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Abstract 

DNA barcoding methods use a single locus (usually the mitochondrial COI gene) to assign 

unidentified specimens to known species in a library based on a genetic distance threshold 

that distinguishes between-species divergence from within-species diversity.  Recently 

developed species delimitation methods based on the multispecies coalescent (MSC) model 

offer an alternative approach to individual assignment using either single-locus or multi-loci 

sequence data.  Here we use simulations to demonstrate three features of an MSC method 

implemented in the program BPP.  First, we show that with one locus, MSC can accurately 

assign individuals to species without the need for arbitrarily determined distance thresholds 

(as required for barcoding methods).  We provide an example in which no single threshold or 

barcoding gap exists that can be used to assign all specimens without incurring high error 

rates.  Second, we show that BPP can identify cryptic species that may be mis-identified as a 

single species within the library, potentially improving the accuracy of barcoding libraries.  

Third, we show that taxon rarity does not present any particular problems for species 

assignments using BPP, and that accurate assignments can be achieved even when only one or 

a few loci are available.  Thus, concerns that have been raised that MSC methods may have 

problems analyzing rare taxa (singletons) are unfounded.  Currently barcoding methods enjoy 

a huge computational advantage over MSC methods and may be the only approach feasible 

for massively large datasets, but MSC methods may offer a more stringent test for species 

that are tentatively assigned by barcoding.   

 

Introduction 

DNA barcoding has been proposed as a fast and inexpensive approach to species 

identification.  A reference library of sequences for a “universal locus” is constructed using 

species that are identified a priori, and unidentified specimens are then identified by 

calculating the genetic distance between their query sequence and the sequences in the library 

(Hebert et al., 2003).  The universal locus is usually mitochondrial cytochrome oxidase 1 

(CO1) or cytochrome b (cytb) because mtDNA is easier to type than nuclear DNA from 

highly processed and degraded tissues.  One particularly successful application of DNA 

barcoding is in forensics, where DNA evidence is used to track illegal trade of wildlife (Alacs 

et al., 2010) or confirm the identity of fish products (Smith et al., 2008).   

DNA barcoding has also been used for species discovery or species delimitation (e.g., 
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Rossini et al., 2016).  This typically relies on determining a genetic distance threshold or 

‘barcoding gap’.  The query specimen is identified and assigned to an existing species in the 

library if the shortest pairwise sequence distance from the query to the sequence library is 

smaller than the pre-specified threshold.  If the smallest distance exceeds the threshold, there 

will be a non-identification, which indicates that the specimen may be a new species not yet 

represented in the library.  The choice of the threshold is a thorny issue and is somewhat 

arbitrary.  For example, the ‘10× rule’ (Hebert et al., 2004) specifies the interspecific 

divergence to be at least 10 times as large as the intraspecific diversity.  Dowton (Dowton et 

al., 2014) used 4% of CO1 divergence, while Rossini et al. (Rossini et al., 2016) used a 

Kimura 2-parameter distance of 2%.  Other methods use the 95% confidence interval of 

conspecific distances to determine the threshold, leading to higher thresholds when there is 

more intraspecific variation (Meier et al., 2006).  More sophisticated methods generate the 

distance threshold by taking a database with a known taxonomy and minimizing the false-

positive errors (incorrectly identifying a specimen as a new species) and false-negative errors 

(incorrectly lumping a specimen into another species) (Meyer and Paulay, 2005).  Similar 

approaches have been used to “optimize” the distance threshold in empirical databases, using 

programs such as Spider (Brown et al., 2012) and ABGD (Automatic Barcode Gap 

Discovery, Puillandre et al., 2012).  Note that all barcoding methods require a distance 

threshold, regardless of the method used to determine it. 

However, different species have different population sizes and divergence times.  As a 

result, one may expect considerable overlap between intraspecific variation and interspecific 

divergence among closely-related species (Meyer and Paulay, 2005), so that there may not be 

a “one-size-fits-all” threshold.  In a case study examining DNA barcoding performance in a 

diverse group of marine gastropods, Meyer and Paulay (Meyer and Paulay, 2005) found that 

use of one threshold to delineate all species was particularly problematic for closely related 

species in taxonomically understudied groups. 

Another method for species discovery/delimitation is the Generalized Mixed Yule 

Coalescent (GMYC) method (Pons et al., 2006; Fujisawa and Barraclough, 2013).  This uses 

the reconstructed gene tree for a single locus and fits a mixed model to the estimated 

divergence times, with the Yule branching process describing species divergences and the 

coalescent process describe the within-species process of lineage joining.  The method is 

heuristic as it is not based on a fully specified population genetic model and does not 

accommodate ancestral polymorphism correctly.  It also assumes that the gene tree with node 
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ages is known without error and thus does not accommodate phylogenetic errors of gene tree 

reconstruction.   

Species identification and delimitation using genetic sequence data should best be viewed 

as a statistical inference problem, given the stochastic nature of the coalescent and the 

process of sequence evolution.  The natural framework that describes the process of species 

divergence and isolation, and ancestral polymorphism and incomplete lineage sorting is the 

multispecies coalescent (MSC) model, which is a straightforward extension of the standard 

single-species coalescent (Kingman, 1982; Hudson, 1983; Tajima, 1983) to the case of 

multiple species (Takahata et al., 1995; Yang, 2002; Rannala and Yang, 2003).  The gene 

genealogies or gene trees have probability distributions specified by parameters in the model, 

including the species divergence times and the population sizes for both the ancestral and 

extant species.  In theory the MSC framework should allow species delimitation even in 

extreme cases where the within-species diversity for some species is higher than the between-

species divergence between some other species.  Furthermore, a full likelihood 

implementation of the MSC model should be statistically more efficient than heuristic 

methods for the same inference (Xu and Yang, 2016).  Here we demonstrate that this 

theoretical advantage is realized by the BPP program, which is a Bayesian MCMC 

implementation of the MSC model and which allows both species delimitation and species 

tree inference (Rannala and Yang, 2003; Yang and Rannala, 2010; Yang and Rannala, 2014; 

Yang, 2015).   

Another potential benefit of applying the MSC-based approach is its ability to delimit 

cryptic species (specimens in the database that are distinct species but incorrectly recognised 

as one species).  Although the potential clearly exists, the performance of BPP to delimit 

cryptic species in practical data analysis has not been carefully examined.  Indeed, Collins 

and Cruickshank (Collins and Cruickshank, 2014) suggested that “it is questionable whether 

such statistics would be reliable due to the sampling and parameter estimation problems 

associated with taxon rarity in species delimitation methods.”  We demonstrate in simulations 

that BPP can delimit cryptic species with high accuracy even if the species are under-sampled. 

The impact of species under-sampling, or the rarity of species, on species delimitation has 

been extensively discussed (Lim et al., 2012; Collins and Cruickshank, 2014).  Rarity indeed 

appears to be very common.  For example, 48.5% of species in the African beetles library 

examined by Ahrens et al. (Ahrens et al., 2016) were singletons.  Many authors have 

considered species rarity to be a major challenge for species delimitation.  For example, Lim 

et al. (Lim et al., 2012) claim that many newly developed methods either implicitly or 
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explicitly require that all species are well sampled, and argue that delimitation techniques 

should be modified to accommodate the commonness of rarity.  Their conclusions are based 

on the intuition that species delimitation requires information about the within-species 

diversity relative to the between-species divergence, and such information will be hard to 

obtain if some species are under-sampled or are singletons.  Furthermore, heuristic methods 

of species delimitation have indeed been found to suffer from poor species sampling.  For 

example, in a case study of southern African beetles using CO1 sequences from >500 

specimens and ~100 species, Ahrens et al. (Ahrens et al., 2016) demonstrated that under-

sampling could compromise species delimitation by GMYC, and the difficulty appeared to lie 

more with the high sensitivity of GMYC to variable population sizes than with high 

proportions of singletons per se; GMYC appears to have difficulty generating reliable 

estimates of intra- vs. interspecies evolutionary parameters when some species are under-

sampled.  Fujisawa and Barraclough (Fujisawa and Barraclough, 2013) also found that the 

most important factor affecting the accuracy of species delimitation by GMYC is the mean 

population size relative to divergence times between speciation events.  In this paper, we 

focus on the differences between DNA barcoding and a full likelihood implementation of the 

MSC model (BPP) and do not include GMYC in our evaluation. 

We note that species rarity is naturally accommodated by the MSC model that underlies 

the BPP program.  It is simply a matter of information content and power, and BPP can make 

reliable inferences using multi-loci data even if a species is represented by a single specimen 

(singleton).  New species have often been described based on rare specimens using 

morphology and it therefore appears self-evident that genetic sequences should contain 

enough information to infer the species status of a rare specimen.   

In this paper we use simulations and analyses with the species delimitation program BPP 

to demonstrate that (1) MSC methods can accurately assign individuals to species without the 

need for arbitrarily determined distance thresholds (as are required for barcoding methods).  

We provide an example where no single barcoding gap (threshold) exists that can be used to 

assign all the species in a group without incurring high error rates, yet BPP can accurately 

assign individuals.  (2) BPP can identify cryptic species that are misidentified as a single 

species within a species library that is being used for assignments, potentially improving the 

accuracy of barcoding libraries.  (3) Taxon rarity does not present problems for species 

assignments using BPP, and accurate assignments can often be made even with only one or a 

few loci. 



 6

One barcode gap for identifying all species may not exist 

We simulate sequence data using the species tree of figure 1a, with 1 + 10 sequences from A, 

10 Bs, 1 + 10 Cs, 10 Ds, 10 Es, and 1 F.  The 10 sequences each from species A-E (50 

sequences in total) are used as the ‘library’, while the 1 A, 1 C and 1 F are used as three 

‘query’ sequences (denoted A1, C1, and F).  We generate one locus, of 1000bp, by simulating 

the gene trees under the MSC (Rannala and Yang, 2003) and evolving sequences along the 

gene tree.  The program MCCOAL, which is part of the BPP package (Yang, 2015), was used 

for the simulation.  The species divergence times (τs) and population size parameters (θs) 

used are shown in Fig. 1.  Here both τs and θs are measured by the mutational distance, so 

that θ = 0.01 means that two sequences from the population have on average 1 difference per 

100 sites, while τ = 0.01 means that the ancestral node in the species tree and the present time 

are separated by a genetic distance of 1%.  Gene tree topologies and branch lengths 

(coalescent times) are generated from the MSC density (Rannala and Yang, 2003), and are 

then used to ‘evolve’ sequences along the gene tree to generate the sequence alignment for 

the tips of the gene tree.  The JC model (Jukes and Cantor, 1969) was used both to simulate 

and to analyze the data.  Each simulated dataset, which consists of 53 sequences for one 

single locus, was analyzed using either DNA barcoding or the program BPP, with sequences 

A1, C1 and F treated as the query, against the sequence library made up of the remaining 50 

sequences.  The number of replicate simulated datasets was 100.   

Barcoding analysis.  Rather than using a specific DNA Barcoding program to choose a 

threshold, we consider all possible sequence distance thresholds.  Let d(A1, A) = min{d(A1, 

Ai), i = 2, …, 10} be the smallest distance from the query A1 to species A, and define d(C1, C) 

and d(F, E) accordingly.  A1 is correctly assigned to species A if d(A1, A) is smaller than the 

distance threshold, while F is correctly assigned to be a species distinct from E if d(F, E) is 

larger than the distance threshold.  Thus to assign A1 and C1 correctly to species A and C, 

respectively, one would prefer a large distance threshold, and to assign F correctly into a 

distinct species from species E, one would like a small distance threshold.  It will be 

impossible to assign all three queries correctly if d(F, E) ≤ d(A1, A) or if d(F, E) ≤ d(C1, C).  

This happened in 28 out of the 100 replicate datasets.  For example in one dataset, d(A1, A) = 

d(A1, A2) = 0.001, d(C1, C) = d(C1, C5) = 0.004, and d(F, E) = d(F, E2) = 0.003.  With the 

within-species distance (0.004 for C) being greater than the between-species distance (0.003 

between F and E), it is impossible to use one distance threshold to make correct assignments, 

or to avoid both the false positive error of claiming A1 or C1 as a new species (a non-
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identification) and the false negative error of lumping F into species E.  In the other 72 

datasets, it is theoretically possible to choose a threshold that will allow correct assignment of 

all three queries, but mis-assignments may still occur if an imperfect threshold is chosen.   

Fig. 2 shows the proportion (among 100 replicate datasets) of correct species assignments 

when each dataset is analyzed using a fixed distance threshold.  For example, at the distance 

threshold of 0.003 (three differences per kb), A1 is correctly assigned to species A in 96% of 

datasets, C1 is correctly assigned to species C in 70% of datasets, and F is correctly assigned 

to a species distinct from species E in only 39% of datasets. 

BPP analysis.  The same single locus datasets were analyzed using BPP (Yang and 

Rannala, 2014; Yang, 2015).  The BPP program uses reversible-jump Markov chain Monte 

Carlo (rjMCMC) (Yang and Rannala, 2010) to move between different delimitation models, 

which correspond to different groupings of populations into the same species, and MCMC to 

move between different species phylogenies given the same species delimitation (Yang and 

Rannala, 2014; Rannala and Yang, 2017).  The program achieves Bayesian model 

comparison through MCMC, visiting the competing models with frequencies corresponding 

to their posterior probabilities.  The BPP analysis assumes that individual specimens are 

assigned to populations.  Multiple populations may be merged into one species by the 

rjMCMC algorithm while one population is never split into two species.  Our analysis 

assumed 8 populations: A, B, C, D, and E, and the three query sequences.  Each of the three 

query sequences (A1, C1 and F) is assigned to its own population so that it can either be 

merged into one of the existing species in the library (A, B, C, D, and E) or designated a new 

species.  We use Prior 3 for the species-tree models, which assigns uniform probability (1/8 

each) for 1, 2, …, and 8 species (Yang, 2015).  Gamma priors are assigned on parameters: θ 

~ G(2, 200), with the mean to be α/β = 2/200 = 0.01 (one mutation per 100 bp) for the 

mutation-scaled population size parameters for both modern and ancestral populations, and 

τABC ~ G(3, 100), with mean 0.03, for the root of the species tree.  The values 2 and 3 for the 

gamma shape parameter (α) are relatively small, indicating that the priors are fairly diffuse.  

The prior means are set to be equal to the true values. 

The posterior probabilities for different models calculated using BPP are summarized in 

Fig. 3.  Here P(A1A) is the posterior probability that populations A1 and A are (correctly) 

grouped into one species, to the exclusion of all other populations.  The average posterior 

probability was 0.81 for correctly assigning A1 to species A, and was 0.17 for recognizing it 

as a new species (over-splitting).  The average posterior probability was 0.71 for correctly 



 8

assigning C1 to species C, with the false positive rate of over-splitting to be 0.29.  The 

average posterior probability for correctly identifying F as a new species was 0.68, with the 

false negative rate of incorrectly lumping it with species E to be 0.31.  High posterior 

probabilities (>0.9) for an incorrect assignment are very rare (less than 1% on average).  

Although the information is weak with a single locus, BPP is outperforming the threshold 

method on average across species: even if an optimal threshold of about 0.0023 were used the 

average proportion of correct assignment for the threshold method is approximately 0.69, 

compared with 0.73 for BPP.   

Increasing the number of loci from 1 to 10 led to increased posterior probabilities for 

correct assignments and to reduced error rates.  The posterior probabilities for correctly 

assigning A1 to species A, C1 to species C, and F to a distinct species from E are shifted 

towards 1 (Fig. 4a-c), while the posterior probabilities for incorrectly assigning A1 or C1 to 

distinct species are shifted towards 0 (Fig. 4d-f).  Query F is identified as a distinct species 

with posterior probability 1.0, and the error rate for lumping E and F is 0 in every dataset. 

Identifying cryptic species 

To examine the performance of BPP in identifying cryptic species we simulated sequence data 

using the species tree for three species of figure 1b, with four sequences (two diploid 

individuals) from each species.  The parameter values were θ = 0.01 for all populations, τAB = 

0.01 and τABC = 0.02.  A and B represent distinct cryptic species, misidentified as one species 

in the library.  Each locus was 1000bp.  The number of loci was either 2 or 10, with 12 

sequences per locus.  The number of replicate simulations was 100.  The BPP analysis 

assumed 5 populations (A1, A2, B1, B2, C), with each individual from A and B treated as a 

separate population.  We assign Prior 3 for the species-tree models, which assigns uniform 

probabilities (1/5 each) for 1, 2, …, 5 species (Yang, 2015).  The priors on parameters are θ ~ 

G(1, 100) and τABC ~ G(4, 200).  These are diffuse priors with the means equal to the true 

values. 

The true model in this case has 3 species, with the phylogeny ((A, B), C), and with A1 and 

A2 grouped into one species (A), and B1 and B2 into another (B).  With 2 loci, 82% of the 

simulated datasets produced a maximum a posteriori (MAP) model with 3 species that 

matched the true model.  The histogram for the posterior probability for the correct model 

(which separates A and B into distinct species and also infers the correct species phylogeny) 

is shown in Fig. 5a.  While this probability is >70% in most datasets, it is low in many other 
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datasets, reflecting the low information content in data of one single locus.  With 10 loci, 

97% of the simulated datasets produced a MAP model with 3 species that matched the true 

model.  The histogram for the posterior probability for the correct model is shown in Fig. 5b.  

The shift towards 1 relative to that of Fig. 5a reflects the dramatic increase in the information 

content in data of 10 loci.   

If a posterior probability of 0.90 is used as a cut-off to choose a model, the error rate is 

1% for 2 loci and 0% for 10 loci.  With a 0.90 posterior probability cut-off the power to 

identify the true model is 17% with 2 loci and 69% with 10 loci.  The average posterior 

probability Pr(A1A2) for grouping A1 and A2 into one species was 0.83 with 2 loci and 0.94 

with 10 loci, and the average posterior probability Pr(B1B2) for grouping B1 and B2 into one 

species was 0.85 with 2 loci and 0.94 with 10 loci.  The distributions of posterior 

probabilities of the A1A2 and B1B2 groupings with either 2 or 10 loci are shown in Fig. 6.  

Additional loci may be needed to infer the true model with almost complete certainty. 

 Identifying rare species 

To examine the performance of BPP in identifying rare species we simulated data on the 

species tree of figure 1b, with 1 A, 10 Bs, and 10 Cs.  The one A sequence represents one 

specimen (a singleton) from a haploid species.  We are interested in whether BPP can 

correctly infer A to be a distinct species when sequence data from multiple loci are available.  

Note that having two A sequences (as would be available if the species is diploid) will make 

the task easier.  The parameter values are θ = 0.01 for all populations, τAB = 0.01 and τABC = 

0.02.  Each locus was 1000bp.  The number of loci was either 2 or 10.  The number of 

replicates was 100.  The BPP analysis assumes 3 populations (A, B, C).  We assign Prior 3 for 

the species-tree models, which assigns uniform probability (1/3) for 1, 2, and 3 species 

(Yang, 2015).  The priors on parameters are θ ~ G(1, 100) and τABC ~ G(4, 200). 

The true model in this case is 3 species, with the species tree ((A, B), C).  The MAP 

model was the true model for all simulated datasets with either 2 loci or 10 loci.  In all 

datasets, three species were delimited with posterior probability greater than 0.95, whether 2 

or 10 loci are analyzed.  The average posterior probability of 3 species was 0.998 with 2 loci 

and 1.000 with 10 loci.  The power of inference is very high in this case compared with the 

simulation of cryptic species, because multiple individuals (10 sequences) are available from 

species B. 
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Discussion 

Species assignment by BPP under the MSC efficiently uses information available in the 

sequence data about between-species divergence versus within-species polymorphism.  

However, BPP also uses the combined information available from multi-loci gene trees and 

branch lengths, even though the gene trees at each individual locus may involve considerable 

uncertainties and sampling errors.  The method accommodates the fact that some species 

have large population sizes (showing greater within-species diversity), and some species 

diverged recently (so that between-species divergence may not necessarily exceed within-

species diversity).  By using a formal modeling framework and incorporating information 

about contemporary and ancestral population sizes available from multi-loci sequence data 

one avoids the need to specify subjective distance thresholds (as in DNA barcoding).  

Another advantage of statistical modeling methods such as BPP over heuristic methods (such 

as DNA barcoding) is that they provide measures of uncertainties in the form of posterior 

probabilities.  By contrast, single-locus high-throughput approaches to discovering species 

will not work well when population sizes for some species are large and/or divergence events 

are recent.  Our results are consistent with the previous simulation study of Hickerson et al. 

(Hickerson et al., 2006), who showed that single-gene thresholds for species discovery such 

as the 10× rule can result in substantial error with recent species divergence times. 

Lim et al. (Lim et al., 2012; see also Collins and Cruickshank, 2014) speculate that “in 

studies using coalescence much of the evidence for species limits comes from coalescence 

points, which are by definition lacking for rare species…”  This intuition is faulty, as can be 

seen from our simulation results showing that BPP identified the singleton species with higher 

power, even though the single sequence from the singleton species cannot provide any 

coalescent points within that species.  Indeed, the simulation of Zhang et al. (Zhang et al., 

2011, Fig. 3) showed that BPP can assign species correctly with 10 or 50 loci (depending on 

the mutation rate or sequence divergence level) even if a single sequence is sampled from 

every population at every locus so that estimation of intra-species diversity is not possible for 

any species.  Lim et al. (Lim et al., 2012) went on to recommend several approaches for 

identifying statistical ‘outliers’ for use in species recognition.  Those suggestions are not 

valid or relevant.   

Dowton et al. (Dowton et al., 2014) suggested that coalescent-based species delimitation 

methods can be used to make more accurate specimen identifications than single-locus DNA 

barcoding.  Our simulation results support suggestion.  Collins and Cruickshank (Collins and 
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Cruickshank, 2014) suggest that “to benchmark the efficiency and accuracy of species 

delimitation methodologies, it should now be a priority to highlight exemplar data sets—

empirical and/or simulated—for which MSC methods clearly outperform simpler mtDNA 

analyses.”  In this study we have generated several such exemplar cases by simulation and 

show that a simple distance threshold does not work well.   

Bayesian MCMC methods such as BPP involve far more intensive computation than 

heuristic methods such as DNA Barcoding and the computational requirement increases 

quickly with an increase in the amount of data (e.g., the number of species/populations, loci, 

sequences per locus, and sites per sequence ⎯ in order of decreasing importance).  The 

current version of the BPP program has been used to analyze data of a few thousand loci, with 

~20 sequences per locus and about 10 species/populations.  With very few loci, the program 

can deal with 100-200 sequences per locus.  While algorithmic improvements are being made 

(Rannala and Yang, 2017), the program is not up to the task for very large datasets.  We note 

that BPP recovered the true model (species delimitation and species phylogeny) with near 

certainty with a moderate number of loci (e.g., 10 or 20).  Thus it is not always necessary to 

use the whole genome to infer species status.  Similarly there may not be a need to analyze 

500 species, say, in one combined analysis, to delimit species.  Reliable results may be 

obtainable if divergent groups of species are analysed as separate datasets, further reducing 

the computational burden.   

At the same time, simple heuristic methods such as DNA barcoding can be expected to 

work well if the populations are small and species divergences are ancient so that incomplete 

lineage sorting is rare.  For challenging problems involving large population sizes and recent 

species divergences, DNA barcoding may be misleading.  It is then prudent to try both types 

of analyses whenever possible. 

Meta-genomics is one area in which DNA barcoding is currently the only practical 

approach.  In a meta-genomics analysis, large quantities of sequence data (e.g. >100,000 

sequences) are generated for many loci from an environmental sample (e.g., the gut, the 

permafrost, the ocean, etc).  The sample is usually a complex mixture of DNA from hundreds 

or thousands of individuals and species and it is impossible to assign sequences at different 

loci to individuals.  The computational complexity in the analysis of such data is a serious 

concern and single-locus methods that are reasonably accurate and computationally efficient 

are direly needed.   
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Figure legends 

 
 
Fig. 1.  Species trees used in simulating sequence alignment under the MSC, with branches 
drawn using the species divergence times (τs).  In (a), the species divergence-time parameters 
are shown in bold next to the internal nodes: τAB = τEF = 0.0025, τCD = 0.01, τABCD = 0.02, and 
τABCDEF = 0.03, while the population size parameters are shown along the branches: θA = θB = 
θAB = θE = θF = θEF = 0.005, θC = θD = θCD = 0.02, and θABCD = θABCDEF = 0.01.  In (b), the 
parameters are τAB = 0.01, τABC = 0.02, and θ = 0.01 for all populations.  Both τs and θs are 
measured by the expected number of mutations per site. 

 

 
Fig. 2.  The proportion of correct species assignments when the distance threshold is fixed at 
different values, averages over 100 replicate datasets, simulated using the species tree of Fig. 
1a. 
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Fig. 3.  The histograms of posterior probabilities for correctly assigning A1A, C1C, and F into 
one species (a-c), and for incorrectly assigning A1, C1, EF into one species (d-f) by BPP in 
datasets of one single locus, simulated using the species tree of Fig. 1a.  The same data were 
analyzed using Barcoding in Fig. 2. 
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Fig. 4.  The histograms of posterior probabilities for species identification and delimitation by 
BPP in datasets of 10 loci, simulated using the species tree of Fig. 1a.  See legend for Fig. 3.  
P(F) = 1 and P(EF) = 0 in every dataset so that the plots for the query F are not shown. 
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Fig. 5.  The histograms of posterior probabilities for correctly inferring the cryptic species 
status as well as the species phylogeny by BPP using datasets of 2 and 10 loci, simulated using 
the species tree of Fig. 1b.  There are 3 species in the dataset, with A and B representing two 
cryptic species. 
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Fig. 6.  The histograms of posterior probabilities for correctly identifying cryptic species by 
BPP using datasets of 2 and 10 loci.  See legend to Fig. 5. 
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