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Abstract 

As part of the Carbon Capture and Storage (CCS) process, pipeline transportation is the safest 

and most economic option for delivering captured CO2 to a storage site. However, in the 

event of pipeline rupture an enormous mass of CO2 may be released very rapidly, presenting 

several risks to the pipeline and surrounding population including the significantly increased 

risk of brittle fracture in the pipe wall. The study of pressure variation and phase change in 

CO2 during pipeline blowdown can contribute to the understanding of fracture initiation and 

propagation, as well as downstream CO2 diffusion behavior. As part of the CO2QUEST 

project, a reusable, industrial scale pipeline experimental apparatus with a total length of 

258 m and the inner diameter of 233 mm was fabricated to study pure CO2 pipeline 

blowdown. A dual-disc blasting device was used to remotely control the opening of the 

pipeline. The instantaneous pressure response following release was measured with high 

frequency pressure transducers. Variation in fluid temperature at the top and bottom of 

pipeline was also recorded. Six groups of pure CO2 pipeline release experiments were 

conducted with initially gaseous and dense phase inventories with three orifice diameters 

(15 mm, 50 mm and Full Bore Rupture). The pressure undershoots, rebounds and quasi static 

pressures were observed during the release as result of the propagation of a series of 

expansion waves. The process of pressure drop and rebound was accompanied by the 

occurrence of gas-liquid two-phase flow. The complicated phase transitions were obtained 

during depressurization of gaseous and dense CO2 releases. 

Keyword: CO2 release, Pressure response, Phase transition, Large-scale pipeline blowdown. 
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1 Introduction 

Following the Copenhagen Climate Change Conference (2009) there is a broad political 

consensus to limit the rise in global temperatures to 2 °C above pre-industrial levels. This 

requires a 50-80 % reduction in CO2 emissions by 2050 [1]. Carbon Capture and Storage 

(CCS) is a process by which waste CO2 is captured from large emitters and stored 

underground, thus reducing direct emissions to the atmosphere and mitigating the 

environmental impact of fossil fuels [2].  

As a part of the CCS chain, pipeline transportation of CO2 from emitter to storage site is 

considered the safest and most efficient transportation option [3]. The large scale 

implementation of CCS will require large transportation networks, potentially between 

95,000 and 550,000 km of CO2 pipelines by 2050 [4]. Safety issues surrounding the operation 

of CO2 pipelines are expected to be complex compared to current practice [5,6]. Additionally, 

CO2 transmission pipelines may be expected to suffer from accidental releases caused by 

defects such as mechanical damage, corrosion, construction or material defects, soil 

movement or even operational mistakes in a similar fashion to hydrocarbon pipelines, for 

example [7].  

Understanding the processes occurring inside a CO2 pipeline during outflow is essential to 

investigating fracture propagation and atmospheric dispersion of the inventory [8-12]. For an 

initially high pressure inventory, whether gaseous, dense phase or supercritical, there is likely 

to be a complex phase-transition as CO2 decompresses during pipeline blowdown [13]. The 

rupture of a CO2 pipeline will result in a series of expansion waves that propagate into the 

undisturbed fluid in the pipe. Significant Joule-Thomson cooling associated with the rapid 



Page 4 of 35 

expansion of the inventory can result in very low and potentially harmful temperatures in the 

fluid and pipe wall [14]. The precise tracking of these expansion waves and temperature 

variations, and their propagation as a function of time and distance along the pipeline, is 

necessary to predict a pipeline’s propensity to fracture [15]. A pipeline failure (most 

commonly a puncture) may escalate to a fracture if the force acting on the defect overcomes 

the fracture toughness of the wall material. The fracture may be either in the ductile or brittle 

regime depending on the nature of the rupture [16]. 

In order to develop accurate models for predicting the depressurization and phase transition 

behavior during CO2 pipeline blowdown, several experimental research programs have been 

performed. Cosham et al. [17] reported three West Jefferson Tests conducted on behalf of 

National Grid at the Spadeadam Test Site to investigate ductile fracture propagation in 

pipelines transporting liquid or dense phase CO2. The depressurization of liquid or dense 

phase CO2 after a rupture was characterised by a rapid depressurization through the liquid 

phase, and then a long plateau. Clausen et al. [18] described the results of depressurizing 

during CO2 venting with an onshore 50 km long, 24 inch diameter buried pipeline from 

initially supercritical conditions. Pressure and temperature were measured at the two ends of 

the pipeline. According to experimental data at the first end location two-phase behavior was 

observed upstream the release for the first 2,5 hours and there was no indication of dry ice 

formation upstream the two release points. Cosham et al. [19] performed a program of shock 

tube tests with CO2 and CO2-rich mixtures in order to study depressurization behavior in the 

gaseous and dense phases. The researchers found that the plateau in the depressurization 

curve of dense CO2 and CO2-rich mixtures was longer than that of natural gas, gaseous CO2 
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and gaseous CO2-rich mixtures. Li et al. [20] developed a 23 m long circulation pipeline 

system with a 30 mm inner diameter to study the leakage behavior of high pressure CO2 flow. 

The pressure decrease in the pipeline was much larger for supercritical leakage due to the 

higher density than that of the gas-phase. Huh et al. [21] studied the severe pressure and 

temperature drops during the depressurization of dense CO2 in a 51.96 m long test tube with 

an inner diameter of 3.86 mm. It was found that the initial pressure drop was well estimated 

by OLGA for both pure CO2 and mixtures, but the numerical simulation did not provide 

reliable temperature drop predictions. Koeijera et al. [22,23] built a horizontal pipeline with a 

length of 139 m and an inner diameter of 10 mm in order to study the depressurization 

behavior of liquid CO2. The results showed that the pressure dropped rapidly at first and then 

levelled off. The rarefaction wave travelled along the length of the tube and was reflected at 

the closed end. DNV-GL [24] carried out the liquid CO2 depressurization experiments using a 

30 m long, 2 inch diameter stainless steel tube. The pressure and temperature evolution 

during blowdown was defined by the balance between mass leaving the system, internal 

processes such as liquid and vapor expansion, phase change and heat supplied by the 

surroundings. The COSHER joint industry project [25] employed a 226.6 m long pipeline 

loop formed from 219.1 mm diameter steel pipe and fed from both ends by a 148 m
3
 reservoir 

of CO2 to study pipeline depressurization and dispersion of initially dense phase CO2. A fast 

pressure drop to saturation conditions during CO2 release was observed after rupture. The 

minimum fluid temperature recorded was −17.8 
◦
C in the reservoir and −78 

◦
C in the 219.1 

mm pipeline loop. 
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This paper presents the results of pipeline blowdown experiments using a 258 m long, 233 

mm inner diameter pipeline containing CO2 at various initial conditions. Fluid pressures and 

temperatures in the pipeline were recorded. The experiments’ main objective was to improve 

the understanding of depressurization behavior and phase transition during the release of 

CO2. 

 

2 Experiments  

2.1 Experimental setup 

The main components of the experimental setup are shown in Fig.1. The apparatus consisted 

of a single pipeline with a length of 257 m and inner and outer diameters of 233 and 273 mm 

respectively, a dual-disc blasting pipe with a length of 1 m, two CO2 injection lines, a heating 

system and two data measurement systems. The main pipe was made of 16MnR steel, which 

had a minimum allowable temperature of -40 °C, whereas the dual-disc blasting pipe was 

made of grade 304 stainless steel and its minimum allowable temperature was -196 °C. The 

pipeline apparatus was designed to operate at a maximum pressure of 16 MPa. 24 concrete 

column foundations were built to support the pipeline at a height of 1.3 m above ground.  

The inventory temperature could be maintained or increased during charging or before 

experiments using a heating system made up of heating tape and a 50 mm thick thermal 

insulation layer mounted on the outer pipe surface, the tape was controlled via six 

temperature controllers. The heating tape power was 50 kW. The heating system was 

designed to vary the initial temperature of the inventory from 0 to 40 °C. 
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To open the pipeline and initiate experiments a dual disc blasting device is used. This device 

is 1 m long and consists of two rupture discs and two disc holders, a solenoid valve and two 

pipe sections (Section 1 with a length of 0.6 m; Section 2 with a length of 0.3 m) connected 

by a flange and bolts. A schematic of the dual-disc blasting device is shown in Fig. 2. The 

pipeline was charged with the appropriate mass of inventory for each experiment and the 

heating coils used to achieve the desired initial conditions. The pressure P2 in section I was 

maintained proportionally to the pressure P1 inside the main pipeline. To initiate the 

experiment, the pressure P2 in section I was rapidly raised, forcing the disc B to break, 

resulting in the near simultaneous rupture of disc A. Because the length of the dual-disc 

device (1 m) is much shorter than the main pipeline (257 m), its influence on pressure and 

temperature measurements in the main pipe can be ignored.  

The recoil-shock created when initiating full bore rupture (FBR) experiments was significant. 

A reinforced anchor device was designed and installed to hold the release end of the pipeline 

firmly in place, as shown in Fig. 3. The device consisted of steel frames, steel plate, and 

anchor bolts anchored firmly to the concrete foundation. The reacting force and frictional 

force of the reinforcement device could resist an acting force of more than 400 kN. 

2.2 Pipeline instrumentation 

Various instruments were installed along the pipeline, including 4 low frequency pressure 

sensors, 8 high frequency pressure sensors, 18 thermocouples on the upper half of pipeline, 6 

thermocouples on the bottom half of pipeline and 12 thermocouples on the outer wall of 

pipeline. Pressure change in the overall process was measured using PPM-S322G pressure 

transducers with a frequency response of 1 kHz and an accuracy of 0.25 %FS of full scale. 
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Pressure change at the beginning of release was measured using PPM-S116B-0EM pressure 

transducers with a frequency response of 100 kHz and an accuracy of 0.25 %FS of full scale. 

Temperature was measured using K-type thermocouples which had a response time of 

100 ms and a range of -200 °C to 1300 °C, and uncertainty of ±1 °C. The installing angle of 

measurement points are shown in Fig. 4. 

Data was recorded using two independent measuring systems, an NI cRIO-9025 system 

which was used to simultaneously sample 4 low frequency pressure sensors and all the 

thermocouples and an NI cDAQ-9188 system which was used to sample 8 high frequency 

pressure sensors. The NI cRIO-9025 system consisted of one 9025, four 9144 chasses and 

twelve 9219 modules for temperature and pressure signal acquisition. The 5 chasses were 

connected using ordinary internet access cable. The communication protocol used EtherCAT 

at 110 ms/sample to ensure synchronised data gathering. All of the data acquired would be 

cached in the host 9025. The NI cDAQ-9188 system consisted of two 9188 of 4 channels 

with a high-speed of 500 kS/s. LabVIEW software was used to transfer the data from the 

9025 or 9188 to a local computer by Ethernet. 

2.3 Experiments conducted 

In this paper, six groups of pure CO2 release experiments were performed to investigate 

depressurization behavior and phase transition during the release of CO2 from a pipeline. 

Each group used initially vapor or dense phase CO2. Three different orifice diameters were 

also used for each group of tests (15 mm, 50 mm and Full Bore Rupture). Thus six 

experiments in total were conducted. The initial experimental conditions of the six tests are 

presented in Table 1. 
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Table 2 reports the instruments from which data is available for the listed experiments, 

including instrument type, number and location.  

 

3 Experimental results 

In this section the results of six release experiments with three different orifice sizes (15 mm, 

50 mm and FBR) are described and the recorded pressure response and phase transition data 

are analyzed. In all the following figures a rightward pointing arrow ("→") indicates 

decompression wave propagation from the discharge end to the closed end of the pipe, while 

a leftward pointing arrow ("←") indicates decompression wave propagation from the closed 

end to the discharge end. The numbers above the arrows represent the times for the 

decompression wave to travel the length of the pipe and their propagation velocities in the 1st 

and 2nd periods. Three kinds of pressure response parameters are defined as follows: (1) The 

pressure drop amplitude (∆Pd) is the difference between the maximum pressure in front of the 

decompression wave and the minimum pressure behind the decompression wave (2). The 

pressure rebound amplitude (∆Pr) is the difference between the minimum pressure behind the 

decompression wave and the recovery pressure following depressurization (3). The 

quasi-static pressure (Pqs) is the recovery pressure following depressurization. P1, P2, P3, P4, 

P5, P6, P7, P8 and P9 in all figures indicate the pressures at different locations along the pipe. 

3.1 Gas phase tests 

3.1.1 Pressure response 

Fig. 5 shows the evolution of fluid pressure after rupture for tests 1, 2 and 3. The total 

depressurization times for each experiment are 1946 s, 159 s and 15 s respectively. It may be 
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observed for tests 1 and 2 that the pressure gradient along the length of the pipe is small 

during depressurization, this is not the case for test 3. 

In the magnified regions of Fig. 5(a) and (b), the pressure response processes recorded by P2, 

P5, P7 and P9 at the beginning of tests 1 and 2 are presented. In the 1st period of tests 1 and 2 

the decompression wave propagates from the orifice to the closed end at the local speed of 

sound in the inventory. Behind the decompression wave the inventory pressure drops rapidly. 

Following the pressure undershoot droplet formation and gasification causes the pressure to 

recover almost to the initial Pqs in both tests. ∆Pd and ∆Pr reduce greatly with the increase in 

distance from the measured point to the orifice. In the 2nd period of tests 1 and 2 the reflected 

decompression wave travels from the closed end of the pipe towards the rupture end, causing 

a further decrease in pressure from P9 to P2 in turn. The inventory achieves a second Pqs. ∆Pd 

and ∆Pr are fractionally greater with increasing distance from the orifice and the value of Pqs 

nearer the orifice was affected by the decompression wave and was below the overall Pqs. On 

the whole, with the decompression wave reflecting repeatedly, ∆Pd, ∆Pr and Pqs reduced 

gradually until the pressure drop and rebound inside the pipeline were no longer obvious. 

Comparing the pressure response parameters of tests 1 and 2, ∆Pd of the two were very close, 

but ∆Pr of test 2 (50 mm orifice) was smaller than that of test 1 (15 mm orifice). Pqs of tests 1 

and 2 reduced about 0.01 MPa and 0.11 MPa respectively following each passage of the 

decompression wave.  

Fig. 5 (c) shows the variation of fluid pressure with time for test 3. After rupture, the 

decompression wave propagates with an initial speed of 242.43 m/s. The intersection of curve 

1 with the pressure histories indicates the times at which droplets form at each location in the 
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gaseous inventory. ∆Pd from P2 to P9 decreased from 1.79 MPa to 0.62 MPa successively. 

After droplets formed the rate of pressure loss in the pipe decreased to about 2.47 MPa/s. The 

passage of the reflected decompression wave past each transducer, indicated by the 

intersection of the pressure histories with curve 2, caused an increase in the rate of recorded 

pressure drop.  

Fig. 6 shows the rate of pressure change with time in 1st period of tests 1, 2 and 3. For tests 1 

and 2, after undershoot the pressure change rates at P2, P5, P7 and P9 sharply increased to 

maximum values and soon returned to zero. This phenomenon is caused by droplet 

gasification. The minimum and maximum values of the pressure change rates decreased 

successively with increasing distance from the orifice. For P2, P5, P7 and P9, the amplitude of 

the pressure rise rate was much larger than the pressure drop rate and the duration time of the 

pressure rise was shorter than that of the pressure drop. Comparing the pressure change rates 

of tests 1 and 2, the minimum value of test 1 was smaller than that of test 2, and the 

maximum value of test 1 was much greater than that of test 2. For test 3, as there was no 

pressure rebound, the pressure change rate at P2, P5, P7 and P9 only dropped. For P2, P5, P7 

and P9, the amplitude of the pressure drop rate decreased successively and the duration time 

of the pressure drop became shorter with increasing distance from the orifice. 

3.1.2 Phase transition 

Fig. 7 plots the evolution of fluid properties on the pressure-temperature phase diagram for 

tests 1, 2 and 3. Upon rupture, the instantaneous pressure drop was accompanied by the 

formation of droplets which caused sharp temperature falls in each test. The high 

environment temperature made the droplets gasification rapidly and caused the pressure 
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rebound or stagnation. Due to the rapidity of this process it was not captured by the 

temperature thermocouples as their response time was too slow. In test 1 the overall 

temperature drop amplitude was not obvious due to the small orifice diameter. In test 2 the 

lowest temperatures recorded by T18 and T18d were -16 °C and -26 °C respectively. The 

lowest temperatures at the top and bottom of the pipe at locations 7.4 m, 54.2 m and 62.1 m 

from the orifice were similar and fell to 23 °C, 22 °C and 21 °C respectively. As indicated by 

the recorded thermodynamic trajectories of tests 1 and 2, no phase change was observed in 

the overall release process, but the instantaneous phase transitions should appear at the 

beginning of the releases. In test 3, the lowest values of T2, T2d, T4 and T4d dropped to 3 °C, 

0 °C, 5 °C and 2 °C when the pipeline pressure dropped to 1.56 MPa, and the lowest values 

of T16, T16d, T18 and T18d fell to - 56 °C, -42 °C, -64 °C and -69 °C when the pipeline pressure 

dropped to 0.23 MPa, which suggested that the gaseous CO2 at the pipeline end transformed 

to the gas-liquid phase in the last period of test 3. 

3.2 Dense phase tests 

3.2.1 Pressure response 

Fig. 8 shows the pressure evolutions for tests 4, 5 and 6. The total depressurization times of 

each experiment were 7300 s, 482 s and 40 s respectively. As shown in Fig. 10(a) and (b), the 

depressurization process for tests 4 and 5 are very similar. For test 4 and test 5, during phase I 

of depressurization a sharp decline in pressure is observed for both tests, lasting about 34 s 

and 4.7 s respectively. During phase II of depressurization, the inventories achieve saturation 

pressure (PS), initially at pressures of 5.08 MPa for test 4 and 5.02 MPa for test 5. Fluid 

pressures and temperatures then decline along the saturation line for duration times of circa 
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5838 s and 363 s respectively. When inventory properties reach the triple point pressure (PT) 

the 3rd phase of depressurization begins, this 3rd phase lasts about 1428 s and 119 s 

respectively for tests 4 and 5.  

As shown in the magnified regions of Fig. 8(a) and (b), the pressure drop processes of 

depressurization in phase I consisted of about 40 and 4 passes of the decompression wave for 

tests 4 and 5 respectively. With the propagation of decompression wave, the pressure 

fluctuation gradually weakened until it disappeared at the end of phase I. During the pressure 

response process of the 1st period of the dense tests there was an obvious slowdown between 

sharp decline and rapid rise in pressures compared to that seen in tests 1 to 3. Comparing the 

pressure response parameters of the 1st period of tests 4 and 5, ∆Pd of the two were similar, 

but ∆Pr of the former was higher than that of the later, and the Pqs of 9.04 MPa for test 4 was 

higher than the Pqs of 7.67 MPa for test 5.  

As shown in Fig. 8(c) for test 6 (FBR), during phase I of depressurization, the pressure inside 

the pipeline sharply dropped to the saturation pressure, the rate of pressure loss then slowed 

down. During phase II of depressurization a significant pressure gradient was recorded along 

the length of the pipe. In phase III of depressurization the rate of pressure drop increased due 

to the formation of dry ice near the closed end of the pipe. 

Fig. 9 shows the pressure change rate curve in 1st period of tests 4, 5 and 6. For tests 4 and 5, 

the minimum value of the pressure change rate decreased successively with increasing 

distance from the orifice. The maximum value of the pressure change rate at P2 was much 

smaller than that at P5, P7 and P9. For P5, P7 and P9, the amplitude of the pressure rise rate 

was much larger than that of the pressure drop rate, but it’s opposite at P2. The wide 
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fluctuations of the pressure change rate were caused by bubble nucleation. For teat 6, the 

pressure change rate curve in the 1st phase was similar to that for test 3. However, the 

amplitude of the pressure drop rate along the pipe was much greater for test 6 than for test 3, 

while the duration time of the pressure drop of test 6 was shorter than that of test 3. This 

suggested that the bubble nucleation rate was much greater than the droplet gasification rate. 

3.2.2 Phase transition 

Fig. 10 shows the evolution of fluid pressure and temperature plotted on the CO2 phase 

diagram for tests 4 to 6. Point A indicates the initial phase of each experiment, and the points 

B and C are the locations of phase changes. The low-response thermocouples couldn’t 

captured the instantaneous temperature change after the rupture in tests 4 to 6, which was 

similar to that in the gaseous CO2 releases. After the start of release, due to the low 

compressibility of dense CO2 the pressure inside the pipeline fell rapidly to the saturation 

pressure i.e. from point A to B, corresponded to phase I of depressurization. The fluid 

temperature drop was not large as the dense (liquid) CO2 couldn’t release its heat fast enough. 

During phase II of depressurization the saturation properties evolve from points B to C. Due 

to the large release rate the measured temperature inside the pipeline tended to shift away 

from the saturation temperature, indicating the fluid was superheated. At point C, the 

inventory reached the CO2 triple point pressure (0.52 MPa), the subsequent generation of the 

dry ice at the bottom of the pipeline made the flow phase change to gas-solid flow. For test 4, 

T2, T4, T16 and T18 started to deviate from the saturation line at the point B and T2d, T4d, T16d 

and T18d started to deviate from the saturation line at the point C .This result showed that the 

transition from gas-liquid phase CO2 to gaseous CO2 during phase II of depressurization 
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occurred first at the top of the pipe. The phase transition along the length of the pipeline was 

not significantly different during the small bore release. For test 5, recorded temperatures at 

T2, T4, T9, T18, T2d, T4d, T9d and T18d started to deviate from the saturation line when the 

respective pressures reached 4.96 MPa, 4.93 MPa, 4.90 MPa, 0.52 MPa, 1.42 MPa, 

1.36 MPa, 1.01 MPa and 0.52 MPa. This result showed that the gas-liquid phase CO2 near the 

orifice deviated from the saturation line and transformed into gas first, with the pressure in 

continuous decline eventually all the inventory in the pipe transformed into gaseous CO2. 

CO2 gas was observed at the top of the pipe first. For test 6, T2, T2d, T4 and T4d started to 

deviate from the saturation line when the pressure reached 0.69 MPa and T16, T16d, T18 and 

T18d started to deviate from the saturation line when the pressure reached 0.10 MPa. This 

result showed that the phase transition at the top and bottom of the pipe was similar during 

the full bore release due to the large release rate. The lowest temperatures of test 4, test 5 and 

test 6 were -53 °C, -66 °C and -72 °C respectively. This result indicates that lower minimum 

temperatures in the overall release process are reached with larger orifice diameters. 

4 Discussion 

In order to simulate an actual CO2 pipeline, a large-scale fully instrumented test pipeline with 

a total length of 258 m and an inner diameter of 233 mm was developed to study pressure 

responses and phase transitions of pure CO2 pipeline blowdown. The dual-disc blasting 

device was designed to made the release device safe, controllable and being capable of 

transient release. Such a large capacity pipeline was essential as it permitted shock tube 

depressurization tests of long enough duration to enable the capture of sufficient data for 

analysis, but they were difficult and expensive to operate. In addition, given the highly 
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turbulent flows expected during the depressurization tests, a sufficiently large diameter pipe 

was required in order to avoid complications associated with fluid/wall frictional heating 

effects [26].  

The mechanisms of pressure response were found in gaseous and dense CO2 releases from a 

pipeline, as shown in Fig. 11. This process involved detailed consideration of several 

competing and often interacting factors including heat and mass transfer, unsteady fluid flow 

and thermodynamics [27]. The heat transfer effects during the release consisted of the 

conductive heat transfer within the pipe wall (H1), the convective heat transfers between the 

flowing fluid and the pipe wall (H2), between the outside ambient and the pipe wall (H3), 

between the escaping fluid and the orifice (H4), and within the flowing fluid (H5). After the 

rupture, the pressure along the pipeline dropped quickly when the leading edge of 

decompression wave moved at the speed of sound at the initial conditions, then exponentially 

rebounded to a quasi-static level. The reasons of pressure rebound were the droplet 

generation and gasification for gas phase CO2 and the bubble nucleation for dense phase CO2 

respectively. The process of pressure drop and rebound was accompanied by the occurrence 

of gas-liquid two-phase flow. The gas-liquid two-phase transformed into the gas phase for 

gaseous CO2 depressurization process and the gas-liquid homogeneous phase for dense CO2 

releases respectively when the pressure rebound disappeared inside the pipe. The short 

duration time of pressure undershoot and rebound required the pressure sensors and the 

thermocouples with a higher frequency response and a higher accuracy for more reliable 

experimental results. The pressure sensors with a high-response frequency of 100 kHz could 

measure the pressure responses, but the thermocouples with a low-response time of 100 ms 
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didn’t captured the instantaneous temperature change. Therefore, the instantaneous phase 

transitions at the beginning of the releases couldn’t reflect on the pressure-temperature 

development plotted on the CO2 phase diagram. However, the high-response thermocouples 

with a very thin probe were expensive and easily damaged as result of the strict experimental 

conditions. In spite of this, the low-response thermocouples didn’t affect the analysis of the 

temperature development and the phase change in the whole process of CO2 release. 

The leakage in a CO2 pipeline could escalate to a propagating fracture if the force acting on 

the defect overcomes the fracture toughness of the wall material. The fracture may be either 

in the ductile or brittle regime depending on the nature of the rupture. The rupture or puncture 

of a CO2 pipeline results in a series of expansion waves which propagate into the disturbed 

fluid [16]. The accurate prediction of pressure response and phase transition following 

pipeline rupture are extremely important since this information dictates all the major 

consequences associated with such failure including fracture propagation and CO2 dispersion. 

The precise experimental tracking of these expansion waves and their propagation as a 

function of time and distance along the pipeline are extremely valuable to the development of 

a rigorous multiphase outflow model for predicting CO2 discharge rate and fluid state during 

pipeline failure.  

The experimental data can also provide the variation characteristics of the decompression 

speeds during the release for the fracture control design, which usually are used as input to 

the two curve model (TCM) together with the fracture propagation speed. In addition, it can 

be observed from the experimental analysis that the waveforms of the pressure response and 

the pressure change rate in gaseous and dense CO2 releases are significantly different due to 
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the different orifice diameters used. In the real-time monitoring of a CO2 pipeline, the leakage 

location and the leakage diameter size can be determined by the waveform characteristics of 

the pressure response and the pressure change rate. 

 

5 Conclusions 

This article has presented the results of an experimental study of pressure response and phase 

transition during pure CO2 pipeline blowdown. Experiments were conducted using CO2 in 

initially gaseous and dense phases with three different orifice sizes (15 mm, 50 mm and FBR) 

for a total of six experiments. From this experimental study selected conclusions are 

presented as follows: 

(1) In all experiments the rapid expansion of the high pressure CO2 at the orifice resulted in a 

decompression wave which propagated from the orifice to the closed pipeline end, where it 

subsequently reflected. Passage of the decompression wave through the inventory caused the 

pressure undershoot, rebound or slowdown successively, before quasi static pressures were 

achieved. Moreover, the nearer to the orifice the longer the quasi static pressure level was 

maintained. 

(2) In the gaseous CO2 releases, the pressure fall, rebound or slowdown was accompanied by 

droplet formation and rapid gasification. During the depressurization process, the CO2 phase 

was generally gaseous near the orifice. When the release diameter was increased, the 

recorded variation in inventory pressure and temperature would closely follow the saturation 

line, the gas-liquid CO2 would appear near the pipe end and the lowest temperature of the 

CO2 at the bottom of the pipe was lower than that at the top. 
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(3) In the dense CO2 releases, the pressure undershoot, rebound or slowdown occurred as the 

dense phase CO2 transformed into a gas-liquid CO2 mixture. With larger orifice diameters, a 

greater proportion of inventory in the pipeline remained in the saturation state and the lowest 

temperature achieved in the overall release process was lower. When the pressure fell to the 

CO2 triple point, the CO2 phase was mainly gas-solid with dry ice forming at the bottom of 

the pipeline. 
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Figures 

 

 

(a) Schematic diagram 

 
(b) Photograph 

Fig. 1 Schematic and scene graph of experimental apparatus. 
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Fig. 2 Schematic of dual-disc blasting device. 
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(a) Schematic diagram 

 

(b) Photograph 

Fig. 3 Illustration of the reinforcing device. 
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Fig. 4 Measurement point locations.  
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(a) Test1-15 mm orifice 

 

(b) Test2-50 mm orifice 

 
(c) Test3-FBR 

Fig. 5 Pressure evolutions of the gaseous CO2 release experiments with three different 

orifices (15 mm, 50 mm and FBR).  
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(a) Test1-15 mm orifice 

 

(b) Test2-50 mm orifice 

 

(c) Test3-FBR 

Fig. 6 Pressure change rate curve in 1st phase of the gaseous CO2 release experiments with 

three different orifices (15 mm, 50 mm and FBR). 
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Fig. 7 Pressure-temperature development with three gaseous CO2 release experiments. 
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(a) Test4-15 mm orifice 

 

(b) Test5-50 mm orifice 

 

(c) Test6-FBR 

Fig. 8 Pressure evolutions of the dense CO2 release experiments with three different orifices 

(15 mm, 50 mm and FBR). 
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(a) Test1-15 mm orifice 

 
(b) Test2-50 mm orifice 

 

(c) Test6-FBR 

Fig. 9 Pressure change rate curve in 1st phase of the dense CO2 release experiments with 

three different orifices (15 mm, 50 mm and FBR). 
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Fig. 10 Pressure-temperature development with three dense CO2 release experiments. 
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Fig. 11 Schematic of pressure response process in gaseous and dense CO2 releases. 
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