th2 (eg IL-4, IL-10) cytokines in serum [20], while Ko et al predominantly observed increased 

IL-2 and IFNγ in faeces [21].  

In relation to chronic infection in patients with primary immunodeficiency, two aspects are 

important to understand: by what mechanisms is norovirus usually cleared from the host 

(and by extrapolation which mechanisms explain failure of clearance), and what is the 

pathogenesis of mucosal villous atrophy (which underlies malabsorption and thus 

symptoms)?  

Evidence from animal models suggests an important role for antibodies in clearance of 

infection [12, 22], and their appearance may correlate with virological control. Chachu et al 

found in a murine model that functional B cells or specific norovirus antibodies could effect 

viral clearance in RAG-/- combined (B and T cell) immunodeficient mice [23]. However, 

severe combined immunodeficiency (SCID) children with B cell deficiency had 10-fold lower 

levels of norovirus than SCID children in whom B cells were intact (perhaps explained by B 
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cells acting as a site for viral replication), underlining the complexity of immune responses 

[24].  

Virus-specific CD8+ cytotoxic T cells also contribute significantly to viral clearance in mice 

[25, 26], with perhaps a particular role for perforin [26]. Tomov et al observed that murine 

norovirus strains achieving chronic infection elicited a poorer CD8+ T cell response in terms 

of cytokine and granzyme production, and that adoptive transfer of this cell type to RAG -/- 

mice reduced viral shedding [25]. 

CD4+ T cells also appear important for viral clearance [26] and protective immunity against 

further infection [27]. These lymphocytes activate antigen presenting cells, facilitate B cell 

development including antibody class-switching and stimulate cytotoxic T cells. As 

mentioned above, both Th1 and Th2 cytokines are observed in the robust immune response 

of normal hosts [20, 21], although mouse models suggest that interferon-gamma may be 

redundant for virological clearance [26].  

Type I interferons limit viral replication in vitro [28] and speed clearance in vivo [29], while 

IFN-α/βR-/- mice suffer far higher viral loads than wild-type controls [30]. Recent evidence 

has also strongly implicated Type III interferons in mice [31, 32], with effective cure of 

chronically infected animals achieved via administration of IFN-λ. 

In totem, the available data suggest that a co-ordinated response of innate mechanisms 

(interferons), CD8+ cytotoxicity and a humoral response, presumably with CD4+ 

orchestration, is associated with norovirus clearance. There may be redundancy within 

these mechanisms and, although antibody-deficiency is common in patients with chronic 

infection, it seems likely that an additional component of immunocompromise, most likely 
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within the CD4+ T cell compartment, is required. For example, we are not aware of reports 

of chronic norovirus infection in patients with X-Linked Agammaglobulinemia (pure B cell 

deficiency).  

Despite this requirement for profound immune deficiency to predispose to chronic 

norovirus infection, evidence from coeliac disease suggests that the mechanisms driving 

villous atrophy still involve active immunological processes: predominantly those of 

cytotoxic intraepithelial lymphocytes (IELs) – including perforin, granzyme, Fas Ligand 

binding to Fas or Natural Killer Group 2D (NKG2D) binding to MHC class I chain-related 

protein (MIC; as recently reviewed [33]). Biopsies of immunocompetent patients with acute 

norovirus infection [34] or immunodeficient patients with chronic infection [35] generally 

reveal increased IELs, and we hypothesise that similar cytotoxic mechanisms to coeliac 

disease underlie the villous atrophy observed. There is some evidence that double-stranded 

viral RNA, which forms during the norovirus replication cycle, might be directly toxic to 

epithelial cells [36], but no definitive proof that such toxicity occurs in humans in vivo.  

This suggests that some functional, predominantly cytotoxic, immune response may be 

required in order for chronic norovirus infection to become symptomatic. Newman et al 

discovered that symptoms in experimental human norovirus infection correlated with 

serum cytokine responses rather than viral titres [20]. Accordingly, published [35] and 

personal observations suggest an apparently paradoxical symptomatic response in some 

individuals to treatment with immunosuppressive medication. Although high doses of 

immunosuppressives are clearly deleterious for norovirus control and should be reduced if 

possible [8], judicious use of low doses may be required in situations of chronic infection 

and intractable symptoms. 
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The mechanism by which cytotoxic T cells may become activated in patients with chronic 

norovirus infection is unclear, given that compromise of the CD4+ T cell compartment is 

common in these individuals [8, 18]. Although direct antigen presentation from infected 

cells may be important, a highly implicated mediator in coeliac disease is the cytokine IL-15 

[33] which activates and upregulates the cytotoxicity of IELs as well as impairing response to 

regulatory T cells [37]. Importantly, this cytokine is secreted from, and expressed on the 

surface of, dendritic cells and intestinal epithelial cells [37] and this process may thus be 

preserved even with severe compromise of CD4 and B cell function. Such a mechanism 

remains speculative at present and requires further investigation. 

Figure 1 summarises our current understanding of the mechanisms of norovirus clearance 

and where they are likely to be compromised in immunodeficient patients with chronic 

infection. At present this remains a putative model and is of most relevance to patients with 

severe enteropathy. 

Presentation and complications of norovirus infection in primary immune deficiency 

Primary immune deficiencies are a large, diverse group of disorders classified into major 

groups of combined immunodeficiencies, combined immunodeficiencies with associated or 

syndromic features, antibody deficiencies, immune dysregulation, phagocytic defects, 

defects in innate immunity, autoinflammatory disorders, and complement deficiencies [38]. 

The commonest symptomatic primary immune deficiency in adults is common variable 

immune deficiency (CVID). This condition is characterised by a failure in B cell differentiation 

with defective immunoglobulin production, and co-existing T cell defects are also common 

[39]. Patients with CVID have a heterogeneous clinical presentation but tend to be 

susceptible to recurrent infections of the upper and lower respiratory tract, gastrointestinal 
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infections, and experience higher frequencies of inflammatory and autoimmune conditions 

including inflammatory bowel disease [40].  

Norovirus infection in hosts with secondary immunocompromise has been described [8, 9] 

and norovirus is recognised to be a frequent enteric pathogen in these patient groups. 

Norovirus infection in hosts with immune deficiencies is often characterised by a chronic 

rather than acute course, severe diarrhoea, prolonged viral shedding, and may be 

complicated by malabsorption, weight loss, organ failure, requirement for parenteral 

nutrition, and even death [8]. This has been described in patients after solid organ [41-54] 

and haematopoietic stem cell transplants (HSCT) [46, 53, 55-59], patients with malignancy 

and those receiving chemotherapy [58-62], patients with chronic lymphocytic leukaemia 

[63], pre-term infants [64], and in an HIV-positive patient [65]. 

However, in these secondary immunocompromised states, immunosuppression can often 

be decreased in response to debilitating infection, or immune reconstitution may be 

expected to occur, aiding the host response to achieve viral clearance. In contrast, patients 

with primary immune deficiencies have a stable level of immunodeficiency which may not 

be easily amenable to correction, and therefore may have a protracted clinical course and 

inability to clear infection. Table 1 summarises available reports of chronic norovirus 

infection in patients with primary immune deficiencies.  

As with immunocompetent hosts, norovirus infection in primary immunodeficiency may be 

asymptomatic or symptomatic. A prospective study of the prevalence and clinical 

consequences of norovirus infection in hospitalised children with varied primary immune 

deficiencies found norovirus to be the most frequently detected pathogen in faecal samples 

[66]. Six out of 11 norovirus-infected children had symptoms of diarrhoea, which was 
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complicated by dehydration in four cases and malnutrition in two. The longest duration of 

diarrhoea reported was ten months and in the seven patients followed up with faecal 

samples, substantial viral excretion was still detected in four after a median of 9.5 months 

follow up. Two patients with norovirus infection had a detectable norovirus viraemia and 

one of these also had norovirus detectable in the cerebro-spinal fluid. Upper 

gastrointestinal endoscopy was performed in three children: two children demonstrated 

duodenal villous atrophy with moderately higher than normal intraepithelial CD3+ CD8+ 

lymphocyte counts, one of these cases had slightly higher than normal numbers of 

apoptotic epithelial cells, with mild polynuclear neutrophil infiltration. In a retrospective 

series of eight adult patients with CVID and a diagnosis of ‘CVID enteropathy’, all were found 

to be positive for norovirus in stool [35]. These patients were all symptomatic with varying 

severity of diarrhoea, nausea, and weight loss, and five were dependent on parenteral 

nutrition. One patient appeared to have at least eight years of chronic infection, with 

detectable norovirus RNA in archived biopsy specimens over this time period. All eight 

patients had histological findings of duodenal villous atrophy on biopsy. Interestingly, one 

patient from this series with a two-year history of symptomatic norovirus infection 

appeared to clear the infection spontaneously with resolution of viral excretion, diarrhoea 

and vomiting, and normalisation of duodenal villous architecture.  

A retrospective audit of patients attending an adult immunology clinic identified three 

patients with CVID and persistent norovirus infection (defined as two or more positive 

detections of the same virus more than eight weeks apart) [67]. All three patients were 

symptomatic with diarrhoea; two patients had severe weight loss (10kg and 8kg) and one 
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patient had acute on chronic renal failure, malnutrition and required long-term parenteral 

nutrition.  

One case report describes a patient with CVID who developed a severe protein-losing 

enteropathy characterised by diarrhoea, nausea, abdominal pain, significant weight loss and 

requirement for parenteral nutrition, and was found to have a chronic enteral infection with 

both human parechovirus type 1 and norovirus for at least two years [68]. Biopsies from the 

oesophagus, antrum, duodenum, distal ileum, colon and sigmoid, all showed lymphocytic 

infiltration with a marked increase of T cells. The duodenum showed villous atrophy and 

there was also apoptotic colitis.  

Prolonged symptoms of norovirus gastroenteritis have been described in a child with 

cartilage hair hypoplasia (a rare genetic disorder with autosomal recessive chondrodysplasia 

and a primary T cell immunodeficiency) who excreted norovirus in the stool for four months 

before HSCT, then again for five months following HSCT [69]. The child suffered from 

diarrhoea, vomiting, weight loss, and occasional fever but made a full recovery after 

immune reconstitution. In this case, HSCT may have enabled viral clearance due to 

lymphocyte engraftment. In contrast, HSCT has been attributed as a cause of norovirus 

persistence in some primary immune deficiency patients. Xerry et al described two infants 

with primary immune deficiency (one with Wiskott-Aldrich syndrome, one with severe 

combined immunodeficiency syndrome) who underwent HSCT from matched unrelated 

donors then developed norovirus gastroenteritis post-transplant, on day 11 and day 34 

respectively [70]. The infants excreted norovirus for 69 and 48 days and both were found to 

be excreting 3 unique strains.  

Chronic norovirus infection and CVID enteropathy 
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A proportion of patients with CVID suffer from a severe chronic enteropathy characterised 

by diarrhoea and malabsorption [71, 72]. Although the term ‘CVID enteropathy’ has been 

used to describe a range of histopathological abnormalities, it is best reserved for those 

cases with increased IELs, epithelial cell apoptosis and villous atrophy in the small bowel  

[73, 74], similar to changes found in coeliac disease as demonstrated in Figure 2. Despite 

these histological similarities to coeliac disease, a gluten-free diet rarely improves symptoms 

in CVID enteropathy [35, 72]. Nevertheless, as serological tests are unhelpful in patients 

with antibody deficiency, in CVID patients with enteropathy and an appropriate HLA 

haplotype for coeliac disease a trial of a gluten-free diet is the only way to determine 

whether there is co-existent CVID and coeliac disease.  

Woodward et al recently postulated that chronic norovirus infection may play a major role 

in the aetiology of severe CVID enteropathy [35]. All eight patients identified with CVID 

enteropathy in this retrospective series were found to be positive for norovirus in stool, and 

three patients had clinical resolution and improvement in duodenal villous atrophy when 

viral clearance was achieved. Conversely, many cases of CVID enteropathy seem to respond 

symptomatically to immunosuppressive therapies including steroids [72] and anti-TNF 

therapies [75], although no significant change was seen in histopathological appearance of 

small bowel biopsies after treatment [75]. These findings may support a role for aberrant, 

cytotoxic immune responses to chronic norovirus infection, and perhaps other enteric 

infections, in the aetiology of CVID enteropathy.  

Treatment of chronic norovirus infection in immunocompromised hosts 

In immunocompetent patients, the mainstay of therapy for norovirus gastroenteritis 

remains supportive care during the self-limiting illness. However, chronic infections in 
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immunocompromised hosts can lead to severe malabsorption, organ failure, and death, 

motivating a search for effective treatments. Reducing immunosuppressive therapy in 

secondary immune deficiency is key to viral clearance [42-45, 47, 50], but this option is not 

available for patients with primary immunological defects.  

A number of potential treatments for norovirus infection have been evaluated in immune 

deficient hosts, as summarised in Table 2. Exclusion diets, for example lactose- or gluten-

free diets, have not had lasting benefits [35, 65]. Breast milk, as a source of IgA and 

lactoferrin, is a potential candidate for norovirus treatment, and may block the interaction 

of norovirus particles with human HBGA receptors required for entero-invasion [76]. 

However, trials in two patients had no effect on symptoms or norovirus excretion [68, 77].  

Immunoglobulins appear to be important for clearance of norovirus infection [12, 22], and 

therefore supplementary immunoglobulins for deficient patients might theoretically aid 

viral clearance. Immunoglobulins have been administered to patients with chronic norovirus 

infection either enterally or intravenously. Enteral administration achieves local delivery of 

immunoglobulins to the intestinal epithelium, and binding of viral particles to enteral anti-

norovirus immunoglobulins could in theory inhibit viral adherence to intestinal epithelium, 

as has been demonstrated with rotavirus [78]. However, they may also be susceptible to 

protein degradation. A number of reports have found a positive benefit from this approach. 

A retrospective review of 12 transplant recipients with norovirus infection treated with oral 

immunoglobulins reported success in 11 patients and mild improvement in one [54]. Chagla 

et al and Ebdrup et al each describe one adult on immunosuppressive therapy after 

transplant whose chronic norovirus infection disappeared after enteral immunoglobulins 

[51] [52]. A retrospective audit described limited improvement in two patients with CVID 
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and persistent norovirus infection who were given oral immunoglobulin; one patient had 

symptomatic improvement but ongoing viral excretion until clearance five months later, 

while the other patient had ongoing requirement for parenteral feeding and detectable viral 

excretion [67]. Florescu et al reported improvement in symptoms and resolution of viral 

shedding after treatment with oral immunoglobulin in two children with chronic norovirus 

infection after small bowel transplantation [48].  

A subsequent case-control study with 12 cases of immunocompromised patients with 

norovirus enteritis found oral immunoglobulin versus no oral immunoglobulin favoured 

resolution of diarrhoea and decreased stool output after treatment, although this was not 

statistically significant [79]. Published studies which have failed to find a benefit from 

enterally-administered immunoglobulins for chronic norovirus infection include two 

patients with secondary immune deficiency after transplant [77] [50], and two with primary 

immune deficiencies [68] [66].  

Intravenous administration of immunoglobulins has been evaluated for treatment of chronic 

norovirus infection in several patients but with limited success. After IVIG, Wingfield et al 

did detect a minimal two-day improvement in symptoms and reduced diarrhoea in one 

patient with HIV infection [65]. IVIG given to two patients with secondary immune 

deficiency after transplant  was ineffective [77] [50]; IVIG also failed to cure persistent 

norovirus infection in primary immune deficiencies (one patient with CVID [68], two out of 

three patients with CVID [67], and three children with inherited immunodeficiencies [66]).  

Boosting IL-2 activity in immune deficient hosts could be a target for treatment of norovirus 

infection, because increased stool IL-2 levels have been measured in norovirus infection 
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[80]. However, IL-2 therapy was unsuccessful in one patient with HIV infection and 

symptomatic chronic norovirus infection [65].  

Two antiviral therapies have been evaluated for efficacy in norovirus infection in immune 

deficient hosts. Nitazoxanide is a broad-spectrum antimicrobial agent licenced for the 

treatment of diarrhoea caused by Cryptosporidium spp. and Giardia lamblia, with anti-viral 

effects, thought to work through potentiation of host anti-viral activity. It  has been shown 

to inhibit the replication of norovirus in cell lines [81] and reduce the duration of symptoms 

in human infection [82]. Activity against norovirus infection has been mixed: one 

immunosuppressed patient with relapsed refractory acute myeloid leukaemia (AML) and 

chronic graft-versus-host disease after HSCT achieved complete clinical resolution within 

four days of starting a course of oral nitazoxanide, although had ongoing asymptomatic viral 

shedding for over 30 days [83]. Morris & Morris similarly described a fast clinical response 

within two to four days of starting oral nitazoxanide in 13 out of 13 immunosuppressed or 

chemotherapy-receiving patients (3 pre-HSCT, 10 after HSCT), with improvements in 

diarrhoea, nausea and abdominal pain [59], although the duration of norovirus infection 

prior to treatment is not stated. There was variable clearance of stool virus, however. 

Conversely, a transplant recipient [50] and a patient with CVID [67], both with prolonged 

norovirus gastroenteritis, did not respond to treatment with nitazoxanide.  

Ribavirin is a broad-spectrum nucleoside analogue antiviral licenced for treatment of HCV 

and RSV infections, with in vitro activity against norovirus; additive effects may be seen 

when combined with interferon-alpha [84]. Its value in the treatment of chronic norovirus 

infection was assessed by Woodward et al in patients with CVID and enteropathy found to 

have persistent excretion of norovirus [35]. Two out of five treated patients cleared 
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norovirus with complete resolution of clinical symptoms after ribavirin therapy for several 

months. Out of the remaining three treated patients, two failed to clear the virus despite 

the addition of interferon-alpha, and one died before the end of treatment. Van de Ven et al 

did not achieve a change in clinical symptoms or viral load of norovirus in one patient with 

CVID and co-infection with human parechovirus type 1 and norovirus [68], treated with a 

10-day course of ribavirin. Likewise, a two-week course of ribavirin did not affect norovirus 

excretion in a patient with CVID and chronic norovirus infection [67].  

A number of groups have observed the effects of immunosuppressive therapies in immune 

deficient patients with chronic norovirus infection. Oral steroids showed no benefit in one 

immunosuppressed post-HSCT patient [55] and one patient with CVID [35], but were 

associated with a significant improvement in gastrointestinal symptoms and serum albumin, 

faecal α1-antitrypsin and calprotectin, in one patient with CVID and co-infection with human 

parechovirus type 1 and norovirus [68]. Azathioprine and anti-TNF therapies were 

unsuccessful in the treatment of one patient with CVID [35].  

It has been suggested that in immunosuppressive regimens, switching one agent from a 

calcineurin inhibitor to a mammalian target of rapamycin (mTOR) inhibitor may have 

antiviral effects [73, 74], for example as employed in CMV reactivation after solid organ 

transplant. In two cases of chronic norovirus infection in secondary immune deficiency after 

transplant, a switch from tacrolimus to an mTOR inhibitor was successful, with resolution of 

infection [85] [53]. This suggests that sirolimus or similar agents may have a particular role 

in the management of CVID enteropathy and chronic norovirus infection, both via a directly 

antiviral effect and suppression of aberrant immune responses.  
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Jones et al demonstrated that HBGA-expressing enteric bacteria are necessary for human 

norovirus infection of B cells in a mouse model, and mouse norovirus replication was 

reduced in vivo when the intestinal microbiota was depleted by administration of oral 

antibiotics [15]. However, a retrospective study of renal transplant recipients which 

identified 15 patients with norovirus infection and one with sapovirus infection, found 

empirical antimicrobial therapy to be unsuccessful in four out of four patients [42], and a 

prolonged course of antibiotic treatment for methicillin-resistant Staphylococcus aureus 

chest infection and Clostridium difficile in a CVID patient with persistent norovirus, had no 

effect on viral excretion [67]. 

Furthermore, there are several potential candidates for treatment of chronic norovirus 

infection which have not yet been evaluated in immune deficient patients [17, 86]. A 

promising drug is the nucleoside analogue favipiravir, a broad-spectrum antiviral agent 

which may have multiple mechanisms of action [87]. In vitro, it has modest potency again 

murine norovirus in a cell culture model [88], and treatment of murine norovirus-infected 

mice caused more rapid clearance rates of infectious virus via induction of lethal 

mutagenesis, with higher mutagenic activity and greater efficiency in controlling viral titres 

than was seen for ribavirin [89]. Due to its current status in development for use in 

influenza, favipiravir has been administered to greater than 1400 human subjects in clinical 

trials, with proven safety and tolerability [90], however is not yet available for clinical use in 

norovirus infections.  

Another nucleoside analogue with possible future use in human norovirus infection is 2’-C-

methylcytidine (2CMC) and its derivatives. 2CMC has been shown to have anti-murine 

norovirus activity in cell culture [91] and to be a potent inhibitor of human norovirus 
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replication in a replicon cell culture model [92, 93] and in a B cell culture system [94]. In 

mouse models, 2CMC inhibited murine norovirus replication and protected against 

diarrhoea and mortality [93], as well as reducing viral shedding and transmission [95]. 2CMC 

was developed as a direct-acting antiviral agent for HCV infection, but has not yet been 

approved for treatment [17]. Pharmacokinetic studies have shown low oral bioavailability of 

2CMC  leading to efforts to design prodrugs [96], however further development has been 

hampered by the unfavourable toxicity profiles of some agents, which frequently cause 

gastrointestinal side effects [97, 98].  

Focussing on the host response to infection, IFN-λ has been shown in a mouse model to 

cure persistent murine norovirus infection in the absence of adaptive immunity [32]. IFN-λ is 

an attractive candidate for treatment of human norovirus infection because it has already 

been used as therapy for chronic HCV infection in Phase II clinical trials [99]. An alternative 

approach for norovirus drug design is to target the binding of norovirus particles to HBGA 

carbohydrates, either using small compounds [100, 101], monoclonal antibodies [102-104], 

or single chain antibody fragments [105]. Therapies based on these approaches remain in 

the early stages of development.  

Conclusion and future directions 

Norovirus infection in primary immune deficiency can cause protracted diarrhoea with 

frequent need for parenteral nutrition, and may play a central role in the pathogenesis of 

CVID enteropathy. The severe and complicated course of chronic norovirus infection in 

patients with primary immune deficiency highlights the need for effective antiviral 

therapies. To date, only ribavirin has been used successfully to achieve clearance of chronic 

norovirus in primary immune deficiency. Experience from patients with secondary immune 
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deficiencies suggests that nitazoxanide may be of value in the treatment of chronic 

norovirus, however, randomised controlled trials are needed to evaluate a number of 

promising therapies.  
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Table 1. Summary of clinical reports of chronic norovirus infection in patients with primary immune deficiencies 

Author Cause of primary immune 
deficiency 

N Presentations Histology Treatment Outcomes 

Frange et al 
[66] 

Severe combined 
immunodeficiency,  
MHC II expression 
deficiency,  
Wiskott-Aldrich syndrome, 
immunodeficiency, 
centrometic region 
instability, and facial 
anomalies syndrome,   
CD40L deficiency,  
other combined 
immunodeficiency, 
Agammaglobulinaemia,  
hypogammaglobulinaemia,  
defects of phagocyte 
number and/or function,  
haemophagocytic 
lymphohistiocytosis,  
congenital dyskeratosis 

11 6/11 patients 
had 
diarrhoea. 2/8 
of those 
excreting 
norovirus had 
viraemia and 
one had 
norovirus in 
the CSF.  

1 patient: 
normal, 1 
patient: 
moderate 
oesophagitis 
with antral 
gastritis and 
duodenal 
villous 
atrophy, 1 
patient: 
duodenal 
villous 
atrophy 

3 had high dose IVIG, 1 
also had high dose oral 
IG 

No improvement 

Woodward et 
al [35] 

CVID 8 Prolonged 
diarrhoea, 
nausea, 
weight loss. 1 
patient 
probably had 

All: 
duodenal 
villous 
atrophy 

5 treated with ribavirin  
(1 had gluten 
withdrawal,  
elemental diet, oral  
budesonide, 
prednisolone, 

1 spontaneously cleared, 
2/5 cured after ribavirin, 
3/5 unsuccessfully treated 
with ribavirin (1 died, 2 
failed) 
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norovirus-
related 
symptoms for 
6 years. 5/8 
required long 
term 
parenteral 
nutrition.  

azathioprine and anti-
TNFα antibodies 
before this) 

Duraisingham 
et al [67] 

CVID 3 All patients 
symptomatic. 
2 patients had 
severe weight 
loss. 1 patient 
had acute on 
chronic renal 
failure, 
malnutrition 
and required 
long-term 
parenteral 
nutrition.  

1 patient: 
normal 
histology 
throughout 
GI tract.  
1 patient: 
duodenal 
increased 
IELs but 
normal villi. 
1 patient: 
villous 
distortion in 
the terminal 
ileum with 
neutrophilic 
infiltration 
and cryptitis 
throughout 
the gut.  

2 patients required 
large increases in IVIG 
dose to maintain 
trough IgG levels. 
1 patient had 10 days 
nitazoxanide (500mg 
twice daily) with no 
effect. 2 patients had 
30 days oral Ig with 
symptomatic 
improvement in 1 but 
persistent viral 
excretion. 1 patient 
had 2 weeks oral 
ribavirin (200mg twice 
daily) with persistent 
norovirus detected.  

1 patient cleared 
norovirus after 9 months. 
2 patients still shedding 
norovirus after 30 and 16 
months respectively 

Van de Ven 
et al [68] 

CVID 1 Co-infection 
with human 

Lymphocytic 
infiltration 

Increased frequency of 
IVIG, duodenal Ig, 

Complete remission not 
achieved, persistent high 
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parechovirus 
type 1 and 
norovirus. 
Chronic 
diarrhoea, 
nausea and 
abdominal 
pain. Severe 
protein-losing 
enteropathy 
with 19% 
weight loss 
and low 
serum 
albumin. 
Requirement 
for parenteral 
nutrition.  

of 
oesophagus, 
antrum, 
duodenum, 
distal ileum, 
colon and 
sigmoid. 
Increase of 
CD3+CD8- T 
cells. 
Duodenal 
villous 
atrophy and 
apoptotic 
colitis.  

duodenal breast milk, 
10 day course ribavirin, 
all with no effect. 
Prednisolone 1.5 
mg/kg with 
improvement in 
symptoms and 
laboratory parameters 

viral loads 

Gallimore et 
al [69] 

Cartilage hair hypoplasia 
(before and after HSCT) 

1 Symptomatic 
for 6 months 

- Nil Full recovery 
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Table 2. Summary of reported experience of treatment for chronic norovirus infection in immune deficiency 

Treatment Theory Reference Summary of evidence 

Lactose-free diet Lactase enzyme located in 
distal villus and likely to be 
disrupted by villous atrophy 
[106] 

Wingfield et al [65] 1 patient with HIV infection and symptomatic norovirus infection 
for 15 months. Lactose-free diet had no effect on symptoms.  

Gluten-free diet Histological appearances of 
duodenal villous atrophy and 
symptoms of malabsorption 
are similar to those seen in 
coeliac disease 

Woodward et al 
[35] 

8 patients with CVID and enteropathy found to have persistent 
excretion of norovirus. All underwent trial of gluten withdrawal. 1 
patient had short-term benefit then relapsed.  

Breast milk 
 

Source of IgA and 
lactoferrin. May block 
interaction of norovirus 
particles with human HBGA 
receptors [76] 
 

Nilsson et al [77] 1 patient on immunosuppressive therapy after heart transplant, 
also haemodialysis-dependent. Breast milk 125ml given 3 times 
per day for 3 weeks. No effect on symptoms or viral excretion.  

Van de Ven et al 
[68] 

1 patient with CVID and co-infection with human parechovirus 
type 1 and norovirus. Given breast milk 1 litre daily via duodenal 
tube with additional lactoferrin. No change in clinical symptoms 
or viral loads of HPeV and norovirus. 

Enteral 
immunoglobulin  
 

Local delivery of 
immunoglobulins to 
intestinal epithelium. 
Binding of viral particles to 
enteral anti-norovirus 
immunoglobulins might 
inhibit viral adherence to 
intestinal epithelium 
 

Nilsson et al [77] 1 patient on immunosuppressive therapy after heart transplant, 
also haemodialysis dependent. Given oral immunoglobulin 
10g/day for 15 days. No effect on symptoms or viral excretion. 

Florescu et al [48] 2 patients on immunosuppressive therapy after small bowel 
transplantation. Given oral immunoglobulin 25mg/kg every 6 h 
for 48 h. 1 patient had decreased stool output and improved 
consistency, 1 patient had a transient decrease in stool output 
only.  

Florescu et al [79] Retrospective case control study of 12 cases. Oral 
immunoglobulin vs no oral immunoglobulin favoured resolution 
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of diarrhoea and decreased stool output 7 days after treatment 
although not statistically significant.  

Ebdrup et al [52] 1 patient on immunosuppressive therapy after heart transplant. 
Duodenal immunoglobulin 45mg/kg given every 6 h for 48 h. 
Decreased stool frequency to normal.  

Van de Ven et al 
[68] 

1 patient with CVID and co-infection with human parechovirus 
type 1 and norovirus. Immunoglobulins administered via 
duodenal tube. No effect on severity of protein-losing 
enteropathy.  

Chagla et al [51] 1 patient on immunosuppressive therapy after kidney/pancreas 
transplant. Given immunoglobulins (Gamunex) 45mg/kg every 6 
h. Received 3 doses via nasogastric tube then 3 doses via 
nasojejunal tube. Developed acute ileus. Diarrhoea resolved over 
next 24 h and norovirus became undetectable in stool.  

Gairard-Dory et al 
[54] 

Retrospective review of 12 lung transplant recipients with 
norovirus. Treated with oral immunoglobulins (Sandoglobuline or 
Privigen, 25mg/kg every 6 h for 48 h) for 2 days. 11 patients 
successfully treated, 1 patient mildly improved.  

Echenique et al 
[50] 

1 patient on immunosuppressive therapy after pancreas 
transplant. Given oral immunoglobulin (200ml/5g for 5 days). No 
effect on symptoms or viral excretion.  

Frange et al [66] 1 child with agammaglobulinaemia, norovirus shedding and 
severe gastrointestinal symptoms. Given high dose oral 
immunoglobulins with no improvement in clinical symptoms or 
faecal shedding. 

Duraisingham et al 
[67] 

3 patients with CVID and persistent norovirus infection. 2 patients 
given oral immunoglobulins (10g daily for 30 days). 1 patient had 
symptomatic improvement but ongoing viral excretion until 
clearance 5 months later. 1 patient had ongoing requirement for 
parenteral feeding and persistent viral excretion.  
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Intravenous 
immunoglobulin 
(IVIG) 

Immunoglobulins are 
important for clearance of 
norovirus infection [12, 22] 
and pooled 
immunoglobulins may 
contain neutralising 
antibodies 

Nilsson et al [77] 1 patient on immunosuppressive therapy after heart transplant, 
also haemodialysis dependent. IVIG 0.4g/kg for 5 days. No effect 
on symptoms or viral excretion. 

Wingfield et al [65] 1 patient with HIV infection and symptomatic norovirus infection 
for 15 months. 3 days of IVIG given with a minimal 2-day 
improvement in symptoms and reduced diarrhoea. 

Van de Ven et al 
[68] 

1 patient with CVID and co-infection with human parechovirus 
type 1 and norovirus. Increased dose and frequency of IVIG 
infusion (IgG trough levels >20g/l). No effect on severity of 
protein-losing enteropathy. 

Duraisingham et al 
[67] 

3 patients with CVID and persistent norovirus infection. 2 patients 
required large increases in IVIG dose to maintain trough IgG 
levels. 1 of these cleared norovirus after 9 months. The remaining 
2 patients were still shedding norovirus after 30 and 16 months 
respectively.  

Echenique et al 
[50] 

1 patient on immunosuppressive therapy after pancreas 
transplant. Given IVIG (GammaGard 20g, 6 infusions over 28 
days). No effect on symptoms or viral excretion. 

Frange et al [66] 3 children with inherited immunodeficiencies, norovirus shedding 
and severe gastrointestinal symptoms. Given high dose IVIG 
(≥1g/kg/week) with no improvement in clinical symptoms or 
faecal shedding. 

Interleukin-2 Increased stool IL-2 levels 
measured in norovirus 
infection [80] 

Wingfield et al [65] 1 patient with HIV infection and symptomatic norovirus infection 
for 15 months. IL-2 therapy unsuccessful.  
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Nitazoxanide 
 

Broad-spectrum 
antimicrobial agent with 
anti-viral effects. Thought to 
potentiate host anti-viral 
activity. Shown to inhibit 
replication of norovirus  in 
cell lines [81] and reduce 
duration of symptoms in 
human infection [82] 
 

Siddiq et al [83] 1 patient with relapsed refractory AML with chronic GVHD after 
HSCT. On treatment with ponatinib (oral BCR-ABL tyrosine kinase 
inhibitor) and immunosuppressive therapy. Given oral 
nitazoxanide 500mg twice daily for 7 days. Complete clinical 
resolution within 4 days but ongoing asymptomatic shedding for 
>30 days.  

Echenique et al 
[50] 

1 patient on immunosuppressive therapy after pancreas 
transplant. Given oral nitazoxanide (500mg daily for 5 days). No 
effect on symptoms or viral excretion. 

Morris & Morris 
[59]  

13 patients on immunosuppressive therapy or chemotherapy (3 
pre-HSCT, 10 after HSCT). Given oral nitazoxanide (dose 
dependent on age). All had clinical response with improvements 
in diarrhoea, nausea and abdominal pain within 2-4 days. 
Variable clearance of stool virus: 2/3 pre-HSCT became negative 
within 5-14 days of treatment. Post-HSCT:  
4 had persistent viral shedding, 4 came off therapy and remained 
negative, 2 received drug until death (1 adenovirus, 1 congestive 
heart failure) 
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Duraisingham et al 
[67] 

3 patients with CVID and persistent norovirus infection. 1 patient 
given oral nitazoxanide 500mg twice daily for 10 days with no 
effect on symptoms or viral excretion.  

Ribavirin +/- 
interferon alpha 
 

Ribavirin (nucleoside 
analogue) has activity 
against norovirus in vitro. 
Additive effects with INF-α 
[84] 
 

Woodward et al 
[35] 
 

8 patients with CVID and enteropathy found to have persistent 
excretion of norovirus. 5 treated with oral ribavirin (target levels 
of 1500ng/ml). 2 patients cleared norovirus with complete 
resolution of symptoms. 3 patients treated unsuccessfully (2: 
failure of clearance despite addition of interferon alpha, 1: died 
before end of treatment) 

Van de Ven et al 
[68] 

1 patient with CVID and co-infection with human parechovirus 
type 1 and norovirus. 10-day course of ribavirin. No change in 
clinical symptoms or viral loads of HPeV and norovirus. 

Duraisingham et al 
[67] 

3 patients with CVID and persistent norovirus infection. 1 patient 
given 2 week course of oral ribavirin (200mg twice daily) to treat 
concurrent RSV infection. No effect on norovirus excretion.  

Immunosuppressive 
therapy 
 
 

The aberrant immune 
response to norovirus 
infection could drive villous 
atrophy and symptoms. 
 
Switching from calcineurin 
to mTOR inhibitor may have 
antiviral effects [107, 108]. 

Roddie et al [55] 12 patients with norovirus gastroenteritis after allogeneic HSCT. 1 
patient had prolonged steroid treatment for presumed gut GVHD, 
experienced severe weight loss and required parenteral nutrition.  

Woodward et al 
[35] 

8 patients with CVID and enteropathy found to have persistent 
excretion of norovirus. 1 patient was treated with oral 
budesonide, prednisolone, azathioprine and anti-TNFα antibodies 
with no benefit.  

Van de Ven et al 
[68] 

1 patient with CVID and co-infection with human parechovirus 
type 1 and norovirus. Given prednisolone 1.5mg/kg. Significant 
improvement in gastrointestinal symptoms and improvement in 
serum albumin, faecal α1-antitrypsin and calprotectin.  

Boillat Blanco et al 1 patient on immunosuppressive therapy after HSCT and lung 
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[53] transplant with 6 months chronic norovirus infection. Switched 
from tacrolimus to sirolimus with resolution of infection.  

Engelen et al [85] 1 patient on immunosuppressive therapy after heart transplant. 
Switched from tacrolimus to everolimus with resolution of 
symptoms and norovirus excretion.  

Antibiotics 
 

Murine norovirus replication 
is reduced in vivo when 
intestinal microbiota is 
depleted by oral antibiotics 
[15] 
 

Roos-Weil et al 
[42] 

16 patients on immunosuppressive therapy after renal transplant 
(15 with norovirus infection, 1 with sapovirus). 4 patients treated 
with empiric antimicrobial therapy with no success.  

Duraisingham et al 
[67] 

3 patients with CVID and persistent norovirus infection. 1 patient 
received a 21-day course of doxycycline, rifampicin and 
metronidazole then prolonged oral vancomycin, for methicillin-
resistant Staphylococcus aureus chest infection and Clostridium 
difficile. No effect on norovirus excretion.  
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Figure Legends 

Figure 1. Putative model of the immune response to norovirus and its dysfunction in 

primary immune deficiency. Norovirus (blue stars) infects antigen presenting cells (APC), B 

cells (potentially via the B cell receptor, BCR) or epithelial cells, where it may contribute to 

direct cytotoxicity. Infected cells release type I and type III interferons. Norovirus antigen is 

presented from infected cells via major histocompatibility complex (MHC) I to CD8+ T cells, 

or via MHC II (on APCs and B cells) to CD4+ T cells. IL-15 expression, especially on epithelial 

cells, may further activate T cells. CD8+ T cells effect cytotoxicity, particularly as 

intraepithelial lymphocytes (IEL) inducing apoptosis in mucosal epithelial cells via release of 

granzyme and perforin, Fas/Fas Ligand binding and Natural Killer Group 2D (NKG2D)–MHC 

class I chain-related protein (MIC) interaction. CD4+ T cells proliferate and release cytokines 

to enhance APC activity, CD8+ T cell cytotoxicity and production of antibodies by B cells and 

plasma cells. This coordinated immune response eliminates norovirus in immunocompetent 

hosts. Disorders such as common variable immunodeficiency may compromise (1) 

differentiation of B cells into plasma cells and production of neutralising antibodies, (2) the 

interaction between T cells and B cells, (3) and CD4+ T cell cytokine release and 

proliferation. This results in failure to clear norovirus and a persistent, unchecked CD8+ 

cytotoxic T cell response causing epithelial damage 
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Figure 2. Histological appearances of mucosa in chronic norovirus infection. Formalin-

fixed, paraffin-embedded duodenal biopsy tissue was cut to 3 micron thickness and stained 

with haemotoxylin and eosin. Panels represent 100x magnification images of (A) healthy 

individual with normal villous architecture, (B) Common Variable Immunodeficiency (CVID) 

patient with chronic norovirus infection, demonstrating villous atrophy and intraepithelial 

lymphocytosis, and (C) coeliac disease patient demonstrating similar appearances to (B). 
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Figure 1 
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