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Abstract—Maultispectral imaging (MSI) can potentially assist
the intra-operative assessment of tissue structure, function and
viability, by providing information about oxygenation. In this
paper, we present a novel technique for recovering intrinsic
MSI measurements from endoscopic RGB images without custom
hardware adaptations. The advantage of this approach is that it
requires no modification to existing surgical and diagnostic en-
doscopic imaging systems. Our method uses a radiometric colour
calibration of the endoscopic camera’s sensor in conjunction with
a Bayesian framework to recover a per-pixel measurement of the
total blood volume (THb) and oxygen saturation (SO:) in the
observed tissue. The sensor’s pixel measurements are modelled
as weighted sums over a mixture of Poisson distributions and we
optimise the variables SO2 and THb to maximise the likelihood
of the observations. To validate our technique, we use synthetic
images generated from Monte Carlo (MC) physics simulation
of light transport through soft tissue containing sub-surface
blood vessels. We also validate our method on irn vivo data
by comparing it to a MSI dataset acquired with a hardware
system that sequentially images multiple spectral bands without
overlap. Our results are promising and show that we are able
to provide surgeons with additional relevant information by
processing endoscopic images with our modelling and inference
framework.

Index Terms—Multispectral Imaging, Minimally Invasive
Surgery, Bayesian Inference, Biophotonics, Surgical Vision

I. INTRODUCTION

NTRA-operative imaging during minimally invasive

surgery (MIS) is the primary method of sensing used to
guide surgical actions, and MIS is feasible today largely due
to the evolution of digital imaging technologies that make it
possible to deliver and harvest light from the surgical site
through an endoscope [1]. During MIS, access to the surgical
site is restricted by the size of the entry ports [2], this makes it
challenging to interrogate the structure and function of tissues
during surgery. Currently, surgeons are primarily reliant on
images acquired in the visible light spectrum using three
channel (RGB) sensors [3] either mounted at the tip of the
endoscope or attached to the distal end and linked to lenses or
fibre bundles. Such endoscopic system designs provide real-
time images of the tissue surface that are used to guide diag-
nostic and therapeutic procedures. The drawback of imaging

Manuscript received December 23 2016; revised February 5, 2017. 1 Centre
for Medical Image Computing, University College London (web: http://cmic.
cs.ucl.ac.uk ),

2Department of Surgery and Cancer, Imperial College London

3 The Hamlyn Centre, Imperial College London (web: http://imperial.ac.
uk/hamlyn )

Copyright (©2010 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions @ieee.org.

in this way is that it provides limited information about the
functional characteristic of the tissue. This makes it difficult
for surgeons to assess tissue viability, for example to evaluate
posttransplantation revascularisation, or to characterise tissue
types for diagnostic decisions.

To capture this information complementary imaging modali-
ties can be introduced. The endoscope itself can be augmented,
for example by altering the sensitivity of the imaging sensor
or by changing the method in which light is delivered to
the surgical site [4] [5]. Imaging agents can also be used to
highlight structures. However, the use of additional imaging
hardware or the injection of agents, introduces complexity to
the regulatory requirements of the system and adds to the
cost of new devices. Therefore making the most effective
use of the available information within current endoscopic
imaging solutions is crucial and can have important clinical
significance. Image processing on the endoscopic RGB data
is intrinsically registered to the surgeon’s view of the surgical
site and video is typically captured at high frame rate enabling
dynamic imaging in the presence of physiological tissue
motion. The problem is however ill posed because the RGB
data provided by the endoscope is a limited measurement of
a complex process relating the interaction between light and
tissue to clinically relevant parameters.

In this paper we use the observation that, within tissue, the
dominant absorber of light in the visible wavelength range is
haemoglobin [6]. This allows us to formulate a prior on the
expected spectrum of light observed in endoscopic images. We
use this prior to regularise the estimation of tissue perfusion
and oxygenation from endoscopic RGB images. Our method
works on a per pixel level but can be used as a framework
that underpins the incorporation of both temporal and spatial
regularisation terms.

II. RELATED WORK IN MSI FOR SURGERY

Pathological signals such as oxy- and deoxy-haemoglobin
(HbO and Hb) concentration, often correspond to tissue struc-
ture and viability [8]. These chromophores can be detected
from their characteristic attenuation of light in the visible
wavelength range [9]. As shown in Fig. 1b the attenuation
spectra for HbO and Hb are quite close in places (500nm)
while varying a lot in others (650nm) enabling inference
to be made of their relative and combined concentrations
respectively. This response can be imaged by using sequential
MSI where multiple narrow band images are acquired. MSI
hardware has been used for multiple clinical indications, such
as the assessment of ischaemia in heart tissue without ionising
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Fig. 1: (a) The interaction between light and tissue comprises both scattering and absorption and the inhomogeneity in the
concentration of chromophores results in a spatially varying distribution of detected light. The effective attenuation of the
measured light in an endoscopic image is a combination of these effects. (b) The backscattered fraction of light for oxygenated
and de-oxygenated blood under uniform illumination generated by MC simulation [7]. This provides an aggregate attenuation
coefficient (—log(+)) that combines the attenuation due to absorption and scattering as well as the mean travel distance within
tissue. (c) The total haemoglobin (THb) is a measure formed by the sum of concentrations of these two chromophores and
saturation is the ratio of oxygenated blood to total haemoglobin. These can be superimposed on endoscopic images to provide

the surgeon with functional information during an intervention.

radiation [10] or in eye surgery to minimise photo toxicity
[11]. Endoscopic MSI has also been used to identify abnormal-
ities by detecting the increased vascularisation of malignant
tissue [12] and to assess the success of organ transplantation
by inference of SO, and THb posttransplantation [9].

Hardware approaches to MSI can involve rapidly varying
illumination [13], liquid crystal tunable filters (LCTF) [14] or
fast filter wheels [15]. The degree of illuminant attenuation by
tissue is measured in multiple non-overlapping spectral bands,
and the Beer-Lambert equation is used to relate these attenua-
tion values to chromophore concentrations. Given assumptions
that individual band measurements are each across a narrow
spectral range, without overlapping each other and that there is
no fluorescence and negligible constant scattering, estimating
chromophore concentrations becomes a linear fitting problem.
While having a large number of spectral bands enables good
fitting results, it often comes at the cost of the reduced
temporal resolution of acquiring the whole multispectral cube,
making it difficult to image tissue intra-operatively due to
physiological motion [16], [17], [18], [19]. Filter wheel and
strobe illumination can allow for rapid data acquisition, while
LCTF approaches typically provide more fine spectral data.

To estimate chromophore concentrations from RGB endo-
scopic image data in the same way as for MSI data is not
possible. This is because RGB data comprises three wide
spectral bands, characterised by the spectral response curves of
the RGB sensor, often having a high degree of overlap between
bands. However, it has previously been shown for near infra-
red wavelengths that there is strong colour correspondence

in CIE 1976 L*a*b* colour space for simulated [20] and
observed tissue types for a range of tissue models [21], and
HbO and Hb could be similarly detectable. Recently it has
been demonstrated that RGB data can be used to estimate MSI
data by Wiener filtering [22] from which THb (HbO+Hb) and
SO, (%) can be calculated using Beer-Lambert based fitting.
The method shows very promising results, however, it relies
on learning the characteristic reflectance spectra specific to a
singular tissue type. Alternatively the overlap in the RGB data
can be minimised and more precisely related by integrating a
filter wheel, in front of the RGB camera, containing triple
band pass filters. Using such a configuration it is possible to
record a set of 18 narrow spectral band filtered measurements
with six RGB images [23], these can then be used to estimate
the MSI data knowing the filter transmission spectra and RGB
camera response curves. This framework accounts for spatially
varying geometry and achieves a frame rate of 15fps by a using
a graphics processing unit (GPU) implementation of linear
matrix inversion to estimate THb and HbO. The assumption
that the latent spectral power distribution of light arriving at
the camera is smooth across wavelengths can also be used to
develop a Tikhonov regularisation to constrain estimation MSI
[24]. While being computationally efficient and promising for
THD estimation, the smoothing comes at the cost of being able
to accurately differentiate between HbO and Hb.
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Fig. 2: We capture a spectral calibration for the endoscopic sensor by using a colour chart illuminated with standard lighting.
When we capture an RGB image from the scope for each pixel we alternately estimate the multispectral signal from the RGB
camera calibration and the current concentrations estimate (detail in Fig. 3). We then update the concentrations estimate from
the current multispectral estimate and the MC computed backscatter data.

III. METHOD
A. Light-Tissue Reflectance Model

Light arriving at the endoscopic camera (Fig. 1) is assumed
to have been back scattered and attenuated by passing through
tissue containing spatially varying concentrations of chro-
mophores. The dominant chromophores in tissue are assumed
to be the two oxygenation states that haemoglobin can take,
HbO and Hb (hb), corresponding to oxygenated and de-
oxygenated respectively. At a given x,y image location (x)
the concentration of chromophores hb(x), within the corre-
sponding tissue location, can be estimated using the modified
Beer-Lambert relationship [25]. This defines the model for
how the concentration of all chromophores present in a sample
(the tissue corresponding to image position x) attenuate the
incident light Iy »(x) for a set of illumination wavelengths
A. The resulting intensity of light leaving the scene at that
position, I(x) can then be calculated as:

IA(J:) — Io,A(w)e(_G(w)_hb(w)l"hb,)\ghb) (1)

From the original Beer-Lambert equation, we can express
the attenuation due to absorption &xp x over the wavelength
range A\ for each chromophore. The modified form of the Beer-
Lambert relationship introduces two additions. The first new
variable is the mean path length of light travelling through the
tissue prpp 2. This is assumed to be longer than the shortest
distance between the source and detector because each photon
will have been scattered along the way. The assumption is
appropriate for endoscopic systems where the illumination and
the camera are modelled at the tip of the scope and also since
each photon will take a slightly different path the value of
p represents the mean path length. The second extension is
to include a geometric factor G(x) to describe the effect of
loss due to scattering such that the resultant photon path never
intersects the detector. We use a single term representation but
this geometry factor can also be expanded as a constant and
linear term with the latter being dependant on wavelength [26].

Rearranging the terms of (1) it is possible to formulate a linear
relationship:

A=— log (I)\(:I})) = G(CE) + hb(:l‘:);l,hb’)‘ghb. (2)
Io ()

The negative log ratio of the incident to exit intensity is the
total attenuation, A. When the wavelength range is narrower,
for example 500nm to 600nm, the constant offset plus linear
scattering term can be used for G(x) [26]. However, when
using an RGB sensor, over the wide spectral range of each
measurement, the scattering parameters for HbO and Hb
are not completely linear. This observation is apparent on
inspection of the scattering and attenuation coefficients data
[7], especially towards shorter wavelengths, and varies slightly
between each chromophore. For our formulation, instead of
analytically modelling the wavelength dependent absorption
and scattering attenuation for each chromophore, we empiri-
cally derive an attenuation factor éhb by using MC simulation
[13], [27]. If we know the incident illumination, we can find
the chromophore concentration parameters hb(x) on the right
by making many spectrally distinct measurements of the tissue
and solving the linear equation:

A= éhbhb<il:> (3)

Approaches where many MSI narrow bands can be ob-
tained, will typically use a form of (2) or (3) either with or
without the scattering component. But for our estimation we
adopt the above light-tissue interaction relationship.

B. Sensor Model

We assume that the probability for a sensor to detect
photons is dependant on two random variables. The first is the
probability that a photon left the scene and arrived at the sensor
I(x, hb(x)) and second describes whether the sensor will de-
tect it p based on its spectral sensitivity as shown in see Fig. 2.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2017.2665627, IEEE

Transactions on Medical Imaging

4 IEEE TRANSACTIONS ON MEDICAL IMAGING , VOL. [??], NO. [??], FEBRUARY 5, 2017

Generate SPD prior
from concentration
using Beer-Lambert

®

Initialise
concentrations

@ﬁl

eq (3)

(EOHE) (E[L] eq (1) Re-estimate the
@ HbO & Hb from MS:
least squares fit.
Concatenate RGB
observation with . 3
SPD Estimate the
eq (12) latent MS data from

RGB using SPD prior:

@ least squares fit.
1)

Fig. 3: Iterative Bayesian estimation of the concentrations
alternately estimates the latent multispectral information I}
regularised by the current concentration estimate, and subse-
quently updates the concentration estimate by fitting against
I3.

eq (11)

We assume p is constant throughout the imaging process but
will vary dependent on wavelength. The resulting formulation
becomes a counting problem and the probability distribution
of the sensor becomes Poisson(py - E[Ix(x, hb(x))]) for any
given wavelength, where E [-] represents the expectation of the
random variable.

For a wide band detector, such as an entire channel (c) of
an RGB sensor, the weighted sum over the sensitive range
of wavelengths has weights corresponding to the sensitivity
Pe,x at that particular wavelength. We can write the random
variable of the channel measurement I..(x, hb(x)) as the inner
product over all wavelengths:

I(x,&(x)) = (pe, I(z, hb(x))) @)

This is a straightforward sum because the contributions from
different wavelengths are independent when conditioned on
the chromophore concentration hb(x). The distribution of this
random variable is also Poisson distributed with a mean and
variance:

A
pe=0"=>_ peE[I\(z)] (5)

The random variables for sensor measurements are also
conditional on the unknown concentration values hb(x) at
a given position.

C. Reflectance Spectra Estimation

Since (4) is a linear model, the natural way to recover
I\ (x,hb(x)) is to use regularised linear inversion, regular-
isation being needed to account for (4) being ill conditioned.
An attractive method to do so is Tikhonov regularisation,
as it provides a closed form regularised estimation of the
multispectral reflectance [24], [28]. Solving at point & (omitted
for brevity!) as a linear system with a regularisation parameter

v
-1
In=(p"p+~*1d) p" I (6)

'From here on, we continue to omit the spatial variable (z) that describes
a position in the image because all calculations are local to a point without
neighbourhood information.

Adopting normal notation Id is the identity matrix. While
using Tikhonov regularisation is computationally efficient, it
often trades stability of the inversion at the cost of over
smoothing the result, which introduces a bias in the computed
haemoglobin concentrations. While it may be possible to
determine a heuristic to correct for the resultant estimation
bias, by fitting computed to known concentration, this would
limit the flexibility and robustness of the method and would
be unique for every sensor. To avoid having to calculate
sensor specific correction factors, as well as to have greater
resilience to sensor noise, we propose an alternative approach
to estimation using Bayesian inference.

For an RGB sensor, Bayes’ rule gives the relationship:

P(I,,I,, I,|hb) P(hb)
P(I,.1,,1,)

P(hb|I,, 1, 1)) = (7

where P(-) is a probability. Due to the channel response
being independent and conditioned on the chromophore con-
centrations, we can formulate the right hand side of (7) as:

P(I,|hb)P(I,|hb) P(I,|hb) P(hb)
P(I,,1,, 1)

®)

This gives us the product of measurement probabilities for
individual channels and a prior on the concentrations hb.

Since each channel accumulates over a wide wavelength
range, the mean counts will be large and hence we can approx-
imate the Poisson distribution of count values in each channel
as normally distributed N (u, o). Because the denominator of
(8) does not depend on hb, we can ignore it for the purposes
of maximisation, and we know then that (7) will be maximised
for:

arg ;nax P(hb) HN(Hc,hb’ Tc.hb) €))

The only prior on hb are that all elements are non-negative
because it is not possible to have negative concentrations.
While this may seem too relaxed a constraint allowing con-
centrations to be potentially infinite, the cases when this might
occur are limited to degenerate situations where the count for
each channel of the sensor is zero or very close to zero.

D. Parameter Optimisation

Since the modified Beer-Lambert model is only suitable for
measurements that are non-overlapping and narrow banded,
we first estimate the spectrum of incidental light I,," arriving
at the RGB sensor. Secondly we estimate the concentrations
of HbO and Hb from I,’ solving (2) by minimising the
sum of square difference (SSD). We perform this iteratively
alternating between estimating the multispectral data I,," and
then concentrations hb.

Estimating the multispectral data from RGB measurements
by linearly solving using the camera response matrix results in
a very poor approximation even with the positivity constraint.
Typically this is because the formulation results in a sparse
estimate with high values in a small number of wavelengths
due to being highly under constrained. We can utilise a
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Bayesian maximum a posterior (MAP) estimation derived
from (9), to pose this step in a constrained way as:

IS\ = argmax { (HN(“C,IMUQIA)) P(IA)} (10)

I,

The prior is generated from the previous estimation of &
using (1) to estimate the absorption. Each per channel vari-
able is maximised when the difference is minimised between
(pe, In) and the measurements made in each channel. The
effect of the prior is to penalise the per wavelength deviation
of I from the the current estimate hence we can pose as the
minimisation:

c

A
I = argmin Z ({pe, In) — I(;)Q + Z (In—E [L\])Q
T

A

1D
The expected value of the spectral power distribution (SPD)
of I, written E [I,], is derived generatively from (1) using the
previous iterations’ concentration estimates. It is important to
note that the approximation of the Poisson distribution by the
Normal distribution for large counts could potentially allow
negative count values for each wavelength. To avoid this we
impose a non-negativity constraint on I} to prevent physically
impossible values. The full estimation and optimisation pro-

cess can be summarised as shown in Fig. 2.

E. Implementation Details

The optimisation of (11) is possible via a single linear
expression solving for I} on the left hand side below:

0 0 VE [I)]
I,
Pr,g,b I;\ = I (12)
g
0 Y I,

where I, I, and I, are the sensor measurements in each
channel and ~ is a regularisation constant. To prevent the
prior dominating the term we use v = 0.01, this value of y
was determined as effective experimentally via line search on
synthetic data sets. As y affects the expression of the prior it is
important that its value is not too small otherwise when solving
(12) the left hand side will be ill conditioned. Similarly, too
great a value will cause over fitting to the prior estimation
ignoring the RGB measurements. Since the left hand side of
(12) is constant over all iterations, a computationally efficient
approach is to reuse decompositions of the left hand side
matrix at each iteration. The two step estimation process of
alternatively estimating the latent multispectral data and then
the chromophone concentrations is illustrated in Fig. 3.

A fast non-negative least squares method is used to solve
(12) and also for the subsequent parameter estimation from the
estimated emission multispectral data [29]. Direct computation
using our method with on-the-fly optimisation yields frame
rates of 2.5 frames per second (720p), using a Surface Pro 3
2.3GHz 8GB RAM. However, the optimisation is deterministic
for a given illumination spectrum and camera sensor response

Voo : — .~ light source

vessels

Fig. 4: Our experimental simulation model comprising an
isotropic planar (40mm square) light source and a soft tissue
volume (100mm cube). Inset in the tissue are three parallel
blood vessels at constant depth. Photon trajectories are tracked
until they leave the simulation volume or arrive at the detector
(20mm wide square, parallel to, and 10mm away from, the
tissue surface).

and real-time performance can easily be achieved by using a
precomputed look up table (LUT) of all possible RGB values.
Using a LUT consisting of all possible 24bit RGB colours
(approx. 16 million) we were able to process endoscopic
images at video rate (over 30fps) using a serial implementation
requiring 270MB of RAM.

IV. EXPERIMENTS AND RESULTS

We report results for two types of validation, using sim-
ulated data and in vivo porcine data where we can see the
practical validity of the approach. We generated simulated data
to study the numerical stability and accuracy of our method in
controlled scenarios. Our real experimental validation utilises
data gathered in vivo from an animal experiment to evaluate
the performance of our method compared to Tikhonov regu-
larised estimation [24] and the result from using an endoscopic
MSI device [14].

A. Synthetic Data Generation

In lieu of high quality in vivo ground truth data we vali-
date our technique first using synthetic data generated from
measured optical characteristics of blood [7] and sub mucosa
[30]. For simulating the interaction of light and tissue, the
Monte Carlo for Multi-Layered media (MCML) simulation
[31] has been an established method for simulating light
transport through layered turbid media. To simulate tube like
vessels we use the Mesh-based Monte Carlo (MMC) [32]
because this develops a more expressive simulation framework
that allows 3D mesh based structures, as well as refraction
and reflection across boundaries of different refractive indices.
We simulated MSI data using MMC which was subsequently
filtered by applying known RGB camera spectral responses to
create RGB images. The digital phantom, shown in Fig. 4,
comprised a homogeneous block of soft tissue, bowel sub
mucosa, with three superficial vessels containing either oxy-
genated or de-oxygenated blood. The three blood vessels had
different uniform diameters of 2, 1 and 0.5 mm and the top
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Fig. 5: Top three rows: example synthetic RGB responses for
increasing levels of added noise, PSNR calculated with respect
to zero added noise data. Lower three rows: visualisation of
the mean absolute error in chromophore concentration for
our method, Tikhonov regularised estimation [24] and a full
multispectral approach [14].

edge of each vessel was at 0.1 mm below the surface of
the tissue. This depth was chosen to balance the obfuscating
effect of the surrounding soft-tissue volume while maintaining
reasonable detectability of the vessels. While this may seem
shallow, the high degree of scattering makes it increasingly
difficult to detect vessels embedded more than 2mm beneath
the surface. However, this is typical for MSI which is known
to be only capable of measuring a superficial layer of tissue.
The optical characteristics of blood and colonic sub-mucosa
were compiled from [7] and [30] respectively. The mesh was
made denser near the blood vessel boundaries for smoother
approximation of the curved vessel walls.

During MMC simulation, photons were generated at in-
tervals of 10nm across the visible range between 400nm to
900nm. To detect the backscattered light, the final direction
of travel for each photon was recorded leaving the bounds
of the meshed region. Photons that did not exit through the
side of the mesh that was illuminated were discarded as were
photons leaving at angles to the surface too oblique to be
detected by a detector placed at 10mm above the illuminated
surface. The simulated detector was placed close to the tissue
surface because the light exiting the tissue is highly diffuse
and placing the detector further from the tissue would have an
exponential penalty in simulation time.

Image data for each wavelength band were then generated at
the detector location. A total of 2 x 10° photons were generated
uniformly distributed across the illumination surface with

random initialisations. The number of photons was chosen by
following MMC examples and documentation, as well as, from
the practical constraint of the number of photons we could
simulate in 5 weeks of simulation time. To simulate MSI data,
we first filtered photons into spectral bands and then used the
incident angle at the detector to further filter photons according
to the camera model. Since, for computational reasons, the
detector in our simulation environment had to be close to
the tissue surface we simulated an orthographic camera. The
orthographic camera model also avoids angular bias found in
projective cameras, where light at the edge of the image exits
the tissue at a much shallower angle than that at the centre.
RGB images were generated by filtering the multispectral data
using filters corresponding to sensitivity spectra of an RGB
camera shown in Fig. 5.

B. Synthetic Results

We compare the results of our Bayesian estimation to
a Tikhonov regularised estimation [24] as well as a full
multispectral analysis [14]. The data used were the synthetic
three vessel data, with vessels containing either HbO and Hb.
We added zero mean normally distributed noise to the input
RGB and multispectral data at various levels to observe the
performance deterioration in the presence of measurement or
sensor noise. The results and examples from the RGB input
are shown in Fig. 5 and also shown numerically in Fig. 6.

On the estimation of individual concentration values for
HbO and Hb, our method performs close to the hardware
MSI method [14] and better than the Tikhonov method [24].
This constitutes a high degree of equivalent accuracy in
estimating THb. The SO, estimation is particularly sensitive
for Tikhonov estimation and the Bayesian method offers a
notable improvement. While the mean improvement in SOq
estimation error is close to 10% at low noise levels there
is a large reduction in the variance of this error. There is
still a sizeable short fall in the accuracy compared to the
hardware MSI. While not as capable as a multi-band approach
our method at least seems to be generally indicative of tissue
saturation and such relevant information may still be pertinent
clinically.

The simulated imaging process to generate MS data using
MC sampling is inherently noisy as it is the product of the
passage of a finite number of photons, although the framework
of [32] will eventually converge to the noise free result. Further
it is difficult to eliminate the contribution of haemoglobin
entirely when measuring the optical properties of tissue such as
those for the sub-mucosa used in our model, this can result in
a overly idealised ground truth haemoglobin distribution map,
for which we assume that the submucosa is entirely vacant of
HbO and Hb. These are likely the dominant factors for why
our reference method [14] does not achieve perfect results on
the synthetic data.

C. Results in the Presence of Calibration Noise

The proposed framework is fundamentally dependent on the
accuracy of the endoscopic sensor’s spectral sensitivity calibra-
tion. In practice, a high quality calibration can be performed
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Fig. 6: Left: mean squared error (MSE) in estimating HbO and Hb concentrations (g/litre) under additive noise on synthetic
data. NB numbers have been truncated for display but the variance is less than the mean error. Right: mean standard deviation
in absolute error against the synthetic ground truth for increasing noise levels. Comparing our method (Bayesian) with [24]

(Tikhonov) and [14] (Multispectral).
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Fig. 7: The impact of noisy sensor calibration on Bayesian
estimation is shown in this figure. The optimisation result
using 1000 randomly sampled noisy sensor calibrations for
10 concentration pairings, here the noise level is 39.9 dB
compared to ground truth.

using a monochromator and this would not need to be repeated
often but at some points dependent on sensor characteristics
and degradation over time [33]. Such a calibration can even
be performed during manufacturing and remain accurate even
for devices that are in regular clinical use [34], however,
it is worth investigating the effect of a poor calibration for
a more complete numerical understanding of our method’s
characteristics.

We chose to simulate incorrect calibrations for numerical
investigation. Practically these could arise if calibration is
performed by using low-cost solutions such as colour matching
on Macbeth colour charts with known reflectance [35]. Images
of such objects can be used to estimate the endoscopic sensor’s
response similarly to how geometric calibration is performed
[35]. Notably, calibration with a monochromator can achieve
much better accuracy when possible.

To assess the impact of poor calibration, we utilised re-
flectance spectra for 24 colour swatch chart [36] to simulate
a RGB camera response under additive zero mean Gaussian
noise. For each of the 24 swatches we generated a 256x256
patch measurement and then ran the calibration on the noisy
data. We performed 10000 synthetic calibrations to numer-
ically determine the distribution of calibration errors over
wavelength, using this distribution we generated realistic mis-
calibrated sensor response curves. We generated multispectral
data for 10 concentration pairings and then ran our method
using 1000 randomly sampled mis-calibrated sensor response
data.

We show the estimation for the 10 ground truth concentra-
tion pairings in Fig.7, for the calibration noise level of 39.9dB.
This was chosen as it was the point at which errors noise began
to be observable in the case of measurement noise. Visible in
the results is the distribution of the error such that for any
given ground truth value the errors are negatively correlated
when comparing HbO and HbO. This means that an incorrect
calibration would produce results that are still fairly reliable
for measuring the THb as this measure is based on the sum
of the two values. However, the SO, estimation is going to be
very sensitive to poor calibration data as the ratio of HbO to
HbO varies quite a lot. As such it would be important to use a
high accuracy method to capture camera spectral calibration,
such as that afforded by monochromator based methods.

D. In vivo Data Acquisition

To evaluate our method, we used data from a porcine study
where multispectral imaging was performed on tissue under-
going periods of artificially induced restricted blood flow [37].
The original procedure was undertaken with the assistance of
Northwick Park Institute for Medical Research. The surgical
procedure was conducted under UK Home Office personal
animal licence (PIL) No. 70/24843 and project licence (PPL)
No. 8012639.

The multispectral imaging hardware has been described
previously [37]. It comprised a 30° (Karl STORZ); a LCTF
(Varispec; CRi); 50mm focal length achromatic imaging lens
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Fig. 8: Left: In vivo experimental configuration for imaging a section of porcine bowel. Right: Comparison of the absolute
error for HbO to HbO concentration estimation, on in vivo data for our method and [24] estimation, against the multispectral

ground truth.

(Thorlabs) and monochrome camera (DCU223M; Thorlabs
Ltd., UK). Illumination was from a Xenon surgical light source
(Xenon 300; Karl STORZ). The camera and laparoscope were
held by adjustable arms whose pose could be locked in place to
avoid camera shake. Multispectral data were captured serially
in non-overlapping bands 10nm wide from 500nm to 620nm,
the integration time at the sensor was 200ms per band limited
capture, requiring in a total of approximately 7 seconds for a
full capture, after including filter switching and data readout
times. To compensate for the tissue motion during from the
long capture times for each complete multispectral capture, all
band limited image were registered after acquisition [17].

The experiment imaged a section of porcine small bowel
(45kg domestic white pig) under 4 different restricted blood
flow configurations induced by occluding vessels for up to 15
minutes with rubber shod clamps. Blood flow was potentially
restricted at two sites and 58 multispectral captures were made
with the blood flow either fully restricted (both sites clamped)
partially restricted (one site clamped) or unimpeded. Using the
method of [14] we created a ground truth total haemoglobin
estimation for each multispectral set, masking out regions
where the coefficient of determination (CoD) of this fit was
lower then 0.5. To create our input RGB data we composited
the multispectral data into a three channel image using a
known camera response curve. The imaging configuration can
be seen in Fig. 9, a section of bowel is exposed and some
vessels are clamped to restrict blood flow.

E. In vivo Results

We compare our Bayesian method described in this paper
and the Tikhonov regularised estimation against the multi-
spectral results and illustrate this in Fig. 8, 9 and 10. We
observed a strong correspondence between the multispectral
ground truth and both our method and Tikhonov regularised
estimation, however, our method is more accurate in correctly

estimating the ratio between the concentration of HbO to
Hb as shown in Fig. 8. The bias of the [24] estimation is
shown in the corresponding error histogram of Fig. 9 as twin
peaks either side of zero, there are similar much smaller peaks
visible in the error histogram for out method however most of
the mass for our methods error is concentrated around zero.
Numerically, we evaluate our method and [24] against the
result from [14] as we aim to closely approximate this result.
We measured the peak signal-to-noise ratio (PSNR) for our
method as 45.94+8dB for THb estimation, 28.64+3dB for SO,
estimation and 35.8+4dB for the overall raw Hb and HbO
concentration values. In contrast, the Tikhonov regularised
estimation yielded a PSNR of 38.2+2dB for THb estimation,
8.2+1dB for SO5 estimation and 16.8+1dB for the overall
estimation. As observed in the synthetic experiments, we see
a marked improvement in the accuracy of saturation estimation
for our method over the Tikhonov regularised approach. The
improvement in the THb estimation is less significant when
comparing against the multispectral result as ground truth. This
contrast in performance is shown in Fig. 10. We measured the
Pearson correlation coefficient’? of the haemoglobin concentra-
tions from our Bayesian method and the Tikhonov approach
[24] against the MSI data estimated using a hardware system
[14]. For our method we measured a correlation coefficient
of 0.996 and for [24] a correlation coefficient of 0.766. For
both, the confidence level on the correlation was above 99.9%
confidence level and sample sizes were greater than 3 x 107
data points. The stronger correlation for our method explains
why we observe a smaller error in saturation estimation in
comparison to the Tikhonov regularised estimation.

A comparison of the estimation errors for THb and SOs is
shown in Fig. 9, illustrated here is how the SO, estimation
error seems to be lower in areas corresponding to vasculature,

2calculated using MATLAB corrcoef function
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Fig. 9: Left: Error histograms for our method and [24] against [14] (used as ground truth) combined for HbO and Hb. Our
method’s error is more closely grouped around zero. Right example absolute error maps for the saturation estimation with
RGB view of the surgical site for reference, visible is the lower error in areas corresponding to vasculature (higher perfusion).
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Fig. 10: SO2 and THb maps corresponding to the four configurations of the in vivo experiments, clamping vessels leading to
either the left or the right of the bowel as viewed, green (+) corresponds to clamp open and red (—) corresponds to clamp
closed. Our method (Bayes) is shown with the multispectral method of [14] and Tikhonov regularised estimation [24]. Maps
of SO, distribution are displayed at the top and THb maps are displayed to the bottom, both overlaid on a reference RGB
view as visible in the left most column. For the SOy maps they have been overlaid by alpha blending using the THb as an
alpha value, regions are also highlighted corresponding to the part of the bowel with restricted circulation.
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and worse in regions where there is expected to be a lower THb
value. This is to be expected because when there are low con-
centrations of both chromophores, slight errors in estimation of
either can lead to a significant change in the ratio of one to the
other. The THb estimation for our Bayesian method showed
a small improvement compared to the Tikhonov regularised
estimation. For both the raw concentration values (HbO and
Hb) and the composite measures (THb and SOs), our method
produced a lower mean absolute error and the estimation error
for our method also had a lower variance, when comparing
against the Tikhonov approach.

It is possible to observe similar localisation patterns in the
saturation of blood within tissue in our results as to that of
hardware MSI analysis. In Fig. 10 highlighted are the parts of
the small bowel that correspond to the tops of blood vessels
that were either restricted or unimpeded, in the cases where
blood flow is restricted there can be seen a noticeable drop
in the oxygenation of these regions. While we have shown
that the result of our method is numerically similar to the
result from MSI, in Fig. 10 we can see how the visualisation
of the result from our method is also visually similar to the
visualisation of the MSI result.

V. DISCUSSION AND CONCLUSIONS

We have presented a framework for MSI using only a
limited number of wide-band measurements, which has the
potential to integrate within current endoscopic systems with
RGB sensors. Our algorithm is able to run at standard video
frame rate (24fps) and provide information on haemoglobin
concentrations within tissue in real-time. The results we have
shown are commensurate with those obtained through hard-
ware MSI and while our technique does not achieve the same
accuracy on simulated data, its potential for providing addi-
tional information within existing endoscopic imaging systems
could be clinically valuable. Additionally, while MSI using
higher numbers of wavelength limited acquisitions, achieves
better spectral discrimination, it suffers from misalignment in
the data cube when imaging dynamic tissue and our method
could be important in such applications.

One limitation of our method is that it requires the camera
and illumination source to be at a fixed distance from the tissue
surface because we use this assumption in order to simplify the
estimation term. We need to perform additional investigations
into the effect of this assumption. Speculatively, changing the
imaging distance would result in over and underestimation of
the concentration of chromophores within tissue. This would
arise from the illumination source not being equivalently
diffuse as the light leaving tissue. This could be compensated
in theory by modelling the relationship to depth and then
using computer vision for 3D reconstruction to inform our
estimation framework. As well as depth, surface normal infor-
mation, which could be obtained with dense 3D reconstruction
methods, may allow us to incorporate directional bias of light
leaving the tissue surface to further improve our technique.
An important note about our Bayesian framework is that
it can be extended to incorporate additional constraints. As
well as depth, other potential regularisation terms about local

spatial or temporal structure could be introduced. The current
implementation operates on a per-pixel basis but it is clear
that in endoscopic images neighbouring points on the tissue
surface are related and represent physiological structures like
blood vessels or tissues from different organs. Combining
information, for example from image segmentation, within
the framework could allow better regularisation and estimation
with multiple pixel measurements rather than the current single
measurement approach.

While our experiments have shown that the proposed
method is promising and can provide information comparable
to hardware MSI, it is important to note that additional
experimentation is necessary to understand both the quantities
we are trying to estimate and the clinical applications that may
benefit. We plan to carry out these studies both in controlled
experimental conditions and within the clinical setting to
further understand how our method may be clinically useful
during treatment.
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