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This study shows the therapeutic outcome of Photochemical Internalisation (PCI) in prostate cancer
in vitro surpasses that of Photodynamic Therapy (PDT) and could improve prostate PDT in the clinic,
whilst avoiding chemotherapeutics side effects. In addition, the study assesses the potential of PCI with
two different photosensitisers (TPCS2a and TPPS2a) in prostate cancer cells (human PC3 and rat MatLyLu)
using standard 2D monolayer culture and 3D biomimetic model. Photosensitisers were used alone for
photodynamic therapy (PDT) or with the cytotoxin saporin (PCI). TPPS2a and TPCS2a were shown to be
located in discrete cytoplasmic vesicles before light treatment and redistribute into the cytosol upon light
excitation. PC3 cells exhibit a higher uptake than MatLyLu cells for both photosensitisers. In the 2D
model, PCI resulted in greater cell death than PDT alone in both cell lines. In 3D model, morphological
changes were also observed. Saporin-based toxicity was negligible in PC3 cells, but pronounced in
MatLyLu cells (IC50 ¼ 18 nM). In conclusion, the study showed that tumour features such as tumour cell
growth rate or interaction with drugs determine therapeutic conditions for optimal photochemical
treatment in metastatic prostate cancer.
Crown Copyright © 2017 Published by Elsevier Ireland Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
Introduction

Prostate cancer is the most common type of cancer affecting
males and 4th leading cause of death from cancer [1]. Radical
therapies can have significant side effects, especially in terms of
incontinence, sexual function, and bowel problems. In addition, a
randomised study of menwith localised prostate cancer showed no
significant difference in overall or prostate cancer specific mortality
between men who underwent radical surgery or observation only
[2]. There is great interest therefore in the development of focal
treatments which can treat the more significant cancers whilst
sparing healthy prostate tissue.

Both Photodynamic Therapy (PDT) and Photochemical Inter-
nalisation (PCI) are light-based focal therapies that use photo-
sensitisers (PS) which upon interactionwith molecular oxygen, and
k (A. Martinez de Pinillos
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irradiation with light of a specific wavelength, induce generation of
reactive oxygen species (ROS). These will act on organic structures,
lipid membranes, cellular organelles, ultimately causing cell death.
In contrast, the low PS and light dose used in PCI treatment are
designed to be sub-lethal since disruption of endolysosomal
membranes is not particularly cytotoxic. The goal of PCI therefore is
to enable the release of drugs that have been endocytosed and
entrapped in such intracellular compartments so that they are not
subject to degradation in mature lysosomes and can reach their
intended intracellular target [3]. To achieve this, PCI requires
amphiphilic photosensitisers which can localise in the endosomal
membrane after being internalised by cells via adsorptive endo-
cytosis so that a photooxidative effect can be exerted in the
membrane, leading to its rupture [4e6]. Features of both TPPS2a
and TPCS2a fulfil these requirements.

A number of different chemotherapeutic/photosensitiser com-
binations have been assessed in preclinical and clinical studies for a
range of different cancers [3,4,7]. The ribosome inactivating pro-
teins (RIP) type 1 toxins, gelonin and saporin, have been used as
ccess article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/81675728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by/4.0/
mailto:a.martinezdepinillos.12@ucl.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.canlet.2017.02.018&domain=pdf
www.sciencedirect.com/science/journal/03043835
www.elsevier.com/locate/canlet
http://dx.doi.org/10.1016/j.canlet.2017.02.018
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.canlet.2017.02.018
http://dx.doi.org/10.1016/j.canlet.2017.02.018


A. Martinez de Pinillos Bayona et al. / Cancer Letters 393 (2017) 68e75 69
model therapeutics for PCI in several studies [8e14]. Both drugs
have been efficiently delivered in vitro and in vivo, resulting in an
improved outcome compared to PDT. Recently a first-in-man clin-
ical trial has been published, successfully delivering bleomycin
when combined with Amphinex®, which is based on TPCS2a, the
same photosensitiser tested herein [15].

In the present study, the cytotoxic agent saporin was chosen for
the PCI combination experiments. It is a large (30 kDa) RIP 1, which
lacks the lectin B-chain that facilitates endocytosis of RIP 2 by cells
such as ricin [16]. Therefore, despite the high enzymatic activity
described for this family of enzymes, saporin is not able to interact
efficiently with cytosolic ribosomes owing to endolysosomal
sequestration.

PDT is currently being investigated for treatment of prostate
cancer [17,18], where focal illumination of tumour is achieved using
an implanted array of fibre-optic catheters coupled to a laser of the
appropriate wavelength. However, laser light-induced damage to
nerves, urethra, rectum andurinary sphinctermay still occur [19,20].
The first-in-man clinical PCI dose-escalation study published in 2016
[15] indicated enhanced tumour selectivity of PCI over PDT for head
and neck tumours, most likely due to lack of significant adverse ef-
fects in PCI. If these findings could be replicated in the prostate, side
effects could be further ameliorated. Since the technology required
for PCI is very similar to PDT, apart from the addition of a chemo-
therapeutic, PCI in the prostate should be technically feasible.

The aim of this study is to investigate the effect of PCI in prostate
cancer in vitro using standard 2-dimensional (2D) and a 3-
dimensional (3D) biomimetic collagen hydrogel that will mimic
biological conditions more realistically [21]. In addition, disulfo-
nated tetraphenyl porphyrin (TPPS2a) was compared to its chlorin
analogue (TPCS2a). Both PS have two sulfonate groups substituted
on adjacent phenyl rings which impart amphiphillic properties to
these compounds, as required for PCI [3]. In our study, two prostate
cancer cell lines were used: firstly, human PC3 cells which have
high metastatic potential and have been used in advanced prostatic
cancer studies [22]. Secondly, a rat line MatLyLu, which has previ-
ously been used for syngeneic tumour rat model studies [23,24].

Material & methods

Cell lines and cell culture

PC3 (grade IV human prostate adenocarcinoma, androgen-independent) and
MatLyLu (rat prostate carcinoma, androgen-independent). Both cell lines were
routinely grown in RPMI 1640 containing L-glutamine, 10% Fetal Bovine Serum, 1%
Penicillin-Streptomycin; at 37 �C, 5% CO2.

Chemicals and drugs formulation

TPPS2a, tetraphenyl disulfonated porphyrin, Frontier Scientific Inc. US: a stock
solution was prepared by dissolving the powder in DMSO. TPCS2a was kindly
donated by PCI Biotech AS (Oslo, Norway). Saporin (Sigma Aldrich) was dissolved in
PBS. The molecular weights of the chlorin (MWT ¼ 777) and porphyrin PS are
essentially the same, with the chlorin (being a reduced porphyrin) having two more
hydrogen atoms present on the macrocycle than the porphyrin. All drug solutions
were administered in complete cell media, at 0.4 mg/ml and 2 nM.

Conjugation of Alexa-Fluor488® to Saporin and purification

Alexa-Fluor488® was conjugated to Saporin according to a protocol from Mo-
lecular probes labelling kits (ThermoFisher Scientific, Cat. Number A 20000). Con-
jugate concentration was obtained using UV-visible absorbance measurements at
280 nm (Saporin) and 495 nm (Alexa-Fluor488®) in an ELX800 plate reader (BioTek
Instruments, Inc., Bedfordshire, UK).

Light source

PDTand PCI studies were conducted using a LumiSource® (PCI Biotech, Norway),
flat-bed lamp system composed of four fluorescence tubes with peak emission at
420 nm and 7 mW/cm2 output. Fluorescence redistribution studies followed on-
stage illumination with an inverted fluorescence microscope equipped with a blue
diode laser module at 405 nm.
2-Dimensional studies

Cells were seeded directly onto 96-well plates. PC3 cells were seeded at 10,000
or 5000 cells/well for 24 or 96 h following light treatment experiments; MatLyLu
cells were seeded at 1000 or 600 cells/well for 24 or 48 h following light treatment
experiments.

Fabrication of the collagen 3-dimensional hydrogels

Gels were prepared using 80% v/v Type I rat tail collagen (2 mg/ml in 0.6% acetic
acid) and mixed with 10% v/v Minimum Essential Medium (MEM) 10� (Sigma
Aldrich). This solution was then neutralised using 1:10 and 1:100 dilutions of So-
dium Hydroxide. The neutralised mixture was added to 10% v/v cell suspension.
100 ml of the mixturewas added to individual wells of 96-well plates. Thewell plates
were incubated for 5 min at 37 �C and 5% CO2 for collagen to gel; culture media was
then added.

Light treatment of TPPS2a, TPCS2a and saporin in vitro

Cells were incubatedwith a combination of either TPPS2a or TPCS2a, with saporin
for 24 h and then washed with PBS and fresh cell medium without the photo-
sensitiser was added. Four hours later, excitation of photosensitisers was carried out
for 3 or 5 min (1.3 and 2.1 J/cm2 respectively). All experimental procedures were
carried out under low light conditions.

Cytotoxic effects of photochemical internalization

MTT assay [3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide] (Sigma
Aldrich M2128) was used to assess viability. Cell media was replaced with a solution
of 1 mg/ml MTT either at 24, 48 or 96 h after light treatment. The plates were then
returned to the incubator for 1.5 h before dissolving formazan crystals in 100 ml
DMSO. Absorbance at 570 nm was recorded using ELX800 plate reader (BioTek In-
struments, Inc., Bedfordshire, UK).

Viability staining

A LIVE/DEAD® Cell Imaging Kit (488/570, Thermofisher Scientific) was used to
assess cell death in 3D hydrogels. Viable cells relate to the conversion cell-permeant
calcein AM to intensely green fluorescent calcein. Culture media was removed from
the wells and gels were incubated with dead/live imaging kit for 15 min, washed
three times in PBS and imaged and analysed using an Olympus Fluoview 1000
confocal laser-scanning microscope with Image J. Cell viability was observed
comparing green fluorescence channel and transmitted light.

Intracellular localisation of photosensitiser & Saporin-Alexa-Fluor488®

Both PC3 and MatLyLu cells were seeded onto glass bottom dishes FluoroDish™
(World Precision Instruments, Inc.) at 9000 cells/dish and 2000 cells/dish
respectively.

Cells were incubated with TPPS2a or TPCS2a alone or combined with Saporin-
Alexa-Fluor488® for 24 h and then washed with PBS and fresh cell mediumwithout
the photosensitiser was added. A 75 nM solution of LysoTracker® Red DND-99 in
phenol red free cell media was added 30 min prior to microscope imaging. Four
hours after washing off the drugs, fluorescence of Saporin-Alexa-Fluor488® was
imaged using an inverted Olympus Fluoview FV1000 confocal microscope using a
488 nm laser. Additionally, a 569 nm laser was used to image LysoTracker® RedDND-
99. Image analysis was performed with Fluoview FV1000 (Olympus) and Image J
software.

TPPS2a & TPCS2a uptake in PC3 & MatLyLu cells

PC3 and MatLyLu cells were seeded onto 96-well plates at a cell seeding density
of 10000 cells/well or 1000 cells/well respectively and incubated for 24 h with
increasing doses of either TPPS2a or TPCS2a (0.2e0.8 mg/ml). Plateswere thenwashed
once with PBS and phenol red free fresh cell media was added into the wells.
Fluorescence emission was measured using a LS50B PerkineElmer spectrofluorim-
eter (PerkineElmer, Beaconsfield, UK), exciting at 420 nm and detecting at 650 nm.

Fluorescence microscopy of TPPS2a and TPCS2a

Subcellular localisation and redistribution of photosensitiser molecules upon
light administrationwas assayed using an Olympus IMT-2 epi-fluorescence inverted
microscope (20� magnification objective, 250 � 250 micron scale). PC3 and Mat-
LyLu cells were seeded onto glass bottom dishes FluoroDish™ (World Precision
Instruments, Inc.) at 9000 cell/dish and 2000 cell/dish respectively. A 24-
h attachment and growth period was allowed before incubating the cells for 24 h
with either TPPS2a or TPCS2a in culture media. Dishes were then washed off once
with PBS and phenol red free media was added.

Cell recovery was allowed for a further 4-h period prior to irradiation of pho-
tosensitisers (0.35 mg/ml TPPS2a or TPCS2a) “on stage” using a 2 mW 405 nm blue
diode laser module (Thorlabs Inc.) coupled to a liquid light guide. The microscope
was attached to a 512� 512 pixel cooled charge-coupled device (CCD) camera (PIXIS
512F, Princeton Instruments Inc.), used to record fluorescence images using a
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660 nm bandpass detection filter (Omega Optical Inc.). Short exposure times of 2 s
were used to record nascent fluorescence images. Images were obtained at different
time-points following further on-stage irradiation to image the photo-induced
redistribution of TPPS2a or TPCS2a.

Statistical analysis

Experiments carried out in 96-well plates were averaged across 16 wells and
performed in triplicate. Data were analysed using two-way ANOVA and Bonferroni
post hocmultiple comparison testing using Prism software version 6. Error bars from
the mean show þ/� standard deviation (SD). A minimum significance level of
P < 0.05 was used for all statistical tests.

To test for a synergistic interaction between the two separate therapies applied,
we used the following equation:

a ¼ ½%VðPDTÞ � %VðcytotoxinÞ�
%VðcombinationÞ

where in the numerator %V is the percentage viability for each separate therapy (i.e.
PDT and the application of the cytotoxin), and % V in the denominator is the per-
centage viability observed following the PCI combination treatment [25,26]. If a > 1
then a synergistic effect has been observedwhereas an antagonistic effect is denoted
by a < 1. Τhis analysis has been used previously by others to identify synergistic
effects in PCI [26].

Results

Photosensitiser uptake in PC3 and MatLyLu cells

The intensity of characteristic photosensitiser fluorescence was
used as an estimate of intracellular uptake. Cellular fluorescence in
PC3 and MatLyLu whole-cells increased with the PS dose in both
cell lines, and a linear dose-dependency for both photosensitisers
in PC3 and MatLyLu cells was seen (Fig. 1). After 24 hr-exposure to
increasing concentrations of drug solutions, uptake was up to 2.3-
fold higher in PC3 than MatLyLu cells (Fig. 1). Significant differ-
ences were also found between the lowest and highest doses in
nearly all cases within each cell line (p < 0.001). Comparing the
fluorescence levels for the photosensitisers in each cell line,
administration of TPCS2a yielded higher fluorescence in both cell
lines by approximately a factor of two compared to TPPS2a at the
same dose [25].

Comparison of the effect of PDT and PCI on prostate cancer cell
viability in a 2D environment

A significant reduction of cell viability (p < 0.001) was observed
when human PC3 and rat MatLyLu prostate cancer cells were
Fig. 1. Uptake of TPPS2a & TPCS2a in PC3 and MatLyLu cells. PC3 and MatLyLu cells were e
uptake was related to fluorescence emission.
treated with PDT, regardless of the photosensitiser used (Fig. 2). In
the rat model cell viability was measured up to 48 h after light
treatment (Fig. 2D). Furthermore, the difference between cell death
after PDT and PCI was synergistic between PDT and saporin
(Fig. 2AeD).

Comparing PCI and PDT at 96 h (see Table 1) there is a 3-fold
enhancement in cytotoxicity - for PDT the viability is 64% and for
PCI the viability is down to 19% for TPCS2a-even though saporin
alone only elicits a 10% reduction in cytotoxicity. Using the equation
for assessing synergy described in Materials &Methods, values of a
were calculated as 2.9 and 3 at 96 h for TPPS2a and TPCS2a. These
values exceed unity which is consistent with a synergistic com-
bined therapeutic responsewhich we attribute to PCI. Using 24 h to
measure viability the difference is less pronounced yet still signif-
icant, with a at 1.4 and 1.5 for TPPS2a and TPCS2a.

The MatLyLu cells showed much higher sensitivity to saporin
alone than PC3 cells, so we therefore reduced the saporin dose in
order to keep the dose sub-lethal (Fig. 2C and D). Due to the quicker
MatLyLu cell doubling time compared to PC3 cells, seeding was
restricted to 48 h post-light to ensure that the MTT viability assay
was useable. Photosensitiser doses for the MatLyLu cells were
higher than that for the PC3 cells to achieve a comparable effect. As
with the PC3 cells, PCI resulted in greater cell death compared to
PDT, by a factor of 3.5 when measured 96 h after light treatment
(Fig. 2B), giving an a value of 1.3 at 24hr.

In addition, cell killing seen between 24 and 96 h in PC3 cells
was significantly higher in PCI than PDTgroups (Fig. 2A and B). Both
photosensitisers showed a similar biological activity in PC3 cells
(see summary Table 1). The effect of PDT and PCI in a 3D model was
then investigated.

Comparison of the effect of PDT and PCI on prostate cancer cells
seeded in a biomimetic 3D models

Cell viability in collagen hydrogels was observed staining with
calcein to assess for cell viability through the emission of green
fluorescence; unstained dead cells appear as black spots (Fig. 3). In
keeping with the results from our 2D in vitro experiments, we
found a significant reduction of cell viability in cells treated with
PDT (Fig. 3C and H) and PCI (Fig. 3E and J). PCI resulted greater cell
death than PDT, regardless of which photosensitiser was used
(Fig. 3E and J). In addition, changes in cell morphology were seen
after exposure to light (Fig. 3L). Non PDT- or PCI- treated cells
xposed to increasing doses of photosensitiser (0.2 mg/ml e 0.8 mg/ml) during 24 h and



Fig. 2. Reduction of Cell viability of PC3 and MatLyLu cells upon exposure to PDT & PCI. (A, B) Relative cell viability of PC3 cells following incubation to 0.2 mg/ml TPPS2a or
TPCS2a alone (PDT) or combined with Saporin 2 nM (PCI) during 24 h and posterior illumination during 3 min. Cell viability was measured through the MTT assay either 24 h (A) or
96 h (B) after photosensitiser light-excitation. (C, D) Relative cell viability of MatLyLu cells following incubation to 0.4 mg/ml TPCS2a alone (PDT) or combined with Saporin 20 pM
(PCI) during 24 h and posterior illumination during 3 min (1.3 J/cm2). Cell viability was measured through the MTT assay either 24 h (C) or 48 h (D) after photosensitiser light-
excitation.

Table 1
Summary of cell viability after PDT & PCI in 2D models in vitro.

PC3 cells MatLyLu cells

24 h Saporin 90% ± 9 24 h Saporin 88% ± 4.7
TPPS2a PDT 78% ± 12.4 TPCS2a PDT 70% ± 16.8

PCI 52% ± 7.5
TPCS2a PDT 87% ± 5 PCI 48% ± 10.6

PCI 54% ± 7.8
96 h Saporin 85% ± 8.3 48 h Saporin 83% ± 5

TPPS2a PDT 64% ± 13.8 TPCS2a PDT 71% ± 19.2
PCI 19% ± 6.6

TPCS2a PDT 67% ± 9.9 PCI 47% ± 16.5
PCI 19% ± 8.7
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appear as elongated (Fig. 3A, B, D, F, G and I) as opposed to treated
cells (Fig. 3C, E, H and J) which adopted a rounded shape, suggesting
non-viability (see detailed Fig. 3K and L).

Based on the findings from both 2D and 3D cell viability studies,
the results show that PCI effect is superior to that exerted by PDT, as
the combination of saporin and photosensitiser is synergistic
(Fig. 2).
Subcellular localisation of TPPS2a and TPCS2a before and after light
treatment

TPPS2a and TPCS2a appear as discrete granules in the cytoplasm
when endocytosed by either PC3 orMatLyLu cells (highlighted with
red arrows in Fig. 4), consistent with the endolysosomal local-
isation required for PCI. Exposure of cells to light for 2 s needed to
acquire these images was not sufficient to perturb the nascent
distribution of photosensitisers and lead to reductioneoxidation
reactions characteristic of PDTand consequently PCI (Fig. 4A and D).
However, upon longer illumination (shown up to 3 min),
relocalisation of these cytosolic structures was seen (Fig. 4C and F).
We interpret this as a photo-induced disruption of endolysosomes
where photosensitisers are initially localised, into the cytosol
which results in a more diffuse intracellular fluorescence pattern.
The intracellular dispersal of the fluorescence also leads to a lower
apparent intensity or ‘dissipation’ of the fluorescence. Intermediate
micrographs taken 1 min post illumination (Fig. 4B and E) show the
beginning of the redistribution process, where both intact and
disrupted vesicles co-exist, inconsistent with a photobleaching
process.

Despite the comparable uptake of TPPS2a in PC3 and TPCS2a in
MatLyLu cells (Fig. 1), the latter resulted in significantly brighter
fluorescence (Fig. 4A and B). This greater intensity could also be due
to the higher fluorescence efficiency yield [27].

Saporin-Alexa-Fluor488® subcellular localisation & redistribution
upon light excitation

In the present study, we administered saporin labelled with the
fluorescent dye Alexa-Fluor488® either alone or combined with
TPPS2a. Upon uptake in PC3 cells, Saporin-Alexa-Fluor488® forms
discrete cytosolic vesicles similar to the above described for TPPS2a
in PC3 and TPCS2a in MatLyLu (Fig. 5A, C and E). Illuminationwith a
405 nm laser for 1 min showed dispersal of the fluorescence only if
the labelled toxin was combined with the mentioned photo-
sensitiser (Fig. 5D). The absorption of both porphyrins and chlorins
is characterised by a very intense band around 400 nm (Soret band)
[27]; therefore, wewould expect efficient excitation of TPPS2a upon
exposure to the 405 nm laser. Some co-localisation was found be-
tween the green fluorescence of Alexa-labelled saporin located in
cytosolic compartments (Fig. 5E) and lysosomes (Fig. 5F), using co-
excitation of lysotracker red (Fig. 5G). Subcellular localisation and



Fig. 3. PDT & PCI in PC3 cells seeded in 3D collagen hydrogels. Fluorescence microscopy of PDT and PCI treated PC3 cells in 3D cultures. (A) PC3 control cells. (B) TPPS2a (0.2 mg/
ml), 96 h after no light conditions. (C) TPPS2a (0.2 mg/ml) 96 h after 5 min light (2.1 J/cm2) (PDT). (D) TPPS2a (0.2 mg/ml), Saporin (2 nM), 96 h after no light conditions. (E) TPPS2a
(0.2 mg/ml), Saporin (2 nM), 96 h after 5 min light (2.1 J/cm2) (PCI). (F) Saporin (2 nM), (K) higher magnification of (F). (G) TPCS2a (0.2 mg/ml), 96 h after no light conditions. (H)
TPCS2a (0.2 mg/ml) 96 h after 5 min light (2.1 J/cm2) (PDT), (L) higher magnification of (H). (I) TPCS2a (0.2 mg/ml), Saporin (2 nM), 96 h after no light conditions. (J) TPCS2a (0.2 mg/ml),
Saporin (2 nM), 96 h after 5 min light (2.1 J/cm2) (PCI). Scale bars shown as 200 mm.

Fig. 4. Subcellular localisation of TPPS2a & TPCS2a in MatLyLu and PC3 cells. Optical microscopy of TPPS2a & TPCS2a in PC3 and MatLyLu cells. (A) TPCS2a (0.35 mg/ml) in MatLyLu
cells prior to light-excitation. (B) TPCS2a (0.35 mg/ml) in MatLyLu cells 3 min post light-excitation. (C) TPPS2a (0.35 mg/ml) in PC3 cells prior to light-excitation. (D) TPPS2a (0.35 mg/ml)
in PC3 3 min post light-excitation. Scale bars shown as 50 mm.

A. Martinez de Pinillos Bayona et al. / Cancer Letters 393 (2017) 68e7572



Fig. 5. Saporin-Alexa-Fluor488® subcellular localisation & redistribution upon excitation of TPPS2a. Fluorescence microscopy of Saporin-Alexa Fluor488® in PC3 cells. (A)
Saporin-Alexa Fluor488® (400 nM) prior to illumination with 405 nm laser. (B) Saporin-Alexa Fluor488® (400 nM) post exposure to 405 nm laser. (C) Saporin-Alexa Fluor488®

(400 nM) and TPPS2a (0.4 mg/ml) prior to illumination with 405 nm laser. (D) Saporin-Alexa Fluor488® (400 nM) and TPPS2a (0.4 mg/ml) post exposure to 405 nm laser. (E) Saporin-
Alexa Fluor488® (400 Nm). (F) LysoTracker® Red DND-99 (75 nM). (G) Merged Saporin-Alexa Fluor488® (E) & LysoTracker® Red DND-99 (F). Scale bars shown as 50 mm.
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redistribution of labelled saporin when co-administered with
TPCS2a were also observed (data not shown).

Discussion

Previous in vitro studies have compared PCI-induced cytotox-
icity using a variety of drugs and photosensitisers with the purely
photooxidative effect caused by PDT [9,28e30]. PCI has also
recently been tested in a range of human and non-human bladder
cancer cell lines [31] with a view for using PCI for treatment of
tumours in the bladder, which underlines the interest in urological
applications of PCI. A study on the uptake of TPCS2a in orthotopic
bladder tumours in rats has also been carried out, prior to PCI
studies [32]. As regards prostate cancer, very few studies have been
conducted on PCI involving either androgen dependent cells
(LnCaP) [12] or androgen independent cells with moderate meta-
static potential (DU145) [12,33,34]. Our study is the first report on
PCI-treated highly metastatic, androgen independent prostate
cancer models, PC3 and MatLyLu. The latter will pave the path for
ongoing investigations in a rodent model.
The examination of the efficacy of PCI in our prostate carci-
noma cells for delivery of saporin showed a considerable
enhancement in cytotoxicity, especially human PC3 cells in the 2D
model. We used the RIP 1 inhibitor saporin as a model chemo-
therapeutic agent. Although it is relatively large, it does serve as a
basis for comparison with bleomycin which was used in the
clinical study, and larger chemotherapeutics including nano-
medicines which are all prone to endolysomal entrapment and
degradation, for which PCI is potentially suitable. Our results
demonstrated that PCI in PC3 cells elicits a significantly thera-
peutic outcome compared to that exhibited by PDT (increase by
3.5-fold). With the MatLyLu cells, PCI was less effective, possibly
owing to more efficient uptake of saporin as discussed below,
although synergicity between PDT and saporin was still present
(Fig. 2).

The photosensitisers exhibited comparable efficacy for PCI,
which is not surprising given their near identical molecular struc-
ture. In vivo treatment where red light would be used, would
strongly favour the chlorin which exhibits a much stronger red
absorption than the corresponding porphyrin.
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Interestingly, the intrinsic toxicity of saporin was considerably
more toxic in MatLyLu cells than PC3. The much shorter doubling
time of the MaLyLu cells suggests higher membrane turnover, and
thus increased endocytosis which could explain the higher relative
efficacy of saporin. Another possibility is that saporin's uptake in
MatLyLu cells could occur independently of the B chain known to
facilitate entry of RIP type II, i.e. ricin [35,36].

Optimal performance of PCI requires keeping both the PDTeffect
at sub-threshold lethality and likewise for the chemotherapeutic.
Consequently, the saporin dose was reduced in the rat cell line,
whereas TPCS2a dose was increased since a 2-fold lower amount of
either TPPS2a or TPCS2a was found in MatLyLu cells than PC3 cells
24 h after administration (Fig. 1). The linear dependence of cellular
fluorescence vs. dose indicates that the presence of intracellular
aggregation of both photosensitisers, which will be weakly or non-
fluorescencent and will form at higher applied doses, is minimal in
each cell line for this dose range [10]. The relative gradient of the
fluorescence intensity versus dose is approximately two-fold
higher for TPCS2a vs. TPPS2a for each cell line. However although
a higher TPCS2a fluorescence intensity was observed in both lines,
the relative fluorescence quantum yield of each PS needs to be
taken into consideration when assessing relative cellular concen-
trations. Lilletvedt et al. [27] concluded that TPCS2a is a more effi-
cient fluorophore than the porphyrin counterpart in all the solvents
studied: for example in ethylene glycol, the fluorescence quantum
yield of TPCS2a is 0.3 compared to 0.13 for TPPS2a, i.e. nearly a factor
of two higher for the chlorin. Therefore assuming that the same
trend applies in the cellular environment with the chlorin yielding
higher fluorescence than the porphyrin for the same concentration,
our results suggest that the relative cellular concentrations of both
compounds in MatLyLu and PC3 cells are comparable (Fig. 1).

Fluorescence imaging confirmed intracellular redistribution of
TPPS2a and TPCS2a following the application of light which is
consistent with endolysosomal rupture in both cell lines (Fig. 4).
Light-induced redistribution and cytosolic delivery of saporin using
fluorescently labelled saporin, initially present in lysosomes, was
also confirmed (Fig. 5). The fluorescence dispersal post-
illumination data are consistent with photo-induced oxidative
damage to endolysosomal membranes required for PCI [6].

Our experiments in vitro showed a good correlation between the
standard 2Dmodel and the 3D collagen hydrogel model. In addition
to observing the effect on cell viability after PDT or PCI treatment,
the 3D model experiments shed light on how cellular morphology
is affected by the treatment (Fig. 3) probably mimicking what oc-
curs in vivo. Aside from the decrease in the amount of viable cells
after light treatment, the remaining cells lost their elongated
phenotype and acquired a rounded morphology, also consistent
with imminent cell death. Such information can be used for opti-
mising PCI to treat surgical margins. Previous drug testing has
shown discrepancies between 2D and in vivo studies, which has led
to interest in the development of biomimetic 3D cancer models as a
means to screen drugs [21] since cells can grow and interact in a
more physiologically relevant environment.

In summary, firstly, based on findings in both 2D and 3D cell
viability studies, we confirm that the PCI effect is superior to the
one exerted by PDT, owing to the synergistic combination of sap-
orin and photosensitiser with light. Moreover, we have demon-
strated the efficacy of PCI for treatment of prostate cancer cells. A
recent clinical trial on PDT using Padeliporfin as the photosensitiser
reported encouraging results for treating low risk prostate cancer
which demonstrates the feasibility of focal treatment of the pros-
tate cancer using photosensitisers [37]. Secondly, our 3D experi-
ments confirm the reliability of previous observations in published
2D studies. Finally, this study focuses on highly metastatic and
aggressive cancer models indicating the potential of both PDT and
PCI in more challenging tumours. Further studies will be required
in vivo to demonstrate translational potential.
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