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Abstract

The use of splice-switching antisense therapy is highly promising,
with a wealth of pre-clinical data and numerous clinical trials
ongoing. Nevertheless, its potential to treat a variety of disorders
has yet to be realized. The main obstacle impeding the clinical
translation of this approach is the relatively poor delivery of anti-
sense oligonucleotides to target tissues after systemic delivery. We
are a group of researchers closely involved in the development of
these therapies and would like to communicate our discussions
concerning the validity of standard methodologies currently used
in their pre-clinical development, the gaps in current knowledge
and the pertinent challenges facing the field. We therefore make
recommendations in order to focus future research efforts
and facilitate a wider application of therapeutic antisense
oligonucleotides.
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Introduction

Antisense oligonucleotides (AONs) are therapeutically attractive

compounds; their mechanism of action is usually through hybridiza-

tion to target sequences in pre-mRNA or mRNA, and as such, AONs

are highly specific. They can be manufactured at large scale in a

standardized manner, and do not face many of the challenges of

other genetic therapies such as gene addition and genome editing

which need viral vector-mediated delivery. Thus, it is not surprising

that AON therapy development is a dynamic and active field. To

date, four AON compounds have received marketing authorization

and more than 100 clinical trials with antisense compounds are

listed on ClinicalTrials.gov (Aartsma-Rus, 2016; Fig 1).

One type of AON aims to modulate splicing; these so-called

splice-switching oligonucleotides (SSOs) have been shown to restore

protein expression in multiple clinical trials. However, following

systemic administration the clinical benefit has been marginal and

thus gaining regulatory approval has proved difficult. The ability of

SSOs to induce sufficient levels of splice modulation in target tissues

is limited by their poor delivery. Once in circulation, unmodified

charged-neutral AONs such as peptide nucleic acids (PNAs) and

phosphorodiamidate morpholino oligomers (PMOs) are excreted

rapidly via the kidney mainly as intact molecules typically with

half-lives of less than a few hours (McMahon et al, 2002; Amantana

et al, 2007). It is assumed that on average < 1% of AONs reach the

correct cellular compartment. Furthermore, due to the body’s tissue
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barriers, the circulation of AONs is restricted, for example, most

AONs are not able to reach the central nervous system (CNS) after

systemic delivery (Fig 2). Significantly enhancing cell-specific

delivery of AONs is challenging due to our lack of knowledge of

cellular uptake and subcellular mechanisms of transport and

metabolism.

This manuscript focuses on AON delivery using systemic and

localized administration, uptake mechanisms and model systems

(Box 1). The aim of this publication is not to review what is

currently known in the field of AON delivery; for this, we refer the

reader to another recently published review (Juliano, 2016), rather

we will use selected examples from both literature and experience

to illustrate current challenges, problems and gaps in knowledge

(Box 2). Using this approach, we outline what lessons can be learnt

from previous work and suggest areas on which to focus future

research efforts (Box 3).

Delivery hurdles and how to make the most of them

The problem of delivery

As with the development of any treatment, the therapeutic agent

need only be effective in a subset of cells in the body. Most AON

clinical trials have used the systemic intravenous administration

route which results in the majority of AONs distributing to the liver,

kidney, bone marrow, lymph nodes and a small part accumulating

in adipocytes (Martin-Armas et al, 2006; Geary et al, 2015). It is

important to note however that as tissues consist of a mixture of cell

types, not all cells within a tissue will take up equal amounts of

AON. Increasing the administered dose in order to deliver sufficient

amounts of AON to specific target cells is inherently limited by asso-

ciated toxicities. Therefore, a detailed knowledge of what constitutes

effective delivery within a specific disease context is essential in

order to obtain sufficient potency with minimal toxicity.

Increases in the efficiency of AON delivery have been achieved

through chemical modification, conjugation to other moieties as

well as the development of new chemical backbones (Fig 3). While

these modifications provide some benefits, questions surrounding

pre-clinical and clinical toxicity remain unresolved, and thus, it is

important for scientists, toxicologists and pathologists as well as

regulatory reviewers to be familiar with these issues.

AON toxicity

The main toxicological challenges facing AON development pro-

grammes include: proinflammatory effects (vasculitis/inflammatory

infiltrates), nephrotoxicity, hepatotoxicity and thrombocytopenia

(Frazier, 2015). These types of toxicity are often called AON chem-

istry-dependent toxicities, and represent effects that are not due to

the Watson–Crick base pairing between an AON and an RNA

sequence. These toxicities may still exhibit some sequence depen-

dency despite the fact they do not involve base pairing. Such

sequence-specific toxicity has been observed with locked nucleic

acids (LNAs) which, depending on their sequence, can cause

profound hepatotoxicity as measured by serum transaminases as

well as mild to severe liver lesions (Swayze et al, 2007; Stanton

et al, 2012; Burdick et al, 2014; Kakiuchi-Kiyota et al, 2014). This

suggests that it may not be possible to define the toxicological pro-

file of a new chemistry based on a limited number of sequences.

Hybridization-independent toxicities fall into three general

subcategories: AON accumulation effects, proinflammatory mecha-

nisms (including immune complexes) and aptameric binding (as a

consequence of AON interactions with extracellular, cell surface

and/or intracellular proteins). The proinflammatory, aptameric

binding effects are acute, while the accumulation effects are long

term. As such, the relevance of the accumulation effect may depend

on the type of treatment required by the pathology (high-dose,

short-term treatment for cancer will not face the same cumulative

effects as a lifelong therapy required for chronic diseases such as

muscular dystrophies).

Box 1: Background to this manuscript

(i) The delivery challenges facing AON therapy were recognized by
the Cooperation of Science and Technology (COST) Action BM1207
(Networking towards clinical application of antisense-mediated
exon skipping for rare diseases [www.exonskipping.eu]).

(ii) In order to address these challenges, four workshops were orga-
nized; the participants of which were both pre-clinical and clinical
researchers working on many aspects of AON therapy develop-
ment.

(iii) This manuscript is a result of discussions held at these meetings
and focuses on AON delivery using systemic and localized admin-
istration, uptake mechanisms and model systems.

Glossary

Antisense oligonucleotides
Antisense oligonucleotides (AONs) are short strands of DNA or RNA
that can bind to RNA through Watson–Crick base pairing and can
modulate the function of the target RNA. Different types of AONs,
defined by their chemical structure, are mentioned in this article:
20 O-methyl phosphorothioate oligonucleotides (2OMe), locked nucleic
acids (LNAs), phosphorodiamidate morpholino oligomers (PMO) and
peptide nucleic acids (PNAs). These “naked” antisense oligonucleotides
can be combined with several moieties to increase their delivery, such
as cell-penetrating peptides (CPPs). These conjugated AONs include
vivo-morpholinos (VMO) or peptide phosphorodiamidate morpholino
oligomers (PPMO). When AONs are used to disrupt RNA splicing, they
are referred to as splice-switching oligonucleotides (SSO), irrespective
of their chemical structure.

Drug delivery systems
Drug delivery systems (DDS) are strategies to enhance delivery of
drugs to target sites of pharmacological actions. Lipid nanoparticles
(LNPs) or adeno-associated virus (AAV) may be considered DDS.

Induced pluripotent stem cells
Induced pluripotent stem cells (IPSCs) are cells generated directly
from adult cells, which may give rise to every other cell type in the
body, and can propagate indefinitely.

Kupffer cells and liver sinusoidal endothelial cells
Both Kupffer cells (KCs) and liver sinusoidal endothelial cells (LSECs)
constitute the hepatic sinusoidal lining, KCs are resident liver macrophages
and form the greater part of the mononuclear phagocyte system, while
LSECs are specialized endothelial cells with unsurpassed clathrin-mediated
endocytosis and endo-lysosomal processing, enabling efficient scavenging
of blood-borne oligonucleotides, peptides, large macromolecules and
nanoparticles. The space of Disse is the space between the liver sinusoidal
lining and hepatocytes. Access to it is provided through fenestrae in LSECs
or following transport through LSECs
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The mechanisms underlying these toxicities are also related to

the specific chemical class of AON involved, and each class of agent

has specific toxicity profiles. Phosphorothioate AONs have well-

characterized toxicities such as proinflammatory responses poten-

tially related to their protein binding properties (Henry et al, 2002;

Frazier, 2015), whereas neutral AONs such as PMOs do not interact

to any significant extent with cellular proteins and tend to have

fewer systemic toxicities.

Both the chemical backbone and specific sequence should there-

fore be taken into account when evaluating toxicological profiles of

novel AONs. A number of reviews have now been published high-

lighting guidelines and summarizing consensus opinion on the

appropriate strategies to use when assessing potential adverse AON-

mediated effects (Kornbrust et al, 2013; Engelhardt et al, 2015;

Frazier, 2015).

AON in the liver

With a blood flow of about 2 l/min and a sinusoidal blood lining

surface area the size of a tennis court, the liver is one of the most

vascularized tissues in the body. It is responsible for the clearance

of large molecules and nanoparticles from blood, a function which

is often counterproductive to the successful delivery of therapeutic

compounds to other tissues or even specific cells within the liver.

Several studies show that oligonucleotides (unmodified or conju-

gated) will end up in the liver to a far higher extent than the

intended target tissue, although the rates vary between studies. In

one study intravenous administration of an AON resulted in 40%

and 18% accumulation in the liver and kidneys respectively (Bijster-

bosch et al, 1997), whilst intravenous administration of CpG oligo-

nucleotides resulted in 50% and 40% accumulation in the liver and

kidneys respectively (Martin-Armas et al, 2006). The main cellular

site of liver uptake are the extremely active scavenger liver sinu-

soidal endothelial cells (LSECs) (Sorensen et al, 2015) followed by

hepatocytes and Kupffer cells (KCs; (Bijsterbosch et al, 1997),

however the degree of uptake in hepatocytes can vary from 40% in

the first study to no apparent uptake in the CpG study. Similarly, a

histological study revealed that phosphorothioate oligonucleotides

accumulated mainly in KCs and LSECs (Butler et al, 1997). KCs

specialize in phagocytic clearance of blood-borne particles larger

than 200 nm while LSECs mediate the clearance of smaller particles

such as oligonucleotides, peptides, large macromolecules and

nanoparticles via rapid and powerful clathrin-mediated endocytosis

(Sorensen et al, 2012). LSECs contain fenestrations with numerous

open pores of 50–150 nm in diameter, enabling access into the

underlying perisinusoidal space and therefore to hepatocytes.

However, LSECs are also able to endocytose from the perisinu-

soidal space and do so at a much higher speed than hepatocytes

(Magnusson & Berg, 1989). Stabilin is most likely the main receptor

responsible for uptake of oligonucleotides in LSECs (Martin-Armas

et al, 2006). Our experience suggests that delivery reagents are

necessary for the successful use of AON therapeutics in the

liver, particularly targeting hepatocytes (e.g. for the treatment of

hyperlipidaemia, hepatitis C or inherited metabolic disorders with

major hepatic expression) (Disterer et al, 2013; Yilmaz-Elis et al,

2013; Perez et al, 2014).

AON-mediated liver toxicity, monitored as increased liver

enzymes in the circulation, is generally considered a hepatocyte-

specific event (Kakiuchi-Kiyota et al, 2014). However, it has been

suggested that LSECs also play a significant role in the genera-

tion of liver toxicity caused by AONs. Firstly, as LSECs rapidly

accumulate very high intracellular concentrations of AON due to

the unsurpassed scavenger function of these cells, the adverse

effects of oligonucleotides would be far more pronounced in

these cells compared to other cell types. Secondly, it is known

that initial damage to LSECs caused by certain drugs subse-

quently causes damage to the hepatocytes (DeLeve, 2007). It is

therefore reasonable to assume that AON-mediated liver toxicity

is, at least in part, caused by initial damage to LSECs with

subsequent injury to hepatocytes. Clearly, future attempts to

unravel the mechanism of AON-mediated hepatotoxicity must

investigate LSECs in addition to hepatocytes and other types of

liver cells.

AON in the kidney

Renal blood flow through the glomerular capillary system efficiently

clears a large portion of AONs from the bloodstream in a short time

(up to 40% with some AONs). AONs appear to enter by receptor-

mediated endocytosis primarily at the brush border of the

epithelium, although the specific receptor is as yet unknown.

The fenestrated capillary endothelium provides a vast surface area

for AON clearance, and in addition, AONs that are filtered through

the glomerulus are reabsorbed by the proximal tubular epithelium

via unidentified specific receptors, contributing to the high AON

accumulation (Engelhardt, 2016). Following uptake, AONs are

found in endosomes and lysosomes and high doses can result in the

formation of cytoplasmic basophilic granules with or without vacuo-

lation. The kidney accumulates one of the highest concentrations of

AON following systemic administration in rodents, non-human

primates and humans, and this could make it the primary organ for

toxicity. However, for 20 O-methyl phosphorothioate oligonu-

cleotides, the histological changes seen in toxicity studies in animal

models do not correlate with the data from multiple clinical trials

that indicate no effect on renal function (Crooke et al, 2016; Engel-

hardt, 2016). Other chemistries may result in renal toxicity as has

been described in clinical studies of LNA oligonucleotides (Engel-

hardt, 2016). Comparative pre-clinical and clinical studies on renal

toxicity are thus necessary for each AON chemistry, as well as basic

research into delivery agents that target the specific cell type while

minimizing renal clearance.

Box 2: Key challenges of AON delivery

(i) Target/off target effects.
(ii) Toxicity due to AONs in entrapping tissues.
(iii) Toxicity due to chemical modifications.
(iv) Liver and kidney as a barrier.
(v) Tissue-specific barriers (e.g. BBB for CNS).

Box 3: Recommendations (or possible solutions?)

(i) Make the most of “encapsulated tissues”.
(ii) Develop efficient and safe drug delivery systems.
(iii) Find specific receptor ligands.
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Encapsulated tissues: a barrier has two sides

Recently renewed interest in the use of AONs to treat CNS diseases

is based on the concept of the CNS as an encapsulated tissue; the

same barriers that hamper delivery to the CNS after systemic deliv-

ery may trap therapeutic compounds once they reach the CNS. With

standard systemic delivery, AONs have to cross the blood–brain

barrier (BBB) or blood–cerebrospinal barrier, before they can distri-

bute within the CNS. This barrier is comprised of a monolayer of

endothelial cells, the basement membrane and either astrocytes or

choroid cells which form tight junctions through interactions

between these components (Palmer, 2010). Within the CNS, AONs

benefit from a remarkably widespread distribution and exhibit effi-

cient cellular uptake mechanisms (Whitesell et al, 1993; Rigo et al,

2014). The systemic route of delivery into the CNS includes

diffusion (Banks et al, 2001) and receptor-mediated endocytosis

(Lee et al, 2002; Kozlu et al, 2014).

Direct delivery of AONs to the CNS is the most commonly used

method of bypassing the BBB and can be achieved through intrac-

erebroventricular or intrathecal (IT) injection. Due to the BBB

preventing leakage of the AONs into peripheral circulation, rela-

tively low doses can be administered less frequently (as half-lives

are increased), thus minimizing the risks of toxicity. To date, two

phase I clinical trials have been completed using IT injection of

AONs, one in amyotrophic lateral sclerosis (ALS; Miller et al, 2013)

and one in spinal muscular atrophy (SMA) patients (Chiriboga et al,

2016) with encouraging results. Recently reported interim results

from two phase III trials with nusinersen, the SMA therapeutic, were

so positive that both trials were stopped early and all participants
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Figure 1. FDA-approved antisense drugs (including nusinersen, which will be seeking accelerated approval soon).
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rolled over onto treatment immediately (Ionis Pharma press

releases, currently accessible at http://ir.ionispharma.com/phoenix.

zhtml?c=222170&p=irol-newsArticle&ID=2191319 and http://ir.

ionispharma.com/phoenix.zhtml?c=222170&p=irol-newsArticle&ID=

2220037). Nusinersen treatment was able to significantly improve

achievement of motor milestones in infantile-onset SMA (the

most severe form of SMA) as well as in later-onset (type II) SMA.

The investigators were able to assess the uptake of nusinersen into the

tissues of three infants that died during the trial and found that there

was significant uptake of the AON into the CNS (including the target

motor neurons, but also non-neuronal cells) along with SMN2 exon

inclusion and expression of SMN protein (Finkel et al, 2016). It should

be noted, however, that repeated IT therapy is a relatively expensive

method of administration, necessitating specialist expertise and

hospital visits.

A promising delivery approach is intranasal administration;

molecules can be transported along the olfactory and trigeminal

nerve pathways and the rostral migratory stream (Goyenvalle et al,

2015). Clinical trials utilizing this delivery route have resulted in

improved cognition in Alzheimer’s disease patients following appli-

cation of intranasal insulin (Claxton et al, 2013). Among the CNS,

the retina is becoming increasingly important as a target tissue for

AON therapies (Bacchi et al, 2014). The eye is a small, enclosed,

easy to access compartment and an immune-privileged organ

(Stein-Streilein, 2008). Intravitreal, subretinal or suprachoroidal

injections have been used (Thrimawithana et al, 2011). A well-

established example is the intravitreal treatment of cytomegalo-

virus-associated retinitis in immunocompromised patients (Vitra-

vene Study, 2002a,b,c), while topical and periocular routes are

promising less invasive alternatives. Recently, a phase III study on

a topical inhibitor of corneal angiogenesis (Cursiefen et al, 2009)

significantly inhibited corneal neovascularization in patients with

keratitis (Cursiefen et al, 2014). However, nucleic acids are

retained by the superficial tissues and do not significantly pene-

trate intraocularly (Oliver, 1975; Bochot et al, 1998; Berdugo et al,

2003). Negatively charged AONs are potential candidates to be

delivered into the eye by iontophoresis, which relies on applying a

local electrical current (Andrieu-Soler et al, 2006; Pescina et al,

2013).

It has been demonstrated that a number of modified AONs or

those conjugated to different moieties (e.g. cell-penetrating peptide

[CPP]-based delivery systems) (El-Andaloussi et al, 2005; Du et al,

2011; Kang et al, 2014) can induce splice modulation in the CNS

following systemic administration albeit at very low levels. To date,

the most successful of these are tricyclo-DNA (tcDNA) oligonu-

cleotides (Goyenvalle et al, 2015).
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Figure 2. Barriers in AON delivery.
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AAV vectors as an alternative delivery strategy for antisense sequences

An alternative way of antisense sequence delivery is the use of

adeno-associated virus (AAV) vectors expressing the antisense

sequence. AAVs are promising vectors for in vivo therapeutic gene

delivery and have been shown in a number of human clinical trials

to deliver therapeutic genes to a variety of organs and tissues includ-

ing the CNS, liver and muscle (Mingozzi & High, 2011). The first

AAV-based gene therapy was approved in the European Union in

November 2012 for the treatment of lipoprotein lipase deficiency

(Glybera; Kastelein et al, 2013). While AAV vectors can be used for

gene transfer, they also offer an alternative strategy for antisense

sequence delivery. A one-shot injection of AAV vectors expressing

the antisense sequence disguised in U7 snRNA (AAV-U7) or U1

snRNA (AAV-U1) induces splice modulation in skeletal muscles as

demonstrated in pre-clinical work for Duchenne muscular dystrophy

(DMD) (Goyenvalle et al, 2004; Denti et al, 2006a,b, 2008; Vulin

et al, 2012; Le Guiner et al, 2014). The main limitation to this

approach is that the immune response prevents repeated AAV treat-

ment (Lorain et al, 2008). It is therefore necessary to efficiently

induce a lasting therapeutic benefit via a single dose. Furthermore,

as for AON delivery, the pathology could affect AAV therapeutic

efficiency, as is the case for AAV-U7 in dystrophic DMD muscles:

the altered membranes of dystrophic myofibres are an advantage for

AON uptake but a limitation for AAV genome maintenance (Vulin

et al, 2012; Le Hir et al, 2013) although introducing a pre-treatment

may help to negate this effect (Peccate et al, 2016).

In order to develop AAV-delivered antisense RNA further, issues

with large-scale production to good medical practice (GMP) stan-

dards, immune response to the vector and persistence of the viral

genomes in target tissues will need to be addressed.

Recommendations

The majority of pre-clinical studies focus on the target tissue to

assess AON efficacy, yet there needs to be an early emphasis on

assessing uptake in tissues such as liver and kidney due to their

influence on systemic delivery. This is particularly important when

developing new generations of AONs or different drug delivery

systems (DDSs) which might increase the uptake in the targeted

tissue but also in unintended tissues. The ratio of targeted versus

unintended uptake should therefore always be considered.

Similarly, in the context of improving AON delivery, evaluation of

toxicity is often neglected as efficacy is generally the primary objec-

tive. It is also important to note that toxicity thresholds vary

between species as demonstrated by a peptide-conjugated PMO

(PPMO) targeting the human dystrophin exon 50 (AVI-5038), which

following pre-clinical work, was found to cause tubular degenera-

tion in the kidneys of cynomolgus monkeys (Moulton & Moulton,

2010). However, numerous specific and early biomarkers of toxicity

can now be evaluated in mice (treated with higher doses of AONs)

or rats to predict toxicity in pre-clinical development.

Through the discussion of confidential data during our action

workshops, it became clear that these unintended uptake and toxico-

logical challenges should be addressed in the very early stages of

new AON development. It was also discussed that negative data such

as chemical modifications that reduce delivery as well as those that

increase toxicity are rarely published. A relevant example is the data

on the inherent toxicity of vivo-morpholinos (VMOs). VMOs are

morpholino AONs covalently linked to an octaguanidine dendrimer

to improve in vivo delivery. Initially, no toxicity data were available,

but following networking events, we learned that several groups had

observed lethargic behaviour in mice immediately after intravenous

injection (10–50 mg/kg), with mortality as high as 20% within 12 h.

These observations, as well as an article describing an alteration in

the clotting system inducing cardiac arrest as the possible cause of

death, were later published (Ferguson et al, 2014; Gallego-Villar

et al, 2014). The observed toxicity clearly limits the potential clinical

application of VMOs and underscores the importance of making the

scientific community aware of negative results as early as possible.

AON uptake mechanisms

The cellular uptake journey

While our understanding of the cellular transport machinery and

trafficking system in general is expanding, knowledge is still rela-

tively sparse in terms of its regulation and in particular regarding

how to take advantage of these complex events from a delivery

perspective. The uptake journey can be divided into four stages: (i)

endocytosis via phagocytosis, macropinocytosis, micropinocytosis

via clathrin and caveolin-independent pathways, caveolar

CONJUGATION VEHICLE ADMINISTRATION
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• Octaguanidine dendrimer
• Cell-penetrating peptides

• Adeno-associated
viral vectors
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Figure 3. Strategies for improving delivery.
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internalization and classical clathrin-mediated endocytosis; (ii)

intracellular trafficking of endosomes regulated by Rab, SNAREs

and tethering proteins; (iii) escape from the endosomal compart-

ment, thought to occur especially during the membrane fusion

events of intracellular trafficking; and (iv) nuclear entry, both

actively mediated by nuclear pore mechanisms and passively via

simple diffusion (Juliano et al, 2012).

In order to improve the delivery and bioavailability of therapeu-

tic AONs, such as SSOs, a variety of different DDSs have been

utilized (Juliano, 2016). The main strategies include either making

modifications directly on the AONs (conjugation of targeting ligands

or delivery components) or incorporating AONs within the DDSs

(various nanoparticle-based approaches). Taken into account our

present understanding of the general delivery process, we can, to an

extent, chemically programme the DDSs in an attempt to surmount

and control the barriers for efficient and selective uptake (Fig 3).

This question has been studied most extensively in two non-viral

vector classes, lipid nanoparticles (LNPs) and CPPs.

With regard to the endocytotic and intracellular trafficking steps,

it has also been demonstrated that exocytosis and re-uptake can

play an important role in uptake and trafficking of LNPs with

nucleic acids (Sahay et al, 2013). Strategies to prevent the exocyto-

sis of internalized AONs, for example by inhibiting the activity of

the cholesterol efflux regulator Niemann–Pick-like C1 (NPC1), may

therefore be employed in future designs to improve efficiency of

AON endocytosis.

After entering cells via endocytosis, DDS plus AONs move to,

and to a greater extent get entrapped in, endo- or lysosomal

compartments. This so-called endosomal entrapment is also consid-

ered the main rate-limiting step in DDS/AON delivery and has long

since been regarded as the main hurdle to overcome to improve

nucleic acid delivery (El-Sayed et al, 2009). Despite extensive

efforts, only a relatively small proportion of the DDSs/AONs escape

from endosomes (Gilleron et al, 2013). Consequently, a variety of

modifications have been designed that are aimed at increasing the

endosomal escape of DDSs/AONs. The main line of development

is based on the compounds that are protonated in the low-pH

endosomal compartment and provide escape through the so-called

proton sponge effect, for example different ionizable lipids, polyami-

doamine-based polymers or modified peptides. Another approach

has been to utilize different hydrophobic modifications, which

enhance the degree of membrane affinity of the DDSs.

CPPs have been used both as direct chemical conjugates with

charge neutral AONs (such as PMO or PNA) and as nanoparticle-

based formulations (Boisguerin et al, 2015; Lehto et al, 2016).

Although CPPs were thought originally to directly translocate across

membranes, more recent work suggests that the positively charged

CPPs interact with negatively charged cell surface proteoglycans

before internalization by a variety of endocytic pathways. In the

context of SSO delivery, covalent conjugates of CPPs to PMOs (pep-

tide-PMOs, PPMOs), have received considerable attention and have

been used successfully in pre-clinical models of DMD (Yin et al,

2010; Godfrey et al, 2015). PPMOs with designed amphipathicity

have been used to great effect in providing enhanced affinity

towards membranes, including the endosomal membranes, and

significantly enhanced the endosomal escape capacity and delivery

efficacy of the AONs. Similarly to LNPs, it has recently been demon-

strated with CPPs used for SSO delivery that their association and

uptake is to a considerable degree mediated by scavenger receptors

(especially class A) (Ezzat et al, 2011). Preliminary data suggest

that the activity of certain CPPs is also dependent on the degree of

re-export following endocytosis, similar to the observations for

LNPs (unpublished data).

A note on the concept of targeted delivery

As mentioned previously, it is imperative for any DDS/AON to be as

specific to the target tissue as possible, and the so-called targeted

delivery approaches have been under investigation. Truly targeted

delivery would ideally facilitate increased delivery to the nucleus in

a subset of cells in a specific part of the body, while selectively

reducing delivery in non-diseased tissues and especially in those in

which toxic side effects manifest, for example, by taking advantage

of specific receptors and/or using shielding strategies. Novel meth-

ods to increase delivery are generally referred to as “targeted deliv-

ery” platforms, yet this term often refers to improvements seen in

delivery to a specific tissue target but does not rule out increased

oligonucleotide delivery to other tissues (Yin et al, 2009).

Different receptor ligands have been conjugated directly either to

the AONs or to the DDS systems to enhance the affinity towards

specific tissues usually overexpressing these receptors. A recent

example is the utilization of N-acetylgalactosamine (Gal-NAc)

conjugates that mediate endocytosis via the asialoglycoprotein

receptor (Akinc et al, 2010; Rajeev et al, 2015), thereby increasing

both uptake efficiency and providing hepatocyte-specific targeting.

Notably, lipid-based delivery systems primarily deliver to the liver

where they display very high activity. Recent studies with LNPs

have demonstrated that the likely reason behind this strong tropism

towards liver is that they bind to ApoE in circulation and are effi-

ciently taken up by hepatocyte LDL receptors and scavenger recep-

tor-BI (Akinc et al, 2010).

A proper assessment of global biodistribution and delivery follow-

ing systemic administration in disease models at present requires

cumbersome whole-animal studies and studies of this type are scarce

in the literature. However, where performed, these whole-animal

studies show that relatively unmodified AONs do distribute to a wide

variety of organs and tissues (Geary et al, 2015). Even if biodistribu-

tion studies show that AONs are distributed to a particular organ,

this may not necessarily mean that the AONs are reaching the partic-

ular type of cell/tissue within the organ in question, for example

hepatocytes as opposed to LSECs and KCs within the liver.

Recommendations

More focus is needed on evaluating the biodistribution of AONs at

the organ, tissue and cell level. Measuring the presence of AON

commonly relies on hybridization assays and/or mass spectrometry

and although some provide in situ detection methods (Goebl et al,

2007), most use whole tissue lysate preparations (Yu et al, 2002;

Heemskerk et al, 2010; Verhaart et al, 2014; Burki et al, 2015;

Goyenvalle et al, 2015). The development of methods that provide

information on subcellular localization for all AONs would be

advisable.

Improvements in AON delivery can be driven by two main lines

of development: the evolution of AON chemistry itself and/or the

utilization of efficient DDSs. The successful application of these may

depend on the disease context and specific tissues in question. The

development of tcDNA demonstrates how a change in chemistry
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can improve both the uptake and trafficking profile of an AON

(Renneberg & Leumann, 2002; Goyenvalle et al, 2015). For clinical

translation of many AON chemistries, it may be envisioned that

some form of drug delivery component will be necessary. Never-

theless, in either scenario, to be able to rationally programme the

delivery, including cellular association, uptake and trafficking of

AONs, further basic research is required to fully characterize and

potentially exploit these complex events.

Model systems used for pre-clinical development of AONs

Both in vitro and in vivo models are required for pre-clinical testing

of new AONs. It is generally accepted that while in vitro models

provide data on the AON mechanism of action and efficacy, in vivo

models are better suited to assess the delivery of the compound.

Therefore, most AON sequence variants are pre-screened in vitro

and only candidates deemed promising are then progressed to

in vivo screening (Fig 4).

Cell culture models

As is the case of SSOs currently under investigation for the treat-

ment of DMD, the most efficient AON sequence of a given chemi-

cal backbone can be identified following AON treatments

performed on cell lines derived from DMD patients (Aartsma-Rus

et al, 2003; Arechavala-Gomeza et al, 2007). It is important to use

an appropriate cell line, due to cell-specific repertoires of splicing

proteins which may confer different rankings of effective AONs

(Garanto et al, 2015). Many cell lines derived from animals and

humans have been used to select antisense sequences targeting dif-

ferent disorders and AONs are usually transfected into cells using

chemical agents or by electroporation. Recent studies showed that

certain cells can take up AONs directly from the medium with no

transfection agent required: this process is called “gymnosis” and

requires longer incubation times (3–10 days) to generate RNA inhi-

bition effect (Stein et al, 2010). It is thought that uptake of AONs

with no chemical/physical modification is possibly due to an

endocytosis process, and some groups have attempted to identify

endogenous AON receptors. No definitive results have been

provided, although a list of putative candidates has been suggested

(Juliano et al, 2012).

Patient cell lines derived from available tissue (e.g. skin fibrob-

lasts or lymphoblasts) do not always recapitulate tissue-specific

disease settings, and therefore, patient-specific induced pluripotent

stem cells (iPSCs) provide a compelling alternative allowing dif-

ferentiation towards relevant cell types to model disease. In Leber

congenital amaurosis, a retinal dystrophy causing childhood blind-

ness, iPSCs derived three-dimensional optic cups and retinal epithe-

lium have been used to test therapeutic AONs (Parfitt et al, 2016)

while SMA patient-derived iPSC-differentiated motor neurons have

also been used with success to test AON therapy (Nizzardo et al,

2015).

Although cell cultures are mostly used to test the efficacy of the

AONs, these same cultures are often used to test AON delivery

potency and half-life after administration. Carcinoma cells (HeLa,

MCF-7, MDA-MB-231, A375) have been used to test CPP antisense

efficacy as well as other AON delivery methods (antisense antibody

conjugates with lysosome or RGD-conjugated antisense) (Vascon-

celos et al, 2014) and suspension cell lines derived from peripheral

blood cells of leukaemia patients (KASUMI, MV4-11, K562 and

AML) were used to test the uptake of cenersen, an antisense drug

developed to shut down toxic chemotherapeutic effects (Alachkar

et al, 2012).

Animal models

Toxicity studies are generally performed in wild-type rats and non-

human primates. However, in vivo proof-of-concept studies are

mostly done in mouse disease models, because this allows

• Proof of concept
• Screening/selection 

of sequences

• Assessing delivery

CELL CULTURES

PRECLINICAL ANTISENSE OLIGONUCLEOTIDES (AON) DEVELOPMENT CLINICAL TRIALS

ANIMALS / EFFICACY ANIMALS / TOXICITY

 Disease specific
animal models

• Assessing efficacy
• Assessing toxicity
• Assessing target delivery

• Variation between 
species

 Animals

• Assessing toxicity • Assessing efficacy, safety and
   pharmacokinetics

• Assessing efficacy/toxicology
and target delivery may be 
difficult (sample collection)

• Variation between 
species

Figure 4. Stages in pre-clinical AON development.

EMBO Molecular Medicine ª 2017 The Authors

EMBO Molecular Medicine Delivery of splice-switching antisense therapies Caroline Godfrey et al

8



assessment of target mRNA and protein as well as on a functional

(or therapeutic) level. An additional advantage of using disease

models derives from the fact that sometimes the pathology affects

delivery. This can have positive consequences, for example it has

been shown that the altered BBB in some CNS diseases favours AAV

entry (Chen et al, 2009) and a more permeable endothelium in the

dystrophic muscle of the mdx mouse model for DMD facilitates

AON uptake (Heemskerk et al, 2010). The opposite could also be

envisaged: for example, limited uptake in dystrophic muscle may

occur due to increased fibrosis, therefore impeding delivery.

In vivo bio-imaging (in vivo time-domain optical imaging) could

represent a relatively inexpensive, robust and fast way to obtain

information about biodistribution and body “half-life”/clearance of

fluorophore-labelled AONs in nude mice. Only minute amounts of

compound are needed (10 lg per mouse), compared to mg scale for

in vivo efficacy studies. Tissue accumulation can also be determined

by subsequent ex vivo scans of excised tissues/organs. This method

can be exploited for the initial screening of antisense agents and

their conjugates in vivo and used to evaluate candidates to be

selected for AON efficacy studies in mouse disease models.

However, although labelled AONs can provide useful information

on cellular uptake and biodistribution in both cell and animal

models, these experiments are limited by the unknown ways in

which these processes are affected by the tag itself as well as the

stability of the labelled AON or AON/DDS (Falzarano et al, 2014;

Lehto et al, 2014).

Recommendations

In vitro and in vivo models are complementary and their use will

have to be preceded by an understanding of the limitations of each

model. Cell culture models are useful for proof-of-concept studies as

long as an adequate cell type is selected, not only considering their

target pre-mRNA, but also the spliceosome expressed in different

cell types. The possibility of deriving diverse cell types from affected

patient’s iPSCs offers an interesting alternative for testing AONs in

different cellular environments, however, to date this approach is

still uncommon. Delivery studies in cell culture provide extremely

useful data about cellular uptake mechanisms, target receptors and

antisense metabolism, but these results cannot be extrapolated to,

nor substitute for, in vivo studies testing the delivery capabilities of

different AONs or AONs/DDS combinations.

The progression of disease in animal models needs to be well

characterized as the timing of intervention needs to be therapeuti-

cally appropriate. One may be inclined to use animal models to

assess whether treatment can prevent pathology; however, in

patients there is often a certain amount of pathology present when

the disease is diagnosed, so evaluating the therapy after onset of

pathology may provide more realistic information on the therapeutic

effects. The use of a humanized mouse model allows the evaluation

of the exact AON to be used in clinical trial, rather than using

mouse-specific counterparts. These models are not always available,

but with the appearance of CRISPR/Cas9 technology, generating

them could now be relatively straightforward. However, inserting

the human gene with the human mutation does not suffice to

completely humanize the system, as the splice-regulating proteins

are those of the mouse (Garanto et al, 2015, 2016). Alternatively,

non-human primates might be envisaged as a suitable species for

testing of the effects of AONs designed for the treatment of human

disease, as their genomic sequences are closer to those of humans,

as is their metabolism, but this needs to be balanced against the

ethical issues of using such animals and the increased expenses

incurred.

Both cell culture and animal models are therefore complemen-

tary and indispensable for the development of AON-based therapies

and they should be used with foreknowledge of their limitations.

Concluding remarks

Antisense oligonucleotides as RNA-modulating therapeutics are

highly specific and easy to design making them attractive sequence-

specific drugs and their role in the pipeline towards “personalized

therapy” has made them a hot topic of research in recent years. The

poster boy for this development has been DMD and stakeholders

representing other rare disorders have followed the advances in the

development of these AONs closely. However, despite several

companies involved and many compounds in the pipeline, results

from the first clinical trials have been disappointing (Goemans et al,

2011; Mendell et al, 2013), particularly when compared with pre-

clinical in vitro and in vivo studies of these molecules. Although

there are many aspects to improve upon in the planning and

evaluation of many of these compounds (Straub et al, 2016), all of

the AONs tested in DMD have shown low effectiveness and this has

been linked to their deficient delivery.

Compounds currently in the clinic are referred to as “first genera-

tion” and with all subsequent generations referring to compounds

that aim to improve delivery of these drugs by different means.

However, there are big gaps in our current knowledge of the

delivery process of these molecules and these gaps can only be filled

by basic research, collaboration and publication of negative results.

Regrettably, basic research is badly underfunded in favour of highly

translational projects with proven impact.

There are some positive steps being taken in the right direction;

networks such as the EU’s COST Actions have fueled collaboration

and data sharing and initiatives have encouraged the publication of

negative data, yet more effort is needed to direct funding towards

basic research questions.

DMD has been leading the race for some time, however, it is

unlikely to be one of the first disorders to benefit fully from AON

therapy, as there are still many issues that need to be addressed. The

decision of one of the main companies developing AONs to halt

the clinical development of all its first-generation AONs could

slow the pace of the whole field (https://www.wsj.com/articles/

biomarin-to-stop-developingcurrent-drugs-for-duchenne-muscular-

dystrophy-1464733329). On the other hand, FDA’s accelerated

approval of eteplirsen despite the small sample size of their main

clinical trial (FDA press announcement, currently accessible at

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/

ucm521263.htm) may have the opposing effect. Despite drug

approval, it is not guaranteed that AONs will deliver on their

promise. Eteplirsen costs an estimated $400,000 per patient per year

and US insurance companies seem reluctant to reimburse the drug,

arguing that no functional effect has yet been shown (Aartsma-Rus &

Krieg, 2017).

Regardless of what the future holds for DMD AONs, the

combined knowledge accumulated during their research will make
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it feasible for other disorders, particularly those that target more

accessible compartments, to benefit from the clinical use of this

technology soon, as was recently seen with the encouraging results

of the phase II and phase III nusinersen studies (Finkel et al, 2016)

(Ionis Pharma press releases, currently accessible at http://ir.ionis

pharma.com/phoenix.zhtml?c=222170&p=irol-newsArticle&ID=

2191319) and its accelerated approval by the FDA [FDA press

release on nusinersen approval (2016), currently accessible at www.fda.

gov/NewsEvents/Newsroom/PressAnnouncements/ucm534611.htm]. In

the case of DMD, eteplirsen and other first-generation AONs are

likely only to provide limited benefits to patients until the next-

generation compounds arrive. For that to happen and for other AONs

to reach the clinic, research into the delivery issues mentioned in this

article is vital (Box 4).
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