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Abstract 

Background 

The Surgical Outcome Risk Tool (SORT) is a risk stratification tool that predicts 

perioperative mortality. We construct a new recalibrated model based on SORT to predict 

the risk of developing postoperative morbidity. 

Methods 

We analysed prospectively collected data from a single-centre cohort of adult patients 

undergoing major elective surgery. The data set was split randomly into derivation and 

validation samples. We used logistic regression to construct a model in the derivation 

sample to predict postoperative morbidity as defined using the validated Postoperative 

Morbidity Survey (POMS) assessed at one week after surgery. Performance of this "SORT-

morbidity" model was then tested in the validation sample, and compared against the 

Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity 

(POSSUM). 

Results 

The SORT-morbidity model was constructed using a derivation sample of 1056 patients, 

and validated in 527 patients. SORT-morbidity was well-calibrated in the validation 

sample, as assessed using calibration plots and the Hosmer-Lemeshow Test (χ² = 4.87, p = 

0.77). It showed acceptable discrimination by Receiver Operator Characteristic (ROC) 

curve analysis (Area Under the ROC curve, AUROC = 0.72, 95% CI 0.67–0.77). This 



compared favourably with POSSUM (AUROC = 0.66, 95% CI 0.60–0.71), while remaining 

simpler to use. Linear shrinkage factors were estimated, which allow the SORT-morbidity 

model to predict a range of alternative morbidity outcomes with greater accuracy, 

including low- and high-grade morbidity, and POMS at later time-points. 

Conclusions 

SORT-morbidity can be used preoperatively, with clinical judgement, to predict 

postoperative morbidity risk in major elective surgery. 
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Introduction 

Accurate perioperative risk assessment at an individual patient level supports clinical 

decision-making and clear communication of risks when consenting for surgery. 

Additionally, at a hospital or provider level, adjustment for patient case-mix enables 

surgical outcomes to be meaningfully compared between institutions for health service 

evaluation or within institutions for clinical audit. A number of risk stratification tools 

currently exist in clinical practice for both these purposes.1 

While there are many tools to predict or assess risk based on mortality, for example the 

Portsmouth modification of the Physiological and Operative Severity Score for the 

enUmeration of Mortality and morbidity (P-POSSUM)2 and Surgical Risk Scale (SRS)3, there 

are fewer tools available to predict morbidity outcomes. This is despite morbidity being an 

important outcome of concern to both patients and clinicians. Morbidity following major 

surgery is firstly a more common outcome than death making it a potentially more 

sensitive measure by which to compare individual, team or provider performance.4 

Secondly, morbidity can impact significantly on quality of life and long-term survival, 

making it an important target for quality improvement.5 Indeed the P-POSSUM was a 

variation of an earlier tool, the Physiological and Operative Severity Score for the 

enUmeration of Mortality and morbidity (POSSUM), which was originally developed in the 

1990s to address the lack of tools for predicting morbidity outcomes at the time.1 6 POSSUM 

remains one of the most frequently used tools for predicting morbidity risk. 

The Surgical Outcome Risk Tool (SORT) was developed following the 2011 National 

Confidential Enquiry into Patient Outcome and Death (NCEPOD) report Knowing the Risk, 



to enable better identification of patients at high risk of postoperative morbidity and 

mortality, clearer documentation of risks and better discussions about risks with patients 

before surgery.7 8 SORT is a parsimonious model using six routinely collected data items, 

designed to preoperatively predict an individual's probability of 30-day mortality. It 

compared favourably with other previously validated risk stratification tools, namely the 

American Society of Anesthesiologists Physical Status (ASA-PS) grade and SRS and has 

been externally validated recently in a cohort of patients undergoing hip fracture surgery.9 

Therefore, our aims in this paper are to develop and validate a new model to predict the 

likelihood of postoperative morbidity using predictor variables found in SORT, and then 

compare its performance against POSSUM. 

  



Methods 

Patient population 

Data were prospectively collected from 1934 consecutive adult patients who had 

undergone a variety of elective major inpatient operations at University College London 

Hospital between June 2009 and May 2012. Ethics approval was not required as the 

routine collection of this data was approved as service evaluation by the local research and 

development office. 

Demographic and perioperative data collection was conducted by trained research staff, 

independent of the clinical care teams treating the patients. Risk variable, co-morbidity, 

hospital length of stay (LOS) and mortality data were obtained from case note/electronic 

record review. POMS outcomes were measured by research staff visiting the patients at the 

bedside, and reviewing case notes. Baseline co-morbidities were recorded for each patient, 

and, as with the original development and validation of SORT, free-text surgical procedure 

descriptions were categorised by surgical specialty, and by surgical severity, based on the 

reference manual for AXA PPP Healthcare Specialist Procedure Codes (examples of AXA 

PPP procedure coding for surgical severity can be found in Supplementary Data, Table 1).7 

10 

Postoperative Morbidity Survey as the morbidity outcome 

The Postoperative Morbidity Survey (POMS) was prospectively administered to patients in 

the cohort who remained in hospital at the following six time-points: postoperative Day 3, 

Day 5, Day 7 or 8, Day 14 or 15, Day 21 and Day 28. POMS at the 1-week and 2-week time-



points were pragmatically allowed to be recorded at either Day 7or 8, and Day 14 or 15, 

respectively, in order to reduce the administrative burden placed on research staff. 

POMS is an 18-item survey of short-term postoperative morbidity encompassing nine 

organ-system domains (Supplementary Data, Table 2) and has been multiply validated.5 11–

13 It was developed to identify morbidity of the nature that would prolong LOS, in other 

words, patients were unlikely to be able to return home if they exhibit POMS-defined 

morbidity. 

Previous studies suggest that POMS-defined morbidity is a measure of "true" morbidity 

when measured beyond postoperative Day 5.12 14 Early exploration of the data showed that 

the median LOS in our cohort was 6 days (Table 1). We assumed that this LOS represented 

an uncomplicated postoperative course—i.e. even if patients experienced POMS-defined 

morbidity on Days 3 or 5, this might be expected as part of the usual postoperative course 

for their surgery. Hence, POMS at either Day 7 or 8 had face validity in this cohort for 

representing a postoperative course that met with complication(s). We therefore chose the 

presence of any POMS-defined morbidity, recorded at the third time-point (postoperative 

Day 7 or 8), as our morbidity outcome measure. 

Treatment of cases for analysis 

Cases with erroneously duplicated or missing data were excluded, and only cases with 

complete predictor variable and POMS outcome data were included for analysis. No 

imputation of missing data was performed. Patients who remained in hospital longer than 

7 days but did not have POMS outcomes recorded on Day 7 were then excluded from the 

data set used to derive a new SORT model for predicting morbidity (SORT-morbidity). 



Patient characteristics of the excluded cases were compared to the original data set to look 

for differences between the groups.   

Model derivation and internal validation for a new SORT-morbidity model 

The data set was split randomly into two samples: a model derivation sample of 

approximately two-thirds of the cohort, and a validation sample consisting of the 

remaining one-third, similar to methods described previously.7 Based on the six data items 

from the original SORT model for mortality, multivariable logistic regression models were 

fitted on the derivation sample with a binary composite outcome variable of POMS-defined 

morbidity (i.e. if any one of the nine organ-system domains was positive, the patient was 

considered positive for POMS-defined morbidity) on postoperative Day 7 or 8. Patients 

who were discharged before postoperative Day 7 were assumed to have no POMS-defined 

morbidity. 

The following logit formula was used for model-fitting: 

𝑙𝑛(𝑅 ∕ (1 − 𝑅)) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+. . . +𝛽𝑛𝑥𝑛, 

where 𝑅 is the probability of a patient having POMS-defined morbidity 1 week following 

surgery, 𝛽0, 𝛽1, . . . , 𝛽𝑛 are the model coefficients and 𝑥1, . . . , 𝑥𝑛 are the predictor variables. 

For ease of reference, Protopapa’s original SORT-mortality model takes the following form: 

𝑙𝑛(𝑅/(1 − 𝑅)) = 

−7.366 

+1.411×(ASA − PS III) 

+2.388×(ASA − PS IV) 



+4.081×(ASA − PS V) 

+1.236×(Surgical Urgency =  Expedited) 

+1.657×(Surgical Urgency =  Urgent) 

+2.452×(Surgical Urgency =  Immediate) 

+0.712×(High Risk Surgical Specialty) 

+0.381×(Surgical Severity =  Xmajor/complex) 

+0.667×(Malignancy) 

+0.777×(Age 65 − 79 years) 

+1.591×(Age 80 years or more), 

where High Risk Surgical Specialties include Gastrointestinal, Thoracic or Vascular Surgery, 

and R in this model is the risk of 30-day mortality.  

The original SORT model used the following predictor variables: ASA-PS Grade (III, IV or 

V); Surgical Urgency (Expedited, Urgent or Immediate); High-risk Specialties 

(Gastrointestinal, Thoracic or Vascular surgery); Surgical Severity (Xmajor/Complex); 

Malignancy; and Age (65–79 or ≥80 years). More detailed definitions of the variables 

included in the SORT-mortality model are included in Supplementary Data (Supplementary 

Table 1). We did not include Surgical Urgency in our model-fitting as the patients in this 

cohort underwent elective procedures only. 

Based on the original SORT model, sequential adjustments were manually made to the 

predictor variables, and new model coefficients were obtained by fitting against the model 

derivation sample of the cohort to obtain a number of candidate models (Supplementary 

Data, Table 3). Goodness-of-fit was then assessed between models by comparing their 

Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC).15–18 



To perform internal validation, each candidate SORT-morbidity model was then tested in 

the validation data set by assessing model calibration and discrimination, using calibration 

plots and the Hosmer-Lemeshow Test for the former, and Receiver Operator Characteristic 

(ROC) analysis for the latter.1 19–22 Areas Under the ROC curve (AUROC) were calculated, 

and DeLong's method was applied to calculate confidence intervals. The Hosmer–

Lemeshow test compares observed and predicted risk across the range of predicted risk, 

with non-significant Chi-squared test results (p > 0.05) indicating a well-calibrated model. 

The AUROC takes values between 0.5 and 1.0, where less than 0.7 identifies a model with 

poor performance, 0.7–0.9 indicates acceptable or moderate performance, and over 0.9 

indicates high performance. 

A final parsimonious model (the simplest model that makes an accurate prediction with as 

few predictor variables as possible) was then chosen from this process. We selected our 

final model based on a balanced assessment of the goodness-of-fit measures (low AIC and 

BIC values), calibration (non-significant p-value for Hosmer-Lemeshow test and visual 

inspection of calibration plots in the validation sample), and discrimination (high values of 

AUROC in the validation sample). We then compared the performance of our final model to 

POSSUM. 

Sensitivity analyses and model recalibration for predicting alternative morbidity 

outcomes 

We conducted a sensitivity analysis to test the performance of SORT-morbidity for 

predicting different outcomes, due to concerns that POMS-defined morbidity outcomes 

may be too sensitive. These concerns arose because of some less severe and relatively 



transient morbidity contained within the POMS outcome definitions, such as the presence 

of a urinary catheter and the use of anti-emetics.  

Sensitivity analyses for regression models are typically performed by assessing the 

accuracy of the outcome prediction based on changes in the variability of the predictor 

variables. However, in this study we decided to test the accuracy of our model’s outcome 

prediction if the definition used for outcome changed, in order to give the reader an 

understanding of the limitations of our model. This was done by assessing the calibration 

and discrimination of SORT-morbidity for predicting: 1) a modified POMS outcome in our 

patient cohort with lower- and higher-grade morbidity; and 2) POMS outcomes at time-

points beyond 1 week after surgery. 

For the first step, we mapped the individual POMS organ-system sub-domain items against 

Clavien-Dindo definitions of postoperative complications23 24, and assigned Clavien-Dindo 

grades to each POMS sub-domain. This process yielded a list of transient, low-grade POMS 

morbidity (equivalent to Clavien-Dindo Grade 1), which comprise: the presence of a 

urinary catheter (renal), presence of a fever (infectious), inability to tolerate oral diet 

(gastrointestinal), vomiting and abdominal distension (gastrointestinal), and pain 

requiring opioid analgesia (pain). All other POMS-defined morbidity sub-domains were 

considered high-grade (Clavien-Dindo Grade 2 or more). There was a consensus among the 

authors as to what were considered low-grade and high-grade POMS outcomes. We then 

assessed SORT-morbidity performance in predicting the modified low-grade and high-

grade POMS outcomes. Details of how the POMS organ-system sub-domains were mapped 



against Clavien-Dindo grades can be found in Supplementary Data (Supplementary Table 

4). 

For the second step, we assessed SORT-morbidity performance in predicting more delayed 

POMS-defined morbidity on Day 14 or 15, Day 21, and Day 28. 

Lastly, using methods described by Harrell25, we obtained estimates of uniform linear 

shrinkage factors for mis-calibrations identified in steps 1) and 2) by fitting the following 

logit formula: 

logit(P(Y)) = 𝛼 + 𝛽×logit(p), 

where P(Y) is the probability of the modified outcomes either of low- or high-grade POMS, 

or POMS outcomes at later time-points, logit(p) is the SORT-morbidity formula as derived 

earlier, 𝛼 is the recalibrated intercept and 𝛽 is the recalibrated slope. By applying the 

shrinkage factors, calibration would then be improved, and the accuracy of SORT-morbidity 

for predicting these other outcomes would also be improved. 

The linear shrinkage factors estimated by this method can then applied directly onto the 

SORT-morbidity equation to uniformly modify all the coefficients, 𝛽0, 𝛽1, . . . , 𝛽𝑛. This 

technique therefore accomplishes two objectives in our study: firstly, the shrinkage factors 

quantify the degree to which SORT-morbidity is mis-calibrated when predicting other 

outcomes of different severity; and secondly, the shrinkage factors can then be used for 

adjustments to the SORT-morbidity equation to arrive at a better accuracy for predicting 

these other outcomes. 



Statistical analysis 

Statistical analyses were performed using R version 3.3.1 (R Foundation for Statistical 

Computing, Vienna, Austria), with the following external packages enabled: caret, 

PredictABEL, pROC, rms. For normally distributed data, means and standard deviations are 

reported. For non-normally distributed data, medians and interquartile ranges (IQR) are 

reported. A p-value of ≤ 0.05 was considered statistically significant. Logistic regression 

models were fitted using the glm function and shrinkage factors were estimated using the 

val.prob function from the rms package in R. 

  



Results 

Baseline patient characteristics and outcomes 

Following exclusions 1583 patients were used to perform model derivation and internal 

validation for morbidity prediction. Figure 1 shows the numbers of patients excluded from 

the study at each stage of analysis. Baseline patient characteristics of the study cohort and 

patients excluded from model derivation and validation are summarised in Table 1. The 

median age of the study patients was 62.6, with a range of 17 to 95.4 years. The majority of 

patients (58.0%) were female. The majority of the patients in the study sample underwent 

Orthopaedic procedures (n = 873, 45.1%), with a substantial proportion undergoing 

Abdominal (either Colorectal or Upper GI) procedures (n = 885, 39.3%). Mortality in this 

patient sample was low, with only 6 deaths within 30 days of surgery recorded (0.31%). 

Median length of stay was 6 days (interquartile range: 4–10). Compared with the total 

patient cohort, patients with missing data had a higher age, longer average length of stay, 

and a different distribution of ASA-PS grades. Table 2 shows the proportion of patients 

with POMS-defined morbidity at each time point that POMS was administered, as a 

percentage of the total patient cohort. 

Model derivation and internal validation for a new SORT-morbidity model 

After randomly splitting the patient cohort, multivariable logistic regression models were 

fitted with predictor variables based on the original SORT model data categories in a 

derivation sample of 1056 patients, with the outcome variable set as the presence of POMS-

defined morbidity on postoperative Day 7 or 8. 



The coefficients for the final SORT-morbidity model are summarised in Table 3, where the 

original SORT model formula is displayed in the table caption for comparison. Intermediate 

models fitted during the step-wise manual adjustments of model variables are summarised 

in Supplementary Data (Supplementary Table 3), along with their corresponding 

performance statistics. Details of the Hosmer-Lemeshow tests, and the tables of predicted 

and observed morbidity outcomes by risk quantile for SORT-morbidity and POSSUM are 

also included in Supplementary Data. 

The novel SORT-morbidity model demonstrated good calibration in the validation sample 

(n = 527) as shown by the calibration plot (Figure 2(A)) and the Hosmer-Lemeshow test 

(χ² = 4.87, p = 0.77), and acceptable discrimination (AUROC = 0.72, 95% CI 0.67–0.77, 

Figure 2(B)). SORT-morbidity compared favourably with POSSUM, which showed poorer 

calibration (Hosmer-Lemeshow χ² = 34.45, p < 0.001, Figure 2) and poor discrimination 

(AUROC = 0.66, 95% CI 0.60–0.71). However, DeLong's test for two correlated ROC curves 

did not show a statistically significant difference in discrimination between SORT-

morbidity and POSSUM (z = 1.85, p = 0.06). These findings suggest that SORT-morbidity is 

as accurate as POSSUM for predicting POMS-defined morbidity at 1 week following surgery. 

Sensitivity analyses and model recalibration for predicting alternative morbidity 

outcomes 

In assessing the performance of SORT-morbidity for modified POMS outcomes, our model 

showed poor calibration (Hosmer-Lemeshow test results for both were statistically 

significant, both p <0.01) and acceptable discrimination for predicting both low-grade and 



high-grade POMS morbidity (AUROC = 0.75, 95% CI 0.72–0.78; and AUROC = 0.72, 95% CI 

0.69–0.76, respectively). 

Similar to our findings for predicting high-grade POMS morbidity, SORT-morbidity was 

good-to-acceptable at discrimination, but poorly calibrated for Day 14 or 15, Day 21 and 

Day 28 POMS outcomes (Figure 3). The AUROC for these outcomes ranged from 0.73 for 

Day 14 or 15 morbidity to 0.81 for Day 28 morbidity.  

We estimated linear shrinkage factors to be applied to the SORT-morbidity model in order 

to improve its accuracy when predicting low- and high-grade POMS morbidity, and 

morbidity at alternative time-points. Table 4 shows the recalibration intercepts, 𝛼, and 

slopes, 𝛽, that can be applied to the SORT-morbidity formula, as well as the corresponding 

AUROCs for the recalibrated formulae.  

  



Discussion 

Principal findings 

We have developed and internally validated the SORT-morbidity model, a new refitted 

multivariable logistic regression model using the original SORT data items as predictors for 

POMS-defined morbidity one week after surgery. Our new model compares favourably 

with POSSUM and can be used in conjunction with the original SORT mortality model to 

inform clinical decisions and the consent process in major surgery.  

Additionally, we have estimated linear shrinkage factors which can be applied to SORT-

morbidity to improve its prediction for a range of other morbidity outcomes, including 

higher-grades of morbidity and POMS-defined morbidity at later time-points. With the 

application of these shrinkage factors, SORT-morbidity is able to therefore predict a range 

of different morbidity outcomes with acceptable discrimination. 

Strengths and limitations of the study 

In this study, we demonstrate that the performance of the new SORT-morbidity model is at 

least comparable with POSSUM, which is currently one of the most widely used risk 

prediction models for morbidity.1 SORT-morbidity requires substantially fewer predictor 

variables than POSSUM, making it easier to use in routine clinical practice. Furthermore, we 

rigorously test the prediction performance of SORT-morbidity against a number of 

different morbidity outcome definitions, and estimate shrinkage factors which can be 

applied to the model to improve its performance for predicting these alternative outcomes. 



The biggest limitation of our study is that it was conducted in a single-centre cohort of 

patients undergoing elective surgery which had only 6 (0.31%) deaths within 30 days of 

surgery. This is a low-mortality cohort compared with the 0.36–0.67% 30-day mortality for 

elective surgical cohorts reported elsewhere in the literature.8 26 27 We were therefore 

unable to perform an external validation of SORT for the prediction of 30-day mortality. 

Our cohort exhibited some missing data, in both predictor and outcome variables. We 

opted for complete-case analysis instead of imputation of missing data. We considered the 

number cases with missing predictor variables to be small: no single predictor variable had 

more than 5% of data missing.  Examination of the missing data suggested that missing 

data did not fulfil the Missing Completely At Random (MCAR) or Missing At Random (MAR) 

assumptions that are required for imputation. The variable with the largest amount of 

missing data was the POMS outcome variable (Figure 1). We suspected that the mechanism 

underlying the degree of missingness in our data was related to how unwell the patients 

were, thus making the data likely to be Missing Not At Random (MNAR). The evidence for 

this was that patients with missing data appeared to be older, have higher ASA-PS grades 

and had longer LOS (Table 1). Imputation under such circumstances potentially leads 

misleading results and may increase the bias in statistical estimates. 

Defining morbidity according to POMS 

We chose to define morbidity using POMS at one week following surgery in our analysis. 

The strengths and weaknesses of POMS therefore merit discussion. 

There is currently no consensus on the best way to measure postoperative morbidity and 

surgical complications.28 29 In their seminal paper describing the development of POSSUM, 



Copeland et al defined morbidity as any recorded occurrence of a list of complications 

appearing within 6-weeks follow-up after surgery.6 When reporting their development of 

P-POSSUM, Prytherch et al cited difficulties over defining morbidity and uncertainty over 

accuracy in recording complications as the reasons for not including morbidity prediction 

in their model.2 

POMS is one of the only validated measures of short-term morbidity, and allows for a 

binary outcome to be modelled (presence or absence of morbidity).11 It is a highly sensitive 

measure, and detects associated morbidity of a magnitude which requires the patient to 

remain in hospital. POMS criteria are prescriptive, and have previously been shown to have 

very high inter-rater agreement.12 Although POMS domains include some relatively minor 

morbidity (such as the presence of a urinary catheter) —which, particularly in the first few 

days after surgery, may be indicative of normal processes and pathways after major 

surgery rather than reflecting the occurrence of complications. In our study population, the 

median length of stay was 6 days, suggesting that any morbidity observed after this time 

point may be as a consequence of morbidity leading to a deviation from the usual patient 

pathway. Previous research has shown the presence of prolonged POMS-defined morbidity 

to be correlated with poorer long-term outcomes.14 

We propose that POMS offers a more reliable and repeatable means of measuring 

morbidity than the original Copeland criteria, and one which is suitable for the modern-day 

evaluation of postoperative outcomes for the purposes of quality improvement and 

comparative audit. However, we acknowledge that POMS at Day 7 or 8 may be perceived as 

being too sensitive an outcome measure for some clinicians. The findings from our 



sensitivity analysis mitigate against this shortcoming by providing estimates of how 

miscalibrated SORT-morbidity is for predicting alternative morbidity outcomes, through 

the calculation of shrinkage factors (intercept and slope corrections). 

Our results in relation to existing literature 

In the original SORT development study by Protopapa et al, SORT performance was 

compared against ASA-PS and a modified version of SRS, and was found to be more 

accurate than either of the comparators.7 

Marufu et al recently reported an AUROC of 0.70 when validating SORT against an 

emergency hip fracture population.9 They compared SORT in their study against the 

Nottingham Hip Fracture Score (NHFS), which showed equivalent discrimination but better 

calibration. This suggests that SORT is better used as a risk stratification tool for 

heterogeneous surgical patient groups, and that other tools may be more appropriate for 

more homogeneous or surgery-specific case-mixes.30 

Clinical Implications 

P-POSSUM and POSSUM are the most frequently and widely-validated risk stratification 

model for heterogeneous populations in the literature.1 It therefore has widespread 

familiarity amongst anaesthetists and surgeons internationally. However, their value in 

preoperative prognostication is reduced by three factors: firstly, the large number (18) of 

variables required by their models; secondly, a number of their required variables are only 

available after surgery; and thirdly, some of the predictor variables are blood test results, 

which not all patients may have available preoperatively.1 7 



SORT and SORT-morbidity are both more parsimonious models compared to P-POSSUM 

and POSSUM, requiring fewer data items to make a morbidity prediction than POSSUM. 

Furthermore, SORT and SORT-morbidity require only preoperative data variables in order 

to make risk predictions for mortality and morbidity respectively, and in particular, 

variables which are all known at the time of preoperative assessment in the outpatient 

clinic, when laboratory variables may not yet be available. These factors therefore make 

them simpler and more practical to use for preoperative morbidity risk prediction than 

POSSUM. Risk stratification tools may be more likely to be adopted if they are simple, and 

when the performance of two or more models are similar, the simplest (most 

parsimonious) model would be preferable for clinical use. 

SORT has been made available for bedside use as an online risk prediction calculator 

accessible via an internet browser and more recently via smartphone applications 

developed for both iOS and Android devices.31 32 Although SORT-morbidity differs from 

SORT in how some of the data variables are used in the model —for example, SORT-

morbidity uses ASA-PS as a categorical variable with 4 categories (ASA I, ASA II, ASA III, or 

ASA ≥IV) as opposed to 3 categories as in the original SORT model (ASA I–II, ASA III, or ASA 

≥IV)— it does not require any new data to be collected. It would therefore be 

straightforward to incorporate the new SORT-morbidity prediction model into these 

electronic tools, and they can easily be used at the bedside in conjunction with careful 

clinical assessment to support decision-making and promote informed patient consent 

preoperatively. 



SORT-morbidity when used together with linear shrinkage factors, therefore provides a 

potentially powerful tool for perioperative shared decision-making by predicting the risk of 

developing a range of postoperative morbidity outcomes, over a number of time-points. 

There is much added benefit in being able to predict morbidity rather than just mortality, 

both from an institutional-level and patient-level perspective. At the institutional-level, 

hospital resource utilisation increases with increased patient morbidity following surgery. 

The ability to accurately predict those patients who might experience prolonged lengths of 

stay and more interventions as a result of complications allows for better planning and 

resource allocation. At the patient-level, morbidity risk prediction allows for more 

informed discussions between patients and clinicians when deciding to undergo surgery. 

During these discussions, the risk of suffering morbidity and mortality can thus be better 

weighed up against the potential benefit surgery in improving quality and duration of life. 

Unanswered questions and future research 

External validation of the new SORT-morbidity model is needed to assess its 

generalisability in other patient populations. There would also be scope in refitting the 

SORT-morbidity model to include surgical urgency as a predictor variable. SORT-morbidity 

could also be recalibrated predict morbidity outcomes according to other definition 

systems, for example the Clavien-Dindo classification of surgical complications, which 

produces an ordinal outcome variable, ranging from Grade 1 (least severe complications) 

to Grade 5 (most severe).23 24 

In the future, consistent measurement of postoperative morbidity and mortality outcomes 

and comparing performance between institutions is likely to be increasingly important as 



healthcare costs increase with an ageing population. SORT and SORT-morbidity can 

therefore be used together for local departmental audits of practice to assess how well 

patients recover from surgery against predicted mortality and morbidity. They would also 

have value in case-mix risk-adjustment and benchmarking in national registries for 

tracking institutional quality and perioperative outcomes. Examples of such registries 

include the American College of Surgeons National Surgical Quality Improvement Program 

(ACS-NSQIP) in the U.S.A., and the Perioperative Quality Improvement Programme (PQIP) 

currently under development in the U.K.33 34 Both tools would need periodic recalibration 

when used within such contexts to ensure they remain valid for surgical populations over 

time. 

Conclusion 

We show that SORT-morbidity can be used preoperatively to predict postoperative 

morbidity risk. Risk stratification tools offer clinicians a means of providing more accurate 

information to patients, help to guide perioperative care decisions, and allow for case-mix 

adjustments between institutions for audit and research purposes. As mobile digital 

devices become more widely available, accurate, simple and parsimonious risk 

stratification tools such as SORT and SORT-morbidity will become increasingly accessible 

to clinicians for use at the bedside. 
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Table 1 
Table 1 Caption: Descriptive data for the total study population, derivation and validation 
samples, and patients excluded from analysis due to missing data, including 30-day mortality 
and length of hospital stay. Numbers in parentheses represent sample percentages. Numbers 
in square brackets represent either median ages or median lengths of hospital stay with 
interquartile ranges (IQR) for each sample.  

Variable Total Patient 
Cohort, No. of 
patients (%) 

Derivation 
Sample for new 
Morbidity 
model,  
No. of patients 
(%) 

Validation 
Sample, No. of 
patients (%) 

Patients 
excluded due 
to missing 
data,  
No. of 
patients (%) 

Total 1934(100) 1056(100) 527(100) 351(100) 

Age     

    [Median, IQR] [62.6,  

IQR:48.7–71.7] 

[61.5,  

IQR:47–71.1] 

[61.6,  

IQR:49.2–
71.4] 

[66.0,  

IQR:56.4–
73.1] 

    <65 1099(56.8) 635(60.1) 308(58.4) 156(44.4) 

    ≥65 and <80 646(33.4) 322(30.5) 179(34.0) 145(41.3) 

    ≥80 174(9.0) 99(9.4) 40(7.6) 35(10.0) 

Sex     

    Female 1121(58.0) 614(58.1) 303(57.5) 204(58.1) 

ASA-PS Grade     

    1 313(16.2) 185(17.5) 84(15.9) 44(12.5) 

    2 1161(60.0) 623(59.0) 322(61.1) 216(61.5) 

    3 432(22.3) 238(22.5) 108(20.5) 86(24.5) 

    4 26(1.3) 10(0.9) 12(2.3) 4(1.1) 

    5 1(0.1) 0(0.0) 1(0.2) 0(0.0) 

Surgical Specialty     

    Orthopaedic 873(45.1) 470(44.5) 243(46.1) 160(45.6) 

    Colorectal 652(33.7) 332(31.4) 161(30.6) 159(45.3) 

    Upper GI 108(5.6) 68(6.4) 34(6.5) 6(1.7) 

    Vascular 122(6.3) 70(6.6) 33(6.3) 19(5.4) 

    Bariatric 125(6.5) 82(7.8) 40(7.6) 3(0.9) 

    Other 53(2.7) 34(3.2) 16(3.0) 3(0.9) 

Severity     

    Minor 108(5.6) 66(6.2) 31(5.9) 11(3.1) 

    Intermediate 108(5.6) 53(5.0) 29(5.5) 26(7.4) 



    Major 211(10.9) 107(10.1) 60(11.4) 44(12.5) 

    Xmajor/complex 1507(77.9) 830(78.6) 407(77.2) 270(76.9) 

Co-morbidities     

    None Documented 1009(52.2) 561(53.1) 282(53.5) 166(47.3) 

    Arrhythmia 104(5.4) 52(4.9) 27(5.1) 25(7.1) 

    Prev. Myocardial 
Infarct 

81(4.2) 41(3.9) 25(4.7) 15(4.3) 

    Congestive Cardiac 
Failure 

23(1.2) 11(1.0) 5(0.9) 7(2.0) 

    Peripheral Vascular 
Disease 

97(5.0) 54(5.1) 24(4.6) 19(5.4) 

    Cerebrovascular 
Disease 

92(4.8) 51(4.8) 18(3.4) 23(6.6) 

    Chronic 
Obstructive 
Pulmonary Disease 

220(11.4) 113(10.7) 61(11.6) 46(13.1) 

    Connective Tissue 
Disease 

48(2.5) 16(1.5) 13(2.5) 19(5.4) 

    Peptic Ulcer 
Disease 

39(2.0) 19(1.8) 13(2.5) 7(2.0) 

    Diabetes Mellitus 
(uncomplicated) 

185(9.6) 107(10.1) 52(9.9) 26(7.4) 

    Diabetes Mellitus 
(with end-organ 
involvement) 

1(0.1) 0(0.0) 0(0.0) 1(0.3) 

    Chronic Kidney 
Disease (moderate to 
severe) 

16(0.8) 8(0.8) 4(0.8) 4(1.1) 

    Hemiplegia 6(0.3) 3(0.3) 2(0.4) 1(0.3) 

    Malignancy 103(5.3) 58(5.5) 23(4.4) 22(6.3) 

    Liver Disease 18(0.9) 14(1.3) 2(0.4) 2(0.6) 

    Smoking (active) 334(17.3) 187(17.7) 80(15.2) 67(19.1) 

    Smoking 
(previously) 

538(27.8) 309(29.3) 136(25.8) 93(26.5) 

30-day Mortality 6(0.3) 2(0.2) 1(0.2) 3(0.9) 

Length of Hospital 
Stay 

    

     [Median days, IQR] [6, IQR:4–10] [6, IQR:4–11] [5, IQR:4–10] [7, IQR:7–9] 

    0–3 days 376(19.4) 246(23.3) 122(23.1) 8(2.3) 



    4–6 days 608(31.4) 387(36.6) 201(38.1) 20(5.7) 

    7–13 days 629(32.5) 236(22.3) 120(22.8) 273(77.8) 

    14–20 days 142(7.3) 86(8.1) 38(7.2) 18(5.1) 

    21–27 days 52(2.7) 33(3.1) 9(1.7) 10(2.8) 

    ≥28 days 127(6.6) 68(6.4) 37(7.0) 22(6.3) 

 

  



Table 2 
Table 2 Caption: Breakdown of POMS outcomes at different time-points and by organ-system 
domains. Percentages in parentheses represent the number of patients remaining in hospital 
at a particular time-point suffering from POMS-defined morbidity as a proportion of the total 
number of patients in the whole cohort (total n = 1934). 

 Day 3 Day 5 Day 7 or 8 Day 14 or 
15 

Day 21 Day 28 

Total number of 
patients still in 

hospital, Day 0 = 1934 
(100%) 

1763 
(91.2%) 

1373 
(71%) 

950 
(49.1%) 

321 
(16.6%) 

179 
(9.3%) 

127 
(6.6%) 

Patients with POMS-
defined morbidity (%) 

1124 
(58.1%) 

648 
(33.5%) 

403 
(20.8%) 

155 (8%) 68 
(3.5%) 

47 
(2.4%) 

Pulmonary (%) 436 
(22.5%) 

160 
(8.3%) 

74 (3.8%) 29 (1.5%) 17 
(0.9%) 

11 
(0.6%) 

Infectious (%) 216 
(11.2%) 

159 
(8.2%) 

128 
(6.6%) 

58 (3%) 31 
(1.6%) 

22 
(1.1%) 

Renal (%) 711 
(36.8%) 

377 
(19.5%) 

196 
(10.1%) 

66 (3.4%) 33 
(1.7%) 

19 (1%) 

Gastrointestinal (%) 520 
(26.9%) 

322 
(16.6%) 

222 
(11.5%) 

84 (4.3%) 40 
(2.1%) 

29 
(1.5%) 

Cardiovascular (%) 68 (3.5%) 38 (2%) 36 (1.9%) 15 (0.8%) 7 (0.4%) 6 (0.3%) 

Neurological (%) 42 (2.2%) 34 (1.8%) 21 (1.1%) 7 (0.4%) 6 (0.3%) 6 (0.3%) 

Haematological (%) 57 (2.9%) 23 (1.2%) 11 (0.6%) 4 (0.2%) 4 (0.2%) 2 (0.1%) 

Wound (%) 207 
(10.7%) 

120 
(6.2%) 

81 (4.2%) 55 (2.8%) 23 
(1.2%) 

19 (1%) 

Pain (%) 674 
(34.9%) 

172 
(8.9%) 

84 (4.3%) 33 (1.7%) 17 
(0.9%) 

9 (0.5%) 

Missing POMS 
outcomes (%) 

266 
(14.6%) 

282 
(15.4%) 

243 
(13.3%) 

73 (4%) 71 
(3.9%) 

53 
(2.9%) 

 

  



Table 3 
Table 3 Caption: Coefficients for the final SORT-morbidity Prediction Model.  

  Estimate Std. Error z value p value 

ASA = I Reference 

ASA = II 0.332 0.229 1.453 0.146 

ASA = III 1.140 0.257 4.426 0.000 

ASA ≥ IV 1.223 0.743 1.646 0.100 

Surgical Specialty (Orthopaedic) Reference 

Surgical Specialty (Colorectal) 1.658 0.221 7.491 0.000 

Surgical Specialty (Upper GI) -0.929 0.439 -2.116 0.034 

Surgical Specialty (Vascular) 0.296 0.316 0.937 0.349 

Surgical Specialty (Bariatric) -1.065 0.454 -2.345 0.019 

Surgical Specialty (Other) 0.181 0.530 0.341 0.733 

Surgical Severity 
(Minor/Intermediate/Major) 

Reference 

Surgical Severity (Xmajor/Complex) 1.238 0.233 5.308 0.000 

No Malignancy Reference 

Malignancy 0.897 0.328 2.735 0.006 

Age 16 to 64 years Reference 

Age 65 to 79 years 0.118 0.183 0.647 0.518 

Age 80 years or more 0.550 0.255 2.155 0.031 

Constant -3.228 0.325 -9.932 0.000 

 

  



Table 4 
Table 4 Caption: Shrinkage factors to be applied to SORT-morbidity formula in order to 
improve the accuracy for predicting alternative morbidity outcomes. AUROC for the 
recalibrated formulae are also displayed. An example of how to use the shrinkage factors 
follows: if applying the SORT-morbidity formula yields a probability (p) of having POMS-
defined morbidity on Day 7 or 8 of 50%; then logit(p) = 0, and logit(P(Y)) = -1.478 + 0.894(0), 
where P(Y) is the probability of having POMS-defined morbidity on Day 14 or 15. P(Y) in this 
example would therefore be 18.6%. 

Outcome Intercept, 𝛼 Slope, 𝛽 AUROC (95% CI) 

Low-grade POMS morbidity -0.316 1.008 0.75 (0.72–0.78) 

High-grade POMS morbidity -0.874 0.827 0.72 (0.69–0.76) 

Day 14/15 POMS -1.478 0.894 0.73 (0.69–0.78) 

Day 21 POMS -2.327 1.081 0.79 (0.74–0.85) 

Day 28 POMS -2.770 1.048 0.81 (0.76–0.87) 

 

  



 

Figure 1 
Figure 1 Caption: Flow diagram summarising cases included and excluded from analysis. 

 

  



Figure 2 
Figure 2 Caption: (A) Calibration plot of SORT-morbidity compared to POSSUM: Observed 
versus predicted occurrence of Day 7 or 8 morbidity at varying levels of risk in the validation 
cohort of 527 patients; (B) ROC curve plot of SORT-morbidity compared against POSSUM 
(AUROC = 0.72, and 0.66 respectively) tested in the validation cohort. ROC: Receiver Operator 
Characteristic; AUROC: Area Under the ROC curve. 

 

  



Figure 3 
Figure 3 Caption: Sensitivity Analyses. (A) Calibration plot of SORT-morbidity for predicting 
modified POMS, comparing low-grade and high-grade POMS morbidity outcomes; (B) ROC 
curve plot showing SORTmorbidity discrimination performance for predicting low-grade and 
high-grade POMS morbidity outcomes (AUROC = 0.75, and 0.72, respectively);(C) Calibration 
plot of SORT-morbidity for predicting Day 14/15, Day 21, and Day 28 POMS outcomes; (D) 
ROC curve plot showing SORT-morbidity discrimination performance for predicting Day 
14/15, Day 21, and Day 28 POMS outcomes (AUROC = 0.73, 0.79 and 0.81, respectively). ROC: 
Receiver Operator Characteristic; AUROC: Area Under the ROC curve. 

 

  



Supplementary Data 

Supplementary Table 1 
Supplementary Table 1 Caption: Surgical Outcome Risk Tool variable definitions, adapted 
from Protopapa et al.7 

SORT 
Variable Definition Further Detail 

ASA-PS 
Grade 

Grade I: A normal healthy patient. 

 

Grade II: A patient with mild systemic 
disease. 

 

Grade III: A patient with severe systemic 
disease. 

 

Grade IV: A patient with severe systemic 
disease that is a constant threat to life. 

 

Grade V: A moribund patient who is not 
expected to survive without the operation. 

 

From the American 
Society of 
Anesthesiologists Physical 
Status Classification 
System 

Surgical 
Urgency 

Immediate: Immediate life, limb or organ-
saving intervention – resuscitation 
simultaneous with intervention. Normally 
within minutes of decision to operate. 

 

Urgent: Intervention for acute onset or 
clinical deterioration of potentially life-
threatening conditions, for those 
conditions that may threaten the survival 
of limb or organ, for fixation of many 
fractures and for relief of pain or other 
distressing symptoms. Normally within 
hours of decision to operate. 

 

Expedited: Patient requiring early 
treatment where the condition is not an 
immediate threat to life, limb or organ 
survival. Normally within days of decision 
to operate. 

 

Elective: Intervention planned or booked 

From the National 
Confidential Enquiry into 
Patient Outcome and 
Death Classification of 
Intervention, 
http://www.ncepod.org.u
k/classification.html 

http://www.ncepod.org.uk/classification.html
http://www.ncepod.org.uk/classification.html


in advance of routine admission to hospital. 
Timing to suit patient, hospital and staff. 

 

High Risk 
Surgical 
Specialty 

Any of the following specialties: 
Gastrointestinal, Thoracic or Vascular 
Surgery 

 

Surgical 
Severity 

Taken from a list of over 2000 procedure 
severity codes with 5 categories.  

 

Minor: e.g. Dilation of stricture of rectum, 
Change of cast under general anaesthetic.  

 

Intermediate: e.g. Laparoscopic repair of 
incisional or ventral hernia requiring mesh, 
Closed reduction of fracture of short bone 
(including cast or percutaneous K-wires).  

 

Major: e.g. Laparoscopic appendicectomy, 
Closed reduction of fracture of long bone 
with external fixation (excluding fixation 
by cast or percutaneous K-wires). 

 

Xmajor: e.g. Right hemicolectomy, Locked 
intramedullary nailing of fractured long 
bone.  

 

Complex: e.g. Total excision of colon and 

Full list of procedures can 
be found on AXA PPP 
Healthcare website, 
https://online.axapppheal
thcare.co.uk/SpecialistFor
ms/SpecialistCode.mvc/P
rint?source=contracted 

https://online.axappphealthcare.co.uk/SpecialistForms/SpecialistCode.mvc/Print?source=contracted
https://online.axappphealthcare.co.uk/SpecialistForms/SpecialistCode.mvc/Print?source=contracted
https://online.axappphealthcare.co.uk/SpecialistForms/SpecialistCode.mvc/Print?source=contracted
https://online.axappphealthcare.co.uk/SpecialistForms/SpecialistCode.mvc/Print?source=contracted


ileorectal anastomosis, Revision of 
uncemented or cemented total hip 
replacement without adjunctive 
procedures. 

 

Malignancy Presence or absence of active malignancy 
within past 5 years 

 

 

Age Three age categories: <65 years, 65–79 
years, ≥80. 

 

 

 



Supplementary Table 2 
Supplementary Table 2 Caption: Postoperative Morbidity Survey (POMS) Domains, adapted 
from Grocott et al.12 

Morbidity 
Domain Criteria Source of Data 

Pulmonary New requirement for oxygen or respiratory support. Patient 
observation or 
Treatment chart 

Infectious Currently on antibiotics or temperature >38°C in the 
last 24hr. 

Treatment chart 
or Observation 
chart 

Renal Presence of oliguria <500 mL/24hr, increased serum 
creatinine (>30% from preoperative level) or 
urinary catheter in situ. 

Fluid balance 
chart or 
Biochemistry 
result 

Gastrointestinal Unable to tolerate an enteral diet for any reason, 
including nausea, vomiting, and abdominal 
distension, or use of antiemetic. 

Patient 
questioning, 
Fluid balance 
chart or 
Treatment chart 

Cardiovascular Diagnostic tests or therapy within the last 24 hr for 
any of the following: new myocardial infarction or 
ischaemia, hypotension (requiring pharmacological 
or fluid therapy >200 mL/hr), atrial or ventricular 
arrhythmias, cardiogenic pulmonary oedema, or 
thrombotic event requiring anticoagulation. 

Treatment chart 
or Note review 

Neurological New focal neurological deficit, confusion, delirium, or 
coma. 

Note review or 
Patient 
questioning 

Haematological Requirement for any of the following within the last 
24 hr: packed erythrocytes, platelets, fresh-frozen 
plasma, or cryoprecipitate. 

Treatment chart 
or Fluid balance 
chart 

Wound Wound dehiscence requiring surgical exploration or 
drainage of pus from the operation wound with or 
without isolation of organisms. 

Note review or 
Pathology result 

Pain New postoperative pain significant enough to 
require parenteral opioids or regional analgesia. 

Treatment chart 
or Patient 
questioning 



Supplementary Table 3 
Supplementary Table 3 Caption: Summary of the Multivariable Logistic Regression models 
derived in the study. Final model chosen is in bold.  

In constructing our 6 candidate models, we started with a model closest to the original SORT-
mortality model (Model 1), deriving empirically-weighted coefficients for this. We then made 
serial adjustments to the representations of the different predictor variables, one variable at a 
time, recording the performance measures for each step-wise change to the model. We 
selected our final model based on a balance of the following performance measures: 
goodness-of-fit measures (AIC and BIC), calibration in the validation sample (as judged by 
Hosmer-Lemeshow and calibration plots) and discrimination in the validation sample (as 
assessed by AUROC).  

The permutations chosen for the different representations is exhaustive within the constraints 
of scientific plausibility, as well as within the arbitrary constraints imposed upon model-
development with the aim of working with the data variables found in the SORT-mortality 
model. ASA 1 and 2 could plausibly be combined into one category because the mortality rates 
associated with the two grades does not differ greatly (0.0% vs 0.5% in a UK population, data 
from the paper by Protopapa et al), whereas ASA 3 and >4 conferred a 3.2% mortality and 
>16.5% mortality respectively.7 We chose to combine ASA 4 and 5 because our study cohort 
only had 1 patient with ASA 5, which would be in keeping with an elective surgical cohort. 
With regards to different representations of age: The SORT-mortality calculator 
(http://www.sortsurgery.com/index.php?) asks for patients ages in the specific range 
categories which we tested in our models, and we did not want to significantly depart from 
this range in order to maintain compatibility with the data items collected for SORT-mortality 
predictions. We tried one first order interaction and found that it only resulted in a minor 
improvement in AIC at the cost of a significant worsening in BIC, with no improvement in 
discrimination, and therefore stopped at that point in our model construction, satisfied that 
further interaction terms would similarly penalise the model. This interaction was tested as it 
was posited that patients may undergo different types of operation at different age groups, 
for example bariatric surgery would be rarer at higher age, while colorectal and orthopaedic 
surgery rates would be increased at the middle age range. 

Model 
Number Model Variables 

Akaike 
Information 

Criterion 
(AIC) 

Bayesian 
Information 

Criterion 
(BIC) 

Hosmer-
Lemeshow 
χ² statistic 
(p-value) 

AUROC 
(95% 

CI) 

1 ASA = 3; ASA ≥ 4; "High-
risk" Surgical Specialty; 
Xmajor/Complex Surgical 
Severity; Malignancy; Age 
65–79 yrs; Age ≥ 80 yrs 

1142.32 1182.01 7.09 (0.53) 0.63 
(0.57–
0.68) 

2 ASA = 3; ASA ≥ 4; 
Colorectal or Upper GI 
Surgery; Xmajor/Complex 
Surgical Severity; 

1115.37 1155.07 15.37 
(0.05) 

0.69 
(0.64–
0.74) 



Malignancy; Age 65–79 
yrs; Age ≥ 80 yrs 

3 ASA = 3; ASA ≥ 4; Surgical 
Specialty (as a categorical 
variable with 6 
categories); 
Xmajor/Complex Surgical 
Severity; Malignancy; Age 
65–79 yrs; Age ≥ 80 yrs 

1068.49 1128.04 10.1 (0.26) 0.72 
(0.67–
0.77) 

4 ASA = 2; ASA = 3; ASA ≥ 
4; Surgical Specialty (as 
a categorical variable 
with 6 categories); 
Xmajor/Complex 
Surgical Severity; 
Malignancy; Age 65–79 
yrs; Age ≥ 80 yrs 

1068.31 1132.82 4.87 
(0.77) 

0.72 
(0.67–
0.77) 

5 ASA (as a discrete 
numerical variable); 
Surgical Specialty (as a 
categorical variable with 6 
categories); 
Xmajor/Complex Surgical 
Severity; Malignancy; Age 
65–79 yrs; Age ≥ 80 yrs 

1066.82 1121.4 4.37 (0.82) 0.71 
(0.66–
0.76) 

6 ASA (as a discrete 
numerical variable); 
Surgical Specialty (as a 
categorical variable with 6 
categories); 
Xmajor/Complex Surgical 
Severity; Malignancy; Age 
65–79 yrs; Age ≥ 80 yrs; 
Age x Surgical Specialty 
Interaction 

1065.11 1164.36 3.42 (0.91) 0.72 
(0.67–
0.77) 



Supplementary Table 4 

Supplementary Table 4 Caption: Details of how the POMS organ-system sub-domains were 
mapped against Clavien-Dindo grades. 

POMS Organ-system POMS Sub-domain Assigned Clavien-
Dindo Grade 

Pulmonary New requirement for oxygen 2 

Pulmonary New requirement for respiratory support 2 

Infectious Currently on antibiotics 2 

Infectious Temperature >38°C in the last 24hr 1 

Renal Urinary catheter in situ 1 

Renal Increased serum creatinine (>30% from 
preoperative level) 

2 

Renal Presence of oliguria <500 mL/24hr 2 

Gastrointestinal Unable to tolerate an enteral diet for any reason 1 

Gastrointestinal Vomiting or abdominal distension, or use of anti-
emetics 

1 

Cardiovascular Thrombotic event requiring anticoagulation 
(new) 

2 

Cardiovascular Atrial or ventricular arrhythmias (new) 2 

Cardiovascular Hypotension (requiring pharmacological or fluid 
therapy >200 mL/hr) 

2 

Cardiovascular New myocardial infarction or ischaemia 2 

Cardiovascular Cardiogenic pulmonary oedema 2 

Neurological New coma 3 

Neurological New confusion or delirium 2 

Neurological New focal neurological deficit 2 

Haematological Platelet, fresh-frozen plasma, or cryoprecipitate 
transfusion in last 24hrs 

2 

Haematological Packed erythrocyte transfusion in the last 24hrs 2 

Wound Wound dehiscence requiring surgical exploration 
or drainage of pus from the operation wound 
with or without isolation of organisms 

2 

Pain New pain significant enough to require parenteral 
opioids 

1 

Pain New pain significant enough to require regional 
analgesia 

2 

  



Supplementary Table 5 
Supplementary Table 5 Caption: Hosmer-Lemeshow Test Results for SORT-morbidity. 
Observed versus predicted POMS-defined morbidity are compared in the validation cohort per 
quantile of predicted risk. 

 Risk quantile  

Total no. 
of 

patients 
in the 

quantile 

Predicted 
risk of 

morbidity 
in the 

quantile 

Observed 
risk of 

morbidity 
in the 

quantile 

Number of 
patients 

with 
predicted 

morbidity in 
the quantile 

Number of 
patients 

with 
observed 

morbidity in 
the quantile 

[0.0213,0.0772) 59 0.062 0.034 3.66 2 

[0.0772,0.1380) 51 0.125 0.098 6.35 5 

[0.1380,0.1719) 76 0.157 0.184 11.96 14 

[0.1719,0.1858) 100 0.176 0.23 17.55 23 

[0.1858,0.2422) 63 0.216 0.222 13.59 14 

[0.2422,0.2993) 26 0.247 0.269 6.43 7 

[0.2993,0.3648) 47 0.317 0.34 14.89 16 

[0.3648,0.5198) 69 0.439 0.464 30.3 32 

[0.5198,0.8608] 36 0.659 0.583 23.71 21 

  



Supplementary Table 6 
Supplementary Table 6 Caption: Hosmer-Lemeshow Test Results for POSSUM. Observed versus 
predicted POMS-defined morbidity are compared in the validation cohort per quantile of 
predicted risk.  

Risk quantile  

Total no. 
of 

patients 
in the 

quantile 

Predicted 
risk of 

morbidity 
in the 

quantile 

Observed 
risk of 

morbidity 
in the 

quantile 

Number of 
patients 

with 
predicted 

morbidity in 
the quantile 

Number of 
patients 

with 
observed 

morbidity in 
the quantile 

[0.0547,0.123) 54 0.087 0.185 4.72 10 

[0.1235,0.209) 84 0.178 0.167 14.98 14 

[0.2092,0.237) 47 0.23 0.085 10.79 4 

[0.2369,0.267) 68 0.259 0.162 17.64 11 

[0.2670,0.299) 53 0.289 0.283 15.31 15 

[0.2994,0.334) 47 0.324 0.191 15.22 9 

[0.3340,0.371) 28 0.356 0.429 9.96 12 

[0.3705,0.448) 53 0.41 0.283 21.74 15 

[0.4477,0.606) 46 0.525 0.413 24.17 19 

[0.6059,0.965] 47 0.724 0.532 34.02 25 

 

 

 

 


