
Human guanylate binding proteins: Generation of tools, and 

their role during Toxoplasma gondii infection 

 

 

Ashleigh Christina Johnston 
 
 

University College London 

and 

The Francis Crick Institute 

PhD Supervisor: Dr Eva Frickel 

 

 

A thesis submitted for the degree of 

Doctor of Philosophy 

University College London 
Defended 9th November 2016 

 



 

2 

 

Declaration 

 

I, Ashleigh Christina Johnston, confirm that the work presented in this thesis is my 

own.  Where information has been derived from other sources, I confirm that this 

has been indicated in the thesis. 



 

3 

 

Abstract 
 

Guanylate binding proteins (GBPs) are large GTPases that are substantially 

upregulated by interferons during infection. The human genome consists of seven 

GBP family members with high sequence identity. GBPs have been implicated to 

confer host resistance to a number of pathogens across several species. In mice, 

specific GBP family members are responsible for host defence mechanisms, 

including the induction of inflammasome responses during bacterial infections, and 

the disruption of pathogen vacuoles leading to effective protection against the 

parasite Toxoplasma gondii, and the bacteria Salmonella enterica typhimurium and 

Chlamydia trachomatis. Toxoplasma is an apicomplexan intracellular parasite that 

resides within a parasitophorous vacuole (PV), and can cause severe 

complications and even death in humans and other animals. The aim of this project 

was to analyse the characteristics and roles of individual human GBP family 

members in cells at steady state and in Toxoplasma infected cells. The first step 

was to develop tools to study the proteins, including producing and characterising 

specific antibodies, establishing cell overexpression systems and characterising 

cells deficient in certain GBPs. Using these tools, the subcellular localisations of 

GBP1 and GBP4 were determined to the cytoplasm and nucleus respectively. It 

was concluded that during type I and II Toxoplasma infection GBP1 and 4 are not 

recruited to the PV like in the mouse. Despite this, in human epithelial cells, GBP1 

plays an important and specific role in the restriction of Toxoplasma replication. It 

was deduced that GBP4 protein levels are dramatically reduced during infection 

with the type I, but not the type II strain of Toxoplasma. GBP4 protein levels could 

be stabilised during type I Toxoplasma infection with an inhibitor of cysteine, serine 

and threonine proteases. Using an antibody specific for GBP1 and 2, a large 

dataset of potential interaction partners in a Toxoplasma strain-specific fashion was 

generated. The tools produced, specifically the GBP-specific antibodies, provide a 

valuable resource that can be used by other lab members and collaborators to 

more fully understand the functions of these interesting and important large 

GTPases.   
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Chapter 1. Introduction 

1.1 IFNγ driven host response 

Interferons are cytokines made in and secreted from host cells in response to a 

vast array of pathogens. They play a vital role in inhibiting the replication and 

spread of viral, bacterial and parasitic pathogens (de Veer et al., 2001). It is now 

also clear that they play much wider roles encompassing the regulation of cell 

proliferation, differentiation, survival and death (Samarajiwa et al., 2009).  

 There are 3 types of interferons, types I, II and III. All three types are 

responsible for activating multiple signal pathways that in turn lead to 

transcriptional activation of many interferon regulated genes (Samarajiwa et al., 

2009). As a result, mice with an interrupted receptor for type I or type II interferons 

are exceptionally susceptible to viral infections and exhibit multiple defects in host 

defence (de Veer et al., 2001).  

There is much debate and uncertainty over how many genes are 

upregulated by interferons, with estimates ranging from 500 genes (Boehm et al., 

1997) to >1300 genes by IFNγ alone (MacMicking, 2004). But it is certain that of 

the genes upregulated by these cytokines, only a tiny fraction of their protein 

products have been identified and characterised.  

1.2 Guanylate Binding Proteins 

In 1983, Cheng et al. treated human fibroblasts with interferons and analysed the 

proteins that were synthesised. They identified a protein that could bind guanylate 

agarose columns. This 67kDa protein was induced in both human and mouse 

fibroblasts, and could not be detected in unstimulated cells (Cheng et al., 1983). 

The same group went on to identify at least two genes encoding the 67kDa IFNγ-

induced protein. Furthermore they show that one of these ‘Guanylate Binding 

Proteins’ (GBPs) had the capacity to bind GMP as well as GDP and GTP, likely 

due to a missing N(T)KXD consensus motif that would confer guanine specificity 

(Cheng et al., 1991).  As a result, GBP1 was identified as a GTPase that converts 

GTP to GMP, a unique characteristic among GTPases. 
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1.2.1 GBP discovery 

As characterisation of GBP1 continued, sequence analysis of GBP1 determined 

that it could be isoprenylated (Nantais et al., 1996). Isoprenylation of a protein 

involves the attachment of a farnesyl or geranyl-geranyl lipid moiety to a C-terminal 

CaaX motif. This addition is important in targeting proteins to intracellular 

membranes or for facilitating protein/protein interactions. In the case of GBP1, a 

farnesyl modification was identified when a decrease in incorporation of [3H]-

mevalonate was observed upon addition of a farnesyl transferase inhibitor (Nantais 

et al., 1996). Isoprenylation of GBP1 enables its localisation to the Golgi apparatus, 

but only in the presence of IFNγ and when aluminum fluoride is added to mimic the 

GTP bound state (Modiano et al., 2005).  

 During the study mapping GBP1 to chromosome 1, a large number of 

bands were recognised on a Southern blot using a GBP1 cDNA probe - indicating 

that there were other closely related genes to be discovered (Strehlow et al., 1994), 

and so began the search for more GBP family members. 

GBPs 2, 3 and 4 were identified (Strehlow et al., 1994, Luan et al., 2002, 

Olszewski et al., 2006) and found to have a strikingly high level of identity to GBP1 

(77%, 88% and 56% respectively). GBP2 was shown to have an isoprenylation site, 

although this time it was a geranyl-geranyl motif (Britzen-Laurent et al., 2010). A 

further protein with very high homology to the known GBPs was discovered, and 

was defined as GBP5. This family member had the ability to be transcribed into at 

least 3 splice variants, from which 2 different proteins were produced. GBP5 was 

also found to be isoprenylated with a geranyl-geranyl motif (Vestal and Jeyaratnam, 

2011). Interestingly, one of the GBP5 splice variants is tumour-specific and is 

truncated by 97 amino acids at the C-terminus, losing its isoprenylation motif 

(Fellenberg et al., 2004, Wehner and Herrmann, 2010). In 2006 all of the human 

GBPs currently known were finally identified, defining seven GBPs and one 

pseudogene to be present (Olszewski et al., 2006). All seven members are highly 

similar and are located on chromosome 1 (Boehm et al., 1997), however they are 

induced differentially. GBPs 1, 2 and 3 are upregulated in endothelial cells by IFNγ, 

tumour necrosis factor-alpha (TNFα) and interleukin-1-Beta (IL-1β), whereas GBPs 

4 and 5 are upregulated only by IFNγ. These cells did not express GBPs 6 or 7 

(Guenzi et al., 2001, Tripal et al., 2007). The same study looked at the subcellular 
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localisation of GBPs 1-5 by overexpression of fluorescently tagged proteins. GBPs 

1, 3 and 5 were shown to have a cytoplasmic localisation, and GBPs 2 and 4 

appeared nucleocytoplasmic. Although the GBPs show such a remarkably high 

identity to one another, these differences in induction and localisation indicate that 

they might have different cellular functions (Tripal et al., 2007).  

 

1.2.2 GBP structure and biophysical properties 

The biochemical and biophysical properties of GBP1 have been much studied over 

the last 3 decades. In 2004, the residues that were crucial for nucleotide binding 

and for cooperative GTP hydrolysis were determined (Praefcke et al., 2004). On 

this basis, point mutants were produced that could mimic GBP1 in either its 

nucleotide free form (K51A) or in its GTP bound form (R48A) (Praefcke et al., 

2004).  An external GTPase activating protein (GAP) is not required, as GBP1 

contains an internal GAP (Abdullah et al., 2009). Consequently, as the 

concentration of GBP1 increases, a higher specific GTP hydrolysis activity occurs, 

with the protein forming homo-oligomers which in turn leads to catalytic activation 

of the GTPase (Kunzelmann et al., 2005). The G-domain of GBP1 can cleave GDP 

directly, which leads to a conformational change, positioning the protein in order to 

cleave GDP (Ghosh et al., 2006) thus allowing the unique ability to hydrolyse GTP 

to GMP. 

The crystal structure of full length GBP1 was solved in 2000 (Prakash et al., 

2000). It was seen that the N-terminal 278 residues consisted of a modified G-

domain (Figure 1). The C-terminal was found to form an extended helical domain 

that also has unique features, comprising two three-helix bundles, the core of which 

was formed by hydrophobic residues that are connected by only one hydrogen 

bond and instead is stabilised by water-mediated contacts (Prakash et al., 2000). 

The structure clearly implicated GBP1 as part of the same large-GTPase group that 

includes Mx-proteins and dynamin, and from this it was suggested GBP1 had the 

ability to form oligomers. 
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Figure 1 Tertiary Structure of GBP1 

Structure of human guanylate binding protein 1 representing a unique class of 
GTP-binding proteins, (Prakash et al., 2000), Nature 403, 567-571. 

 

Oligomerisation of proteins can regulate their subcellular localisation. 

Britzen-Laurent et al. showed that GBPs do homodimerise in vivo and that 

membrane association of the isoprenylated family members is a dependent factor 

(Britzen-Laurent et al., 2010). The K51A mutant, which represents nucleotide free 

GBP1, was not able to form dimers in vitro, indicating that GTP binding is required 

for this characteristic. The dimerisation and substrate binding occurs quickly with a 

rapid burst of phosphate ions before a steady state stage is reached. It is thought 

that the irreversible dissociation of the substrate acts as a rate-limiting step 

(Kunzelmann et al., 2005). Furthermore, GBP1 is not able to produce GMP if 

dimerisation does not take place, showing the allosteric step required is triggered 
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by dimerisation (Abdullah et al., 2010). Moreover, GBPs can heterodimerise in vivo 

in a hierarchical manner, resulting in the potential for membrane association of 

non-prenylated GBPs (Britzen-Laurent et al., 2010). The identification and 

characterisation of 11 murine GBPs (mGBPs) and 2 pseudogenes (Staeheli et al., 

1984, Vestal et al., 1998, Han et al., 1998, Anderson et al., 1999b, Nguyen et al., 

2002, Olszewski et al., 2006, Degrandi et al., 2007, Konermann et al., 2007) 

demonstrated that there was a high level of similarity between the human and the 

murine GBPs and showed that the proteins are well conserved across species 

(Degrandi et al., 2007). The mGBPs are found in clusters over two chromosomes, 

chromosome 3 containing mGBPs 1, 2, 3, 5, 7 and chromosome 5 containing 

mGBPs 4, 6, 8, 9, 10 and 11 (Kresse et al., 2008) (Figure 2). 

 

 
Figure 2 Genomic arrangements of GBPs 

Schematic representation of the genomic arrangement of human and mouse 
GBPs. Red box denotes presumed pseudogenes. Yellow box denotes genes 
unrelated to GBPs. Adapted from (Shenoy et al., 2007), Immunobiology Volume 
212, Issues 9–10. 
 

1.2.3 GBPs as host defence proteins  

The fact that these proteins are well conserved and are so highly upregulated in 

response to inflammatory cytokines would hint at a function involved in host 

response to pathogens. In both human and mouse, there is evidence that GBPs 

play an anti-viral role. Expression of GBP1 resulted in lower titres and reduced viral 

progeny of vesicular-stomatitis-virus and encephalomyocarditis virus in human cells 

(Anderson et al., 1999a). Restriction of the same two viruses was shown by 

mGBP2, the closest ortholog to human GBP1 (Carter et al., 2005). In 2007, 

Degrandi et al. characterised the molecular functions of mGBPs 1-10 (Degrandi et 
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al., 2007). C57Bl/6 mice were infected with either Listeria monocytogenes or 

Toxoplasma gondii before levels of mGBP induction were measured by either real 

time-PCR or mRNA expression patterns as detected on a gene chip array. All 

mGBPs were induced in vivo by these infections. Furthermore, the study defined 

the subcellular localisation of these GTPases during infection with Toxoplasma 

gondii. Interestingly, they showed that the parasitophorous vacuoles (PVs) of a 

strain of Toxoplasma considered to be non-virulent in mice were decorated with 

mGBPs 1, 2, 3, 6, 7 and 9 from just 30 minutes post infection in IFNγ-stimulated 

cells. Furthermore, infection with a virulent strain of Toxoplasma resulted in barely 

any mGBP decoration of the PVs (Degrandi et al., 2007). Human GBPs were also 

recruited to the PV, although in much lower amounts (Ohshima et al., 2014). The 

recruitment of GBPs to the PV of Toxoplasma in a virulence-strain dependent 

manner strongly suggested that these GTPases are an important set of host 

defence molecules.  

 

1.3 Toxoplasma gondii  

1.3.1 Toxoplasma characteristics and lifecycle 

Toxoplasma gondii is an obligate intracellular parasite that resides within a 

parasitophorous vacuole and infects any nucleated cell type. While the definitive 

host is the feline, in which the sexual stage of the life cycle occurs, any warm-

blooded animal can become an intermediate host. A succinct review of the first 100 

years of Toxoplasma research was produced by Jitender Dubey in 2008 (Dubey, 

2008). 

Toxoplasma was first isolated in 1908 from the rodent Ctenodactylus gundi 

(Nicolle and Manceaux, 1908), where it was recognised as a new organism and 

named for it’s shape (toxo – toxon Greek for arc) and the creature from which it 

was isolated (gundi) (Nicolle and Manceaux, 1909). While Toxoplasma was 

recognised within many animal samples over several decades it was not 

successfully isolated in a viable form until 1937, after which the isolates from 

humans and animals were proven to be the same species (Sabin and Olitsky, 

1937). Studies on worldwide isolates of Toxoplasma found genetic variability 

(Pfefferkorn and Pfefferkorn, 1980, Dardé et al., 1987, Howe and Sibley, 1995, 
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Tibayrenc et al., 1991, Sibley and Boothroyd, 1992), with different strains 

demonstrating different levels of virulence in mice (Dubey, 2002, Lehmann et al., 

2006). Molecular epidemiological and population biology studies first inclined that 

there were only three clonal lineages that result in the differing virulence and 

pathogenicity phenotypes (Sibley et al., 2009). 

The parasites can be grouped into ‘virulent’ (type I), and ‘avirulent’ (types II 

and III). The virulent Toxoplasma are highly pathogenic and display very limited 

genetic diversity. The avirulent strains are further grouped into two distinct clonal 

lineages (Darde, 1996).  These type II and III strains are the strains that have been 

isolated from AIDS patients and widespread outbreaks, and from agricultural 

animals (Belfort-Neto et al., 2007, Ferreira et al., 2008, Miller et al., 2004, Conrad 

et al., 2005, Demar et al., 2007, Demar et al., 2008). While the large majority of 

North American strains fall into these three recently derived lineages, the strains 

from South America have been shown to be more genetically diverse, falling into 

distinct genotypes (Sibley et al., 2009). These distinguished groups are shaped by 

biological geographic factors, population sweeps and infrequent sexual 

recombination.  

There are several methods by which Toxoplasma has been genotyped. 

They include multi-locus enzyme electrophoresis, which was used in early studies 

on strain variation. This method was used to define several polymorphic enzymes 

and thus characterise isolates into three major zymodemes (Darde et al., 1992). 

Later, techniques focussed on identifying microsatellite markers. These are short, 

repeated segments of DNA that are frequently located in regions of non-coding 

DNA and was a successful method to use for high-throughput analyses (Ajzenberg 

et al., 2002b, Ajzenberg et al., 2002a). Restriction fragment length polymorphism 

(RFLP) was widely used as the method to genotype specific genetic loci, allowing 

for high-throughput analysis via PCR, restriction digest and gel electrophoresis, 

and was used to group types I, II and III (Sibley and Boothroyd, 1992). Direct 

sequencing of genomic regions using single nucleotide polymorphisms, insertions 

and deletions eventually revealed complete genetic diversity; for example 

highlighting the high diversity in the GRA6 locus (Sibley et al., 2009). This is the 

method that provides the best approach for detecting polymorphisms in new 

isolates. With direct sequencing it could then be shown that the predominant clonal 

lineages varied by only 1-2% at the nucleotide level (Grigg et al., 2001) and 
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subsequent coalescence analysis supports a model by which the so-thought three 

linages evolve from a common ancestor in the last 10,000 years (Su et al., 2003), 

corresponding to the same time-frame when animals underwent domestication. 

It was hypothesised that the divergence of isolates from South America was 

due not to differences in host range, but instead was due to geographical variations 

and recombinants of the genotypes prevalent in the north (Khan et al., 2006, 

Ferreira et al., 2008). However, when isolates from various regions were analysed 

in comparison to previously characterised North American samples there were in 

fact four ancestral lineages reconstructed. This shows that while South and North 

American Toxoplasma share a common ancestry, they are reproductively isolated 

(Khan et al., 2007); perhaps as a result of cats migrating over the Panamanian 

land-bridge (Johnson et al., 2006, Khan et al., 2007). 

The lifecycle of Toxoplasma takes place in a number of hosts. The sexual 

stage of the lifecycle occurs in the intestine enterocytes of felines. Felines ingest an 

infected animal containing dormant parasite cysts and upon reaching the 

epithelium villi shizogonic and gametogonic stages develop within vacuoles 

situated alongside the brush border of the cell near the nucleus. These two stages 

are observed together in no particular sequence or preferred location along the 

entire villus epithelium (Hutchison et al., 1971). After a short incubation period of as 

little as 5 to 10 days, the felines release numerous diploid oocysts into the 

environment via their faeces (Dubey et al., 1972). The next stage of the 

Toxoplasma lifecycle takes place inside an intermediate host, which could be any 

warm-blooded animal. Ingested oocysts will develop into fast replicating haploid 

tachyzoites that multiply intracellularly by endodyogeny and disseminate 

throughout its host (Goldman et al., 1958, Frenkel and Dubey, 1973). Host death 

would occur if this stage continued indefinitely. Therefore, upon immune pressure 

from the host, the parasite slows its replication and develops into a haploid 

bradyzoite that will persist as tissue cysts in immune-privileged areas, like deep 

tissue and in the brain (including astrocytes, microglia and neurons), for the rest of 

the host’s life (Jacobs et al., 1960a, Halonen et al., 1996, Fischer et al., 1997, 

Halonen et al., 1998, Freund et al., 2001, Schluter et al., 2001). Humans can 

become host to Toxoplasma in a number of different ways. One route is via the 

ingestion of undercooked meat that contains tissue cysts (Jacobs et al., 1960b, 

Desmonts et al., 1965). Humans can ingest oocysts that have been shed from 
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felines (Hutchison, 1965), by directly handling the faeces, from contaminated fruits 

and vegetables that are unwashed, or from a contaminated water supply 

(Benenson et al., 1982, Bowie et al., 1997, de Moura et al., 2006, Teutsch et al., 

1979) (Figure 3). 

 
Figure 3 Lifecycle and hosts of Toxoplasma 

Felines are the definitive host of Toxoplasma, and from cats parasite oocysts are 
shed in the faeces. These oocysts are ingested by intermediate hosts, in which the 
parasite develops first into tachyzoites, then dormant bradyzoites within cysts in 
immune-privileged sites. While most infections persist without the host being 
aware, complications can occur in immunocompromised hosts and pregnant 
females. 
 

Once a human becomes infected, they can spend their whole life completely 

unaware of their Toxoplasma companion as the immune system keeps the parasite 

at bay. This results in a chronic infection that is not cleared (Johnson, 1992, Weiss 

et al., 2009). However, problems can arise under specific circumstances. If a 

woman becomes infected with the parasite during pregnancy, congenital 

Foetal abnormalities

Ocular toxoplasmosis

Toxoplasmic encephalitis
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transmission and disease characterised by encephalomyelitis can occur that may 

lead to either abortion or severe foetal abnormality (Wolf et al., 1939, Sabin and 

Ruchman, 1942, Couvreur and Desmonts, 1962, Havelaar et al., 2007). 

Furthermore, a host who is immunocompromised, for example an AIDS patient or a 

patient undergoing immunosuppressive therapy, can die from toxoplasmosis of the 

brain when a lift of immune pressure causes Toxoplasma to revert back to its fast-

replicating tachyzoite stage (Luft et al., 1983, Israelski et al., 1988). Before the 

AIDS epidemic neurological toxoplasmosis was rare, however during this time the 

level of acquired infection became apparent. Without treatment, Toxoplasma 

reactivation was fatal and even with treatment still carried a 10-30% mortality rate 

(Luft et al., 1983, Luft and Remington, 1992). Complications also arise in the form 

of ocular disease caused by Toxoplasma-driven inflammation and formation of 

lesions in the eye (Wilder, 1952, Grigg et al., 2001, Park and Nam, 2013). Although 

these occurrences of eye disease and severe ocular inflammation are relatively 

regularly observed outcomes of an infection (Janku, 1923, Wilder, 1952), studies 

within Brazil have shown an increased prevalence of ocular toxoplasmosis in this 

location. This variation in disease phenotype in acquired infection would suggest 

that in humans some strains may be more pathogenic that others (Silveira et al., 

1988, Glasner et al., 1992).  

Toxoplasma can cause severe disease and death in humans, but it is also a 

large problem in the animal world. This parasite has been responsible for 

innumerable abortions in sheep and thus has a high economic impact (Hartley and 

Marshall, 1957, Beverley, 1961, Dubey and Welcome, 1988). Toxoplasma 

demonstrated its parasitic success by causing widespread fatality in sea otters, fur 

seals and endangered monk seals when oocysts contaminated marine waters 

(Holshuh et al., 1985, Honnold et al., 2005, Conrad et al., 2005). For these reasons, 

it is important that this parasite is studied and understood further, to find effective 

treatments and vaccines to control it. Further, understanding the effects different 

strains produce will allow a more targeted approach for therapy.  

The Toxoplasma strains that exist are the same species, however the 

polymorphic effector genes allow for varied responses. Virulence factors, including 

rhoptry protein 16 (ROP 16) and dense granule protein 15 (GRA 15) play key 

strain-dependent roles in host response to infection. While both type I (RH) and II 

(Prugniaud) parasites harbour GRA15 genes, the polymorphic nature of these 
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genes allows for different effector mechanisms, with type II able to manipulate the 

NFΚB signalling pathway much more significantly than type I (Rosowski and Saeij, 

2012). This same effector in type I is responsible for inhibiting interferon regulating 

factor 3, a proinflammatory transcription factor, (Rosowski and Saeij, 2012) as well 

as protecting the PV from host protection mechanisms (Virreira Winter et al., 2011) 

(discussed further later) while playing little effect in these manners in type II 

parasites. The ROP16 kinase in type I Toxoplasma plays an important role by 

phosphorylating STAT1 into a non-transcriptionally active form, successfully down-

regulating IFNγ-signalling pathways. However, while type II does not show this 

effect, the same phenotype is produced when a type I copy of the gene is 

ectopically expressed (Rosowski and Saeij, 2012). The need to understand how 

different strains affect pathology will be important in understanding how to 

recognise and control infection. 

1.3.2 Host responses against Toxoplasma 

The immune response against Toxoplasma has been widely studied with many 

different aspects being highlighted as important for infection control. Dupont et al. 

elegantly reviewed the immune reactions to this parasite, emphasising the varied 

models by which a host controls this infection (Dupont et al., 2012). Toxoplasma is 

capable of infecting any nucleated cell type, with a slight preference for 

macrophages reported (Zhao et al., 2014). The active invasion of Toxoplasma into 

a cell requires the secretion of three waves of proteins. These proteins are made 

up of micronemes, dense granules and rhoptry proteins, and can modify the host 

cell behaviour and can inhibit immune responses (Lim et al., 2012). The parasite 

moves into the cell surrounded by host lipid membrane, which it can then modify to 

become it’s safe-haven, the PV. Toxoplasma appears to hide from the immune 

system within the PV, so questions are raised as to how the host immune system 

interacts with the parasite.  

Monocytes, neutrophils, dendritic cells (DCs) have all been implicated in 

orchestrating protection against Toxoplasma. It is true that one of the critical 

functions of these cells in the response to Toxoplasma is the production of 

interleukin-12 (IL-12). This in turn stimulates the production of IFNγ from natural 

killer (NK) cells and T cells (Gazzinelli et al., 1993, Gazzinelli et al., 1994, Hunter et 
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al., 1994). It is acknowledged that IFNγ is the main mediator of resistance to 

Toxoplasma since it is responsible for promoting a large array of killing 

mechanisms (Suzuki et al., 1988). A TH1 immune response ensues, which is 

characteristic of many intracellular pathogen infections. Mice that are deficient in 

either IL-12 or IFNγ cannot control infection and succumb shortly after challenge 

(Suzuki et al., 1988, Hunter et al., 1993, Gazzinelli et al., 1994). The role of toll-like 

receptors (TLRs) is important in host defence, as they are responsible for the initial 

sensing of parasite products. A range of TLRs, including TLR2, TLR4 and TLR11, 

respond to Toxoplasma profilin or to glycosylphophatidylinositols that are found on 

the parasite surface (Yarovinsky et al., 2005, Debierre-Grockiego et al., 2007). 

TLRs are also responsible for sensing the insult on the host that occurs as the 

tachyzoites translocate from the gut (Benson et al., 2009).  

As IL-12 is a vital first step in the attack against Toxoplasma, numerous 

studies have been conducted to identify the primary cell types that are responsible 

for the release of this cytokine in vivo. Many sources have been identified, including 

neutrophils, inflammatory monocytes, macrophages and DCs (Gazzinelli et al., 

1996, Bliss et al., 1999, Bliss et al., 2000, Scanga et al., 2002, Mordue and Sibley, 

2003, Whitmarsh et al., 2011). CD8+ DCs were defined as the prominent cell type 

releasing IL-12 in vivo (Reis e Sousa et al., 1997). Furthermore, in mice deficient in 

the transcription factor Batf3, a lack of CD8+ DCs resulted in a severe IL-12 defect 

and reduced CD8+ T cell responses; a consequence of which was increased 

parasite load and death of the host (Mashayekhi et al., 2011). Monocytes also play 

a role in resistance, showing an increased susceptibility to infection when the 

recruitment chemokine receptor, CCR2, is lacking in mice (Robben et al., 2005, 

Benevides et al., 2008, Dunay et al., 2010). One reason for their importance could 

be the role monocytes play in the production of nitric oxide (NO) (Dunay et al., 

2010). This direct control mechanism has been shown to decrease parasite 

replication, with NO-deficient mice dying during Toxoplasma challenge (Benevides 

et al., 2008). While the function of NO in parasite control has to be fully elucidated, 

there is evidence that NO could stimulate early egress of tachyzoites from 

macrophages and by inhibiting reactivation of parasites to tachyzoites in the brain 

(Gazzinelli et al., 1993, Khan et al., 1997, Schluter et al., 1999, Yan et al., 2015). 

NK cells play an important role in the production of IFNγ (Denkers et al., 1993, 

Sher et al., 1993, Johnson et al., 1993, Hunter et al., 1994) and also promote the 
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adaptive immune responses with CD8+ T cells via interactions with natural-killer 

group 2, member D protein (NKG2D) that is expressed on both cell types (Guan et 

al., 2007).  

Adaptive immune responses are an important part of the defence of a host 

against Toxoplasma. Mice deficient in B cells or CD4+ T cells survive the acute 

phase of infection and have normal IFNγ responses, but ultimately succumb to the 

disease as a result of increased parasite burden in the central nervous system 

(Denkers et al., 1997, Kang et al., 2000, Johnson and Sayles, 2002). CD8+ T cells 

play a necessary role in both the acute and chronic infection. Mice lacking Batf3 

transcription factor have severely depleted CD8+ are significantly more susceptible 

to Toxoplasma and do not survive the acute phase of infection (Mashayekhi et al., 

2011). Furthermore, when CD8+ T cells are depleted in mice that are chronically 

infected, the parasite cysts are significantly increased in size, with an upset in the 

amount of cytokines being produced, as well as a loss of vaccine-induced immunity 

(Gazzinelli et al., 1991, Guiton et al., 2009). Therefore, in the host defence 

mechanism against Toxoplasma, both the innate and adaptive immune responses 

are crucial, with IL-12 and CD8+ cells proving vital for host survival. 

 

1.3.3 IFNγ effector mechanisms against Toxoplasma  

There are a number of Toxoplasma killing mechanisms that are driven by the 

cytokine IFNγ. One of the mechanisms is the upregulation of indolamine-2,3-

dioxygenase (IDO) 1 and 2. This enzyme is responsible for catalysing the 

degradation of tryptophan (Murray et al., 1989, Prendergast, 2008) in many cell 

types, including fibroblasts, macrophages and brain cells (Pfefferkorn, 1984, 

Murray et al., 1989, Daubener et al., 1996, Daubener et al., 2001). As Toxoplasma 

is an auxotroph for tryptophan, the IFNγ-meditated reduction of the amino acid 

results in inhibition of parasite growth. Mice that have been treated with IDO 1 and 

2 inhibitors during a Toxoplasma challenge have much increased susceptibility to 

disease and significantly increased parasite burdens (Divanovic et al., 2012). 

In mice, IFNγ is also responsible for the upregulation of a family of p47 large 

GTPases, the immunity related GTPases (IRGs). Mice that are deficient in Irgm3 

exhibit normal IFNγ responses, but soon die due to increased parasite burden 
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(Taylor et al., 2000). As studies progressed, it became clear that other family 

members are involved in host response to Toxoplasma, and a similar susceptibility 

was seen in mice lacking Irgm1, Irgd, Irga6 or Irgb6 (Collazo et al., 2001, Zhao et 

al., 2009b, Fentress et al., 2010, Pawlowski et al., 2011). IRGs are actively co-

localised to the PV of Toxoplasma, resulting in the PV forming a tight-fitting 

morphology around the parasite. After this recruitment, the PV membrane blebs 

and ruffles and finally lyses, and is stripped away (Martens et al., 2005, Ling et al., 

2006, Hunn et al., 2008, Zhao et al., 2009a, Zhao et al., 2009b, Zhao et al., 2010, 

Khaminets et al., 2010, Steinfeldt et al., 2010). The result of this action is that the 

parasite is no longer in its safe-haven, and is free in the cytoplasm where it 

undergoes permeabilisation and is killed (Melzer et al., 2008).  

Guanylate binding proteins also make up an important arm of the IFNγ host 

response against Toxoplasma. As mentioned earlier, mGBPs are recruited around 

the PV of type II ‘avirulent’ Toxoplasma, and can be manipulated to be inactive by 

the type I ‘virulent’ strain. It was hypothesised after this observation that GBPs 

were important anti-microbial effectors mechanisms.  

As IRGs had been shown to have such an important function during 

Toxoplasma infection, it seemed likely that GBPs, which surrounded the PV in a 

similar manner, were also vital to host response. Mice deficient in the cluster of 

GBPs found on chromosome 3 (GBPchr3-/-) were engineered by targeted 

chromosome deletion and infected with Toxoplasma. These mice showed 

significantly increased susceptibility to infection, attributed to a much increased 

parasite load throughout the animal (Yamamoto et al., 2012). Furthermore, it was 

identified that in bone marrow derived macrophages (BMDMs) from GBPchr3-/- mice, 

the recruitment of the IRGs is negatively affected. The result of the loss of 

recruitment of these effector molecules is a lack of blebbing and ruffling of the 

Toxoplasma PV in GBPchr3-/- BMDMs. When the GBPs were complemented back 

into the macrophages, IFNγ-meditated protection was restored (Yamamoto et al., 

2012).  
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1.3.4 Toxoplasma and GBPs 

In 2011, Virreira Winter et al. successfully confirmed that IFNγ-dependent 

relocalisation of mGBPs around the Toxoplasma PV correlated with the virulence 

type of the parasite. They identified three specific parasitic factors that determined 

the difference in virulence types between parasite strains. These were ROP16, 

rhoptry protein 18 (ROP18) and GRA15. Therefore, it was suggested that the 

virulence of Toxoplasma depended on the recognition of GBPs. A mass 

spectrometric analysis of mGBP1 isolated from an infected cell culture identified 

mGBPs 2, 4 and 5 as its binding partners, indicating that these large GTPases are 

brought the to PV as part of a large multimeric structure (Virreira Winter et al., 

2011). How either GBPs or IRGs can recognise the PV of Toxoplasma is an 

interesting question. The parasite survives inside the cell protected by a vacuole 

composed of host cell membrane that keeps it largely invisible to host defence 

mechanisms. So how do these large GTPases recruit to the PV so efficiently? In 

2013, it was shown that the targeting of these GTPases requires the formation of 

higher-order protein oligomers, and that this was regulated by the immunity related 

GTPase family M (IRGM) (Haldar et al., 2013). Irgm1 and Irgm3 proteins do not 

localise to the pathogen vacuoles, but instead reside on self-organelles. As a result, 

the organelles are guarded against an association with GBPs and IRGs. By 

inference, GBPs and IRGs were located upon the entities in the cell that are 

missing the ‘self’ IRGM proteins (Haldar et al., 2013). 

The recruitment of mGBPs and mouse IRGs to the vacuole of Toxoplasma 

is dependent on the autophagy protein 5 (Atg5). Atg5 is part of a complex that 

facilitates the transfer of an ubiquitin-like protein from autophagy-related protein 8 

(Atg8) to the lipid phosphatidylethanolamine, and a role in the activation of the 

GTPase activity of large GTPases is hypothesised (Haldar et al., 2013). Further 

investigation of the function of autophagy proteins in cell-autonomous responses 

against Toxoplasma showed that, in mouse, IFNγ-dependent suppression and 

GTPase recruitment was significantly reduced when Atg7 or Atg16L1 were not 

present (Ohshima et al., 2014). However, interestingly, when either Atg16L1 or all 

of the GBPs were knocked out in human cells, the IFNγ-dependent response was 

not affected (Ohshima et al., 2014). Deposition of mGBPs is shown not only to be 

dependent on autophagy proteins, but also on wider ubiquitination systems, with 
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the E3 ligase TRAF6 regulating association of mGBPs with the PV (Haldar et al., 

2015).  

Specifically, mouse GBP1 is implicated in contribution to cell-autonomous 

immunity against Toxoplasma (Selleck et al., 2013). The ability of this family 

member to recruit around the PV is mediated by ROP18, the pseudogene ROP5 or 

an active threonine kinase. When these virulence factors were knocked out, 

parasite clearance in BMDMs was possible in the presence of IFNγ. Mice deficient 

in mGBP1 showed an increased susceptibility even to type II ‘avirulent’ 

Toxoplasma. However, this susceptibility was reversed when the infecting strain 

was a ∆ROP18 mutant (Selleck et al., 2013). Mouse GBP2 also plays a role in 

defence against Toxoplasma, with BMDMs from mGBP2-deficient mice being 

unable to control the replication of the parasite (Degrandi et al., 2013). 

 

1.4 GBPs, bacteria and the inflammasome 

As the roles played by the GBPs against Toxoplasma gondii are becoming clearer, 

so are the roles played against other pathogens. Toxoplasma is an intracellular 

pathogen that resides inside a vacuole, as is Chlamydia trachomatis. When HeLa 

cells were infected with C. trachomatis, it was observed that GBPs 1 and 2 

localised to the vacuole, or inclusion, of this bacteria. Moreover, when these same 

GBPs were knocked down using silencing RNA, the inclusion sizes were 

significantly larger, indicating enhanced bacterial replication. The opposite result 

was observed when GBP1 or 2 were overexpressed in the same cells (Tietzel et al., 

2009, Al-Zeer et al., 2013). A strain of C. trachomatis that was hyper-virulent, due 

to presence of a putative cytotoxin gene, was not affected by GBP overexpression 

(Tietzel et al., 2009). The inclusions decorated with GBPs were targeted for 

autophagic destruction (Al-Zeer et al., 2013), thereby implicating GBPs in functions 

related to autophagy. It was shown that Atg5 and 3 play vital roles in successful 

decoration of the pathogen vacuole with GBPs during a Toxoplasma infection, and 

the same is true for C. trachomatis (Haldar et al., 2014).  

 The mechanisms by which GBPs exert their functions have only been begun 

to unravel over the last four or so years. Inflammasomes are complexes 

responsible for sensing and altering the immune system to danger such as 
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infection or tissue damage. They are activated by nucleotide-binding domain, 

leucine rich repeat containing receptor (NLR) proteins and absent in melanoma 20-

like receptor (ALR) proteins to activate the cleavage of caspase-1, which in turn 

upregulates IL-1β and IL-18 secretion as well as cleavage of gasdermin protein to 

induce pyroptosis (Guo et al., 2015). Shenoy et al. were able to demonstrate that 

GBP5 was a non-NLR or -ALR protein that could stimulate inflammasome 

assembly. Furthermore, in response to lipopolysaccharide (LPS), Listeria 

monocytogenes or Salmonella enterica typhimurium GBP5 selectively promoted 

NLRP3 inflammasome responses. BMDM from mice that were deficient in GBP5 

had significant defects in their ability to cleave caspase-1, IL-1β and IL-18 in vitro 

indicating an important role in these events (Figure 4). In vivo, the GBP5-deficient 

mice had impaired defence and inflammasome assembly against a L. 

monocytogenes infection (Shenoy et al., 2012). Furthermore, mGBPs were 

implicated in the activation of the non-canonical inflammasome in caspase-11-

dependent host defence against gram-negative bacteria (Pilla et al., 2014, Meunier 

et al., 2014) (Figure 4). Legionella pneumophila and C. trachomatis infection trigger 

pyroptosis in IFNγ-activated macrophages, however induction of this response is 

lost when mGBPchr3-/- macrophages are used (Pilla et al., 2014, Finethy et al., 

2015). Additionally, the mGBP cluster on chromosome 3 is responsible for a 

pyroptosis reaction to the LPS from L. pneumophila or S. enterica typhimurium, 

suggesting a role for GBPs in cytosol sensing of bacteria (Pilla et al., 2014). GBPs 

are recruited to the pathogen-containing vacuoles of these bacteria and are 

necessary for the breakage of said vacuoles. The lysis of these safe-havens 

releases LPS in to the cytosol, where it is detected, allowing the host to mount a full 

response (Meunier et al., 2014). A second consequence of vacuole breakage is the 

recognition by galectin 8 of previously unexposed host glycans, which in turn leads 

to recruitment of nuclear dot protein 52 (NDP52) and the uptake of bacteria into 

autophagosomes (Thurston et al., 2012, Meunier et al., 2014). 

 The absent in melanoma 2 (AIM2) inflammasome response detects double-

stranded DNA in the cytosol and mounts the appropriate host defence. The mGBPs 

2 and 5 play a role in activation of this system during infection with the cytosolic 

bacteria Francisella novicida (Man et al., 2015, Meunier et al., 2015). After initial 

detection of the pathogen, IFNs upregulate interferon regulatory factor (IRF) 1, 

which in turn induces expression of mGBPs. Mouse GBPs 2 and 5 recruit to the 
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bacteria and promote bacteriolysis, DNA release, and therefore bacteria killing 

(Man et al., 2015, Meunier et al., 2015) (Figure 4). 

 The renewed interest in GBPs has shown them to be powerful responders 

to bacterial infections, reacting by inducing the inflammasome via a number of 

different pathways. It will be fascinating to see if this response is consistent for 

different pathogens, including Toxoplasma gondii.  

 
Figure 4 Mouse GBP dependent induction of inflammasome responses 

Mouse GBPs have been implicated in both the canonical and non-canonical 
activation of inflammasomes. Adapted from (Kim et al., 2016), Nature Immunology 
17, 481–489. 

  

1.5 The aim of this thesis 

As the roles that are dependent on GBPs become more unravelled and the 

mechanisms by which they work are becoming clearer, it is apparent they are a 

very important family of antimicrobial effectors. The mechanistic work so far 

regarding the inflammasome has been carried out in a murine species. Similarly, all 

but one study regarding GBPs and Toxoplasma infection focuses on mice 

(Ohshima et al., 2014). As GBPs have been shown to work so coherently with 

IRGs in a number of settings, it is important to move these studies into a human 

system. Humans only contain 2 IRG proteins; one is damaged in many ways and is 
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no longer IFN-inducible, and the other has only the G domain transcribed. As a 

result both versions are indicated to be non-functional in the conventional manner 

(Kim et al., 2012). While the GBPs are well conserved between species, there may 

be a vast difference in their modes of action as a result of the evolutionary 

pressures and the loss of a group of significant interaction partners.  

The aim of this thesis is to study GBPs in a human system, while focussing 

on a Toxoplasma gondii infection model. The first step will be to develop the 

necessary tools for functional characterisation of GBPs, including producing 

antibodies and characterising mutant cells. As the GBP family members show such 

a high level of identity between family members, developing reagents that are 

specific for one family member is important to ensure the definite allocation of 

functions. Secondly, I will establish stable and reliable overexpression of these 

proteins in an appropriate cell type. While there have been overexpression models 

published in the literature, I, and others, have observed that no one has published 

systems that are consistently used. I will move to create these systems to enable 

the study of this group of large GTPases.  

Using the reagents I will produce, I will study the subcellular localisation of 

individual GBPs both in a steady state cell and on the context of a Toxoplasma 

infection. I will determine whether or not GBPs recruit to the PV and how infection 

may change the location of individual family members. Furthermore, I will use these 

systems to study the effects of these proteins on the replication and survival of 

Toxoplasma. I will work to develop appropriate survival and invasion protocols in 

order to reliably assess the parasites viability.  

 I will begin to unravel the characteristics and functions of these intriguing 

proteins, but I also want to develop tools and protocols that will provide others, both 

within the lab and those who are collaborators, with a solid ground on which to 

further our knowledge of guanylate binding proteins.
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Chapter 2. Materials & Methods 

2.1 Tissue Culture 

2.1.1 Cell culture 

All cells were cultured at 37˚C in 5% CO2. Human foreskin fibroblasts (HFFs) 

(ATCC #CRL-2429) were cultured in Dulbecco's Modified Eagle Medium (DMEM) + 

GlutaMax (Thermo Fisher Scientific #10566016) supplemented with 10% heat-

inactivated foetal bovine serum (FBS) (Life Technologies #10500064). The cells 

were passed 1:10 when confluency was reached. A549 cells (ATCC #CCL-185) 

were cultured in DMEM + GlutaMax supplemented with 10% FBS and were passed 

1:5 when 80% confluency was reached. Human umbilical vein endothelial cells 

(HUVECs) (Promocell #C12203) were cultured in M199 medium (Life Technologies 

#11043023) supplemented with 20% FBS, 10U/ml heparin (Sigma #H-3149) and 

30mg/ml endothelial cell growth supplement (Upstate 02-102). HUVECS were 

allowed to reach 70% confluency before being passed 1:4, these cells were not 

used beyond passage 10. THP-1 monocytes (ATCC #TIB-202) were cultured in 

Roswell Park Memorial Institute (RPMI) 1640 medium +L-glutamine (Gibco 

#11875093) supplemented with 10% FBS. These suspension cells were passed 

1:4 when they reached 1X106 cells/ml. To differentiate into macrophages, the cells 

with stimulated with 1µM phorbol myristate acetate (PMA) (Sigma #P8139) for 3 

days. HEK293T cells, human kidney cells commonly used for retroviral vector 

production, (ATCC #CRL-3216) were cultured in DMEM + GlutaMax supplemented 

with 10% FBS, and were passed 1:5 when 70% confluency was reached. 3T3 

fibroblasts (kind gift from Jonathan Howard) were cultured in DMEM +GlutaMax 

supplemented with 10% FBS and were passed 1:8 when 80% confluency was 

reached. When appropriate, the cells were stimulated for induction of protein 

expression by adding 1nM mifepristone hormone (Invitrogen #H110-1) and 

incubating for 24 hours at 37˚C in 5% CO2. Where IFNγ stimulation was required, 

10U/ml IFNγ (Promega #FHC24802) was added to the culture media and 

incubated for the appropriate time. 
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2.1.2 Culture of Toxoplasma gondii 

Parasites expressing eGFP/luciferase or tdTomato, strains type I RH and type II 

Prugniaud (Pru) were maintained on a monolayer of HFFs in T25 culture flasks 

(Corning #CLS3289), with the cells cultured as described above. Once the 

Toxoplasma had exhausted the feeder cell supply, the monolayer was scraped and 

the parasites freed by syringe lysis using a 25-gauge needle, before 200µl type I or 

500µl type II suspensions were reseeded onto fresh HFFs.  

 

2.1.3 Infection of cells with Toxoplasma gondii 

Cells were cultured as appropriate before the layer was scraped mechanically, with 

the resulting suspension was passed through a 25-gauge needle thereby liberating 

Toxoplasma from vacuoles by syringe-lysis. The Toxoplasma were counted on a 

haemocytometer and the appropriate multiplicity of infection (MOI) was seeded 

upon the cell monolayer. To ensure simultaneous invasion of cells, the cultures 

were then centrifuged for 5 minutes at 200xg at room temperature. The infection 

was allowed to persist for the appropriate length of time at 37˚C in 5% CO2. 

 

2.1.4 Toxoplasma irradiation 

Where appropriate, the Toxoplasma were γ-irradiated in HFF cells with 15000 rad 

using a Gammacell 40 137Caesium Irradiator before following the infection protocol 

as described above. 

 

2.2 Protein Biochemistry 

2.2.1 Cell lysis 

For adherent cells: the media was aspirated and the cell layer was washed 2 times 

by covering in ice-cold phosphate buffered saline (PBS) (Sigma #D8537). Ice-cold 

lysis buffer was added and the cell layer was scraped before the suspension was 

collected into an eppendorf tube and stored on ice. For suspension cells: the cells 

were centrifuged for 6 minutes at 300xg, the supernatant was discarded and the 
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cell pellet was resuspended in ice-cold PBS. The cells were centrifuged at 4˚C for 6 

minutes at 300xg to wash them, and then the process was repeated. After the 

supernatant was aspirated following the second wash, ice-cold lysis buffer was 

added to the pellet, and it was resuspended by flicking the tube. The tubes were 

vortexed briefly to ensure lysis of the nuclei, before being incubated on an end-over 

shaker at 4˚C for 1 hour. The suspension was centrifuged at 12000xg for 15 

minutes at 4˚C, after which the total soluble lysate was collected. The protein 

concentration was calculated using Bio Rad Protein assay dye reagent (Bio Rad 

#5000006). 100µl of reagent was added to 400µl PBS. 2.5µl of lysate was added to 

the mixture, followed by 500µl PBS. The mixture was incubated at room 

temperature for 10 minutes after which the absorbance (A) was quantified by a 

spectrometer at OD595. The protein concentration in mg/ml was calculated using 

the equation (A*14.44)/2.5. 

 

2.2.2 SDS-PAGE and Immunoblot 

Protein expression was analysed by separation with sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) followed by identification using 

antibodies in immunoblot. Cell lysates were produced as described. 10µg of protein 

denatured in Laemmli sample buffer containing dithiothreitol as reducing agent 

(NEB) was loaded into a precast 4-12% Bis/Tris NuPage gel (Thermo Fisher 

Scientific #NW0412) to be run on the Invitrogen Gel System, with a lane dedicated 

to the pre-stained protein standard ladder Novex Sharp (Thermo Fisher Scientific 

#LC5800). The gels were run using 200V until the dye front reached the bottom of 

the gel. The gel was transferred onto nitrocellulose membranes using the iBlot dry 

blotting system as described by the manufacturer (Thermo Fisher Scientific 

#IB21001) before staining with Ponceau-S solution (Sigma Aldrich #P7170-1L) to 

visualise protein. The membranes were blocked in Blotto solution (5% non fat milk 

in PBS + 0.05% Tween 20 with 0.02% sodium azide as preservative) for 1 hour 

with shaking at room temperature before probing with a primary antibody for the 

appropriate time on an orbital shaker. All commercial antibodies were diluted in 

buffers to manufacturer specification. The polyclonal anti GBP and 2 antibodies 

were diluted in 5% non fat milk in PBS + 0.05% Tween 20 with 0.02% sodium azide 



Materials & Methods 

 

35 

 

as preservative, the polyclonal anti-GBP4 antibody was diluted in 1% BSA in PBS + 

0.05% Tween 20 with 0.02% sodium azide, the monoclonal antibodies were not 

diluted. The membranes were washed 3 times for 5 minutes each in PBS 0.05% 

Tween 20 before being probed with the appropriate secondary antibody on an 

orbital shaker. After the membranes were washed 3 times for 5 minutes with PBS 

0.5% Tween 20, they were incubated with Immobilion Western Chemiluminescent 

HRP substrate (Merck Millipore #WBKLS0100) for 5 minutes at room temperature, 

with shaking. The membranes were then exposed to x-ray film before developing 

the film and visualisation.  

 

2.2.3 Immunoprecipitation 

Cell lysates were prepared as stated, using buffer containing 0.5% NP-40 

detergent. An appropriate volume of primary antibody was added to 0.5mg of the 

protein sample, which was mixed well and incubated for 30 minutes at 4˚C on an 

end-over shaker. At the same time, 50µl of Protein-G-sepharose beads (AbCam 

#ab193259) were prewashed in dolphin tubes (Sigma Aldrich, #Z717533) by 

centrifugation for 2 minutes at 1800xg 3 times using lysis buffer. The cell lysate 

was added to the beads and mixed well. The suspension was incubated for 1 hour 

at 4˚C on an end-over shaker. Centrifugation of the suspension at 4˚C for 2 

minutes at 1800xg followed, the supernatant was removed and the beads were 

washed 3 times in lysis buffer by centrifugation. The washed beads were 

resuspended in 1x-SDS sample buffer and the sample was boiled for 5 minutes to 

remove the sample from the beads. The beads were pelleted by centrifugation in a 

microfuge at full speed (1200xg) for 30 seconds, and the supernatant was loaded 

onto a gel for SDS-PAGE and analysis. 

 

2.2.4 Immunofluorescence 

Cells were cultured on 9mm glass coverslips (Gerhard Menzel GMBH 

#LDRND9/1.5). When the cells reached confluency the media was aspirated and 

the cells were washed twice in PBS. The coverslips were incubated with 3% 

paraformaldehyde (PFA) for 15 minutes at room temperature, following which they 
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were washed once with Perm Quench buffer. The wash was replaced with fresh 

Perm Quench and the coverslips were incubated for 10 minutes at room 

temperature. The Perm Quench was aspirated and PGAS buffer was added, with 

the cells incubating for at least 5 minutes. The primary antibody was diluted at an 

appropriate concentration in PGAS. The coverslips were placed cell side down onto 

a 50µl drop of antibody solution and were incubated for 1 hour at room temperature 

in a humidified chamber. The coverslips were washed 3 times in PGAS before the 

incubation process was repeated, in the dark, with the appropriate fluorescent 

secondary antibody diluted in PGAS. The coverslips were subjected to 3 washes in 

PGAS, followed by 3 washes in PBS. The final PBS wash contained 1:10,000 

dilution of Hoechst DNA stain (Thermo Fisher Scientific #H3570). The coverslips 

were rinsed twice in dH2O before being mounted onto glass slides (Thermo 

Scientific Superfrost Plus #J1800AMNZ) using Mowiol-488 polymer (Sigma Aldrich 

#81381). The slides were incubated overnight in the dark at room temperature to 

ensure adhesion before being visualised on a bright-field or confocal microscope. 

Buffer recipes can be found in Appendix. 

 

2.2.5 Confocal microscopy and image analysis 

Slides were viewed using a Zeiss 510 Inverted Microscope with a x100 lens, and 

were analysed using Zen Blue software or were imaged on a Leica SP5-invert 

Confocal microscope using x100 objective and analysed using LAS-AF software. 

Further image formatting was done using Image J software.  

 

2.2.6 Subcellular fractionation 

Subcellular fractionation was carried out using the Qiagen Qproteome Cell 

Compartment Kit, #37502. This is a proprietary kit in which the buffer components 

are kept confidential. The protocol was followed as per manufacturer instructions. 

Briefly, 5x106 cells were harvested, washed twice in ice-cold PBS by centrifugation 

for 5 minutes at 300xg. The cells were lysed in CE1 buffer by incubating on an end-

over shaker at 4˚C for 10 minutes. The lysate was centrifuged at 4˚C for 10 minutes 

at 1000xg, with the resulting supernatant containing the cytosolic protein fraction. 
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This fraction was stored on ice, and the pellet was resuspended in CE2 buffer by 

pipetting up and down. The suspension was incubated for 30 minutes on the end-

over shaker at 4˚C before centrifuging at 6000xg for 10 minutes at 4˚C. The 

resulting supernatant contains the membranous protein fraction; this was aspirated 

and stored on ice. The pellet was resuspended in 7µl manufacturers benzonase 

nuclease mixed with 13µl distilled water, and incubated for 25 minutes at room 

temperature. CE3 buffer was added to the mixture, and the suspension was 

incubated for 10 minutes at 4˚C on an end-over shaker. The sample was then 

pelleted by centrifugation at 6800xg at 4˚C for 10 minutes, with the resulting 

supernatant forming the nuclear protein fraction. This fraction was removed and 

stored on ice. The pellet comprises the cytoskeletal proteins, and was resuspended 

in buffer CE4. The samples were then precipitated with ice-cold acetone, before 

being resuspended in distilled water and quantified using the Bio Rad protein assay 

dye as described above. 

 

2.2.7 Protein degradation inhibition 

Cells were grown to 90% confluency, and were treated with the appropriate 

degradation inhibitor for 60 minutes. Type II Toxoplasma were used to infect the 

cells at an MOI of 3, with the infection being allowed to persist for 2 hours before 

the cells were harvested and lysed as described above for protein expression 

analysis. See Table 1 for information on usage and source of each component. 

 

Table 1 Protein degradation inhibitors 

Inhibitor Manufacturer Usage 
MG132 Cambridge BioScience 

# CAY10012628-5 
10µM 

Leupeptin Enzo Life Sciences 
#ALX-260-009 

10µg/ml  

Calpastatin Cambridge BioScience 
#16501-100-CAY 

10µM 

Lactacystin Cayman 
#19680219 

40nM 

Z-VAD-FMK Invivogen 
#ABE266 

4µg/ml 
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2.3 Overexpression and cell cloning 

2.3.1 Cell transfection with TransIT 2020  

TransIT 2020 lipid transfection reagent was purchased from Mirus (#MIR5404) and 

the protocol was carried out as per manufacturers instructions. Briefly, adherent 

cells were grown in 6 well plates, and were allowed to reach 80% confluency. 

Suspension cells were also plated in 6 well plates, and used at a density of 

5x105/ml. The reagent was warmed to room temperature before mixing gently by 

vortexing. 2.5µg DNA was added to 250µl of Opti-MEM serum free medium 

(Thermo Fisher Scientific #31985062) and mixed gently by pipetting. Then, 7.5µl of 

the TransIT reagent was added, mixing gently with pipetting, before incubating at 

room temperature for 15-30 minutes. The transfection mixture was added dropwise 

into the wells of cells and the plate was rocked gently. The cells were incubated at 

37˚C in 5% CO2 for 24 hours before being analysed for protein expression. 

 

2.3.2 Cell transfection with FuGeneHD 

FuGeneHD lipid transfection reagent was purchased from Promega, #E2311. 

Adherent cells were allowed to grow to 80% confluency in a 24-well plate. The 

reagent was warmed to room temperature, before vortexing gently to mix. 2µg of 

DNA was added to 100µl Opti-MEM serum free media, after which 6µl of the 

transfection reagent was added and was mixed gently by pipetting. The mixture 

was incubated at room temperature for up to 15 minutes, after which the mixture 

was added dropwise on top of the cells. The plate was rocked gently and was 

incubated for 24 hours at 37˚C in 5% CO2 before the cells were analysed for 

protein expression. 

 

2.3.3 Generation of TAP, mCherry and GFP tagged constructs for GBP 

overexpression 

Coding sequences of hGBP3, hGBP4, hGBP5, hGBP6 and hGBP7 were amplified 

by PCR, using Fermentas PCR Master Mix (Thermo Fisher Scientific Inc) 
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according to manufacturer’s protocol (Table 3). Primers were purchased from 

Sigma-Aldrich and were used to integrate appropriate sites for recognition by 

restriction endonucleases as well as to introduce HA, FLAG, mCherry or GFP 

epitope tags. The two restriction sites are not complementary to provide control 

over the inserted PCR product’s orientation and to prevent re-ligation of the vector 

to form transformable circular DNA. To enable a higher level of efficiency of linear 

DNA cutting by the enzymes, short overhangs were placed 5’ to the restriction sites. 

All primers with their tags and restriction sites are listed in the Appendix. 

Both the PCR product and appropriate vectors were double digested for 1 

hour at 37˚C as indicated in Appendix, Table 10. Successful digestion was verified 

by electrophoresis on a 1% agarose gel containing Gel Red (Biotium, #41003-BT) 

in 1X Tris-Acetate-EDTA (TAE) buffer at 100V until migration was complete. The 

samples were visualised under UV light. The bands were excised and the DNA was 

extracted using Qiagen Quick Gel Extraction kit (#28704). C1 vectors and the insert 

were ligated using a fast ligation protocol (Thermo Fisher Scientific #K1422), to the 

values as indicated in Table 10 with an incubation of 15 minutes at room 

temperature. 

For each transformation, 3µl of the ligated vector preparation was added to 

One Shot Mach-1 E. coli competent cells (Life Technologies, # C862003). After 30 

minutes incubation on ice, the cell suspension was subjected to heat shock at 42˚C 

for 30 seconds, before being returned to ice for 2 minutes. Following this, cells 

were recovered in 250µl SOC and shaken for 1 hour at 37˚C. The transformed cells 

were spread on agar plates containing the appropriate antibiotic selection and 

allowed to form colonies overnight at 37˚C. DNA constructs were harvested from 

transformed Mach-1 cells using the Qiagen Quicklyse Miniprep kit, # 27405, and 

DNA was quantified on a NanoDrop spectrophotometer.  

 

2.3.4 GeneSwitch driven overexpression of GBPs 

DNA from GBP image clones was amplified by PCR from the C1 and pcDNA3 

constructs to include appropriate restriction sites for cloning into the pGene vector 

primers and restriction sites can be found in the Appendix. The plasmid and GBP 

DNA underwent restriction digest before ligation using a fast ligation protocol 
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(Thermo Fisher Scientific #K1422). The product was run on an electrophoresis gel, 

with the bands being visualised using UV light before excision. The constructs were 

extracted as above. 3T3 fibroblasts that stably express the pSwitch plasmid were 

obtained as a kind gift from Jonathan Howard. These cells were grown to 70% 

confluency before being transfected with the individual pGene-GBP constructs 

using the TransIT 2020 transfection reagent as described. 24 hours after 

transfection the media was replaced with complete media, and selection with 

50µg/ml zeocin (Invivogen #ant-zn-1) began in order to produce stable clones. To 

induce protein overexpression, mifepristone was added and incubated with cells for 

24 hours before experimentation or protein analysis. 

 

2.3.5 Vaccinia virus driven overexpression of GFP-GBP4 

GFP-GBP4 was amplified from the pGene-GFP-GBP4 plasmid including restriction 

sites for AscI and PacI, primer sequences are included in the Appendix. The 

product was run on an electrophoresis gel as described, before the correct bands 

were visualised using UV light, and excised and extracted as above. 

 The pJS4 plasmid for this system was a kind gift from Jason Mercer (UCL). 

The plasmid and DNA underwent a restriction digest with AscI and PacI enzymes 

(Thermo Fisher Scientific #FD1894/ #FD2204) using the Thermo Fast Digest 

system (#FD1894/ FD2204). The vector and insert were ligated using a fast ligation 

protocol before transformation into competent cells as described above. THP-1 

monocytes and HUVECs were grown to 5x105 cells/ml or 80% confluency 

respectively before being infected with Vaccinia virus by Jason Mercer. One hour 

post infection, the cells were transfected with the pJS4-GFPGBP4 construct using 

the TransIT 2020 reagent as described. The cells were incubated at 37˚C in 5% 

CO2, with cells being lysed for protein expression analysis at specific time points.  

 

2.3.6 Inducible lentiviral driven overexpression of GFP-GBP4 

GFP-GBP4 was amplified from the pGene-GFP-GBP4 plasmid including restriction 

sites for MluI and NotI, primer sequences and PCR protocol are included in the 

Appendix. The product was run on an electrophoresis gel as described before the 
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correct bands were visualised using UV light, and excised and extracted as above. 

The pLVX-Tight-Puro, Tet-On-Adv, ∆8.9 and VSV-G plasmids were a kind gift from 

Annemarthe van der Veen and Caetano Reis e Sousa. A pLVX-mCherry plasmid 

was received as a kind gift from Rhiannon White. The pLVX-Tight-Puro plasmid 

and GFP-GBP4 DNA underwent restriction digest with the appropriate enzymes 

using the Thermo Fast Digest system (#FD0564/ # FD0593). The vector and insert 

were ligated using a fast ligation protocol (Thermo Fisher Scientific #K1422) before 

transformation into competent cells as described.  

HEK293T wells were grown to 70% confluency before transfection with the 

VSV-G and ∆8.9 packaging plasmids along with either Tet-On-Adv, pLVX-mCherry 

or PLVX-TP-GFPGBP4 plasmids. Supernatant from the cells containing the viruses 

were collected at both 24 and 48 hours post-transfection. The samples underwent 

ultra-centrifugation for 90 minutes at 4˚C at 20,000g before being flash frozen and 

stored at -80˚C. THP-1 monocytes were grown to 5x105 cells/ml before 

transduction with the viruses. The pLVX-mCherry or pLVX-TP-GFPGBP4 viruses 

were added to the cells, along with the Tet-On-Adv virus and 8µg/ml Polybrene. 

The cultures were centrifuged at room temperature for 90 minutes at 1200xg to 

ensure infection of cells, before being incubated at 37˚C in 5% CO2. The media 

was changed on the cells 6 hours after transduction and replaced with complete 

media. After 48 hours the cells were selected on 4µg/ml Puromycin (Thermo Fisher 

Scientific #A1113802) and 500µg/ml G418 (Thermo Fisher Scientific #11811098). 

To induce the expression of the protein of interest, the cells were treated with 

1µg/ml doxycycline (Sigma # D9891) and the cells were studied from 4 to 24 hours 

to analyse protein expression. 

 

2.4 Antibody production 

2.4.1 Antigenic peptide design for antibody production 

In order to produce rabbit polyclonal peptide antibodies against all 7 hGBPs, I first 

aligned the protein sequences before selecting a unique sequence for each hGBP. 

The specific peptide sequences and alignment across the family can be found in 

Figure 5. The peptides were ordered from BioMatik Corporation, Canada. The 

sequences were initially chosen from homologs to mGBP peptides (Degrandi et al., 
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2007) and were then further designed according to specificity ensuring there was 

as little similarity across the selected sequences as possible. Immunogenicity was 

also checked using software available online (Thermo Scientific, Pierce Antibodies, 

Antigen Profiler Peptide Tool). BioMatik conjugated the peptides to keyhole limpet 

haemocyanin in order to improve immunogenicity. The company Antibody 

Production Services proceeded to inject these immunogens into rabbits. A pre-

bleed and subsequent test bleeds at 3 intervals were taken before the final bleed.  

For the production of mouse monoclonal antibodies, the peptide sequences 

for GBP2 and 4 were elongated (Figure 5). Covalab Biotechnology Company 

produced the peptides, before immunising four mice per peptide. The preimmune 

sera were tested for background reactivity before immunisation. Hybridomas were 

produced up to 192 days post-inoculation; the supernatant was preliminary tested 

by enzyme-linked immunosorbent assay (ELISA) for reactivity against the peptide 

by the company. After reactive candidates were identified, I tested the supernatants 

by immunoblotting for specificity against lysates of mouse fibroblasts that inducibly 

overexpress TAP-tagged GBP family members. Three mice underwent fusion for 

the anti-GBP2 antibody. Of these, one mouse yielded no reactive hybridomas while 

the second and third mice produced a total of two reactive hybridomas. These were 

cloned to produce a total of four reactive antibodies (Table 3 and 4). In this project, 

monoclonal anti-GBP2 clone 9E12c1 was used. Two mice underwent fusion to 

produce hybridomas for monoclonal anti-GBP4 antibody production. From these, 

one of the fusion events produced no reactive hybridomas. The second fusion 

event yielded two reactive hybridomas, which were cloned and then subcloned to 

produce four reactive antibodies (Tables 5 and 6). In this project, monoclonal anti-

GBP4 clone 9A12c6d3 was used. 

 

2.5 Toxoplasma/ Host interaction assays 

2.5.1 FACS for invasion assay 

Cells were grown to 80% confluency and were infected with irradiated Toxoplasma 

as described above. After 1 hour of infection, the cells were incubated with 2x 0.5% 

Trypsin +EDTA (Life Technologies #15400-054) at 37˚C to allow the cells to detach 

from the culture plate. The reaction was quenched with warmed DMEM media 
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containing 10% FBS, and the cells were transferred into a 15ml Falcon tube to be 

pelleted by centrifugation at 300xg for 5 minutes. The media was aspirated and the 

cells were washed twice in ice cold PBS by centrifugation at 37˚C at 300xg. After 

the supernatant was aspirated following the final wash, the cells were resuspended 

in ice-cold 4% PFA and transferred to a well of a round-bottomed 96-well plate to 

be incubated on ice for 20 minutes. PBA was added on top and the plate was 

centrifuged at 450xg for 3 minutes to pellet the cells. The supernatant was removed 

by gently inverting the plate, after which the cells were resuspended in PBA and 

transferred to a FACS tube ready for analysis on a BD LSR-II flow cytometer. 

 

2.5.2 Plaque assay  

A549 cells were allowed to grow to confluency in a 24-well plate before being 

infected with either 300 type I or 600 type II Toxoplasma. The infection was allowed 

to persist for the desired length of time, before the cell layer was scraped and the 

parasites released by syringe lysis using a 25-gauge needle. This suspension was 

then plated onto unstimulated, confluent HFFs in 1:2 serial dilutions. The infection 

persisted for 4 days at 37˚C in 5% CO2 after which plaques were counted using a 

microscope.   

 

2.5.3 Assessing parasite vacuolar replication  

Cells were grown on glass coverslips until confluency. They were infected with 

eGFP expressing Toxoplasma at an MOI of 0.5, and the infection was allowed to 

persist for the desired length of time. The cells on coverslips were washed 

extensively to ensure all parasites that had not invaded were removed, after which 

they were fixed, permeabilised and blocked as above. The coverslips were washed 

3 times in PGAS, followed by 3 washes in PBS, with 1:10,000 Hoechst DNA stain 

contained in the last wash. They were then mounted on glass slides as described 

above. The slides were viewed on a bright-field microscope and the number of 

parasites per vacuole were counted using x63 lens. A minimum of 100 vacuoles 

was counted, with each sample produced in triplicate. 
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2.5.4 Statistical analysis 

Parasite replication assays were carried out in triplicate and at least twice. For 

these two independent variables (time and parasite number) are compared and so 

a 2-way ANOVA statistical analysis was carried out to determine significance. 

Plaque assays were carried out in triplicated and at least twice. The plaque assay 

in Figure 15 was normalised to 100% growth in wild type unstimulated cells, thus in 

this experiment, a paired t-test was used to calculate significance. In plaque assays 

comparing growth between cell types as well as IFNγ-stimulation, experiments, two 

independent variables are compared (IFNγ-stimulation and cell type) and so a 2-

way ANOVA was carried out to determine significance. When calculating the 

statistical significance between the densities of bands on an immunoblot or the 

intensity of fluorescence staining in immunofluorescence images an unpaired t-test 

was utilised due to the comparison of two independent groups. 
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Chapter 3. Generation and characterisation of 
molecular tools and techniques to study hGBPs 

3.1 Results 

3.1.1 Generation and characterisation of molecular tools and techniques to 

study hGBPs 

3.1.1.1 Antibodies 

As the seven GBPs have such a high level of identity across the family, obtaining 

antibodies that are specific is not trivial. Consequently, there is a lack of 

commercial antibodies available, with no guarantee of specificity for individual 

family members. To ensure I had antibodies that were directed to specific regions 

of the protein, thereby increasing the probability of specificity for each GBP, it was 

decided to produce antibodies with which to carry out this project. There are a 

number of options when producing bespoke antibodies. While it was necessary to 

obtain the best tools possible, cost considerations had to be taken into account. 

Therefore, I proceeded with a mixture of polyclonal and monoclonal antibody 

production. Unique peptide sequences were chosen for each family member, 

ensuring that each one had a high immunogenic capacity using an online software 

tool from Thermo Scientific (https://www.thermofisher.com/uk/en/home/life-

science/antibodies/custom-antibodies/custom-antibody-production/antigen-profiler-

antigen-preparation.html#). The peptides designed for the polyclonal antibody 

production ranged from 13 to 16 amino acids in length and were selected from the 

C-terminal of the protein sequence. This is because the C-terminus has the highest 

level of sequence variability, giving an increased likelihood of making antibodies 

that are family member specific (Figure 5). One rabbit per human GBP was 

inoculated with the appropriate peptide before test-bleeds were harvested at three 

time points after infection, prior to the final bleed. The sera from these bleeds were 

screened for reactivity in immunoblot against mouse fibroblasts that inducibly 

overexpressed the respective human GBP. Table 2 demonstrates the candidate 

polyclonal antibodies and their reactivity in immunoblot. 
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 Furthermore, two of the unique peptide sequences were elongated in order 

to produce monoclonal antibodies. From the literature, it had been reported that 

GBPs 2 and 4 could be found in the nucleus under certain conditions (Tripal et al., 

2007). With the exception of nuclear trafficking Ran proteins, human GTPases 

have had limited function reported in the nucleus, so these two candidates 

appeared very interesting. On the basis of this, monoclonal antibodies were 

produced to GBP2 and GBP4 (Figure 5). Tables 3-6 demonstrate the candidates 

for GBP2 and GBP4 monoclonal antibody production. Four mice per GBP were 

inoculated with specific antibody. The company determined levels of antibody via 

ELISA and the animals with high antibody titre underwent fusion. The resulting 

hybridoma supernatants were analysed by the company via ELISA against the 

inoculating peptide. After reactive candidates were identified, I tested the 

supernatants by immunoblotting for specificity against lysates of mouse fibroblasts 

that inducibly overexpress TAP-tagged GBP family members. Three mice 

underwent fusion in order to produce the anti-GBP2 antibody. Of these, one mouse 

yielded no reactive hybridomas while the second and third mice produced a total of 

two reactive hybridomas. These were cloned to produce a total of four reactive 

antibodies (Table 3 and 4). In this project, monoclonal anti-GBP2 clone 9E12c1 

was used. Two mice underwent fusion to produce hybridomas for monoclonal anti-

GBP4 antibody production. From these, one of the fusion events produced no 

reactive hybridomas. The second fusion event yielded two reactive hybridomas, 

which were cloned and then sub-cloned to produce four reactive antibodies (Tables 

5 and 6). In this project, monoclonal anti-GBP4 clone 9A12c6d3 was used. 

 A polyclonal antibody had been made previously using full-length 

recombinant GBP1. However, it had never been properly characterised in regard to 

specificity and cross-reactivity to other family members, and therefore was not 

being used either reliably or to its full potential. This antibody was added to the 

repertoire requiring testing. 
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Figure 5 Alignment of GBP C-termini and peptides for antibody production 

Sequences were aligned using Clustal Omega Multiple Sequence Alignment tool.  
Blue indicates peptides for polyclonal antibody production. The yellow section 
represents the additional amino acids that were selected in addition to the blue 
peptide sequence; this extended peptide was used for monoclonal antibody 
production for GBP2 and GBP4. 
  

  

GBP5      AVKQGIYSKPGGHNLFIQKTEELKAKYYREPRKGIQAEEVLQKYLKSKESVSHAILQTDQ 

GBP2      DVKQGTFSKPGGYRLFTQKLQELKNKYYQVPRKGIQAKEVLKKYLESKEDVADALLQTDQ 

GBP1      EVKAGIYSKPGGYRLFVQKLQDLKKKYYEEPRKGIQAEEILQTYLKSKESMTDAILQTDQ 

GBP3      EVKAGIYSKPGGYCLFIQKLQDLEKKYYEEPRKGIQAEEILQTYLKSKESVTDAILQTDQ 

GBP6      SISAGSFSVPGGHKLYMETKERIEQDYWQVPRKGVKAKEVFQRFLESQMVIEESILQSDK 

GBP4      SILRGIFSVPGGHNLYLEEKKQVEWDYKLVPRKGVKANEVLQNFLQSQVVVEESILQSDK 

GBP7      SISRGTFFVPGGHNIYLEAKKKIEQDYTLVPRKGVKADEVLQSFLQSQVVIEESILQSDK 

           :  * :  ***: :: :  : :: .*   ****::*.*::: :*:*:  : .::**:*: 

 

GBP5      ALTETEKKKKEAQVKAEAEKAEAQRLAAIQRQNEQMMQERERLHQEQVRQME----IAKQ 

GBP2      SLSEKEKAIEVERIKAESAEAAKKMLEEIQKKNEEMMEQKEKSYQEHVKQLTEKMERDRA 

GBP1      TLTEKEKEIEVERVKAESAQASAKMLQEMQRKNEQMMEQKERSYQEHLKQLTEKMENDRV 

GBP3      ILTEKEKEIEVECVKAESAQASAKMVEEMQIKYQQMMEEKEKSYQEHVKQLTEKMERERA 

GBP6      ALTDREKAVAVDRAKKEAAEKEQELLKQKLQEQQQQMEAQVKSRKENIAQLKEKLQMERE 

GBP4      ALTAGEKSIAAERAMKEAAEKEQELLREKQKEQQQMMEAQERSFQEYMAQMEKKLEEERE 

GBP7      ALTAGEKAIAAKQAKKEAAEKEQELLRQKQKEQQQMMEAQERSFQENIAQLKKKMERERE 

           *:  **         *: :   : :     : :: *: : :  :* : *:       :  

 

GBP5      NWLAEQQKMQEQQMQEQAAQLSTTFQAQNRSLLSELQHAQRTVNNDDP--CVLL------ 

GBP2      QLMAEQEKTLALKLQEQERLLKEGFENESKRLQKDIWDIQMRSKSLEP--ICNIL----- 

GBP1      QLLKEQERTLALKLQEQEQLLKEGFQKESRIMKNEIQDLQTKMRRRK---ACTIS----- 

GBP3      QLLEEQEKTLTSKLQEQARVLKERCQGESTQLQNEIQKLQKTLKKKT---KRYMSHKLKI 

GBP6      HLLREQIMMLEHTQKVQNDWLHEGFKKKYEEMNAEISQFKRMIDTTKNDDTPWIARTLDN 

GBP4      NLLREHERLLKHKLKVQEEMLKEEFQKKSEQLNKEINQLKEKIESTKNEQLR-LLKILDM 

GBP7      NYMRELRKMLSHKMKVLEELLTEGFKEIFESLNEEINRLKEQIEAAENEEPSVFSQILDV 

          . : *         :     *    :     :  ::   :             :       

 

GBP5      --------------------------------------- 

GBP2      --------------------------------------- 

GBP1      --------------------------------------- 

GBP3      --------------------------------------- 

GBP6      LADELTAILSAPAKLIGHGVKGVSSLFKKHKLPF----- 

GBP4      ASNIMIVTLPGASKLLGVGTKYLGSRI------------ 

GBP7      AGSIFIAALPGAAKLVDLGMKILSSLCNRLRNPGKKIIS 

                                                 !

Peptide selected for polyclonal antibody production

592
595

591
586

633
640
638

Peptide selected for monoclonal antibody production
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Table 2 Screening of polyclonal antibody sera for specific bands in immunoblot 

GBP Test bleed 1 Test bleed 2 Test bleed 3 Final bleed 

1 P P P  P 
2 P P P P 
3   P  
4 P P P P 
5 P    
6     
7 P P P P 
 
One rabbit per human GBP family member was inoculated with the appropriate 
peptide. Test bleeds were taken at 3 intervals before a final bleed. Where ticks are 
shown, a band for the individual GBP was observed in immunoblot. Where blank, 
no signal was observed.  
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Table 3 Candidates for monoclonal GBP2 antibody production from fusion of 

mouse ‘R’ 

 Monoclonal human GBP2 

4 mice immunised; V, B, R, N 

 Fusion of mouse R Day 66 

Hybridoma Signal observed 

by ELISA 

Signal observed 

in IB after ELISA 

ID of clones with signal 

observed in IB 

1D3    

1A5    

1B5    

1A7    

1E9 P   

1E10    

1G11    

2G2    

2F3    

2H3    

2D6    

2C8 P   

2A10    

2F10    

2B11    

2A12    

2C12    

3B2    

3G3    

3C5    

3D7    

3C9    

3G9    

3D10    

3C11    

3H11    
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Continued…  

 Monoclonal human GBP2 

4 mice immunised; V, B, R, N 

 Fusion of mouse R Day 66 

Hybridoma Signal observed 

by ELISA 

Signal observed 

in IB after ELISA 

ID of clones with 

signal observed in IB 

4C1    

4G1    

4B2    

4B3    

4A4    

4C8    

5H2    

5B4    

5E4    

5B5    

5G5    

5E7    

5G10    

5G11    

5C12    

6F2    

6D3    

6H4    

6C5    

6E5    

6F6 P   

6D7    

6F8    

 

A tick represents a signal in ELISA or a specific band in immunoblot. All candidates 
that demonstrated a signal in ELISA underwent testing in IB. Where blank, no 
signal was observed when screened in ELISA and/or immunoblot. 
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Table 4 Candidates for monoclonal GBP2 antibody production from fusion of 

mice 'V' and 'N' 

 Monoclonal human GBP2 

4 mice immunised; V, B, R, N 

 Fusion of mice V and N after Day 192 

Hybridoma Signal observed 

by ELISA 

Signal observed 

in IB after ELISA 

ID of clones with 

signal observed in IB 

1A6 P P 1A6d6 

1A6g2 

1G12 P   

2F4    

2H11 P   

3H1 P   

3F2 P   

3B7    

5H12    

6A1 P   

6B6 P   

6H6 P   

6D9 P   

6G12    

7D1 P   

7A5    

7A4 P   

7G7    

7A12    

7G12    

8H1 P   

8G9    

9F1    

9E3 P   

 



Tool generation and characterisation 

 

52 

 

 

Continued… 

 Monoclonal human GBP2 

4 mice immunised; V, B, R, N 

 Fusion of mice V and N after Day 192 

Hybridoma Signal observed 

by ELISA 

Signal observed 

in IB after ELISA 

ID of clones with 

signal observed in IB 

9B8    

9H9 P   

9E12 P P 9E12b2 

9E12c1 

10F1    

10H3 P   

10C4    

10C5    

10G8    

11F6 P   

13A3    

13D3    

13B10    

13D11 P   

13C12    

 

A tick represents a signal in ELISA or a specific band in immunoblot. All candidates 
that demonstrated a signal in ELISA underwent testing in IB. Where blank, no 
signal was observed when screened in ELISA and/or immunoblot. 
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Table 5 Candidates for monoclonal GBP4 antibody production from fusion of 

mouse 'N' 

 Monoclonal human GBP4 

4 mice immunised; V, B, R, N 

 Fusion of mouse N Day 129 

Hybridoma Signal observed 

by ELISA 

Signal observed 

in IB after ELISA 

ID of clones with 

signal observed in IB 

1C2    

1D8    

4A4    

4H12    

6B9    

7E1    

9H6    

9C12    

 
A tick represents a signal in ELISA or a specific band in immunoblot. All candidates 
that demonstrated a signal in ELISA underwent testing in IB. Where blank, no 
signal was observed when screened in ELISA and/or immunoblot. 
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Table 6 Candidates for monoclonal GBP4 antibody production from fusion of 

mouse 'R' 

 Monoclonal human GBP4 

4 mice immunised; V, B, R, N 

 Fusion of mouse R Day 173 

Hybridoma Signal observed 

by ELISA 

Signal observed in 

IB after ELISA 

ID of clones/ sub-

clones with signal 

observed in IB 

2A8     

3F9     

4A7     

4E9 P    

5E1 P P 5E1d1 

5E1g1 

 

5F9     

5C10 P    

6C6     

6D10     

6H11     

9D5 P    

9A12 P P 9A12c6 9A12c6f8 

9A12c6d3 

10D2 P    

10D3     

10H8     

 
A tick represents a specific band in immunoblot. All candidates that demonstrated a 
signal in ELISA underwent testing in IB. Where blank, no signal was observed 
when screened in ELISA and/or immunoblot. 
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All candidate antibodies were tested to ensure a band of the correct size 

could be detected in other cells via immunoblot using HUVEC lysates, with the best 

candidates taken forward for full characterisation. First, a polyclonal antibody 

produced against the GBP1 peptide was characterised. I, and others, have 

developed mouse 3T3 fibroblasts that inducibly overexpress tagged individual 

family members, which will be described later in this chapter. Using lysates from 

these cells I showed that the polyclonal antibody was specific for this GBP family 

member in immunoblotting (Figure 6A). Furthermore, a band of the correct size 

was detectable in immunoblots of A549 cell lysates that was subsequently lost 

when probing lysates from A549 cells deficient in GBP1 (made by Barbara Clough) 

(Figure 12). Using lysates from the same GBP-overexpressing 3T3 fibroblast cells, 

it was shown that this antibody reacts with both GBPs 1 and 2 in 

immunoprecipitation, but does not cross react with GBP3 (Figure 6B). 

Immunoprecipitation characterisation was limited to GBP1, 2 and 3 due to the 

highest level of identity being present between these family members. It was shown 

that the same antibody was specific to GBP1 in immunofluorescence by lack of 

staining in A549 cells that were deficient in GBP1 protein expression as compared 

to wild type cells (Figure 6C).  
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Figure 6 Characterisation of anti-GBP1 polyclonal antibody 

Immunoblot showing anti-GBP1 antibody reactivity in 3T3 fibroblasts 
overexpressing individual TAP-tagged GBP family members. 10µg of protein was 
loaded into each lane for SDS-PAGE. The same membrane was probed with anti-
Flag to show TAP (HA-Flag) was present (A). Immunoblot showing the 
immunoprecipitation capacity of anti-GBP1 antibody in 3T3 fibroblasts over 
expressing GFP-tagged GBP1, 2 or 3. 40µl of antibody was used to 
immunoprecipitate from 500µg of total lysate. 35µl of immunoprecipitated end 
product was loaded in each lane for SDS-PAGE (B). Immunofluorescence images 
showing staining with anti-GBP1 in A549 WT cells as compared to A549 ∆GBP1 
cells. Scale bars 10µM. Cells were stimulated or not for 18 hours with 10U/ml IFNγ  
(C). Each representative of 3 independent experiments.  
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As mentioned above, it was previously reported that GBP2 and 4 could be 

found in the nucleus (Tripal et al., 2007), therefore these family members were 

used in both polyclonal and monoclonal antibody production. In the process of 

choosing suitable hybridoma clones to take forward, a monoclonal antibody specific 

to GBP2 was identified by immunoblot (Figure 7A). For the polyclonal antibody, a 

number of rabbits were immunised with peptide against GBP2, however none of 

the resulting candidates obtained showed any signal in an immunoblot. Once 

candidates had been selected, further characterisation showed that both 

monoclonal and polyclonal antibodies had a capacity for immunoprecipitation, 

however neither antibody was specific. The anti-GBP2 polyclonal antibody also has 

the capacity to immunoprecipitate GBP1 protein (Figure 7B) and the monoclonal 

antibody retrieves at least GBP1 and GBP3 in an unspecific manner (Figure 7C).  
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Figure 7 GBP2 antibody characterisation 

Immunoblot showing reactivity of the monoclonal anti-GBP2 antibody in 3T3 mouse 
fibroblasts overexpressing individual TAP-tagged human GBPs. 10µg of total 
protein was loaded into each lane for SDS-PAGE. The same membrane was 
probed with anti-Flag to show TAP (HA-Flag) was present (A). Immunoblot showing 
the immunoprecipitation capacity of monoclonal anti-GBP2 antibody (B) and the 
polyclonal anti-GBP2 antibody (C) in 3T3 fibroblasts overexpressing TAP-tagged 
GBP1, 2 or 3. 35µl of immunoprecipitated end product was loaded in each lane for 
SDS-PAGE.10µl of antibody was used to IP from 500µg of total lysate in (B). 40µl 
of antibody was used to IP from 500µg of total lysate in (C). Each representative of 
3 independent experiments. 
 

When characterising the anti-GBP4 antibodies, a rabbit polyclonal antibody proved 

specific in immunoblots (Figure 8A). The monoclonal antibodies that were raised 

against GBP4 were tested in immunoblots against lysates from 3T3 fibroblasts 
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overexpressing individual GBPs. None were found to produce any signal in this 

application. However, upon further testing, it was shown that an anti-GBP4 

monoclonal antibody could specifically retrieve GBP4 by immunoprecipitation 

(Figure 8B). 

 
Figure 8 GBP4 antibody characterisation 

Immunoblot showing reactivity of anti-GBP4 polyclonal antibody in 3T3 fibroblasts 
overexpressing individual TAP-tagged GBPs. 10µg of total protein was loaded into 
each lane for SDS-PAGE. The same membrane was probed with anti-Flag to show 
TAP (HA-Flag) was present (A). Immunoblot showing immunoprecipitation capacity 
of anti-GBP4 monoclonal antibody in 3T3 fibroblasts overexpressing GFP-tagged 
GBP4. 65µl of antibody was used to IP from 500µg of total lysate. 35µl of 
immunoprecipitated end product was loaded in each lane for SDS-PAGE (B). Each 
representative of 2 independent experiments.  
 

 A polyclonal antibody against GBP1 had previously been produced in rabbit 

by Sebastian Virreira Winter and Eva Frickel by using full-length recombinant 

protein. Due to the very high levels of identity between the seven GBP family 

members, it was important to fully characterise this antibody and determine its 

specificity. Lysates from 3T3 fibroblasts overexpressing individual GBP family 

members were probed with this recombinant protein antibody. It became clear that 

although the antibody recognised GBP1 protein, it was cross-reactive with GBPs 2, 

3 and 6 as well (Figure 9). Therefore it has been labelled as an anti-pan-GBP 

antibody, and will be referred to as such from this point onwards.  
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Figure 9 pan-GBP antibody characterisation 

Immunoblot showing the reactivity of the anti-pan-GBP in 3T3 fibroblasts 
overexpressing individual TAP-tagged GBPs. 10µg of protein loaded into each lane 
for SDS-PAGE. The same membrane was probed to show that TAP (HA-Flag) was 
present. Representative of 3 independent experiments. 
  

3.1.1 Overexpression of human GBPs in mammalian cells 

In order to assess the function of the GBPs in the context of a Toxoplasma gondii 

infection, I planned to overexpress each family member in a variety of human cells. 

These cells would be infected with Toxoplasma before evaluating how parasite 

survival and replication would be affected. Within the literature, a number of 

techniques for overexpression of human GBPs have been demonstrated (Modiano 

et al., 2005, Pammer et al., 2006, Duan et al., 2006, Tripal et al., 2007, Schnoor et 

al., 2009, Tietzel et al., 2009, Al-Zeer et al., 2013, Forster et al., 2014, Ostler et al., 

2014, Blondel et al., 2015, Li et al., 2015). At the same time, there are variations 

within even single laboratories in the methods used to overexpress this family of 

proteins. Therefore, to establish this technique, a number of transfection methods 

were employed in order to find the most efficient and least toxic approach. 

First, I used a lipid based transfection method to transiently overexpress 

human GBPs. All seven of the individual GBP family members were cloned into C1 

and pcDNA3 vector plasmids with either a mCherry- or GFP-N-terminus tag. This 

was a large undertaking that was done in collaboration with a lab at Duke 
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University, and with another member of the Frickel lab. GBP1 and 2, with both GFP 

and mCherry tags were produced by the Coers lab. GBPs 3-6 with a GFP tag were 

produced by Barbara Clough. I produced GFP-GBP7 and mCherry-tagged GBPs 3-

7. These were then employed to transiently transfect a variety of human cell types 

with Mirus TransIT 2020 lipid transfection reagents. It became apparent that after 

transfection, the cells began to look very sickly. While fluorescent cells were 

observed (data not shown), after only a few hours of this transfection the cells died. 

Hence, these results imply that the cells did not tolerate the overexpression of 

these proteins. With an expression window of less than 12 hours before the cells 

succumbed, it was not possible to carry out an infection and viability assay with 

Toxoplasma gondii. Hence, transient overexpression was not a feasible method 

with which to study GBPs.  

Following this, a ‘Tet-On’ inducible lentiviral method of transduction 

technique was employed. THP-1 monocytes would be stably transduced before 

differentiation into macrophages. The expression of tagged-GBPs is then inducible 

with the addition of doxycycline. Lentiviral transduction generally allows for a higher 

efficiency due to the advantage of it being able to transfect both dividing and non-

dividing cells. Furthermore, with an inducible system, the transduced cells only 

have the protein expression upregulated when doxycycline treatment is applied. In 

order to stop the virus from recombining inside the cell, the genes necessary to 

package and assemble the virus are contained in separate vectors. To test the 

system, I cloned GBP4 into the pLVX-Tight-Puro-Vector. The pLVX-Tight-Puro 

plasmid containing GBP4 was transfected using TransIT 2020 into HEK293T cells 

along with the two plasmids containing the packaging components. At the same 

time, a separate population of HEK293T cells were transduced with the Tet-On-Adv, 

the lentiviral vector for producing a doxycycline-activated transactivator for this 

system, containing plasmid and the separate packaging plasmids. A control 

lentivirus was produced also by using a pLVX-mCherry vector transfected with the 

packaging plasmids. This would result in a non-inducible overexpression and will 

demonstrate whether the production of virus was effective by analysing the 

resulting transduction. The lentivirus produced was harvested at both 24 and 48 

hours before being pooled, filtered, centrifuged and flash frozen, ready for 

transduction into THP-1 monocytes.   



Tool generation and characterisation 

 

62 

 

 To transduce THP-1 monocytes, cells were incubated either with the 

mCherry-lentivirus or with a combination of the Tet-On-Adv and pLVX-GBP4 viral 

stocks. Polybrene was added to aid the reaction as it is a cationic polymer that can 

neutralise charge repulsion between the virions and sialic acid- allowing greater 

adsorption on to the cell surface (Hunn et al., 2008). The transduction was allowed 

to persist for 6 hours after which the media was changed and selection with G418 

and Puromycin for doubly transduced cells began. The mCherry-expressing cells 

were viewed 24 hours post-transduction, with a high level of fluorescence being 

observed. Before inducing expression of GBP4, the THP-1 monocytes were 

differentiated into macrophages. They were then incubated with doxycycline for 24 

hours to allow the protein to accumulate. After approximately 12 hours, the cells 

looked unhealthy and began to detach from the wells. By 24 hours the cells had 

almost completely ceded to the consequences of transduction of GBPs, when 

compared with control-transduced cells.  

 Another classically used viral-mediated method of transient protein 

overexpression employs Vaccinia virus (Falkner et al., 1992). This system has 

been used in cases of toxic protein expression as it can lead to very rapid 

production of the protein of choice due to its capacity to transcribe DNA in the 

cytoplasm. Conveniently, Vaccinia virus is able to infect any cell type. If GBPs 

could be overexpressed very quickly without a gradual accumulation of protein, the 

cells could be used for a short infection time point experiment before the cells were 

affected by the potential toxicity. Again, GBP4 was used to test the system, this 

time with a GFP-tag at the N-terminal. GFP-GBP4 was cloned into the pJS4 vector 

under a Vaccinia e/l promoter and this was transfected into unstimulated A549 cells, 

THP-1 monocytes and HUVECs that had been infected with Vaccinia virus 1 hour 

prior by Dr Jason Mercer (UCL). Lysates were made of each cell type at time points 

ranging from 4 to 24 hours post transfection. A very low expression was seen at 

time points after 4 hours post transduction in THP-1 monocytes, which could be 

due to the low transfection capacity of these cells. At 4 hours post transduction 

expression of GFP was visible in HUVECs. The HUVECs were visibly unhealthy 

from 8 hours post transduction, and the majority were non viable by the 12 hour 

post transduction time point. Immunoblotting of these lysates with the anti-GBP4 

polyclonal peptide antibody demonstrated that GBP4 protein could be detected 

from 6 hours in HUVECs, and this increased significantly until 12 hours, after which 
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expression was lost- likely due to the cells being dead. What was interesting was 

the lack of GFP-tagged GBP4 expression in these cells. Potentially, the presence 

of the Vaccinia virus in the cell could itself begin to induce endogenous GBP4 

expression in HUVECs. However, when the blots were reprobed, GFP could be 

detected in samples from 8 to 10 hours post infection suggesting that, in fact, the 

tag was being cleaved from the N-terminus of GBP4. It was decided that this was 

not an appropriate method to overexpress GBPs due to the fact Vaccinia may be 

inducing its own GBP response. Although I decided not to continue with this 

Vaccina driven method, I learned that tags may not be stable when expressed at 

the N-terminus of GBP4 and any constructs designed in the future must have tags 

inserted C-terminus instead.  

 While it was becoming increasingly clear that overexpression of GBPs was 

not a suitable method to study their function, it was possible that some inducible 

methods of overexpression could be used as a tool to characterise the bespoke 

antibodies. GeneSwitch is a system sold by Invitrogen that allows for mifepristone 

inducible expression of protein of choice. A hormone expression system is a more 

desirable one than a doxycycline inducible system, as antibiotics may affect 

responses of cells and thus potentially affect the Toxoplasma infection. The basis 

of the system is that a ‘pSwitch’ regulatory plasmid is stably transfected into the cell 

line of choice. After this, the ‘pGene’ plasmid containing the gene of interest is 

stably transfected into the cells with pSwitch. The pSwitch plasmid is responsible 

for expressing low levels of the GeneSwitch protein. This protein is dimerised upon 

treatment with mifepristone, following which it binds with the promoter in the pGene 

plasmid- thus inducing expressing of the protein of choice.  

 It was attempted to stably transfect HFFs with the first plasmid, pSwitch. 

However it was never possible to introduce this plasmid into the HFFs, therefore 

using this system in human cells was not continued. Correspondence with another 

lab revealed they too had problems with this system (Marianne Schmidt, personal 

communication). Shortly after beginning this endeavour, Invitrogen discontinued 

the system.  

Mouse 3T3 fibroblasts that were stably expressing the pSwitch plasmid 

were obtained as a kind gift from Jonathan Howard (Hunn et al., 2008). GFP- and 

TAP-tagged GBPs were cloned into the pGene vector as a joint effort between 

myself, Barbara Clough and the Coers lab at Duke University. GFP- or TAP-GBP1 
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and 2 were cloned by our collaborators at Duke. Barbara Clough produced GFP-

tagged GBPs 3-6. I produced GFP-tagged GBP6 and TAP-tagged GBPs 3-7. 

Sharing the work equally, Barbara Clough and I used these constructs to transfect 

3T3 cells before selecting for successfully transfected cells with antibiotics. The 

cells were incubated with mifepristone for 24 hours before lysing and assessing 

GBP expression with the appropriate antibodies. It was clear that these cells could 

withstand the toxicity of GBP plasmid transfection and protein overexpression, with 

sustained and robust expression possible. Perhaps as the cells are from mouse 

origin, the interacting partners or pathways responsible for toxicity in human cells 

may be missing or incompatible. It should also be noted that these cells were not 

IFNγ inducible, therefore could not be a valid tool for studying GBP function.  

3.1.1.1 Cell Characterisation 

It is important that the study of human GBPs is carried out in an appropriate cell 

type. This means that the protein must be expressed, as well as demonstrating 

they are IFNγ sensitive within the particular cell type. For this project, GBPs were 

characterised first in A549 lung epithelial cells. These cells are robust cells that are 

widely accepted for biochemical analysis experiments, and have been utilised in a 

number of immune response studies, particularly in cancer studies (Brichory et al., 

2001, Hartman et al., 2007, Hawdon et al., 2010, Li et al., 2012, Guitierrez et al., 

2016). A549s were plated and allowed to adhere before stimulating with IFNγ 

overnight. Following this stimulation the cells were lysed and run on SDS-PAGE 

before being transferred to nitrocellulose membrane. The membranes were probed 

with the anti -pan-GBP, -GBP1, -GBP2 and -GBP4 antibodies. It was clear that all 

of the tested GBPs were substantially expressed in these A549 cells (Figure 10 A, 

B & C). They all demonstrated sensitivity to IFNγ, however interestingly GBP1 

expression was also detected at basal level (Figure 10A), a result that will be 

confirmed by qPCR. 
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Figure 10 Expression of GBP1, 2 and 4 in A549 cells 

Immunoblots showing levels of protein expression of GBP1 (A), GBP2 (B) and 
GBP4 (C) in A549 cells. GBP1 and GBP4 polyclonal antibodies were used, and 
GBP2 monoclonal antibody was used. 10µg of protein was added to each lane for 
SDS-PAGE. Cells were stimulated or not for 18 hours with 10U/ml IFNγ. Arrows 
represent GBP band. Each representative of 3 independent experiments. 
 

 THP-1 macrophages were characterised for GBP expression next. It is 

widely reported in the literature that macrophages are the frontline of defence to 

Toxoplasma (Dupont et al., 2012). The THP-1 cells were differentiated into 

monocytes before stimulating overnight with IFNγ. The macrophages were lysed 

and the lysates run on SDS-PAGE before being transferred to nitrocellulose 

membrane. These membranes, as above, were probed with anti –pan-GBP, -GBP1, 

-GBP2 and –GBP4 antibodies. Again, in this cell type GBPs were all well 

expressed in the cells induced with IFNγ (Figure 11 A, B & C). From the results of 

the characterisation of GBPs in A549 and THP-1 cells signified it was clear that 

these were suitable cells in which to study GBPs both in steady state and in 

Toxoplasma infected cells. 
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Figure 11 Expression of GBP1, 2 and 4 in THP-1 macrophages 

Immunoblots showing the protein expression levels of GBP1 (A), GBP2 (B) and 
GBP4 (C) in THP-1 macrophages. GBP1 and GBP4 polyclonal antibodies were 
used, and GBP2 monoclonal antibody was used. 10µg of protein was added to 
each lane for SDS-PAGE. Cells were stimulated or not for 18 hours with 10U/ml 
IFNγ. Each representative of 3 independent experiments.  
  

 Production of knock out cells using the CRISPR-Cas9 genome editing 

technique spells great advances in cell biology. It is important however, that the 

cells are well characterised to ensure they are reliable. GBP1 knock out cells, using 

CRISPR-Cas9, were generated in A549 cells by Barbara Clough. Before they were 

implemented in studies using Toxoplasma, I needed to be sure that GBP1 protein 

was truly knocked out. First, a lack of GBP1 protein expression was confirmed. 

This was done by immunoblot using the specific anti-GBP1 polyclonal peptide 

antibody. It is clear that GBP1 protein cannot be detected in these cells (Figure 

12A). The peptide immunogen used for developing this antibody is in a region from 

the C-terminal of GBP1 (Figure 5). The guide RNA used to make these A549 

∆GBP1 cells was targeted to a region towards the N-terminal part of the protein, 

indicating that a mutation has been made and therefore the protein cannot be 

translated. The same membrane was reprobed with the anti-pan-GBP antibody to 
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ensure that the expression of other family members was not affected (Figure 12B). 

To confirm the mutation was in the correct position sequencing on the A549 

∆GBP1 cells was carried out by Barbara Clough, with the disruption of the DNA 

sequence being exactly where predicted within the guide RNA region. Furthermore, 

the cells were plated on coverslips and fixed in order to carry out 

immunofluorescence staining with the anti-GBP1 antibody. It was clear that the 

A549 ∆GBP1 cells had significantly lower staining than their wild-type counterpart 

(Figure 6). The addition of these cells to the repertoire of GBP tools is very valuable 

due to the fact they can be utilised to monitor GBP1 expression during a 

Toxoplasma infection.  

 
Figure 12 Characterisation of ∆GBP1 cells 

Immunoblot showing lysates from A549 cells that had GBP1 targeted for disruption 
by CRISPR, probed with the anti-GBP1 polyclonal peptide antibody. 10µg of 
protein was added to each lane for SDS-PAGE. (A). Immunoblot showing lysates 
from A549 cells that had GBP1 targeted for disruption by CRISPR, probed with the 
anti-pan-GBP polyclonal antibody against recombinant GBP1 whole protein. 10 µg 
of protein was added to each lane for SDS-PAGE (B). Cells were stimulated or not 
for 18 hours with 10U/ml IFNγ. Each representative of 3 independent experiments. 
All samples from same experiment on the same day. 
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3.1.2 Optimisation of techniques to evaluate Toxoplasma infection 

characteristics 

A large aim within this project is to determine whether or not GBPs play a role 

during infection with the parasite Toxoplasma gondii. In order to answer this 

question I require reliable methods to assess the survival and viability of parasites 

under varying conditions. In order to carry this out, I required techniques to 

determine how well the parasites were able to invade, replicate and form plaques.  

 To observe the efficiency of parasite invasion, a FACS based approach can 

be utilised. I used γ-irradiated td-Tomato parasites, which are invasion-competent 

but replication-deficient Toxoplasma, ensuring accurate assessment of parasite 

burden per cell without the confounding factor of parasite replication. These 

Toxoplasma were allowed to incubate with cells overnight before the cells were 

thoroughly washed and fixed. To analyse, cell reads were taken for the same 

length of time while gating focused on cells displaying a red fluorescence indicating 

the presence of an intracellular td-Tomato parasite. Since it was important to show 

that Toxoplasma has a capacity for invading A549 cells this method was employed. 

It was demonstrated that almost 50% of A549 cells were infected by this parasite, 

with a slight reduction of invasion efficiency seen when the cells were stimulated 

with IFNγ overnight prior to infection (Figure 13). 

 
Figure 13 Invasion capacity of Toxoplasma in A549 cells 

Graph displaying percentages of A549 cells that have been invaded by td-tomato 
type II Toxoplasma via fluorescence in the PE channel. An isotype control was 
carried out to ensure the correct peaks were observed. Cells were stimulated or not 
for 18 hours with 10U/ml IFNγ. MOI 1. Graphs representative of 3 independent 
experiments. 
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 To determine how well a parasite can replicate within a cell, 

immunofluorescence microscopy was employed. Toxoplasma gondii expressing 

GFP were seeded onto A549 cells on glass coverslips and the infection was 

allowed to persist for a specific number of hours. The cells were then washed 

thoroughly and fixed before being mounted onto slides ready for analysis under the 

microscope. At least 100 vacuoles were identified per sample at random, and 

within each of the vacuoles the number of parasites were counted. By counting 1, 2, 

4 or 8 parasites per vacuole, it was possible to calculate the number of times a 

parasite had replicated within the cell. It was necessary to show that Toxoplasma 

replicates, and can be controlled by IFNγ, in A549 cells in the way that has been 

widely described in the literature. Therefore, using this method, an IFNγ mediated 

control of Toxoplasma replication could be observed and calculated. I was able to 

show a significant reduction in parasite replication when the A549s were stimulated 

overnight with IFNγ prior to infection, this was apparent at 12 hours post-infection 

and became more striking by 18 and 24 hours post infection (Figure 14). 

 
Figure 14 Replication of Toxoplasma in A549 cells 

Graphical representation of replication of vacuolar type II Toxoplasma gondii in 
A549 cells. Cells were stimulated or not with 10U/ml IFNγ for 18 hours. N=3 
independent experiments each performed in triplicate. Significance was determined 
using 2-way ANOVA, *p<0.01, ****p<0.00001. 
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 A plaque assay is a widely accepted technique with which to determine the 

fitness of Toxoplasma gondii. The principal of this method is to seed parasites on a 

confluent layer of fibroblasts and count the resulting plaques formed after 3-5 days 

of infection. This method works well in contact inhibited cells such as HFFs. 

However there is a caveat in the fact that many other cell types do not stay 

adherent when infected with Toxoplasma gondii, as well as the fact that few cells 

are truly contact inhibited in growth. When a plaque assay was attempted with 

A549 cells, it was observed that after 24 hours of infection the cells began to lift 

meaning plaques were uncountable. In order to overcome this challenge, an 

indirect plaque assay was designed. This technique involved incubating parasites 

inside A549 cells for specific amounts of time before lysing the parasites from the 

cells and seeding the resulting numbers on a confluent monolayer of unstimulated 

HFFs in a dilution series. Plaques were then counted after the usual 3-5 days of 

growth in the HFFs. This method made it possible to move a plaque assay in to 

numerous cell types. When the plaques were counted after 3-5 days in 

unstimulated HFFs, Toxoplasma that had been incubated for 24 hours in pre-

stimulated A549 cells showed an IFNγ-dependent restriction, demonstrating that 

this indeed was a representative way of determining parasite fitness (Figure 15). 

 
Figure 15 Indirect plaque assay showing Toxoplasma survival in A549 cells 

Graph showing IFNγ-dependent restriction of type I and type II Toxoplasma as 
determined by indirect plaque assay after 24 hours of infection in A549 cells. Cells 
were stimulated or not with 10U/ml IFNγ for 18 hours. 300 type I parasites or 600 
type II parasite were used. Values were normalised to 100% growth in unstimulated 
cells. N=3 independent experiments, each carried out in triplicate. Significance was 
determined using paired t-test, *p<0.01, ***p<0.0001.  
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3.2 Discussion 

3.2.1 Tool characterisation 

GBP-specific antibodies 

One of the most important parts of a successful study is the quality of the tools at 

your disposal. In order to identify the characteristics of individual GBP family 

members, I began by ensuring I had the most reliable and well-characterised tools 

possible. The first step was to design polyclonal and monoclonal antibodies, which 

I fully analysed to be certain about the results they produced. Considering that 

GBPs were discovered over 30 years ago, the question arises why better tools are 

not more widely and commercially available. This is possibly due to the fact that the 

proteins have such a high level of identity and similarity that producing antibodies 

that are specific for individual family members is very difficult. The most widely 

used antibody directed at human GBP is one that recognises the family members 1 

to 5.  

A number of other groups have published articles using antibodies against 

both mouse and human GBPs that were produced in their respective labs. In 2002 

Lubeseder-Martellato et al. produced a monoclonal antibody in rat against 

recombinant human GBP1 that was affinity purified against recombinant human 

GBP1-His6 peptide. Two clones were produced and implemented in immunoblot, 

each reacted with both human GBP1 and GBP2 as determined by probing lysates 

from Escherichia coli that express recombinant His6-tagged GBP1 or GBP2 

(Lubeseder-Martellato et al., 2002). In 2007, Degrandi et al. produced polyclonal 

antibodies against mouse GBPs 1, 2, 3, 4, 5 and 7. This was done by immunising 

rabbits with peptides from each protein before the rabbit sera was texted against 

lysates of 293T cells that were transfected with each mouse GBP (1-10). Each 

serum was then affinity purified against the specific peptide sequence against 

which they were produced (Degrandi et al., 2007). It was from these sequences 

that I took inspiration when first identifying the specific peptides against which I 

would raise antibodies. Shenoy et al. produced a monoclonal antibody against full-

length recombinant mouse GBP5, as well as polyclonal antibodies against peptide 

sequences from human GBPs 1 to 6. These affinity purified polyclonal antibodies 

were screened in turn against E.coli lysates expressing recombinant His-6-tagged 
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individual human GBP family members to ensure there was no cross-reactivity 

(Shenoy et al., 2012). These other labs have shown it is possible to produce the 

tools required to study GBPs even though the difficulties I have outlined in this 

project exist. A monoclonal antibody is preferable in terms of longevity as the 

hybridomas can be brought back into culture to obtain more supernatant. However, 

Degrandi et al. and Shenoy et al., and now I have shown that polyclonal antibodies 

can be just as useful for making important discoveries about these proteins.  

The aim within this project was to establish antibodies with which I could 

carry out immunofluorescence, immunoblotting and immunoprecipitation. I 

successfully obtained antibodies against GBP1, GBP2 and GBP4. The polyclonal 

anti-GBP1 antibody is proficient in immunoblotting, immunofluorescence and 

immunoprecipitation, however retrieves GBP2 also during immunoprecipitation. For 

GBP2, monoclonal and polyclonal antibodies were produced. The monoclonal 

antibody performs excellently in immunoprecipitation and immunoblotting. The 

polyclonal anti-GBP2 antibody was not functional for immunoblotting or 

immunofluorescence, but did efficiently retrieve GBP2 during immunoprecipitation. 

Monoclonal and polyclonal antibodies against GBP4 were produced, with the 

polyclonal antibody performing effectively in immunoblotting while the monoclonal 

antibody could be utilised in immunoprecipitation. More antibodies have been 

produced and characterised in part, however they have not been fully optimised 

and as such provide a valuable repertoire of tools that can potentially be utilised in 

the future (Appendix). 

 Many candidate antibodies that were produced recognised bands of 65-

67kDa on an immunoblot, however on closer inspection they were not specific for 

individual family members. I was not surprised by this outcome. When protein 

family members show such a high level of identity, the cross reactivity of an epitope 

is expected. There was most cross-reactivity between GBPs 1 and 3 as these 

GBPs exhibit identity levels of 88% (Olszewski et al., 2006). In light of this, having 

produced a GBP1-specific antibody is highly valuable. The lack of specificity for 

one GBP family member was the biggest hurdle that I came upon while 

characterising these antibodies. However, this does not mean that they will not 

prove useful in the future. As mentioned above, most human GBP studies have 

published using a commercial antibody for GBP family members 1-5. Therefore, 

while we want to differentiate out the functions of the specific GBPs, we can use 
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combinations of these broad-range antibodies to determine overall expression of 

this family of large GTPases. A large problem I encountered through the process 

was the lack of signal altogether when testing for effectiveness. While I used 

software to choose the most immunogenic peptide sequence, as well as the 

company conjugating keyhole limpet haemocyanin to the peptide, in many of the 

animal subjects there was no apparent response. This could be due to an 

inaccuracy of the software predictive abilities. Perhaps the chosen immunogens 

were insufficient to produce an intense immune response to result in highly avid 

antibodies.  

 Polyclonal antibodies are relatively inexpensive to produce, but result in a 

pool of antibodies that potentially recognise a number of variations of the original 

immunogen peptide sequence. While this means there is a higher possibility of 

recognising the protein across a number of techniques, it increases the likelihood of 

an unspecific or weak reaction. Monoclonal antibodies are more costly to produce, 

and although the affinity and specificity is potentially higher for polyclonal 

antibodies, there is a higher chance that, as only one antigen sequence is 

recognised, this may not be a good candidate for target recognition. The 

monoclonal and polyclonal antibodies in this project were produced from very 

similar, but not identical, sequences. This fact together with the different natures of 

poly- and monoclonal antibodies means there is a slight discrepancy between the 

applications that were successful for the different candidates. The anti-GBP2 

monoclonal antibody performs very effectively in immunoblotting, however the 

polyclonal counterpart is completely ineffective in this regard. Perhaps the 

elongation of the peptide sequence in the designing of the monoclonal antibody 

was necessary for the recognition of an epitope that produces an efficient immune 

response. Alternatively, the other components present in the polyclonal antibody 

may dilute the effect of the antibody and a pure, concentrated product from the 

hybridomas is required. With regards to the anti-GBP4 antibodies, it is likely that 

the polyclonal antibody is unable to immunoprecipitate due to a lack of affinity. The 

process of immunoprecipitation requires a binding strength sufficient to maintain 

the antibody-epitope interaction throughout the experimental process. It is likely 

that the monoclonal antibody clone I chose to progress with reacted to an epitope 

that maintained a much stronger immune response, and thus allowed for higher 

affinity antibodies. 
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 It is becoming more apparent that each GBP family member seems to play 

a unique role, and for this reason, having the ability to separate out each GBP is 

becoming much more vital. Therefore it was imperative that I had a good tool with 

which to characterise the antibody candidates. This characterisation of the 

antibodies was only possible due the fact that a cell line that overexpressed 

individual GBP family members was made. The Coers lab at Duke University 

generously supplied the cloned constructs for GFP- and mCherry-tagged GBP1 

and GBP2 expression. I cloned the constructs to produce the GFP-GBP7 cell line, 

as well as the mCherry-tagged GBP 3-7 constructs. Barbara Clough produced the 

constructs for GFP-tagged GBP 3-6 expression. Then sharing the work equally, 

Barbara Clough and I produced mouse fibroblasts that were transfected to stably 

express the components that allowed the inducible overexpression of individual, 

tagged human GBPs. As a result, each antibody could be tested against a range of 

lysates to show exactly which family members were being recognised. Furthermore, 

as mGBPs are not present without IFNγ stimulation, there was no risk of a false 

positive occurring in the form of cross-reaction with the mouse GBP counterparts. 

Another method by which to screen each antibody for specificity would be to use 

lysates of E.coli that express recombinant protein for each individual GBP. This 

method has been used successfully in the past and would be useful to implement 

as a second protocol to confirm our findings. 

 Further to the antibody production and characterisation of all human GBP 

family members, I chose to focus on GBP1 and GBP4. For GBP1, the antibody as 

described above was specific to GBP1 and proficient in IB and IF. Additionally, 

∆GBP1 cells had been developed in the meantime (Barbara Clough, Frickel lab). 

For GBP4 I employed my specific polyclonal antibody to confirm that the protein 

was indeed a nuclear GTPase. Using these antibodies and other tools, I was able 

to outline a number of characteristics of GBPs in steady state and Toxoplasma 

infected cells. Repertoires of other antibodies, including a characterised antibody 

against GBP2, remain for others to continue this work.  

 

Heterologous GBP expression 

Protein overexpression is a technique that is classically used to study the function 

of said proteins during infection. Therefore, I wanted to develop stable 

overexpression systems in an appropriate cell type, with the intention of 
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investigating how this would affect the growth and survival of Toxoplasma. 

Unfortunately I was unable to produce human cells that reliably overexpressed any 

GBP protein. It was obvious that the cells were not able to withstand the 

introduction of additional GBPs, and I could not maintain the overexpressing cells. 

GBP1 has been implicated in basic cellular homeostatic responses, including actin 

remodelling (Ostler et al., 2014) and regulation of the epithelial barrier function 

(Schnoor et al., 2009). Perhaps when overexpression of GBP occurs, there is a 

basic cellular imbalance that causes this inability to retain the cells in a healthy 

state. 

As more literature regarding the function of GBPs is emerging it is clear that, 

in mice at least, these large GTPases are playing an important role in the induction 

of inflammasome immune responses. This is potentially a logical explanation as to 

why the overexpression of GBP protein would result in the cells dying. The 

inflammasome response is a multi-protein innate immune complex is partly 

responsible for the inflammatory reaction against microbial pathogens (Guo et al., 

2015). It assembles in the cytosol and the activation is reliant on signals in the form 

of danger-associated molecular patterns (DAMPs) or pathogen-associated 

molecular patterns (PAMPs) that are a consequence of invading pathogens 

(Martinon et al., 2002, Chen and Nunez, 2010, Lamkanfi and Dixit, 2014). The 

protein forming the scaffold of the complex defines the inflammasome type (Guo et 

al., 2015). The majority of inflammasomes are formed with Nucleotide-binding 

domain, leucine rich repeat containing receptor (NLRs). However non-NLR proteins, 

including absent in melanoma 2 (AIM2) and pyrin, can also establish an 

inflammasome (Takeuchi and Akira, 2010, Guo et al., 2015).  

In 2012, Shenoy et al. identified human GBP5 as a non-NLR promoter of 

NLRP3 inflammasome pathway in response to L. monocytogenes, S. enterica  

typhimurium or to their lipopolysaccharides (LPS). This response leads to release 

of the proinflammatory cytokines IL-β and IL-18 (Shenoy et al., 2012), which are 

upstream in the process of pyroptosis- a type of inflammatory cell death (Lamkanfi 

and Kanneganti, 2012, Strowig et al., 2012). More recently, it has been shown that 

during L. pneumophila or S. enterica typhimurium infection in mice that the GBP 

proteins clustered on chromosome 3 are essential for the activation of a non-

canonical inflammasome response and pyroptosis that is defined by activation of 

caspase-11 (Pilla et al., 2014, Meunier et al., 2014). This activation is dependent 
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on sensing the bacteria in the cytosol, and can be triggered by direct transfection of 

the LPS itself (Pilla et al., 2014). These bacterial pathogens are both contained in a 

vacuole, and in macrophages that lack the GBPchr3-/- family members there was a 

reduced staining for galectin-8, a marker for lysed vacuoles, compared to wild type. 

This indicated that these GTPases were also involved in the breakage of the 

pathogen vacuoles, allowing for inflammasome-activating sensing of the bacterial 

components (Meunier et al., 2014). The AIM2 inflammasome pathway is involved in 

induction of inflammation in response to the sensing of double-stranded DNA, and 

results in cell death by pyroptosis (Guo et al., 2015). Mouse GBP2 and GBP5 are 

implicated in the activation of this inflammasome type during infection with the 

cytosolic bacteria Francisella novicida by inducing bacterial lysis and release of 

DNA to the cytosol to be detected by the AIM2 complex (Meunier et al., 2015, Man 

et al., 2015). It would be very interesting to determine whether or not GBPs play a 

similar role during infection with Toxoplasma in both human and mouse species, 

especially as there has been no evidence published that the PV of this parasite is 

broken during infection in humans. While a secondary signal is also required for 

inflammasome induction, perhaps it is not a saturated response during upregulation 

of the endogenous protein, meaning that overexpressed GBP protein can further 

induce this defensive cell reaction. 

These large GTPases have been strongly implicated, in response to 

pathogenic invaders, to activate a number of processes that result in host cell 

pyroptosis (Pilla et al., 2014, Meunier et al., 2014, Man et al., 2015, Meunier et al., 

2015). Therefore, it would infer that the transfection of GBP DNA into a cell for 

heterologous overexpression is not tolerated as this protein family works to induce 

cell death. 

Since starting this endeavour, communication with a number of other labs 

and individuals has revealed that they also are not able to reliably overexpress 

these proteins. While overexpression has been used in a number of GBP studies, 

often these expressions are not stable. Thus, there is too short a time window 

available after heterologous GBP protein expression meaning prolonged infection 

time points are not feasible. Moreover, if a cell is already compromised, there is no 

guarantee that the host/ pathogen relationship is occurring in the most biologically 

relevant manner. This further highlights that we need to invest time in developing 

other ways with which to determine GBP function. 
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CRISPR-mediated GBP knock out cells 

To have a specific protein reliably knocked out in a cell is one of the most effective 

ways of analysing the role it plays in certain conditions. Therefore, I made sure to 

fully characterise cells that were made to be potentially deficient in GBP1 or GBP4 

using the CRISPR-Cas9 genome editing technique (CRISPR targeting performed 

by Barbara Clough, Frickel lab). I successfully identified A549 cells that did not 

express GBP1 protein on an immunoblot. After these cells were sequenced to 

show that the GBP1 sequence was efficiently disrupted, they were to be used in 

experiments to determine the protein function during a Toxoplasma infection. 

Additionally, I characterised cells that were made to be deficient in GBP4 by 

immunoblot (CRISPR targeting performed by Joseph Wright, Frickel lab, data not 

shown). It is apparent that these cells have been manipulated, but rather than 

lacking GBP4 they contained a truncated version of the protein. It will be 

fascinating to work out if this truncated protein form is still active, and whether or 

not it affects the survival and growth of Toxoplasma. 

 The new development of being able to quickly and efficiently knock out 

proteins using CRISPR-Cas9 is an invaluable tool within the entire biological 

science field. This revolution has been important in this project with GBPs. Studies 

in the past have used knock down methods to determine a functional role of these 

proteins during infections with LPS, bacterial and viral pathogens (Shenoy et al., 

2012, Pan et al., 2012, Al-Zeer et al., 2013). The method has proven useful and 

has led to breakthroughs that have been important to understanding roles that 

GBPs play. However, this is not a sustainable method of deleting a protein in order 

to understand how it functions over a long-term period. Now the advance of 

CRISPR-Cas9 offers a solution for this problem. 

The progress made in the CRISPR field has been exponential. New 

plasmids to enable cloning of the Cas9 system are emerging constantly, resulting 

in more efficient ways to insert the guide RNAs and select for successful 

transfections. Importantly, characterisation of these cells needs to be stringent and 

complete. It is vital that the deletion of the protein is not only tested for using an 

immunoblot approach. A cut and nonhomologous repair of the DNA may occur, but 

there is no guarantee that the protein is not still transcribed in a truncated form. 

Depending on the location of the antibody’s immunogen epitope, this truncated 

protein may or may not be detected by an antibody. Therefore the protein may not 
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be identified for example, but may still be fully or partly functional. For this reason, it 

is necessary to get the specific region of the DNA sequenced, and determine how 

much of the sequence has been disrupted. There is always the risk of off-target 

effects when manipulating the genome using a guide RNA that may locate to a 

gene that is not the desired one. For this reason, as well as sequencing the top 

predicted off-target regions, a second clone made using a different guide sequence 

should be used as comparison. In the case of GBP1, I ensured that there was no 

loss of staining with our pan-GBP antibody, indicating that other GBPs are still 

intact. Moreover, during the course of my project, I reinforced the results I acquired 

with a second clone (data not shown). This established that the effects I saw during 

infection with Toxoplasma were not due to an aberrant cell clone that produced 

results due to unknown genome manipulations. I was able to further confirm the 

knockout of GBP1 by complementing the protein back into the cell using a lipid 

transfection of the mCherry-GBP1 construct (produced by Coers lab). When the 

protein had been reintroduced, the cells responded like the wild type cells during 

Toxoplasma infection (see later, Chapter 4, Figure 20). Complementation is a quick 

and reliable method of confirming a phenotype is due to a real knockout rather than 

off-target effects. The next step with these cells is to sequence the regions of the 

other family members, to be sure that there is not disruption in any of those areas.  

  Research can only be as reliable as the tools we have. Therefore, the 

availability of characterised cells and antibodies is necessary to be sure of the 

outcomes of our experiments. There has been a renewed interest in studying this 

family of large GTPases lately, and to share our reagents with collaborators is a 

vital next step after the work that has been put in. Poor reagents can lead to a lack 

of data, and inconsistencies in observations. The analysis of these cells and 

antibodies engrossed a large part of my PhD project. As a result, I have an 

understanding of the difficulties in finding specific tools, and how to optimise 

processes to get the best from the product. I do believe that there needs to be 

more stringency in characterising commercially available tools, especially for 

targets that have a high level of similarity to something else. These commercial 

tools often have been produced with an immunogen that is not made publically 

known, and the analysis of these proteins for immunoblotting is frequently only the 

observation of a band of the correct size on a membrane which may or may not 

represent the correct protein. CRISPR-Cas9 presents a further opportunity for the 
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study of GBPs in this regard. The option of tagging the endogenous protein with an 

epitope tag is now a real possibility. To add a tag would mean that reliable 

immunoprecipitation and detection on an immunoblot or in immunofluorescence 

with very well established antibodies would become possible. This technique, while 

revolutionary cannot completely replace the need for antibodies as it is a time 

consuming process and is possible only with transfectable cells. Furthermore, even 

a small insert may affect the functions of the endogenous protein so caution should 

be taken.  

 

3.2.2 Optimisation of experiments 

Once reliable tools have been acquired, it becomes necessary to ensure that the 

techniques and methods being used are the most appropriate to answer the 

question being asked. I optimised an experiment to determine the invasive capacity 

of Toxoplasma in epithelial cells. Following this I determined both how to assess 

the replicative ability of the parasite in the vacuole and to assess the plaque 

forming ability within epithelial cells.  

For the invasion assay I used γ-irradiated parasites; this is because they 

can invade effectively but have lost the ability to replicate as a result of DNA 

damage. Since epithelial cells are non-phagocytic, this means when I detect a 

Toxoplasma within a cell, I can be certain that it is the result of direct invasion. Next, 

I ensured that I could carry out an assay to calculate the replicative ability of 

vacuolar parasites in A549 cells using microscopy. This is a generally accepted 

mechanism with which to study parasite replication, however the protocol is usually 

carried out in fibroblasts. In this case, I confirmed that A549 epithelial cells 

restricted Toxoplasma in an IFNγ dependent manner, and optimised the 

concentration of cytokine to use to ensure that the results were consistent and 

reliable. When the concentration of IFNγ was too high, the infection could not 

successfully establish and so the results were not biologically accurate. I also 

ensured I chose the correct time points at which to count the parasites. It was 

difficult to ensure that it was possible to count the parasites across the different 

conditions over a time course. In the absence of IFNγ, the parasites replicated at 

much increased speed and often resulted in vacuoles so large it was impossible to 
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quantify the number of parasites within. Over time, I optimised the MOI of the 

infection alongside the appropriate time points to ensure that the counting was 

carried out in a consistent and reliable manner. 

Assessing the ability of Toxoplasma to form plaques within a cell layer, and 

carrying out fitness assays is something that has been done extensively in the 

literature over the years. These assays have relied on the parasites being 

contained in fibroblasts. This is because these cells are heavily contact inhibited, 

and Toxoplasma is able to form very uniform, predictable and quantifiable plaques 

in these cells. This protocol is much more commonly implemented to assess 

parasite mutants against the wild type rather than to assess host cell factors. It has 

been used previously however to compare Toxoplasma growth in cells that have 

had host targets knocked down with siRNA, and those that had been stimulated by 

IFNγ with cells that are unstimulated (Virreira Winter et al., 2011, Niedelman et al., 

2013). When it is necessary to move the parasites to another cell type, problems 

arise when trying to determine the pathogen replicative capacity. As the infection 

progresses in these other cell types, the cells begin to grown on top of each other 

and also many lose their adhesive capacities and lift from the culture dishes. As a 

result, it becomes impossible to accurately quantify how well the parasites have 

replicated. For this reason, I designed an experiment that could establish short-

term survival of Toxoplasma in epithelial cells. This is important because it allows 

us to use pre-existing genetically modified non-fibroblast cells in Toxoplasma 

viability assays. It is time consuming to make genetically engineered cells in the 

first place, so where the mutant cell has already been produced, it would be 

undesirable to remake these genotypes in fibroblasts. Moreover there is also the 

fact that fibroblasts may not be the biologically relevant cell type to study. By 

incubating the parasites in the epithelial cells for a maximum of 24 hours before 

syringe lysing them out and plating them on the fibroblasts, the gradual lifting of the 

cells is avoided. This protocol will allow researchers to move their experiments 

between cell types, and not be restricted to fibroblasts. 

The next step with these methods is to produce a high-throughput method 

that would be useful, for example, in screening a large number of parasite mutants 

or different host cell CRISPR knock out clones. One could possibly determine 

invasion, host cell killing and/or parasite replicative defects. This could be done by 

utilising FACS, and to determine how to accurately view the number of parasites 
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within a cell, and how many times they have replicated. This is possible due the 

fact that one can expand on the method I used to assess the percentage of 

infected cells by gating on fluorescent parasites inside the cells. As the number of 

parasites inside the cells increases, the mean fluorescence intensity would also be 

expected to increase, hence allowing quantification of replicative ability. 

 The efforts taken to overexpress these large GTPases have proven that this 

is not a viable or reliable method with which to study them. The fact that the cells 

are sickly means that results could be attributed to this, rather than directly 

because of the presence of GBPs. The importance of consistent, reliable and well-

characterised tools and experimental mechanisms needs to be stressed more 

within the science community, with emphasis on analysing antibody specificity and 

cell genetic features.
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Chapter 4. The impact of human Guanylate Binding 
Proteins on Toxoplasma gondii infection 

4.1 Results 

4.1.1 GBP1 

GBP1 has been the most intensely studied human guanylate binding protein family 

member. It has been implicated in protection against pathogens such as hepatitis C 

virus (Itsui et al., 2009), influenza A virus (Zhu et al., 2013), vesicular stomatitis 

virus (Anderson et al., 1999a) and encephalomyocarditis virus (Anderson et al., 

1999a). GBP1 also interacts with actin (Ostler et al., 2014) and plays a role in 

endothelial cell proliferation (Guenzi et al., 2001). While this GBP family member is 

believed to be relevant in pathogenic infection responses, these studies have relied 

on overexpression of GBP1, and hence we still do not understand how the 

endogenous protein acts. Considering the importance of murine GBPs in the 

context of restricting Toxoplasma infection, I decided to determine whether GBP1 

could recognise the pathogen, and therefore whether or not it plays a role in host 

response. 

The subcellular localisation of a protein often gives clues to its function. The 

literature has previously defined GBP1 as a cytosolic protein as determined by 

heterologous overexpression of the protein with a GFP-tagged GBP1 (Tripal et al., 

2007, Britzen-Laurent et al., 2010). Furthermore, it has been shown that GBP1 

localises to the golgi when treated with aluminium fluoride (AlF3), a reaction that 

causes the GTPase to mimic GTP-binding (Britzen-Laurent et al., 2010). To 

determine the localisation of endogenous GBP1 and to answer if this is affected by 

Toxoplasma, a subcellular fractionation technique followed by SDS-PAGE was 

utilised. THP-1 macrophages were stimulated or not with IFNγ overnight before 

being infected with either type I (RH) or type II (Pru) Toxoplasma. The infection was 

allowed to persist for 2 hours before the cells were lysed and subjected to 

subcellular fractionation. The resulting product was run on a gel, transferred by 

western blot before being probed with the anti-GBP1 peptide polyclonal antibody. 

GBP1 was confirmed to be a cytoplasmic protein, with the location remaining 

unchanged on infection (Figure 16). 
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Figure 16 GBP1 is a cytoplasmically localised protein 

Subcellular fractionation of THP-1 cells shows the location of GBP1 in steady state 
cells and in Toxoplasma infected cells, MOI 3. Cells were infected for 2 hours. 10µg 
of protein was added to each lane for SDS-PAGE. All samples were run on the 
same gel, blocks have been indicated for demonstration. Cells were stimulated or 
not with 10U/ml IFNγ for 18 hours. Representative of 3 independent experiments. 
Each panel indicates a separate gel, all samples from same experiment on the 
same day. 
 

It is well documented that a selection of murine GBPs localise to the 

parasitophorous vacuole during a Toxoplasma infection (Degrandi et al., 2007, 

Virreira Winter et al., 2011, Selleck et al., 2013), Low levels of recruitment of 

human GBPs have also been reported (Ohshima et al., 2014). However, the 

immunofluorescence in the Ohshima study relied on an antibody that recognised 

GBPs 1-5, resulting in the recruitment status of individual family members being 

unknown still. To determine whether or not GBP1 was recruited to the PV during 

infection, A549 epithelial cells and THP-1 macrophages that had been stimulated 

or not with IFNγ, were seeded onto coverslips before infecting with type I or type II 

Toxoplasma. The infection was allowed to persist for 1 – 12 hours, with the cells 

being fixed at a number of time points, before being stained with the anti-GBP1 

peptide polyclonal antibody and analysed by immunofluorescence microscopy. The 

60-

80-

50-
40-
30-

60-

80-

50-
40-
30-

IFNγ
Pru
RH

-
-
-

-
- -

-
+

+
+ +

+

-
-
-

-
- -

-
+

+
+ +

+

Cytoplasmic Nuclear

α-GBP1

α-Actinβ 42-

MW

42-

60-α-HDAC1 60-



GBPs and Toxoplasma gondii infection 

 

84 

 

coverslips were viewed using a confocal microscope, and at no time point was 

recruitment of GBP1 to the PV observed in either cell type although a clear 

increase in cytoplasmic GBP1 expression was observed when cells were 

stimulated with IFNγ. Figures 17 and 18 show representative images of cells fixed 

at 1, 2 or 4 hours.  
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Figure 17 GBP1 does not recruit to the Toxoplasma parasitophorous vacuole in 

A549 cells 

Confocal microscopy images showing the distribution of GBP1 in Toxoplasma-
infected A549 cells over a time course. Images were viewed using 100X 
magnification. MOI 2 for type I, MOI 3 for type II. Cells were stimulated or not for 18 
hours with 10U/ml IFNγ. All scale bars 10µm. Representative images from 4 
experiments. 
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Figure 18 GBP1 does not recruit to the Toxoplasma parasitophorous vacuole in 

THP-1 macrophages 

Confocal microscopy images showing the distribution of GBP1 in Toxoplasma-
infected THP-1 macrophages over a time course. Images were viewed using 100X 
magnification. MOI 2 for type I, MOI 3 for type II. Cells were stimulated or not for 18 
hours with 10U/ml IFNγ. All scale bars 10µm. Representative images from 3 
experiments. 
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The recruitment of murine GBPs to the PV has always been thought to be 

necessary for their function in disruption of the parasitophorous membrane and 

subsequent parasite destruction (Yamamoto et al., 2012, Degrandi et al., 2013). In 

this study, it was clear that GBP1 did not recruit to the PV. Therefore, I sought to 

establish whether or not GBP1 still played a role in host restriction of Toxoplasma 

gondii. First, I assessed if the overall survival and viability of parasites was affected 

when in GBP1 deficient epithelial cells. A549 cells that had GBP1 knocked out by 

the CRISPR/Cas9 genome editing technique (made by Barbara Clough) were 

tested by indirect plaque assays alongside their wild type counterparts. Either type I 

or type II Toxoplasma were used to infect A549 cells that had or had not been 

stimulated overnight with IFNγ. The infection was allowed to persist for 6 hours 

before the cells were syringe lysed and the extracellular parasites were plated onto 

confluent, unstimulated HFFs. 3 to 5 days post infection, the plaques were counted 

and normalised to the number of plaques in wild type unstimulated A549s. The 

IFNγ stimulated cells overall produced a much-reduced number of plaques (Figure 

19). Significantly, the A549 ∆GBP1 cells showed an increase of plaque numbers 

with type II parasite compared to the wild type cells. This increase in plaques was 

observed in both the IFNγ stimulated and unstimulated cells, perhaps due to the 

fact that GBP1 is already present and detectable at a basal level in these cells 

(Figure 19). There was no significant difference in the amount of plaques between 

wild type and ∆GBP1 A549 cell when type I parasites were used (Figure 19). These 

results suggest that indeed GBP1 plays a strain dependent role in the restriction of 

Toxoplasma, with type II parasites being more able to survive and replicate in the 

knock out cells. This result indicates that GBPs can have functions on vacuolar 

pathogens at a location away from the vacuole. 
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Figure 19 GBP1 can restrict the growth of type II Toxoplasma in A549 cells, but 

not type I 

Percentage of Toxoplasma plaque growth in A549 wild type and ∆GBP1 cells 
compared to plaque growth in wild type unstimulated cells. A549 cells were 
stimulated or not for 18 hours with 10U/ml IFNγ, before Toxoplasma infection for 6 
hours. 300 or 600 parasites per well were used for type I or type II parasites 
respectively, in a 24-well plate. Results were normalised to 100% in wild type 
unstimulated cells. N=3 independent experiments, carried out in triplicate. 
Significance calculated by 2-way ANOVA, **p<0.001, ****p<0.00001. 
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To ensure that the results were not an artefact due an aberrant clone 

produced by CRISPR, I complemented the knock out cells with GBP1 in order to 

rescue the wild type phenotype. A mCherry-tagged GBP1, or the empty mCherry-

vector as a control, was transfected into the A549 ∆GBP1 cells using the FuGene 

lipid-based transfection method. The toxicity of the transfection seen in these cells 

was less than what was observed in wild type cells, likely resulting from a higher 

tolerance due to absence of endogenous GBP1 protein. The complemented cells 

were stimulated overnight or not, infected with type II Toxoplasma for 6 hours as 

previously described, before being syringe-lysed and plated on to confluent HFFs. 

The plaque numbers were compared to those produced in wild type cells, and 

again were normalised to parasite growth in the wild type unstimulated A549s. 

There was no significant difference between the number of plaques produced in 

wild type cells and those in the complemented knock out cells (Figure 20). 

Similarly, there was no statistically significant difference between the plaques 

produced in the ∆GBP1 cells compared to those that had been transfected with the 

mCherry control vector (Figure 20). 

	
  
Figure 20 Complementation of GBP1 rescues control of Toxoplasma growth 

A549 ∆GBP1 cells were transfected or not with mCherryGBP1 or mCherry before 
infecting with Toxoplasma for an indirect plaque assay and compared to plaque 
production in wild type A549 cells. Results were normalised to 100% wild type 
unstimulated cells. Cells were stimulated or not for 18 hours with 10U/ml IFNγ 
before infection with 600 Toxoplasma per well for 6 hours in a 24-well plate. N=3 
independent experiments, carried out in triplicate. Significance calculated by 2-way 
ANOVA, *p<0.01, *p<0.001, ***p<0.0001, ****p<0.00001. 
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These results show that indeed GBP1 is responsible for at least part of the 

restriction of Toxoplasma type II in epithelial cells. This restriction occurs in a strain 

dependent manner and is independent of IFNγ stimulation. 

Toxoplasma is an intracellular parasite with many complex stages of its life 

cycle. During the tachyzoite stage, in order to continue the infection it is necessary 

that the parasites are able to invade, replicate and egress. The restriction of 

Toxoplasma by GBP1 could be affecting any of these vital functions. As A549 cells 

do not have any phagocytic capacity, Toxoplasma relies completely on its own 

ability to invade this cell type. Therefore, I decided to first assess whether or not 

GBP1 played a role that was affecting the levels to which Toxoplasma could invade 

these cells. In order to do this, A549 ∆GBP1 cells, stimulated or not with IFNγ, were 

infected with γ-irradiated tdTomato-expressing Toxoplasma overnight before fixing 

the cells and analysing the populations using FACS. Cells that were fluorescing in 

the PE channel contained the intracellular tdTomato parasites. As the Toxoplasma 

had been γ-irradiated, they were rendered replication-deficient and therefore 

unable to distort the number of parasites known to have invaded. Wild type A549 

cells were shown to be invaded by Toxoplasma at a rate of approximately 50%, as 

shown in Figure 13. When the percentage of A549 ∆GBP1 cells containing 

parasites were compared to wild type cells, there was no difference between the 

rates of invasion (Figure 21). This would suggest that the restriction of Toxoplasma 

by GBP1 is not by mediation of invasion of the parasites; hence GBP1 is able to 

affect the survival of Toxoplasma at a stage later on in the infection. 
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Figure 21 Invasion capacity of Toxoplasma in the absence of GBP1 

Graph showing the percentage of A549 ∆GBP1 cell populations infected with 
irradiated tdTomato expressing type II (Pru) Toxoplasma that fluoresce in the PE 
channel. An isotype control was used to ensure the correct peak was observed. 
MOI 1. Cells were stimulated or not for 18 hours with 10U/ml IFNγ. Representative 
of 3 experiments. 
 
 

In light of GBP1 not playing a role during the invasion of Toxoplasma 

invasion of A549 cells, I determined how the parasites were able to replicate in 

absence of GBP1. In order to do this, eGFP-expressing type-II Toxoplasma were 

seeded on to confluent A549 ∆GBP1 cells plated onto glass coverslips. These cells 

had been stimulated or not overnight with IFNγ. The infection was allowed to 

persist up to 24 hours, with the cells on coverslips being fixed and permeabilised 

ready for staining for immunofluorescence microscopy over a time course. The 
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mounted onto glass slides. Using a bright-field microscope, vacuoles inside the 

cells were located and the number of parasites within each one was counted. A 
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Toxoplasma to replicate in A549 wild type cells has already been determined in 

Figure 14. These data have been shown again to directly compare replication rates 
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points as expected (Figure 22). At 12 hours, a significant difference between the 

replication in the wild type versus the ∆GBP1 cells was already seen. In the ∆GBP1 

cells, there were significantly more vacuoles containing 2 parasites, indicating more 

Toxoplasma had undergone one replication cycle (Figure 22). By 18 hours post 

infection, ∆GBP1 cells contained significantly more vacuoles that harboured 2 or 4 

parasites, indicating 1 or 2 replication cycles (Figure 22). At the final time point of 

24 hours post infection, the IFNγ stimulated ∆GBP1 cells contained significantly 

more vacuoles that had 8 or more parasites within, indicating 3 or more replication 

cycles (Figure 22). By this time point and without IFNγ, the parasite replication is 

well progressed and there are numerous Toxoplasma in each cell. These results 

show that GBP1 plays a role in restricting the onset of replication of Toxoplasma 

gondii in A549 cells. 

 

 
Figure 22 GBP1 restricts replication of Toxoplasma in A549 cells 

Stacked graph demonstrating the percentage of PVs containing 1, 2, 4 or over 8 
parasites in A549 wild type and ∆GBP1 cells. Cells were stimulated or not for 18 
hours with 10U/ml IFNγ before infection with type II Toxoplasma, MOI 0.5. N=3 
independent experiments, each carried out in triplicate. Significance calculated by 
2-way ANOVA, *p<0.01, ***p<0.0001, ****p<0.00001. 
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show that GBP4 has both cytoplasmic and nuclear localisation in HUVECs (Tripal 

et al., 2007). GTPases in the nucleus are not a common occurrence, with functions 

that usually equate to shuttling of other proteins (Moore, 1998). Interestingly, 

murine Mx1 protein is required to have a nuclear localisation in order to restrict 

influenza virus. Human Mx1 protein is solely cytoplasmic however and still exerts 

an effect against influenza (Zurcher et al., 1992). I first determined the subcellular 

localisation of GBP4 in a steady state cell. As the previous localisation study had 

been carried out using overexpressed tagged GBP4, it was important to confirm the 

location of the endogenous protein. First, I differentiated THP-1 monocytes into 

macrophages by stimulating them with 1µM PMA for 3 days. Following this, the 

cells were stimulated or not with IFNγ overnight. I carried out a subcellular 

fractionation, ran the resulting products on SDS-PAGE and transferred the gel onto 

a nitrocellulose membrane. This membrane was then probed with the anti-GBP4 

peptide polyclonal antibody. Interestingly, GBP4 was found in the nuclear fraction, 

with none visibly present in the cytoplasm (Figure 23).  

 
Figure 23 GBP4 is a nuclear protein in THP-1 macrophages 

Immunoblot of THP-1 macrophages that have undergone subcellular fractionation 
and have been probed for GBP4 with the anti-GBP4 polyclonal peptide antibody. 
10µg of protein was added to each lane for SDS-PAGE. SDS-PAGE was carried 
out on the same gel; blocks have been indicated for demonstration. Cells were 
stimulated or not for 18 hours with 10U/ml IFNγ. Representative of 3 independent 
experiments. For each respective antibody, all samples were exposed to the film 
for equal times before development.  
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To determine the localisation of GBP4 during Toxoplasma infection, another 

subcellular fractionation was carried out, but this time on Toxoplasma-infected 

THP-1 macrophages. As above, the macrophages were stimulated with IFNγ 

overnight before being infected with parasites for 2 hours. After this incubation, the 

cells were subjected to a subcellular fractionation before running on SDS-PAGE. 

The samples were then probed with the anti-GBP4 polyclonal antibody via 

immunoblot after transfer onto a nitrocellulose membrane. The results showed that 

as with the uninfected cells, GBP4 was present in the nucleus in the presence of 

type II Toxoplasma at an MOI of 3. However, when the cells were infected with type 

I parasites at an MOI of 3, GBP4 expression was completely lost. Furthermore, 

when the cells were infected with a combination of type I and II Toxoplasma (both 

MOI 3, resulting in overall MOI 6) GBP4 expression was partially decreased. In this 

double infection some expression can still be seen, implying there is no dominant 

effect by the type I parasites (Figure 24). 

 
Figure 24 Type-I, but not type-II Toxoplasma alters protein expression of GBP4 in 

THP-1 macrophages 

Immunoblot of THP-1 macrophages that were infected with Toxoplasma for 2 hours 
at an MOI of 3 before undergoing subcellular fractionation to be probed for GBP4. 
Cells were stimulated with 10U/ml IFNγ overnight. Representative of 2 independent 
experiments. 10µg of protein was added to each lane for SDS-PAGE. SDS-PAGE 
was carried out on the same gel; blocks have been indicated for demonstration For 
each respective antibody, all samples were exposed to the film for equal times 
before development. 
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 The loss of GBP4 protein was very striking. Within the lab, degradation of 

the protein was not always observed. I determined whether the MOI of type I 

Toxoplasma used was the deciding factor for this phenotype. I infected THP-1 

macrophages with increasing MOI of parasites before lysing the cells at 2 hours 

post infection and analysing protein expression by SDS-PAGE and immunoblot. It 

was clear that the degradation of GBP4 correlated with increased numbers of 

parasites during infection (Figure 25). Additionally, I analysed the band densities of 

GBP4 on the immunoblots using ImageJ software, and plotted the results as a 

percentage of the respective loading control band density in IFNγ-stimulated THP-1 

macrophages (Figure 26). The graph shows very effectively the significant 

decrease of protein expression when THP-1 macrophages are infected with type I 

Toxoplasma parasites. 

 
Figure 25 Effect of increasing type I Toxoplasma MOI on GBP4 protein 

expression 

Immunoblot showing GBP4 protein expression in THP-1 macrophages infected for 
2 hours with type I Toxoplasma using increasing MOIs. 10µg of protein was added 
to each lane for SDS-PAGE. Arrow indicates the GBP4 band. Cells were stimulated 
overnight with 10U/ml IFNγ. Representative of 2 independent experiments.  
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Figure 26 Density of GBP4 protein bands 

Graph showing the density of GBP4 protein bands in immunoblot as compared to 
the respective loading control band. Bands show GBP4 expression in lysate from 
IFNγ-stimulated THP-1 macrophages infected or not for 2 hours with type I 
Toxoplasma at an MOI of 3. Inclusive of 3 independent experiments. Significance 
calculated with unpaired t-test, ****p<0.00001. 

 

The fractionations were carried out at 2 hours post infection, so additionally I 

followed the expression of GBP4 by immunofluorescence to track protein loss. It 

would be interesting if any recruitment of GBP4 to the Toxoplasma vacuole were to 

be observed even though it appears, by immunoblot, to have a solely nuclear 

location in THP-1 macrophages. THP-1 monocytes were plated onto glass 

coverslips before differentiating with PMA to macrophages. When fully 

differentiated, cells were stimulated or not overnight with IFNγ before infecting with 
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permeabilised periodically over a time course, after which they were stained with 

the anti-GBP4 polyclonal antibody. While there was a relatively high background 

level of staining, it was evident that GBP4 was a nuclear protein. It was also clear 
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recruit to the Toxoplasma vacuole (Figure 27). During the infection with type I 

parasites, expression of the protein was efficiently depleted between 1 and 2 hours 

(Figure 27A). The GBP4 protein levels on infection with type II parasites did not 

change throughout the time course (Figure 27B). The loss across the population is 

graphically displayed after quantification of GBP4 staining in 100 cells (Figure 28). 

These results show that although GBP4 is found solely in the nucleus in THP-1 
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macrophages, type I Toxoplasma gondii have the ability to eliminate GBP4 protein 

staining very efficiently when using the C-terminal recognising polyclonal peptide 

anti-GBP4 antibody. 

 
Figure 27 GBP4 is not recruited to the PV of Toxoplasma, and protein expression 

is lost during infection with type I parasites 

Immunofluorescence showing the distribution of GBP4 in THP-1 cells at 1 and 2 
hours post infection with type I (A) or type II (B) Toxoplasma at an MOI of 3. Cells 
were stimulated overnight with 10U/ml IFNγ. All scale bars 10µm. Representative 
images from 3 experiments. 
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Figure 28 Staining of GBP4 protein is lost across the cell population upon 

infection with type I Toxoplasma but not type II 

Fluorescence intensity of GBP4 staining in THP-1 cells infected with type I or type 
II Toxoplasma. Intensity was quantified using Image J in a minimum of 20 randomly 
selected cells. Cells were stimulated for 18 hours with 10units/ul IFNγ. Statistical 
analysis determined by unpaired t-test; ****p<0.00001. N=3 independent 
experiments 
  

The loss of protein signal could be attributed to a number of factors. The 

GBP4 protein could be directed for degradation by the type I parasite. There could 

be inhibition of GBP4 transcription or translation. Furthermore, signal could be lost 

due to a modification or truncation of the protein C-terminus, rendering the antibody 

unable to recognise the peptide region against which it was produced. I pursued 

the hypothesis of protein degradation first.  

The degradation of intracellular proteins is a tightly regulated and varied 

process. Originally it was thought that all proteins were degraded via the lysosome- 

a membrane-bound organelle containing acidic, digestive enzymes capable of 

proteolysis (Ciechanover, 2005). However, as it was discovered that lysosome 

deficient cells could degrade proteins in an ATP-dependent manner, it became 

clear that the process was much more complex and diverse (Ciechanover, 2005). 

The discovery of ubiquitin highlighted that different mechanisms were present and 

paved the way to determine the different mechanisms of protein degradation. The 

ubiquitin activating enzyme, E1, activates ubiquitin to be transferred to an ubiquitin-

conjugating enzyme, E2. From here, the ubiquitin is transferred to a protein 

substrate that is bound by the ubiquitin ligase E3. Multiple conjugations of ubiquitin 

molecules suffice as the degradation signal for protein destruction via the ubiquitin-

proteasome proteolytic system (Ciechanover, 2005). The 26S proteasome is a 

protease complex made up of the 19S and 20S proteasome, with the 20S forming 
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a catalytic core. It is this complex that is responsible for degrading the proteins 

conjugated to ubiquitin (Eytan et al., 1989). Furthermore, a number of other 

proteolytic enzymes and systems exist, with one example being the calpain family. 

Calpains are a Ca2+ dependent family of cysteine proteases that reside in the 

cytosol (Khorchid and Ikura, 2002). While the exact mechanism of how calpains 

dictate substrate specificity is not entirely clear, it is thought that amino acid 

preferences and secondary structures, alongside a potential PEST sequence, help 

define targets (Tompa et al., 2004). Another such example of a proteolytic system 

is the caspase family of cysteine proteases. This family gains catalytic ability 

following a long line of signalling events leading to dimerisation and often cleavage 

to induce activity (McIlwain et al., 2015). Caspase family members are activated 

differently, which results in a variation of their final functions. All of these proteolytic 

pathways lead to degradation, destruction or turnover of intracellular proteins.  

 As GBP4 protein expression is lost during infection with type I Toxoplasma, I 

sought to determine how GBP4 is degraded in a steady state cell, as well as how 

this happens in response to the parasite. A vast repertoire of protein-degradation 

inhibitors is commercially available, and from these I took a selection with which to 

test GBP4 degradation.  

 THP-1 macrophages were plated in 6-well plates before being stimulated 

overnight with IFNγ. Following this, the cells were treated as appropriate with the 

individual inhibitors. The macrophages were then infected with type I Toxoplasma 

at MOI 3 for 2 hours, after which cell lysates were run on SDS-PAGE. The resulting 

gels were transferred via Western blot before the membranes were probed with the 

anti-GBP4 peptide antibody. It was clear that when MG132 proteasome inhibitor 

was used in the uninfected samples that GBP4 could be greatly accumulated 

(Figure 29). This indicated that the GBP4 is routinely degraded via the 26S 

proteasome. However, the GBP4 could not be accumulated in the type I infected 

samples, suggesting that however GBP4 is being degraded in response to the 

parasite is through an alternative route. Interestingly, in the type I infected samples 

that were treated with leupeptin, GBP4 protein could once again be detected on the 

immunoblot (Figure 29).  
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Figure 29 GBP4 protein can be accumulated by using protein degradation 

inhibitors 

Immunoblot showing the levels of GBP4 protein with and without protein 
degradation inhibitors in THP1 macrophages that were uninfected or infected for 2 
hours with type I Toxoplasma, MOI 3. 10µg of protein was loaded in to each lane 
for SDS-PAGE. Cells were stimulated for 18 hours with 10U/ml IFNγ. Cells were 
treated with the appropriate inhibitor for 1 hour before infection. Representative of 2 
independent experiments; excluding the calpastatin lane which is N=1. Each panel 
was run on a separate gel, all samples from same experiment. For each respective 
antibody, all samples were exposed to the film for equal times before development. 
 
This implies that the Toxoplasma driven degradation of GBP4 is mediated by 

cysteine, serine and/or threonine peptidases.  

These results show that GBP4 does not recruit to the Toxoplasma PV during 

infection, and that type I Toxoplasma has the ability to direct host or parasite 

cysteine, serine and/or threonine proteases to degrade GBP4 protein in a rapid and 

efficient manner. 

 

4.2 Discussion 

Subcellular localisation of human GBPs 

GBP1 and 4 do not localise to the PV of Toxoplasma, yet GBP1 at least still plays 

an important role in restricting the growth of the parasite (Johnston et al., 2016). 

Interestingly, GBP4 is a nuclear protein whose expression is lost upon infection 

α-GBP4

80-
110-

60-

50-
40-

α-Actin β

Type I
MG132 –

– –
+

+ + + +
–

––––

+

+

–

–

–

Leupeptin
Calpastatin –––– + –



GBPs and Toxoplasma gondii infection 

 

101 

 

with the type I Toxoplasma strain, RH. The consequences of this is as yet unclear, 

however, it would suggest that not only are these proteins central in host protection, 

but the parasite has adapted in such a way to begin to avoid their effects.  

 The fact that these proteins are not localised to the PV shows that the 

mechanisms by which they operate vary extensively from their mouse counterparts. 

The recruitment of mGBPs to Toxoplasma was the first indicator that they played a 

role in this parasite infection (Degrandi et al., 2007), with approximately 50% of 

parasite vacuoles coated with members of the GTPase families. This localisation to 

the PV has been a guide for elucidating whether or not to pursue pathogen viability 

assays in bacterial models in murine cells (Haldar et al., 2014, Pilla et al., 2014, 

Meunier et al., 2014, Man et al., 2015). The fact that I did not find a localisation of 

GBPs to the vacuole would have implied they were not relevant during this infection. 

I wonder if other research groups have observed the same phenomenon and 

decided that they could not be important? In 2014 Ohshima et al. showed that 

human GBPs did recruit to the vacuole of Toxoplasma. This occurred at 6 hours 

post infection with a ME49 type II strain of the parasite in human haploid (HAP1) 

cells that are derived from a leukaemia cell line (Ohshima et al., 2014), with only a 

low percentage (approximately 6%) of PVs positive for GBP recruitment. While 

these results do not fall in line with what we have observed, in this study a 

commercial antibody against GBPs 1-5 was used. It is additionally noteworthy that 

the reported 6% recruitment is much less than the usual 30-60% recruitment of 

GBPs observed to pathogen vacuoles in murine cells (Degrandi et al., 2007, 

Virreira Winter et al., 2011, Haldar et al., 2013). However, it could be that family 

members 2, 3 and 5 have some level of recruitment to the vacuole. When staining 

with the anti-pan-GBP antibody that I characterised, I do not see any recruitment of 

protein against either the type I or the type II parasites. Furthermore, the 

accumulation of protein at the parasite did not match the phenotype seen with 

localisation of GBPs in murine cells. In the mouse, a solid ring of protein is acquired 

around the PV membrane, however in the Ohshima study there was a staining 

covering the whole parasite. This difference could arise as a result of a different 

response mechanism across the two host species. There is a chance however that 

the difference is due to an artefact or to unspecific staining of a dead parasite. A 

further explanation could be that these proteins act in a cell specific manner, a 

factor that investigators must take in to consideration in the future. If these 
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experiments were to be repeated in the future, using an anti-GRA antibody would 

prove the Toxoplasma was indeed within a vacuole if dense granule staining co-

localised with the parasite, and would at least reinforce that the parasite has 

successfully invaded. 

 As it appears there is very limited recruitment of human GBPs to the PV of 

Toxoplasma, the question arises whether this is because they are fulfilling an 

entirely different role to mGBPs. Alternatively, would GBPs demonstrate the same 

responses if the same components were present in human cells as in mouse? 

There are many studies that outline the recruitment of mGBPs to the vacuole as 

being potentially dependent on glycine-lysine-serine (GKS)-containing IRGs 

(Yamamoto et al., 2012, Haldar et al., 2015). Humans however possess only 2 

GKS-IRGs, and these are not IFNγ-sensitive (Bekpen et al., 2005). This theory was 

tested using the antibodies produced in this project, when I collaborated with Jörn 

Coers’ laboratory at Duke University, who transfected mouse embryonic fibroblasts 

(MEFs) with human GBP1. These cells were then infected with Toxoplasma before 

staining with my polyclonal anti-GBP1 antibody for immunofluorescence 

microscopy. Interestingly, localisation of the protein to the PV was seen. This could 

imply that the lack of recruitment of GBPs to the PV of Toxoplasma is a result of 

human cells being deficient in IRGs (Johnston et al., 2016). 

Our study continued to determine whether or not GBP1 recruited to 

Salmonella enterica typhimurium or Chlamydia trachomatis (Johnston et al., 2016). 

Furthermore, we looked to see if GBP1 was playing a role in host defence against 

these pathogens. It soon was clear that GBP1 did not recruit to the pathogen 

containing vacuoles (PCVs) of these intracellular bacteria, as elucidated by 

immunofluorescence microscopy (Johnston et al., 2016). These results are in 

contrast to work published previously, which state that GBP1 and GBP2 can recruit 

to the chlamydial vacuole (Tietzel et al., 2009, Al-Zeer et al., 2013). One of these 

studies relied on overexpression of the GBPs, which may have resulted in an 

artefact. Both of these studies focussed on cells that were not epithelial cells, it 

may be that GBP1 is functioning in a cell-specific manner. We concluded that 

GBP1 does not recruit to the PCVs of intracellular pathogens in epithelial cells. 

As these proteins were not localised as expected, I moved to determine 

where they were located within the cell. Previous literature had signified, in an IFNγ 

stimulated cell, GBP1 was found in the cytosol, with a GTPase activity-dependent 
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Golgi association (Modiano et al., 2005, Tripal et al., 2007). The Tripal study also 

showed GBP4 to be found both in the nucleus and in the cytoplasm (Tripal et al., 

2007). These findings were elucidated using an overexpressed GFP tagged 

version of the protein in HUVECs. Therefore, the reason that we do not see GBP4 

in a cytoplasmic localisation could be a caveat due to the overexpression system, 

or a cell-specific phenotype. It would be interesting to see how these findings 

compare to the subcellular localisation of not only mGBP4, but all mGBPs in the 

uninfected cell, but there are very few results outlining the location of murine GBPs 

when vacuolar recruitment is not involved (Degrandi et al., 2007). I believe it is 

important to determine where these proteins are in the cell, as not only may there 

be an observable difference during an infection, it gives clues to the function they 

might be carrying out. This differential location in uninfected cells is another arm of 

evidence that GBPs are playing distinct and non-redundant roles within the cell. 

 

GBP1 in host defence to Toxoplasma gondii 

As GBP1 was not recruited to the PV during Toxoplasma infection, I initially 

questioned whether or not this protein was involved in the host defence to 

Toxoplasma at all. As I began to carry out the Toxoplasma growth assays in A549 

∆GBP1 versus wild type cells, it became clear that indeed GBP1 had the ability to 

restrict the growth and survival of this parasite. By complementing the protein back 

into the ∆GBP1 cells, I could restore the phenotype seen in wild type cells. This 

step proved that GBP1 was the effector of this restriction as opposed to a 

secondary effect introduced during the genetic modification of the cells. Even more 

so, the effects of GBP1 could be seen in a manner that was independent of IFNγ. 

This was fascinating as mGBPs are not present without the stimulation of IFNγ. 

However, it is not the case in human A549 cells, with GBPs showing expression at 

basal level, as demonstrated by immunoblot. This result outlines another important 

difference between mouse and human GBPs. Additionally, it has been 

demonstrated that IFNγ as being necessary for oligomerisation qualities (Britzen-

Laurent et al., 2013). Furthermore, the association of GBP1 to the Golgi is IFNγ 

dependent (Modiano et al., 2005, Tripal et al., 2007). While it is true that GBPs are 

effectors of the IFNγ mediated resistance against a number of pathogens this 

project shows GBP1 can function in an IFNγ independent manner, implying that the 
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mechanism by which this GTPase family member operates does not require 

localisation to the Golgi or oligomerisation with itself or other GBPs.  

 After determining that GBP1 contributed to host defence of Toxoplasma, I 

defined at which stage of infection it was carrying out its effect. I first investigated 

whether the invasion rate of Toxoplasma into epithelial cells was altered in GBP1 

deficient cells. As it was apparent that infection rates were not altered, I next 

determined how the initial replication of the parasite in the cell might be affected. 

This was done using fluorescent microscopy, taking advantage of Toxoplasma that 

heterologously express GFP. By counting how many times the parasite had 

replicated inside the vacuole it was clear even by 6 hours post infection that 

replication was enhanced when GBP1 was absent. This too was IFNγ independent, 

indicating this effect was the same one that resulted in the difference in ability to 

form plaques. This IFNγ-independent method of action opens another line of study 

to investigate how else these proteins can exert their functionality.  

  I was interested to observe that the restriction effects of GBP1 against 

Toxoplasma were exerted in a strain-dependent manner. Traditionally type I 

parasites are classified as virulent, while type II are avirulent. However, this is in 

the context of mice, as the nomenclature is resultant of the fact that one type I 

parasite is sufficient to kill a mouse, while thousands of the type II will be tolerated 

before the mouse succumbs to infection. In humans, there is only recently literature 

describing that the parasites interact differently with the host cell in a strain-

dependent manner. It has been shown that human gene expression and host 

transcriptional responses to Toxoplasma can occur in a strain dependent manner 

(Saeij et al., 2006, Ong et al., 2011). Additionally, a study demonstrating that 

Toxoplasma is restricted by a non-canonical autophagy pathway, as well as my 

published work show that type I parasites largely evade specific host defence 

responses (Selleck et al., 2015, Johnston et al., 2016). This is an exciting area of 

study that should be investigated further. Amongst other things the specific 

virulence factors dictating these responses could be determined.  

 The fact that GBP1 can restrict pathogens falls in line with what is already 

published in the literature, with an effect against vesicular-stomatitis virus, 

encephalomyocarditis virus and C. trachomatis shown (Anderson et al., 1999a, 

Tietzel et al., 2009, Al-Zeer et al., 2013). However, the work published before my 

study regarding human GBPs and Toxoplasma present that they are not involved 
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during infection (Ohshima et al., 2014). When HAP1 cells had the complete GBP 

cluster on chromosome 1 removed using the CRISPR-Cas9 technique, 

Toxoplasma counts did not vary from counts in the wild type cells after 24 hours of 

infection with a type II strain (Ohshima et al., 2014). This could be another cell type 

specific phenotype that is not seen in epithelial cells. Alternatively, some residual 

GBP6 or 7 may be present and active in the cells, as the expression for these have 

not been elucidated. When I immunoblotted lysates from these cells, I noted that 

the levels of GBPs present in the wild type HAP1 cells, even after IFNγ stimulation, 

are very low (data not shown). HAP1 cells are derived from a cell line, KBM-7, that 

has been derived from leukaemia cells and contain only one copy of most human 

chromosomes (Kotecki et al., 1999, Carette et al., 2009). For this reason, they are 

favourable for use in genetic studies and screens, as it is easier to target a gene for 

full knock out when only a single chromosome needs to be effectively manipulated. 

However, these cells are not very biologically relevant in studies with infection 

models. As a result, it is a possibility that there is no difference seen after GBP 

deletion due to an insufficient GBP response in the wild type cells. It remains to be 

seen when the system used in my project is transferred to another cell type, 

whether a striking GBP1-dependent restriction of parasite growth is still present.  

 To determine whether or not GBP1 plays a role in the restriction of other 

pathogens, I worked with collaborators to determine the effect of this protein on S. 

enterica typhimurium and C. trachomatis. Both of these bacterial pathogens are 

intracellular, and furthermore reside within a PCV inside the cell. In this regard, 

they are comparable to Toxoplasma gondii. When pathogen viability assays were 

carried out after infection of epithelial cells that had either GBP1 intact or deleted, 

we saw no difference in bacteria growth for either S. enterica typhimurium or C. 

trachomatis (Johnston et al., 2016). This result suggests that GBP1 can act in a 

host defence role in a pathogen-specific manner. While other studies have been 

published demonstrating GBP1 restricts C. trachomatis growth, the work was 

carried out in either in HeLa cells or macrophages (Tietzel et al., 2009, Al-Zeer et 

al., 2013). Again, this suggests that GBPs may be functioning in a cell-specific 

manner, which needs to be taken into consideration by others looking to study this 

protein family.  

 

 



GBPs and Toxoplasma gondii infection 

 

106 

 

GBP4 characteristics during Toxoplasma gondii infection 

I initially chose GBP4 as a prioritised candidate for study due to the fact it was 

reported to have a cyto-nuclear localisation in the literature (Tripal et al., 2007). My 

results have shown that in THP-1 macrophages the localisation of GBP4 is solely 

nuclear. As the work done by Tripal et al. was performed in endothelial cells, we 

come again to hypothesise that GBPs are functioning in a cell-specific manner 

(Tripal et al., 2007). It is possible however, that the slight difference in subcellular 

localisation was an artefact due to the fact that overexpressed GFP-tagged GBP4 

was used to determine the subcellular localisation. GTPases in the nucleus are 

most often found to be Ran proteins, which are responsible for trafficking RNA and 

proteins between the cytosol and nucleus (Moore, 1998). There are a few other 

GTPases in the nucleus that are carrying out functions in that location, for example 

PI-3Kinase Enhancer (PIKE) which interacts with nuclear PI3K to stimulate its lipid 

kinase activity (Ye et al., 2000). The most relevant nuclear GTPase to this study is 

the myxovirus resistant protein (Mx)-1 that is found in mouse. Mx proteins are part 

of the same large dynamin-like family of interferon-inducible GTPases as GBPs 

and IRGs. They are known to have important anti-viral properties, and are well-

conserved between a number of species (Verhelst et al., 2013), with MxA and MxB 

present in humans and two versions of the MxA protein in mouse, Mx1 and Mx2 

(Haller et al., 2015). These GTPases play vital roles against a broad range of both 

DNA and RNA viruses including influenza A and hepatitis B (Verhelst et al., 2013, 

Haller et al., 2015). As a result, Mx proteins can interact with the target viruses in 

both the nucleus and the cytoplasm. Interestingly, rodent Mx1 requires nuclear 

localisation to exert its functions (Zurcher et al., 1992). Conversely, the human Mx 

proteins are found solely in the cytoplasm, however can still exert full anti-viral 

mechanisms by inhibiting viral mRNA synthesis (Haller et al., 2015). This 

comparison is intriguing, as even within a family of highly identical proteins, Mx 

proteins seem to be playing different and necessary functions in murine versus 

human cells. This seems to also be the case with GBPs. The fact that, with GBP4, 

another member of this large-interferon inducible family has been located to the 

nucleus is striking, as so few GTPases are found in this cell compartment. 

Furthermore, GBPs and Mx proteins are GTPases that are highly conserved yet 

operating with diverse mechanisms across species.  
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 The loss of GBP4 expression upon infection with type I, yet not type II 

Toxoplasma was intriguing, as no parasite virulence factors in humans have been 

defined yet. Only examples of Toxoplasma proteins manipulating mouse cell 

components have been described (Fentress et al., 2010, Steinfeldt et al., 2010, 

Virreira Winter et al., 2011, Jensen et al., 2013, Franco et al., 2014, Bougdour et al., 

2014). The mechanism by which the parasite is manipulating GBP4 could be 

occurring at a transcriptional, translational or protein degradation level. By using 

inhibitors of protein degradation, I was able to accumulate the protein during 

infection. I ensured to use inhibitors that target varying aspects of protein 

degradation, to highlight the process by which this is happening. MG-132 is used to 

inhibit the 26S proteasome, as well as leupeptin that can inhibit cysteine/ serine/ 

threonine peptidases. Via these different reagents I was able to highlight while the 

protein is degraded in a 26S proteasome dependent manner in an uninfected cell, 

type I parasite infection results in GBP4 being degraded by cysteine, serine and/or 

threonine peptidases. Interestingly, it has been shown previously that type I 

Toxoplasma also effects protein levels in MEFs by a mechanism that can be 

inhibited when leupeptin is added to the culture (Carmen and Sinai, 2011). This 

study showed that degradation of BH3 interacting-domain death agonist (BID), a 

pro-apoptotic member of the B-cell lymphoma-2 (Bcl-2) family, is manipulated by 

the type I parasite in a leupeptin dependent manner (Carmen and Sinai, 2011). 

While the Toxoplasma virulence factor responsible for this host-protein 

manipulation has not been identified, it appears that type I parasites potentially 

possess a component that can modify both mouse and human cell proteins. Other 

inhibitors such as calpastatin to target the non-lysosomal calpain proteases, 

lactacystin for 20S proteasome inhibition and Z-VAD-FMK that is a specific 

caspase inhibitor were also preliminarily tested (data not shown). While I saw no 

accumulation of protein during infection when these inhibitors were used, a more 

thorough investigation is required.   

For this reason, I conclude that the parasite is acting on the protein product. 

In order to formally rule out an effect on GBP4 transcript, however, it would be 

prudent to conduct a qPCR analysis on samples taken over a time course during 

Toxoplasma infection. A potential effect on protein translation could be analysed by 

the observing stability of GBP4 protein, with and without the protein translation 

inhibitor cycloheximide. By using this method in infected and uninfected cells one 
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can determine the half-life of the protein, and can demonstrate whether the parasite 

has an effect on protein translation or degradation. It is furthermore a possibility 

that modification or truncation of GBP4 results in the antibody being unable to 

recognise its target. Due to the fact I can inhibit the loss of protein recognition, it is 

unlikely that this is the case. However, the way to fully identify whether an epitope-

masking post-translational modification or a truncation had occurred would be to 

utilise an antibody targeted to an epitope in a completely separate, N-terminal 

location. As no other specific GBP4 antibodies have been identified this not a 

possible course of action at the moment. Alternatively, if the endogenous protein 

was tagged using CRISPR-Cas9 at the N-terminus it may be possible to 

indisputably confirm this.  

 The disappearance of GBP4 in a parasite strain-specific fashion indicates it 

might be playing an important function during Toxoplasma infection. Whether or not 

the loss of expression is a host or Toxoplasma driven phenomenon is unclear. 

However, it is unlikely to be a host-driven mechanism due to the fact that the 

observation occurs with the type I parasite as opposed to the type II. This is due to 

the fact that traditionally type I is the ‘virulent’ parasite strain, and that some studies 

in human have already demonstrated that this may be true to a certain respect in 

man as well (Saeij et al., 2006, Ong et al., 2011, Selleck et al., 2015, Johnston et 

al., 2016). Cysteine, serine and threonine peptidases are activated by the cleavage 

of a pro-domain from their active sites (Di Cera, 2009, Verma et al., 2016). In the 

case of cysteine peptidases, a low pH or glycosaminoglycan polysaccharides can 

potentially disrupt salt bridges within this pro-domain and results in exposure of the 

active site (Verma et al., 2016). Many serine and threonine peptidases are 

activated in a calcium dependent manner, with an increasing calcium concentration 

resulting in an unmasked active site (Di Cera, 2009). Whether or not Toxoplasma 

can manipulate host factors to result in the activation of these proteases, or can 

release factors to induce exposure of the protease active site remains to be seen. 

Therefore it is likely that type I parasites actively function to circumvent control by 

GBP4.  

 The next step is to fully define the role that GBP4 plays against Toxoplasma. 

This can be achieved in the same way as with GBP1, using cells that have had the 

protein knocked-out using CRISPR-Cas9. Within the lab, preliminary results with 

A549 ∆GBP4 cells show that indeed the growth of Toxoplasma is enhanced when 
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GBP4 is not present (Joseph Wright, unpublished). While this result alone is 

exciting, it is interesting to note that this GBP4-mediated restriction is dependent on 

IFNγ stimulation. This difference in IFNγ dependence between GBP1 and GBP4 is 

another example of how the GBP family members appear to be playing their own 

unique roles and can function differently to each other. This IFNγ dependence 

could be due to a number of factors. Perhaps there is not a sufficient residual basal 

level of GBP4 in epithelial cells that is able to restrict pathogens. It may also be that 

the activation of the GTPase activity requires this cytokine, and in turn the 

activation is necessary for restriction. Alternatively, the mechanism by which GBP4 

exerts its function maybe be dependent on an interaction partner or component that 

requires IFNγ stimulation. These partners could even be other GBPs, and as IFNγ 

is required for oligomerisation (Britzen-Laurent et al., 2010) it could be an assembly 

process that cannot occur. If an assembly process is required, there is a chance 

that other GBP family members can be found in the nucleus also. For example, 

overexpressed GBP2 has already been observed in the nucleus of endothelial cells 

(Tripal et al., 2007). I carried out subcellular fractionations followed by 

immunoblotting, and did not observe GBP2 in the nucleus of epithelial cells. 

However, this could be another cell specific phenomenon, or GBP2 may only be 

located in the nucleus under specific conditions. Alternatively, GBP4 could have a 

cytoplasmic location and role in specific conditions that may also require the GBP 

oligomerisation process. This project has resulted in an anti-GBP4 antibody that 

has the capacity for immunoprecipitation. This means it is possible to retrieve the 

protein from cells that were subjected to a number of different conditions, including 

stimulated and unstimulated, and infected and uninfected. Following isolation of 

protein interacting complexes, the identity of the samples could be determined by 

mass spectrometry in order to identify the candidate interaction partners and thus 

define the pathway by which GBP4 functions. 

 GBP4 is an interesting GBP candidate due to the fact that it is the 

least similar to the other GBP family members in terms of sequence, showing less 

than 60% similarity to all family members except GBPs 6 and 7 (Olszewski et al., 

2006). Furthermore, when I analysed the sequence to determine if a nuclear 

localisation signal (NLS) was present, there were both monopartite and bipartite 

NLS motifs predicted, with relatively low prediction scores that suggest the protein 

is localised both in the nucleus and cytoplasm (Figure 30). Monopartite and 
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bipartite sequences are classical NLS motifs that have either one or two clusters of 

basic amino acids respectively (Lange et al., 2010). These NLS sequences are 

found towards the C-terminal end of the GTPase binding domain, and therefore 

would not be cleaved to induce relocalisation. Traditionally, a NLS motif would be 

determined and then mutated to observe the effects on protein expression and 

trafficking. Until we identify the site that is responsible for nuclear location, that step 

cannot be taken.  

 
Figure 30 Predicted nuclear localisation signals within GBP4 amino acid 

sequence 

Predicted monopartite and bipartite NLS signals within GBP4 protein, as 
determined using the cNLS Mapper tool (http://nls-mapper.iab.keio.ac.jp/cgi-
bin/NLS_Mapper_form.cgi). 

 

The sequence of GBP4 is additionally interesting as there is a 21 amino acid 

long extended N-terminal region that has two methionines, leading to a dispute as 

to which is the correct protein translation start site (Olszewski et al., 2006). 

Additionally, there is a chance that the N terminus is subject to modification and as 

a result might affect protein function. In this project, I was able to show that when 

GBP4 was tagged at the N-terminus, cleavage and accumulation of the tag 

occurred up to a few hours post-expression of the protein. While this is useful to 

know for the production of tools in the future, it was apparent that something 

interesting was occurring. This cleavage occurred in IFNγ-stimulated cells and 

during deliverance of GBP4 DNA into the cell by Vaccinia virus. It is a possibility 

that the truncation of GBP4 is required for the activation and anti-pathogen 

response. In order to address this question, it would be prudent to 

immunoprecipitate GBP4 before N terminal sequencing the to compare the N 

terminus protein of GBP4 in the nucleus. Once this has been identified, we would 

have a clue as to the N terminal start site and potential cleavage sites. If these sites 

Predicted monopartite motif

240 RHFFRKRKCFVF

242 FFRKRKCFV

Predicted bipartite motif

196 RDFTLELKLDGNPITEDEYLENALKIPGKNPKI

223 PGKNPKIQNSNMPRECIRHFFRKRKFC
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could be mutated, assays could be carried out to study the effect of the N terminus 

on GBP4 function. The problem lies in the fact that it has been proven unsuccessful 

to overexpress these GTPases in human cells. This presents a problem that is 

prudent for mutation of either the N terminus or the NLS motifs. Here again is a 

hurdle that could be solved by CRISPR-Cas9. This system allows not only for DNA 

to be mutated to delete translation of a protein, but can also introduce site-directed 

mutations that lead to insertion of a tag, or a single nucleotide change (Ran et al., 

2013). Therefore, employing CRISPR-Cas9, one could generate clonal cell lines in 

which the endogenous GBP4 is mutated as described at specific regions.  

 The interaction between pathogens and their hosts is complicated and 

variable. There are many examples of pathogens that can manipulate host features 

that result in increased virulence and pathology and thus promote their own 

survival. Numerous bacteria that can cause disease in humans have been shown 

to covalently modify host response GTPases, including Vibrio cholera, Escherichia 

coli, L. pneumophilia and Stapylococcus aureus (Aktories, 2011), so the 

modification of GBP GTPases would be a plausible virulence strategy for 

Toxoplasma. Other bacterial pathogens have the ability to exert transcriptional 

control. Listeria monocytogenes interferes with the SUMOylation machinery that is 

responsible for transcriptional regulation (Cossart, 2011). Furthermore Listeria and 

other bacteria including Mycobacterium tuberculosis, Shigella flexinuri and 

Heliobacter pylori can epigenetically control expression of genes at the mRNA level, 

via the modification of histone expression and/ or chromatin structure (Hamon and 

Cossart, 2008, Cossart, 2011). Toxoplasma is also capable of manipulating a 

number of features in the murine host. The Rop18 kinase of Toxoplasma can 

directly phosphorylate IRGs so that there is reduced PV recruitment, with Rop16 

hypothesised to work similarly on GBPs (Fentress et al., 2010, Steinfeldt et al., 

2010, Virreira Winter et al., 2011). Rop16 kinase and Gra15 also are responsible 

for interrupting the Jak-STAT and NFκB pathways in order to promote pathogen 

survival (Jensen et al., 2013). Furthermore, Toxoplasma manipulates the cell to 

specifically induce the transcription factor c-myc. This results in the upregulation of 

c-myc dependent products that play roles in mechanisms including cell cycle 

progression, apoptosis, cell differentiation, and metabolism (Franco et al., 2014). 

Gra16 and Gra24 are secreted dense granule proteins that both contain nuclear 

localisation signals, and have been shown to alter host genome expression via the 
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regulation of p53 and p38α signalling pathways respectively (Bougdour et al., 2014). 

As GBP4 is found within the nucleus, it is possible that it is intercepting parasite 

responses that aim to modify cell genetic responses. Alternatively, perhaps GBP4 

is involved in regulating transcription in response to infection, possibly due to 

specific interactions with important components to this pathway. Therefore 

Toxoplasma could be affecting transcriptional defence processes indirectly via 

GBP4.  

 GBPs that have been best characterised in the literature, GBP1 and 5 

(Tietzel et al., 2009, Shenoy et al., 2012, Al-Zeer et al., 2013, Johnston et al., 2016) 

sit on an entirely different branch of the GBP phylogenetic tree to GBP4 (Figure 31). 

Therefore, the fact that the GBP4 sequence differs the most compared to these 

other family members would infer that it would be most likely to play a unique role 

in infection. GBP4 has not been intensively studied in the literature. There is one 

paper by Hu et al. that focuses on mouse GBP4 as a negative regulator of Sendai 

virus-induced IFN-alpha (IFNα). This downregulation of IFN occurs as a result of 

IFN-regulatory factor 7 (IRF7) inhibition. Sendai virus was used to infect cells that 

had mGBP4 silenced, as well as wild type cells; after which the supernatant from 

these cultures was added to cells infected with VSV. The VSV was observed to 

replicate less efficiently when supernatant from the mGBP4 silenced culture was 

used (Hu et al., 2011). This suggests that a higher level of IFNα is secreted from 

cells in response to Sendai virus when mGBP4 is not functional. Perhaps mGBP4 

is targeted specifically by Sendai virus, and manipulated to enhance viral survival 

via negative regulation of IFN. Alternatively, perhaps it is playing a vastly different 

role to other mGBP family members, and does not restrict viral replication in cells. It 

would be interesting to see if mouse GBP4 reacts in a similar manner across 

different viral infections, and to investigate whether human GBP4 shows a similar 

phenotype during viral infection.  
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Figure 31 The phylogenetic tree showing distribution of GBP family members 

The phylogenetic tree, created using amino acid sequences for GBP family 
members, with the ClustalW Phylogeny software. 

 

Murine versus human cells as models of infection 

Mouse models are an invaluable tool and have been used to study innumerable 

processes that have benefitted medical research. It is possible to engineer genome 

modifications, and interbreed them to become genetically identical to limit variability 

in results. From mice, it is straightforward to obtain primary cells that in most cases 

will provide a biologically relevant result. These are features that are obviously 

impossible or near impossible in the process of studying human biology. While it is 

possible to obtain primary cells, the range is limited and often difficult to acquire, 

especially if a large number of cells are required over a long time period. For this 

reason, human cell lines that have been adapted for in vitro culture are generally 

utilised. I ensured the cell lines I worked with expressed GBPs and were IFNγ-

responsive. However, these lines are often adapted from a cancerous sample, or 
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are immortalised with cancer or viral genes to survive in a culture dish; both A549 

and THP-1 cells are adapted from cancerous samples. A wide variety of cell types 

exist, including endothelial cells, epithelial cells, fibroblasts and monocyte cells. 

These cell lines are not always the most biologically relevant to an infection and 

can represent only single cell results rather than a whole animal response. 

Therefore, many studies will still move to identify pathways and component 

functions in the mouse, or other animal models, before describing a comparison in 

human cells. While this is a successful strategy in many studies, this project has 

highlighted that the animal model is not always going to show characteristics that 

are reproducible in, or representative of, human responses.  

 For many years, the host response to Toxoplasma by interferon-inducible 

GTPases, the IRGs and GBPs, have been intensively studied. As mentioned 

previously, the human genome comprises only 2 copies of GKS-IRG genes, and 

these are not IFNγ-sensitive (Bekpen et al., 2005). As the GBP family is much 

better conserved, it seemed prudent to understand GBP responses in mice so that 

there was a likely chance to determine responses that were also replicated in a 

human host. While looking to determine whether or not GBP1 or 4 played a role in 

defence against Toxoplasma infection, the first priority was to determine whether or 

not these proteins localised to the PV. As it quickly became clear that this was not 

the case, I wondered if GBPs could play a role at all. This is because mouse GBPs 

play a specific role in disrupting the PV, and hence leading to death of the parasite 

(Yamamoto et al., 2012, Meunier et al., 2014, Pilla et al., 2014). Furthermore, 

mGBPs have been shown to interact extensively with IRGs in order to carry out 

their defensive capacities (Haldar et al., 2013). However, it is now clear that in stark 

contrast to in mice, human GBPs play an important role in a location away from the 

parasite itself and in the absence of canonical IRG GTPases.  

 The subcellular locations of human GBPs have been described in the 

literature previously (Modiano et al., 2005, Tripal et al., 2007) and have been more 

specifically described in my Results chapter 2. No report has located murine GBPs 

to the nucleus. While it may be the case that the finding is yet to occur, it would be 

interesting that human and mouse GBPs have potentially evolutionarily diverged so  

that the roles they play are totally separate. GBPs 1 and 5 have also been reported 

to have a localisation to the golgi (Modiano et al., 2005, Tripal et al., 2007), 

indicating there may be a role of these GTPases related to golgi-mediated protein 
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modification or vesicular trafficking. Whether or not GBP1 and 5 are fulfilling the 

same function at the golgi is unknown. However, seeing these two family members 

specifically localise at the organelle could imply that the GBPs that are not localised 

to the golgi upon IFNγ stimulation may be performing a different role.  

 Determining the subcellular localisation of proteins gives key clues as to the 

functions they carry out, and can elude to potential interaction partners. We are 

speculating that GBP4 could play a role in transcription, while GBP1 and 5 may be 

involved in post-transcriptional protein modifications considering their association 

with the golgi apparatus (Modiano et al., 2005, Tripal et al., 2007). I have 

postulated that mouse and human GBPs have very different characteristics, but 

perhaps mouse GBPs are actually capable of carrying out the same functions as 

their human counterparts. Mouse GBPs are not all found at the vacuole during 

Toxoplasma infection. The murine GBPs 8, 10 and 11 are found distributed in 

vesicles throughout the cytoplasm, and do not relocalise to the PV upon infection 

with the parasite (Degrandi et al., 2007). This could mean that the PV-absent family 

members are not functional during infection, or alternatively they could be playing a 

separate role altogether maybe in line with human GBPs. This project underlines 

that it is important to look at the functions of all GBPs at a location away from the 

pathogen vacuole.  

 In functionality experiments in the mouse, it is now known that the mGBP 

cluster located on chromosome 3 is responsible for the activation of the 

inflammasome, in turn leading to activation of caspase-11 (Pilla et al., 2014, 

Meunier et al., 2014). Humans do not possess caspase-11 and instead have the 

homologs caspase-4 and -5. It will be interesting to see how these studies progress, 

and if it can be shown that GBPs are capable of activating human caspase-4 and -

5 to cause cell death. A relatively high level of GBP conservation exists across 

species (Li et al., 2009), and already GBPs have been implicated in inflammasome 

activation in zebrafish (Tyrkalska et al., 2016). It will be exciting to see if GBPs 

across multiple species are able to induce inflammasome activation in response to 

infection.  

 The human versus mouse host reactions to Toxoplasma has recently been 

appreciated to be different not only on the level of parasite restriction, but also for 

parasite recognition by the host cell. It is known that in mice, host cell invasion by 

the parasite is not required for IL-12 release and instead Toxoplasma profilin, a 
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soluble endotoxin, is required for simulating high levels of this cytokine from DCs 

(Yarovinsky et al., 2005). This stimulation of DCs requires recognition of the profilin 

by TLR11 and 12, with mice deficient in these genes succumbing quickly to 

Toxoplasma infection (Yarovinsky et al., 2005, Koblansky et al., 2013). What is 

interesting is that humans lack a functional TLR11 gene and are completely 

deficient in the TLR12 gene (Roach et al., 2005), but still mount an effective 

response to the infection and do not succumb to it. As a result, when this same 

mechanism of IL-12 was investigated in DCs derived from primary peripheral blood 

monocytes a completely different mechanism was observed. Instead of responding 

to profilin, the response was dependent on the phagocytosis of live tachyzoite 

parasites, while actively invading live parasites were not sufficient (Tosh et al., 

2016). In mouse, CD8α+ DCs are principally responsible for IL-12 release in the 

spleen (Reis e Sousa et al., 1997, Mashayekhi et al., 2011), with CD11b+ CD8α- 

being the main producer of IL-12 at the site of infection (Goldszmid et al., 2012). 

However, Tosh et al. show that the human counterpart of CD11b+ CD8α- DCs, the 

CD1c+ DCs, produce some IL-12, and the human equivalent of CD8α+ DCs are 

unresponsive. Instead, CD16+ monocytes are a main producer of this vital cytokine; 

further highlighting differences in host responses dependent on species (Tosh et al., 

2016). Findings like these suggest that when studying host defence mechanisms 

against Toxoplasma using a mouse model may not provide results that are 

transferrable to human.  

 Mice are a natural intermediate host for Toxoplasma, so it is logical that 

these two species have evolved alongside each other, resulting in a specialised 

host-parasite relationship (Gazzinelli et al., 2014). Selective pressure has led to a 

significant alteration in the immune system. It is hypothesised that this coevolution 

has led to the emergence of highly specialised mechanisms of defence including 

the varying TLR responses and the maintenance of IRG function (Gazzinelli et al., 

2014). Perhaps in the absence of this selection pressure, human GBPs have 

developed an entirely different set of qualities against this pathogen and others. 

Investigators should bear this in mind when studying the roles of these large 

GTPases, particularly with Toxoplasma infection. 

 As it is becoming clear that mouse models will not provide all the answers 

regarding human responses to this parasite, the scientific community is requiring a 

more biologically relevant tool with which to study human host defence. As I 
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mentioned above, human cell lines can only provide an approximation of true 

situations during an in vivo infection. Macrophages would be the cell of choice with 

which to study host response to Toxoplasma, as these cells are probably 

preferentially infected by the parasite (Zhao et al., 2014). A number of human 

macrophage cell lines exist, including THP-1 cells, AML-193, U-937 and HL-60 

cells. All of these cell lines were derived from patients with either monocytic 

leukaemia or histiocytic, non-Hodgkin lymphoma. THP-1s are the most commonly 

used human macrophage line, however these cells, as with the other cell lines, 

require activation to differentiate from monocytes to macrophages. This means 

they are already in an activated immune state that may affect the process of 

infection by Toxoplasma or other pathogens. DCs play such an important role 

during Toxoplasma infection that they are another cell type that would be very 

interesting to be able to study in vitro. While THP-1 monocytes can be carefully 

cultured to differentiate to DCs (Berges et al., 2005) this again is a very artificial 

system. To study human DCs, it is required to isolate them from human blood 

samples, which of course presents a large limiting factor to biochemical analysis.  

 An additional problem arises when we consider that these cell lines may not 

have all of the immunoregulatory pathways intact. The most extreme example of 

cells used for immune studies that are arguably not biologically relevant is perhaps 

the use of HeLa cells. HeLa cells were isolated in 1951 from a cervical cancer 

sample, which upon inspection contained 76-80 heavily mutated chromosomes, 

compared to a normal 46 chromosomes. Additionally, almost 2000 genes are 

expressed more highly than the physiological range of 16 human tissue samples, 

with these genes duplicated up to six times (Landry et al., 2013). This is due to the 

effects of the human papilloma virus that was the origin of the cancer, as a result of 

its ability to inactivate p53. Because of this aberrant chromosome number and 

irregular genetic makeup, the cells may possess an unbalanced set of immune 

modulatory molecules. However, while this is one of the most severe examples, the 

cells used in this project are also not without caveats. THP-1 cells have been 

analysed to have better response mechanisms to stimuli other than human-

macrophage cell lines, for example U937 cells, however they respond much less 

than macrophages that have been differentiated from primary peripheral blood 

monocytes (Sharif et al., 2007, Chanput et al., 2010, Chanput et al., 2014). There is 

evidence too that the TLR expression levels in THP-1 cells can be variable 
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dependent on the concentration of PMA induction used during the macrophage-

differentiation step. This means there may be caveats in the analysis of a response 

to a pathogen that relies on a specific TLR expression pattern. A549 are epithelial 

cells that were isolated from lung adenocarcinoma. Upon analysis they were shown 

to have 13 abnormal chromosomes with half of the abnormalities deriving from 

deletions and amplifications of genes (Peng et al., 2010). While I ensured that the 

GBPs I was interested in were present in these cells, there is a possibility that 

interaction partners or up- and down-stream effectors are not present or functional. 

This would result in non-biologically relevant results, with the potential of missing a 

GBP function altogether. For these reasons, it is important that we begin to move 

our studies into cells that are more likely to mimic natural responses.  

 To this end, I began working with induced pluripotent stem cells (iPSCs). 

These are cells that are taken from a human sample and reprogrammed to become 

pluripotent progenitors of monocytes and other cell types. These cells can provide 

researchers with primary cells that can survive in tissue culture that have not been 

adapted from cancerous tissue, or that have been adapted over such a long time 

that they do not recognise as natural cells. The iPSCs that I handled were re-

programed at the Sanger Institute in Cambridge to become monocyte precursors. I 

obtained these cells from the Sanger and became competent in their culture and 

maintenance. During my PhD I focussed on learning to maintain and culture these 

iPSCs, with the aim to carry out CRISPR-Cas9 GBP deletion on the monocytes 

progenitors. Once this would be achieved, it would be possible to differentiate the 

cells to primary macrophages that were deficient in specific GBPs. Other lab 

members can now employ CRISPR gene manipulation before differentiating them 

into primary macrophages. This would provide a very biologically relevant tool with 

which to study human responses to infection- a tool that would potentially 

revolutionise our understanding of cell autonomous reaction to pathogens. To 

repeat the experiments in these cells would give the most biologically relevant 

insight into how GBPs function in vivo, particularly in the context of a Toxoplasma 

infection. 
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Chapter 5. Results gathered to be used for 
continuation of GBP work in the Frickel Lab 

5.1 Results  

5.1.1 Protein interaction partners of GBP2 

As I began to unravel the characteristics of human Guanylate Binding Proteins and 

their functions during infection with Toxoplasma, I used the antibodies I generated 

to identify specific GBP interaction partners. I obtained data that could not be fully 

investigated at the time. However, I will discuss the raw data produced in this 

chapter. Based on my findings and analysis, additional work remains that can be 

mined to continue this line of research. A number of projects will be able to begin 

and to be continued within the Frickel lab.  

 Mass spectrometry of immunoprecipitated GBP1 and 2 in collaboration with 

Bram Snijders within the Francis Crick Institute led to the generation of the data set 

of potential GBP interacting partners. The anti-GBP2 peptide polyclonal antibody 

produced in rabbits was very effective at retrieving GBP2 from A549 lysates. In this 

application, the antibody cross-reacted with GBP1, therefore immunoprecipitating 

this family member also (Chapter 3, Figure 7). A549 cells were stimulated overnight 

with IFNγ before being infected or not with type I or type II Toxoplasma. The 

infection was allowed to persist for 2 hours before the cells were lysed using lysis 

buffer containing the mild detergent 0.5% NP-40. This was to ensure that 

interactions between proteins were maintained. The lysates were subjected to a 

pre-clearing step, during which they were incubated with the preimmune serum that 

was obtained during the antibody production process, followed by an incubation of 

this mixture with Protein Sepharose G beads. This stage limits the number of non-

specific interactions with the beads. After this step, the anti-GBP2 antibody was 

allowed to mix with the pre-cleared cell lysate before the complex was added to 

fresh Protein Sepharose G beads. The beads were then spun down from the 

suspension, isolating GBP2, GBP1 and their potential interaction partners. The 

protein complexes were removed from the beads by boiling in SDS loading buffer 

and the resulting product was run on SDS-PAGE. The gel was only permitted to 
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run for a very short distance to ensure a dense concentration of protein that would 

be then analysed by mass spectrometry.  

 At this stage, the samples were given to Bram Snijders and Vesela Encheva 

who ran the experiment and gave me back a data-set containing gene identities of 

the proteins isolated. Briefly, they carried out the analysis by excising the protein 

piece and destained it using 50% acetonitrile, 50mM ammonium bicarbonate, 

reduced with 10mM dithiothretiol, alkylated with 55mM iodoacetamine. The proteins 

were then digested with 6ng/ml trypsin overnight at 37˚C before the peptides were 

extracted in formic acid and 1% acetonitrile. These peptides were loaded on to an 

Easy Spray column (Thermo Fisher). Reverse phase chromatography was 

performed using the RSLC nano U3000 (Thermo Fisher). The in-gel digested 

samples were run on a linear gradient of 80 % acetonitrile, 0.1 % formic acid from 2 

to 40% over 35 minutes. The Q exactive was operated in a data dependent mode 

on the most abundant ions. They created the list of 908 proteins by searching the 

parent ion and tandem mass spectra against Homo sapiens and Toxoplasma 

gondii databases. Furthermore the Max Quant software added a list of 247 

common laboratory contaminants to the database. The datasets were filtered on a 

posterior error probability to achieve a 1% false discovery rate on protein and 

peptide levels. Finally, they used the Max Quant matching function to increase 

overlap between experiments.  

 I received the information in the form of a Perseus software file. Importantly, 

we retrieved GBP1 and GBP2 proteins in the experiment demonstrating that the 

immunoprecipitation protocol had worked. Using this software, I analysed the 

potential protein interactions that had the lowest false discovery rates and which 

occurred in a Toxoplasma infection specific manner. I was interested in proteins 

that were identified during infection with the parasite as compared to the uninfected 

control (Table 7).  

 Other members of the lab can further mine this dataset. The next step with 

this information would be to carry out another immunoprecipitation with the GBP2 

antibody before probing an immunoblot with an antibody against one of potential 

protein partners. It is true that GBP1 was retrieved with this antibody and therefore 

the list contains potential interaction partners of this protein too.  

 Based upon this list, there a large number of possible mechanisms by which 

GBP1/2 exert their function in terms of a Toxoplasma infection. Mouse GBPs have 
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been implicated in both canonical and non-canonical inflammasome induction. One 

wonders whether or not human GBPs can play a similar role. One of the potential 

interaction partners that I identified from the mass spectrometry run was 

transmembrane protein 214 (TMEM214), which is a known interactor of caspase-4, 

the human equivalent of mouse caspase-11 (Li et al., 2013). This candidate was 

found in a type II infection-dependent manner. This is interesting as GBP1 can 

restrict type II parasites, but not type I. TMEM214 acts an anchor for procaspase-4 

at the endoplasmic reticulum outer membrane (Li et al., 2013). As GBP1 is 

isoprenylated and membrane targeted, there is a possibility that it interacts with 

TMEM214 to ensure cleavage of procaspase-4 to caspase-4.  

 The data obtained from the mass spectrometry analysis leaves room to 

speculate that metabolic functions could be driven by GBP1/2. This is because 

proteins like Lon protease homolog, Vacuolar ATPase assembly integral 

membrane protein (VMA21) and major vault protein (MVP) were co-

immunoprecipitated from the sample in an infection dependent manner. VMA21 

and MVP were retrieved from samples in a strain-independent manner. This would 

suggest that they do not play a role in the GBP1 strain-dependent restriction of 

Toxoplasma. Instead a more general role could be carried out, or potentially these 

are protein interaction partners with GBP2 and result in an un-yet identified host 

defence function. VMA21 is of particular interest as it is an assembly chaperone of 

the mammalian proton pump complex in the endoplasmic reticulum. When levels of 

VMA21 are manipulated, autophagy is blocked leading to a deficient mTORC1 

pathway, resulting in ineffective autolysosomes that can cause vacuoles in the cell 

(Ramachandran et al., 2013). Lon protease homolog is a mitochondrial protease 

that plays a vital function in the degradation of damaged, oxidised and mis-folded 

proteins. Additionally, some proteins may be degraded by Lon protease homolog in 

normal conditions (Quiros et al., 2015). This protease has also been implicated in 

regulation of mitochondrial gene expression and in chaperoning membrane 

complex components (Bota and Davies, 2002). MVP is highly conserved between 

species and has functions that are not yet fully understood. However, it is known 

that MVP is involved in a number of cellular signal transduction pathways, including 

STAT1 and MAPK activation, and is thought to result in a cell survival response 

(Berger et al., 2009). Rab-18 was also retrieved. This protein is found in 

endosomes and lipid droplets, and is implicated in membrane trafficking between 
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the endoplasmic reticulum and the golgi apparatus (Dejgaard et al., 2008). As 

GBP1 and 2 are isoprenylated for targeting to membranes and to enhance protein-

protein interactions, it would be logical that they could be involved in trafficking 

other proteins to specific areas in the cell.  

 Table 8 displays potential interaction partners of GBP1/2 that were retrieved 

in all conditions (unless otherwise stated). GBP1/2, or any GBP, may play a role in 

the cell that is independent of infection. In this case, the relevant interaction 

partner(s) would be retrieved in all conditions. While this would be a more difficult 

route to follow up, it is an interesting line of investigation that could be considered 

in the future. A large number of candidates that suggest a function in translation 

were identified (Table 2), with almost the complete ribosomal complex being 

retrieved. Ribosomes are abundant in cells, thus this result could potentially be an 

artefact, but it is worth taking note of this finding. Furthermore, a significant 

selection of initiation of translation factors was isolated. These proteins bind to the 

ribosome complex and trigger the beginning of the biosynthesis. There is a 

possibility that GBPs interact with these proteins to induce the synthesis of a 

certain product to mediate host defense. Elongation factors were also identified as 

potential interaction partners (Table 8). These are a set of proteins that enable the 

elongation from the first binding site on the ribosome, to the last. 

 These candidates present a large number of opportunities to determine 

interaction partners of GBP1/2 that may result in identifying a mechanistic pathway 

for these proteins. It appears that these proteins could play a role in translation, 

metabolic pathways and/or inflammasome induction. 
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Table 7 Protein interaction candidates for GBP1 and 2 identified in a Toxoplasma 

strain-dependent manner 

Table showing possible protein interaction partners of GBP1/2 as identified by 
immunoprecipitation of GBP1/2 from A549 cells followed by mass spectrometry 
analysis. The candidates common to both type I and type II infection highlighted in 
blue. Cells were stimulated for 18 hours with 10U/ml IFNγ. Infection persisted for 2 
hours, MOI 3. 
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Table 8 Protein interaction candidates of GBP1 and 2 that implicate roles in 

translation. 

Table showing possible protein interaction partners of GBP1/2 as identified by 
immunoprecipitation of GBP1/2 from A549 cells followed by mass spectrometry 
analysis. Candidates that are implicated in translation have been listed. The 
candidates are common to uninfected, and type I and type II infected samples, 
excepting candidate highlighted in yellow that was detected in the uninfected 
sample only. Cells were stimulated for 18 hours with 10U/ml IFNγ. Infection 
persisted for 2 hours, MOI 3. 
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5.2 Discussion 

Throughout this project, I have continuously developed tools that I could use to 

characterise GBPs, but also that other people could use. I have not only designed 

and characterised antibodies and cells, I have optimised experiments and collated 

a large dataset that can be mined to identify protein interaction partners of GBP1 

and 2. The antibodies I have designed and characterised, with the cells that are 

being developed in the lab, are invaluable tools that can be used to determine GBP 

function in a wide array of pathogen types.  

During, this project I have highlighted that there are relatively basic 

questions regarding the GBP family members that still need to be addressed. While 

the GTPase activity of GBP1 has been extensively studied in vitro (Praefcke et al., 

1999, Praefcke et al., 2004, Kunzelmann et al., 2005, Ghosh et al., 2006, Abdullah 

et al., 2009, Vopel et al., 2010, Abdullah et al., 2010, Wehner et al., 2012), the 

properties and characteristics of the other GBPs are widely unknown. The GTPase 

activity of GBP4 and other family members has not been elucidated. The 

requirements for the activation of GTPase activity or activation of other cellular 

components still remain largely unknown. There could be underlying differences 

here that could account for the differences observed between the characteristics of 

and the roles played by both human GBP family members, and GBPs across 

species. It is apparent also that some functions of GBP1 occur in a GTPase 

independent manner. The inhibition of endothelial cell invasion and proliferation 

occurs regardless of the GTPase nucleotide bound state (Guenzi et al., 2001, 

Guenzi et al., 2003). The fact that GBP1 can restrict type II Toxoplasma in an IFNγ-

independent manner would suggest that this mechanism too occurs by GTPase-

independent means. Therefore it is still important to take into account GBP function 

when IFNγ is not present. 

On a similar note, there are many basic aspects of protein turnover and 

principles that have not been investigated. For GBP4, parasite infection clearly 

impacts on protein levels observed. The synthesis and degradation rates, and the 

routes of degradation are generally unknown. Using the protein synthesis inhibitor 

cycloheximide coupled with protein expression quantification, characterisation of 

protein production can be achieved. The samples will be incubated with inhibitor 
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before washing the cycloheximide off and tracking the rate that protein expression 

can once again be detected in an immunoblot. This will be possible using the 

antibodies that I have produced throughout the project. Conversely, the route of 

degradation for each GBP can be determined by using inhibitors of specific 

degradation pathways. The rate of degradation can be calculated by incubating the 

sample with a protease inhibitor, after which this inhibitor will be washed off and 

protein expression will be quantified by immunoblot. Cycloheximide must be used 

in these experiments too to ensure the degraded protein is not being replaced by 

freshly synthesised product.  

The antibodies I have designed and characterised, with the cells that are 

being developed in the lab, are important tools that can be used to determine GBP 

function in a wide array of pathogen types. To show that GBP1 is able to restrict 

Toxoplasma replication in a location away from the parasitophorous vacuole 

changes the way we should think about these proteins. While the discovery is 

groundbreaking, there is no further clarification as to the mechanism by which 

GBP1 conducts this function. The above results demonstrating potential interaction 

partners of GBP1 present a very real possibility to narrow down the area in which 

this GBP family member, at least, exerts its function. The mass spectrometry data 

that I have collated and prioritised can be mined in many different ways to discover 

interacting partners and hopefully identify mechanisms by which this GBP family 

member functions. GBP1 has been implicated in cell remodelling and endothelial 

cell proliferation (Schnoor et al., 2009, Ostler et al., 2014) in humans, as well as in 

inflammatory responses (Shenoy et al., 2012, Pilla et al., 2014, Meunier et al., 2014, 

Meunier et al., 2015, Man et al., 2015). However metabolic or translational 

functions would be completely novel. With the discovery of ‘off-site’ GBP responses, 

this opens the possibility for never before considered roles of this protein family that 

do not involve the pathogen vacuole. 

 I have shown in this dataset that there are a vast number of potential 

mechanisms by which GBP1 could be functioning against Toxoplasma infection. 

These include inflammasome responses via the identification of TMEM214, an 

interaction partner of caspase-4 (Li et al., 2013). Also a role in trafficking of proteins 

is possible after the retrieval of proteins such as Rab-18, a protein required for 

trafficking between the endoplasmic reticulum and golgi apparatus. As GBP1 is 

isoprenylated (Nantais et al., 1996) and has been localised to the golgi (Modiano et 
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al., 2005, Tripal et al., 2007), this is one exciting prospect to follow, as there may 

be a role in regulating post-translational modification or packaging of proteins. 

Identifying translational-activator-GCN1 along with a vast array of ribosomal 

proteins and initiation of translation factors points to a function in mediating 

translation. Translational functions are further implicated with the identification of a 

large number of elongation factors, which are responsible for forming the initial 

peptide bond to the ribosome complex. If GBP1 truly does interact with 

components such as Lon protease homolog, VMA21 and MVP then a metabolic 

function can be implicated (Berger et al., 2009, Quiros et al., 2015, Ramachandran 

et al., 2013). VMA21 is implicated in autophagy and cell death, an important cell 

defence mechanism (Ramachandran et al., 2013). GBP1 can restrict Toxoplasma 

in a strain-dependent manner, however the interaction with VMA21 occurs in a 

strain-independent manner. This would suggest that if the interaction between 

GBP1 and VMA21 was real, it is not a dominant mechanism of protection against 

Toxoplasma. However, there could be a general function of GBP1 that is 

dependent on this interaction. Alternatively, as GBP2 is also a bait protein in this 

mass spectrometry experiment, VMA21 may interact with this family member. As 

the function of GBP2 against Toxoplasma is not yet characterised, there is a 

possibility that a role is fulfilled by this interaction. MVP is another protein 

interaction candidate that is immunoprecipitated in a strain-independent manner. 

This protein is implicated in cellular signal transduction pathways, thought to result 

in increased cell survival responses (Berger et al., 2009). As GBP expression has 

generally been associated with cell death responses it could be that GBP1 

negatively regulated MVP, or vice versa. If GBP1/2 were proven to interact with 

Lon protease homolog, a function in degradation of misfolded or damaged proteins 

would be likely (Quiros et al., 2015). This again would be an interesting line of 

study to investigate, considering the relationship between GBP1 and the golgi, with 

potential for protein modification and regulation. 

 All of the above interactions can be confirmed or discounted by repeating 

the immunoprecipitation with the GBP antibodies before probing an immunoblot 

with antibodies against the candidate proteins. To distinguish between GBP1 and 

GBP2 specific antibodies, one could immunoprecipitate from A549 ∆GBP1 cells 

and verify which interactions are missing or still present. The missing interactions 
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would signify a GBP1-specific interaction partner, and remaining candidates would 

denote GBP2-specific proteins.  

These results are definitely exciting, and open numerous doors in the 

challenge of outlining mechanistic function of these large GTPases.  
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Chapter 6. Conclusion 

Overall this project has made progress in developing the tools that are necessary 

to fully elucidate the functions played by human guanylate binding proteins. I have 

shown that GBP1 works to restrict Toxoplasma during vacuolar replication. GBP4 

is a nuclear GTPase that loses expression upon infection with type I Toxoplasma 

parasites. I have highlighted the importance of looking at functions of GBPs at a 

location away from the PV. This project underlines that breakthroughs made in 

mice are not always transferrable across species. While the mouse may not be the 

most suitable model to study GBPs with regards to their functions in humans, I 

have shown it is possible to move studies into a human system and that research 

in primary cells is becoming more accessible. I have demonstrated that GBPs are 

playing specific and relevant roles during infection, and have provided a great 

number of tools that will be used to further our understanding of these interesting 

and important GTPases. I firmly believe that research should be built on each 

other’s successes, and that sharing reagents and knowledge is key - I hope the 

work done during my PhD will contribute to this. 
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Chapter 7. Appendix 

Table 9 Primer lists for GBP cloning 

Primer name Vector Restriction 

sites 

Sequence 

GBP3 For C1 GFP/ 

mCherry 

BamHI/ 

BspEI 

GGATCCTCCGGAATGGCTCCAGAG

ATCCACATGACA 

GBP3 Rev BamHI/ SacI GGATCCCTCGAGTTAGATCTTTAAG

CTTATATGCGACAT 

GBP5 For C1 GFP/ 

mCherry 

BamHI/ 

BspEI 

GGATCCTCCGGAATGCTTTAGAGAT

CCACATGTCA 

GBP5 Rev BamHI/ SacI GGATCCCTCGAGTTAGAGTAAAACA

CATGGATCATCG 

GBP6 For C1 GFP/ 

mCherry 

HindIII/ 

BspEI 

AAGCTTTCCGGAATGGAATCTGGAC

CCAAAATGT 

GBP6 Rev HindIII/ SacI AAGCTTCTCGAGTTAAAAGGGGAGC

TTATGCTTT 

GBP 7 For C1 GFP/ 

mCherry 

BamHI/ 

BspEI 

GGATCCTCCGGAATGGCATCAGAG

ATCCACATG 

GBP7 Rev BamHI/ SacI GGATCCCTCGAGTCAGCTTATAATT

TTCTTACCAGGA 

GBP4 For pcDNA3 

FlagHA 

BamHI/ KpnI GGATCCGGTACCATGGGTGAGAGA

ACTCTTCACGCT 

GBP4 Rev BamHI/ 

XhoI 

GGATCCGAGCTCTTAAATACGTGAG

CCAAGATATTTTGT 

GFP/mCherry 

GBP3 For 

pGene  BamHI/ 

BspEI 

GGATCCTCCGGAATGGCTCCAGAG

ATCCACATGACA 

GFP/mCherry 

GBP3 Rev 

BamHI/ SacI GGATCCCTCGAGTTAGATCTTTAAG

CTTATATGCGACAT 

GFP/mCherry 

GBP5 For 

pGene BamHI/ 

BspEI 

GGATCCTCCGGAATGCTTTAGAGAT

CCACATGTCA 

GFP/mCherry 

GBP5 Rev 

BamHI/ SacI GGATCCCTCGAGTTAGAGTAAAACA

CATGGATCATCG 
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GFP/mCherry 

GBP6 For 

pGene  HindIII/ 

BspEI 

AAGCTTTCCGGAATGGAATCTGGAC

CCAAAATGT 

GFP/mCherry 

GBP6 Rev 

HindIII/ SacI AAGCTTCTCGAGTTAAAAGGGGAGC

TTATGCTTT 

GFP/mCherry 

GBP7 For 

pGene 

GFP 

BamHI/ 

BspEI 

GGATCCTCCGGAATGGCATCAGAG

ATCCACATG 

GFP/mCherry 

GBP7 Rev 

BamHI/ SacI GGATCCCTCGAGTCAGCTTATAATT

TTCTTACCAGGA 

GFP GBP4 

For 

pGene BamHI/ KpnI GGATCCGGTACCATGGGTGAGAGA

ACTCTTCACGCT 

GFP GBP4 

Rev 

BamHI/ 

XhoI 

GGATCCGAGCTCTTAAATACGTGAG

CCAAGATATTTTGT 

GFP GBP4 

For 

pJS4 AscI AAGCTTGGCGCGCCATGGTGAGCA

AGGGCGAGGAGCT 

GFP GBP4 

Rev 

PacI AAGCTTTTAATTAATTAAATACGTGA

GCCAAGATATT 

GFP GBP4 

For 

pLVX-

Tight-

Puro 

MluI AAGCTTACGCGTATGGTGAGCAAG

GGCGAGGAGCTG 

GFP GBP4 

Rev 

NotI AAGCTTGCGGCCGCTTAAATACGTG

AGCCAAGATATT 

 

 

Table 10 PCR Amplification of GBP for C1/ pcDNA3/ pGene vectors 

Temperature (˚C) Time Cycles 

95 2 minutes 1 

95 30 seconds  

35 Tm-5 30seconds 

72 1 minute/ kb 

72 5 minutes 1 

4 Pause 1 
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Table 11 PCR amplification of GBP4 for pJS4 and pLVX-Tight-Puro 

 Temperature (˚C) Time  Cycles 

95 1 minute 1 

95 15 seconds  

35 60 15 seconds 

72 5 seconds 

72 5 minutes 1 

4 pause 1 
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Figure 32 mCherry-C1 vector map 

  

pmCherry-C1 Vector Information   PT3975-5

 Cat. No. 632524

(060412) 

* The XbaI site is methylated in the DNA provided by Clontech. If you wish to digest the vector with XbaI 
enzyme, you will need to transform the vector into a dam - host and make fresh DNA.  
 
pmCherry-C1 Restriction Map and Multiple Cloning Site (MCS).

Description
pmCherry-C1 is a mammalian expression vector designed to express a protein of interest 
fused to the C-terminus of mCherry, a mutant fluorescent protein derived from the 
tetrameric Discosoma sp. red fluorescent protein, DsRed (1). The excitation and emission 
maxima of the native mCherry protein are 587 nm and 610 nm, respectively. Expression 
of fusion proteins that retain the fluorescent properties of the unmodified mCherry protein 
can be monitored by flow cytometry and their localization in vivo can be determined by 
fluorescence microscopy. 

The multiple cloning site (MCS) in pmCherry-C1 is positioned downstream of the mCherry 
coding sequence. A Kozak consensus sequence is located immediately upstream of 
the mCherry gene to enhance translational efficiency in eukaryotic systems (2). SV40 
polyadenylation signals downstream of the mCherry gene and the MCS direct proper 
processing of the 3' end of the mCherry (or fusion gene) mRNA. 

The vector backbone contains an SV40 origin for replication in mammalian cells expressing 
the SV40 large T antigen, a pUC origin of replication for propagation in E. coli, and an f1 
origin for single-stranded DNA production. A neomycin-resistance cassette (Neor) allows 
stably transfected eukaryotic cells to be selected using G418. This cassette consists of 
the SV40 early promoter (PSV40 e), the Tn5 neomycin/kanamycin resistance gene, and 
polyadenylation signals from the herpes simplex virus thymidine kinase (HSV TK) gene. 
A bacterial promoter (PKanr) upstream of the cassette confers kanamycin resistance in E. 

pmCherry-C1
4722 bp

Kanr/Neor

mCherry
HSV TK
poly A+

PCMV IE

SV40
  ori

pUC
 ori

f1 
 ori

PSV40 e

MCS

 SV40
poly A+

PKanr

  PstI 
(1360)

 PstI 
(969)

 AgeI 
 (601)

1315 TAC AAG TCC GGA CTC AGA TCT CGA GCT CAA GCT TCG AAT TCT GCA GTC

SacI
SalIXhoI
AccIBglIIBspEI EcoRIHindIII

1363 GAC GGT ACC GCG GGC CCG GGA TCC ACC GGA TCT AGA TAA CTG ATC ATA

KpnI XmaI
SacII SmaI

ApaIAsp718 BamHI BclIXbaI*

End mCherry

SalI
AccI

STOP STOP STOP
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Figure 33 eGFP-C1 vector map 

(PR29971; published 03 October 2002)

Restriction Map and Multiple Cloning Site (MCS) of pEGFP-C1. All restriction sites shown are unique. The Xba I and
Bcl I sites (*) are methylated in the DNA provided by BD Biosciences Clontech. If you wish to digest the vector with these
enzymes, you will need to transform the vector into a dam– host and make fresh DNA.

Description
pEGFP-C1 encodes a red-shifted variant of wild-type GFP (1–3) which has been optimized for
brighter fluorescence and higher expression in mammalian cells. (Excitation maximum = 488 nm;
emission maximum = 507 nm.) pEGFP-C1 encodes the GFPmut1 variant (4) which contains the
double-amino-acid substitution of Phe-64 to Leu and Ser-65 to Thr. The coding sequence of the
EGFP gene contains more than 190 silent base changes which correspond to human codon-usage
preferences (5). Sequences flanking EGFP have been converted to a Kozak consensus translation
initiation site (6) to further increase the translation efficiency in eukaryotic cells. The MCS in pEGFP-
C1 is between the EGFP coding sequences and the SV40 poly A. Genes cloned into the MCS will
be expressed as fusions to the C-terminus of EGFP if they are in the same reading frame as EGFP
and there are no intervening stop codons. SV40 polyadenylation signals downstream of the EGFP
gene direct proper processing of the 3' end of the EGFP mRNA. The vector backbone also contains
an SV40 origin for replication in mammalian cells expressing the SV40 T-antigen. A neomycin
resistance cassette (Neor), consisting of the SV40 early promoter, the neomycin/kanamycin
resistance gene of Tn5, and polyadenylation signals from the Herpes simplex virus thymidine kinase
(HSV TK) gene, allows stably transfected eukaryotic cells to be selected using G418. A bacterial
promoter upstream of this cassette expresses kanamycin resistance in E. coli. The pEGFP-C1
backbone also provides a pUC origin of replication for propagation in E. coli and an f1 origin for single-
stranded DNA production.

pEGFP-C1 Vector Information  PT3028-5
GenBank Accession #: U55763 Catalog #6084-1

pEGFP-C1
4.7 kb

Mlu I (1642)

Dra III (1872)

ApaL I 
  (4360)

Stu I
(2577)

Ase I
(8)

Nhe I (592)
    Eco47 III (597)
              Age I (601)

EcoO109 I
           (3854)

SnaB I 
  (341)

BsrG I (1323)

 MCS
  (1330–1417)

pUC
 ori 

HSV TK
poly A

f1
ori 

SV40
poly A

EGFP  

PCMV  IE

PSV40e

SV40 ori
P

  Kanr/
        Neor

TAC AAG TCC GGA CTC AGA TCT CGA GCT CAA GCT TCG AAT TCT GCA GTC GAC GGT ACC GCG GGC CCG GGA TCC ACC GGA TCT AGA TAA CTG ATC A

1340
•

1330
•

1350
•

1360
•

1370
•

1390
•

1380
•

1400
•

Hind III Xho I   Apa I
Bsp120 I

   Kpn I
Asp718 I

BamH I

EGFP

 Xba I*
  Xma I
  Sma I  Sac II

   Sal I
   Acc I  Sac I

Ecl136 II

EcoR I   Pst IBspE I  Bgl II

STOPs

 Bcl I*
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Figure 34 pGene vector map 
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Figure 35 pJS4 vector map 
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Figure 36 pLVX-Tight-Puro vector map 

  

(PR063561; published 30 June 2010)

pLVX-Tight-Puro Vector Information  PT3996-5

 Catalog Nos. 632162
 632163

pLVX-Tight-Puro Vector Map and Multiple Cloning Site (MCS).

Description

pLVX-Tight-Puro is a tetracycline (Tet)-inducible, lentiviral expression vector designed to 
express a gene of interest under the control of PTight, a modified Tet-responsive promoter. PTight 
consists of a modified minimal CMV promoter, and seven direct repeats of a 36 bp regulatory 
sequence that contains the 19 bp tet operator sequence (tetO; 1). This vector is designed to 
be used with our Lenti-XTM Tet-On® Advanced and Tet-Off® Advanced Inducible Expression 
Systems (Cat. Nos. 632162 and 632163). These systems provide the inducible gene expression 
strategy of Gossen & Bujard, with major improvements described by Urlinger, et al. (2-6), in 
a lentiviral format.

pLVX-Tight-Puro contains all of the viral processing elements necessary for the production 
of replication-incompetent lentivirus, as well as elements to improve viral titer, transgene 
expression, and overall vector function. The woodchuck hepatitis virus posttranscriptional 
regulatory element (WPRE) promotes RNA processing events and enhances nuclear export 
of viral and transgene RNA (7), leading to increased viral titers from packaging cells, and 
enhanced expression of your gene of interest in target cells. In addition, the vector includes 
a Rev-response element (RRE), which further increases viral titers by enhancing the transport 
of unspliced viral RNA out of the nucleus (8). Finally, pLVX-Tight-Puro also contains a central 
polypurine tract (cPPT) element that increases nuclear importation of the viral genome during 
target cell infection, resulting in improved vector integration and more efficient transduction (9).

pLVX-Tight-Puro

7791 bp

Ampr

5' LTR

3’ LTR

RRE

PBS

cPPT

WPRE

PPGK 

Puror

MCS

PTight

pUC Ori

  SalI
(7424)

  SalI
(5239)

 XhoI
(2204)

pLentiX TREtight PGK Puro PT5

2521 TGGAGAAGGA TCCGCGGCCG CGCCGGCTCT AGATCGCGAA CGCGTGAATT CTACCGGGTA
ACCTCTTCCT AGGCGCCGGC GCGGCCGAGA TCTAGCGCTT GCGCACTTAA GATGGCCCAT
Xba I site (*) is methylated in the DNA provided by Clontech Laboratories, Inc. If you wish to digest the vector with Xba I enzyme, 
you will need to transform the vector into a dam- host and make fresh DNA. 

BamHI MluI
EcoRINotI XbaI*
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Table 12 Peptide sequences for polyclonal antibody production 

Human GBP Peptide Sequence 

1 QDLQTKMRRRKAC  

2 QKDIWDIQMRSKSLE  

3 KTLKKKTKRYMSHKLKI  

4 QLNKEINQLKEKIEST  

5 NLFIQKTEELKAKYYRE  

6 QFKRMIDTTKNDDTPW  

7 LKEQIEAAENEEPSVF  

 

Table 13 Peptide sequences for monoclonal antibody production 

Human GBP Peptide Sequence 

2 KEGFENESKRLQKDIWDIQMRSKSLE 

4 KEEFQKKSEQLNKEINQLKEKIEST 
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Table 14 GBP antibodies produced 
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Buffer recipes 

Blotto 

5% skim milk powder (Sigma # 70166) 

0.05% Tween 20 (Sigma # P1379) 

PBS 

 

 

Perm/ Quench 

50mM NH4Cl 

0.2% Saponin  

PBS 

 

 

PGAS 

0.2% Gelatin, porcine (Sigma #G-7765) 

0.02% Saponin 

0.02% NaN3 

PBS 
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Chapter 8. Publications 
 

 

Breaking Report

Human GBP1 does not localize to pathogen vacuoles but
restricts Toxoplasma gondii

Ashleigh C. Johnston,1 Anthony Piro,2

Barbara Clough,1 Malvin Siew,1

Sebastian Virreira Winter,3 Jörn Coers2 and
Eva-Maria Frickel1*
1Host-Toxoplasma Interaction Laboratory, The Francis
Crick Institute, Mill Hill Laboratory, London NW7 1AA,
United Kingdom.
2Departments of Molecular Genetics and Microbiology
and Immunology, Duke University Medical Center,
Durham, NC 27710, USA.
3Max Planck Institute for Infection Biology, Charitéplatz
110117 Berlin, Germany.

Summary

Guanylate binding proteins (GBPs) are a family of
large interferon-inducible GTPases that are
transcriptionally upregulated upon infection with
intracellular pathogens. Murine GBPs (mGBPs)
including mGBP1 and 2 localize to and disrupt
pathogen-containing vacuoles (PVs) resulting in
the cell-autonomous clearing or innate immune
detection of PV-resident pathogens. Human GBPs
(hGBPs) are known to exert antiviral host defense
and activate the NLRP3 inflammasome, but it is
unclear whether hGBPs can directly recognize and
control intravacuolar pathogens. Here, we report
that endogenous or ectopically expressed hGBP1
fails to associate with PVs formed in human cells
by the bacterial pathogens Chlamydia trachomatis
or Salmonella typhimurium or the protozoan
pathogen Toxoplasma gondii. While we find that
hGBP1 expression has no discernible effect on
intracellular replication of C. trachomatis and S.
typhimurium, we observed enhanced early
Toxoplasma replication in CRISPR hGBP1-deleted
human epithelial cells. We thus identified a novel
role for hGBP1 in cell-autonomous immunity that is
independent of PV translocation, as observed for

mGBPs. This study highlights fundamental
differences between human and murine GBPs and
underlines the need to study the functions of GBPs
at cellular locations away from PVs.

Introduction

The cytokine Interferon gamma (IFNγ) is an important
mediator of host response against an array of intracellular
pathogens (MacMicking, 2012). Such infections include
the apicomplexan parasite Toxoplasma gondii, in which
case IFNγ drives effector mechanisms to eliminate the fast
replicating acute phase tachyzoite stage. The
intravacuolar bacteria Chlamydia trachomatis and Salmo-
nella typhimurium are likewise targeted by IFNγ-driven
host responses in the acute stages of infection, resulting in
C. trachomatis reticulate bodies forming an aberrant
non-dividing form, and in S. typhimurium clearance (Kazar
et al., 1971; Pie et al., 1997). In response to infection, IFNγ
upregulates a vast number of proteins, with a family of
large GTPases, the Guanylate Binding Proteins (GBPs),
being among the most highly induced (Cheng et al., 1983).
GBPs have been studied in vitro or in murine models and
are important in immune activation and restricting intra-
cellular pathogens, including viruses, bacteria and proto-
zoan parasites (MacMicking, 2012).

In mice, mGBPs accumulate around pathogen-
containing vacuoles (PV) of intracellular pathogens such
as Toxoplasma (Degrandi et al., 2007; Virreira Winter
et al., 2011; Haldar et al., 2013; Selleck et al., 2013), C.
trachomatis (Coers et al., 2008; Haldar et al., 2013),
Mycobacterium bovis BCG (Kim et al., 2011) and S.
typhimurium (Meunier et al., 2014). At PVs mGBPs act
cooperatively to assemble host defense responses that
include an oxidative burst, the delivery of antimicrobial
peptides and the induction of autophagy (Kim et al., 2011).
Additionally, mGBPs promote the disintegration of
Salmonella-containing vacuoles thereby exposing
bacteria to the cytosol where they can activate the
cytosolic LPS sensor caspase-11 (Meunier et al., 2014).
Rapid activation of caspase-11 in response to infections
with Legionella pneumophila or Chlamydia muridarum
requires additional lysis-independent function of mGBPs
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that are poorly characterized (Pilla et al., 2014; Finethy
et al., 2015). In addition to their association with PVs
mGBPs also co-localize with the cytosolic bacterial
pathogens Listeria monocytogenes and Francisella
novicida (Kim et al., 2011; Man et al., 2015; Meunier
et al., 2015). The association of mGBPs with F. novicida
prompts bacteriolysis and the activation of the cytosolic
DNA sensor AIM2 (Man et al., 2015; Meunier et al., 2015).

Human GBPs are much less well understood, and their
functional significance remains largely unknown. hGBP5
promotes NLRP3 inflammasome assembly and conse-
quently IL-1β production in response to LPS and nigericin
(Shenoy et al., 2012). hGBP1 can mediate the inhibition of
endothelial cell proliferation (Guenzi et al., 2001) and has
been shown to exhibit anti-viral properties. When hGBP1
expression is silenced using small hairpin RNAs, Dengue
virus burden increases (Pan et al., 2012). hGBP1 also
mediates an antiviral effect against vesicular stomatitis
v i rus and encepha lomyocard i t i s v i rus when
overexpressed in HeLa cells (Anderson et al., 1999).
While these studies indicate that human GBPs have
relevance during pathogenic infection, we do not under-
stand which microbes they target and how the endoge-
nous proteins act.

The structure and biochemical properties of GBPs have
been studied in detail, with the structure of hGBP1
revealing a globular GTPase domain connected to an
arm-like extension, and revealing the very fast GTP
hydrolysis rate of 95min!1 (Prakash et al., 2000). Some
hGBPs also have the ability to perform two consecutive
hydrolysis steps from GTP to GMP (Schwemmle and
Staeheli, 1994). hGBP 1, 2 and 5 contain a ‘CaaX’
prenylation motif at their C-terminus, implying a capacity to
target membranes.

In agreement with their biophysical properties and
observations made for mGBPs, hGBPs have been
postulated to recognize PVs formed by type II Toxoplasma
vacuoles as well as C. trachomatis PVs, also known as
inclusions (Tietzel et al., 2009; Al-Zeer et al., 2013;
Ohshima et al., 2014). It has been reported that
interference with hGBP1 and 2 expression in IFNγ-
primed cells led to increased C. trachomatis inclusions
size, indicating better growth of the bacteria in absence of
these proteins (Tietzel et al., 2009). Many of these studies
have relied on heterologously expressed proteins or an
antibody recognizing several GBP family members. A
recent study on Toxoplasma postulates no effect on
parasite restriction by hGBPs (Ohshima et al., 2014). It
thus remains unclear which, if any, hGBPs target
Toxoplasma PVs, and whether endogenous hGBPs can
target and restrict C. trachomatis.

Here, we demonstrate that hGBP1, in contrast to its
closest murine orthologues mGBP1 and 2 fails to
recognize PV formed by C. trachomatis, S. typhimurium

or Toxoplasma in human epithelial cells. Our data indicate
that hGBP1 is not essential for the execution of cell-
autonomous control of the replication of these pathogens
in unprimed and IFNγ-primed human epithelial cells.
However, in a similar manner to mGBPs, hGBP1 is able
to restrict Toxoplasma early after host cell infection. This
restriction cannot be attributed to an invasion mechanism,
but rather hGBP1 is responsible for delaying the onset of
parasite replication. GBPs have only been reported to play
a role in cell-autonomous control of infections if they
accumulated around the pathogen-containing vacuole.
Here we show that this is not the case for hGBP1. We thus
define a novel role for hGBP1 with its capacity to restrict
Toxoplasma in early infection without targeting to the PV.

Results

hGBP1 does not localize to intracellular pathogen
vacuoles in epithelial cells

Several mGBPs recruit to PVs in an IFNγ-dependent
manner, disrupt PV integrity and facilitate pathogen
destruction. We explored whether hGBP1 was able to
target intracellular vacuoles formed by the bacterial
pathogens C. trachomatis and S. typhimurium or the
parasite Toxoplasma. Human GBP1 is the closest
orthologue of mGBP2 previously shown to associate with
vacuolar C. trachomatis, S. typhimurium and Toxoplasma
in murine fibroblasts, epithelial cells, macrophages and
spleen tissue (Degrandi et al., 2007; Tietzel et al., 2009;
Virreira Winter et al., 2011; Al-Zeer et al., 2013; Haldar
et al., 2013; Selleck et al., 2013; Meunier et al., 2014). To
this end, we produced a specific peptide antibody that
could distinguish hGBP1 from all other hGBPs by
immunoblot, and additionally a pan-hGBP antibody that
recognized hGBPs 1, 2, 3 and 5 (Fig. S1A). While we
could not overexpress hGBP4, this family member is least
identical to hGBP1 so we are confident the antibody will
not cross react. We show that A549 cells express GBPs
including hGBP1 at steady state level and further
upregulate the protein in response to IFNγ (Fig. S1B).

To further characterize this newly generated anti-
hGBP1 antibody, we employed CRISPR/Cas9 technology
to generate a lung epithelial A549-derived cell line
lacking hGBP1 expression. A region 5′ to the GTPase
domain of Gbp1 was targeted for disruption, and deletion
was confirmed by sequencing and immunoblot (Fig. S1C
and D). The cells were further analysed by the pan-hGBP
antibody, demonstrating that other hGBPs are still intact
with normal protein expression (Fig. S1D). Using anti-
hGBP1 for immunofluorescence staining we found that
both naïve and IFNγ-primed and ΔhGBP1 cells exhibited
low background immunofluorescence intensity. In con-
trast, parental A549 cells showed a robust increase in the
anti-hGBP1 immunofluorescence signal when primed with
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IFNγ (Fig. S1E), demonstrating that anti-hGBP1 specifi-
cally detects endogenous hGBP1 in situ.
Having confirmed the specificity of theanti-hGBP1antibody

we asked whether hGBP1 associated with PVs. To do so, we
infected IFNγ-primed A549 cells with three representative
vacuolar pathogens. Immunofluorescent microscopy showed
that hGBP1 does not recruit around the PVs formed by C.
trachomatis (Fig. 1A),S. typhimurium (Fig. 1B) orToxoplasma
(Fig. 1C). This lack of recruitment was observed at all time
points tested (data not shown) and not affected by the
absence of presence of IFNγ priming (Fig. S2A to C).
In order to associate with membranes hGBPs first

transition into an active GTP-bound state and following
hydrolysis hGBPs in the GDP-bound state form tetramers
that can attach to membranes (Syguda et al., 2012). We
therefore considered that the anti-hGBP1 antibody failed
to detect hGBP1 in the active, membrane-associated
state. To test for this, we ectopically expressed hGBP1
N-terminally fused to mCherry. We observed that mCherry-
hGBP1 heterologously expressed in mouse embryonic
fibroblast (MEFs) localized to Toxoplasma PVs (Fig S3A).
Staining with anti-hGBP1 overlapped with the mCherry-
hGBP1 signal showing that anti-hGBP1 can detect hGBP1
in its active, membrane-associated state and indicating that

hGBP1 fails to associate with PVs in human A549 cells. We
stained IFNγ induced MEFs with anti-hGBP1 to ensure our
antibody did not overlap with mGBPs at the PV (Fig S3B).
Last, we expressed mCherry-hGBP1 in A549 cells and
failed to observe any association of mCherry-hGBP1
Toxoplasma PVs (data not shown), further corroborating
our finding that in striking contrast to mGBP1 and 2, hGBP1
is not recruited to intact vacuolarmembranes of intracellular
pathogens in infected human cells.

hGBP1 restricts Toxoplasma, but not the intravacuolar
bacterial pathogens C. trachomatis and S. typhimurium

As the subcellular location of hGBP1 was not consistent
with observations made with mGBPs and the roles they
play during intracellular pathogen infection, we were
interested to determine whether hGBP1 could still play a
role in controlling these particular infections. We assessed
the ability of the pathogens to replicate in the absence of
hGBP1 in comparison to their wild-type cells. For C.
trachomatis and S. typhimurium infections, inclusion
forming unit (IFU) or colony forming unit (CFU) assays
were employed, respectively, in the presence or absence
of IFNγ. Priming cells with IFNγ restricted the replication
and growth of both C. trachomatis and S. typhimurium

Fig. 1. hGBP1 does not localize to the intracellular pathogen vacuole.
A. Immunofluorescent confocal image of C. trachomatis vacuoles 20hpi in mCherry-hGBP1 expressing A549 cells primed with 200 U/ml IFNγ. N = 2.
B. Immunofluorescent confocal image of S. typhimurium vacuoles 4hpi in A549 cells primed with 50 U/ml IFNγ stained for endogenous hGBP1. N = 3.
C. Immunofluorescent confocal image of Toxoplasma vacuoles in A549 cells primedwith 10 U/ml IFNγ at the indicated time points post infection.N = 3.
All scale bars 10 μm.
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(Fig. 2A and B). However, the ability of bacteria to sustain
themselves via replication in the presence or absence of
immune pressure was the same regardless of the
presence of hGBP1 (Fig. 2A and B). We then determined
whether Toxoplasma replication was influenced by the
absence of hGBP1. We compared the capacity of the
parasite to replicate and form plaques in fibroblasts after
an initial infection in A549 cells primed or not with IFNγ.
Type I or type II Toxoplasma were incubated in A549 cells
for 6 h, a time period too short for replication to occur,
meaning potential differences in plaque number would be
a result of parasite killing or early restriction. Twice as
many type II Toxoplasma were able to survive when the
infection took place in ∆hGBP1 cells, while type I parasites
remained unaffected (Fig. 2C). Intriguingly, this was still
true in cells that were not primed with IFNγ. An
immunoblot confirmed the presence of hGBP1 even at
basal steady state level (Fig. S1B). In accordance, the
number of viable Toxoplasma parasites was largely
reduced to levels seen in parental A549 cells when
∆hGBP1 A549 cells were complemented with hGBP1
(Fig. 2C). Thus hGBP1 does not restrict replication of the
bacterial pathogens C. trachomatis and S. typhimurium,
but does promote restriction of type II Toxoplasma.

hGBP1 mediates early replication of Toxoplasma infection

As we determined that Toxoplasma underwent early
restriction by hGBP1, our next move was to identify the
stage at which parasites were limited. We excluded
differential invasion as a reason for the enhanced recovery
of parasites from ∆hGBP1 cells. FACS analysis of A549
cells infected with fluorescent parasites showed that
regardless of genotype of the cell, type II parasites invaded
around 50% of A549 cells when an MOI of 4 was used
(Fig. 3A). Immunofluorescence microscopy was used to
ensure that individual cells of each genotype were infected
with low and equivalent numbers of parasites (Fig. 3B). We
used immunofluorescence microscopy to assess the early
replication status of Toxoplasma in A549 cells. At 24 h post
infection (hpi) it was evident that ∆hGBP1 cells contained
more vacuoles filled with 2 or more parasites than co-
isogenic wildtype cells did (Fig. 3C). By counting the
number of parasites per vacuole over an infection time
course, we quantified the replication efficiency of Toxo-
plasma (Fig. 3D). At 12hpi significantly more vacuoles
contained parasites that had replicated once in the
∆hGBP1 cells as compared to the wild-type counterpart,
regardless of IFNγ priming. By 18hpi, numbers of vacuoles
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Fig. 2. hGBP1 restricts growth of Toxoplasma gondii but not C. trachomatis or S. typhimurium
A. C. trachomatis IFUassayscarriedout inA549cells primedor notwith 200U/ml IFNγ, 40hpi.N = 2.Error bars represent standard error of themean (STEM).
B.S. typhimuriumCFUassays carried out in A549 cells primed or notwith 50 U/ml IFNγ, 6 and 25hpi.N = 3. Significancewas analysed by 2wayANOVA.
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containing 2 or 4 parasites, indicating 1 or 2 replication
cycles, respectively, were significantly increased in the
IFNγ primed ∆hGBP1 (Fig. 3D). Finally, counts taken at
24 h show a significantly increased number of vacuoles that
hold parasites that have undertaken 3 or more replication
cycles in the IFNγ primed ∆hGBP1 A549 cells.
Our observations suggest that hGBP1 can delay the

onset of parasite replication. We concluded that type II
Toxoplasma is restricted early after invasion in A549 cells
by a yet unknown mechanism driven by hGBP1 without
the protein targeting to the vacuole.

Discussion

We find that hGBP1 mediates an initial attenuation of type
II Toxoplasma early post-infection, without impacting
subsequent replication of Toxoplasma, C. trachomatis or
S. typhimurium in human epithelial cells. The observed
early Toxoplasma attenuation is not because of a defect in
parasite invasion in the presence versus absence of
hGBP1. Rather, we hypothesize that hGBP1 either
mediates early killing or slows down early replication of
the parasite, as at 12, 18 and 24hpi the ∆hGBP1 cells

Fig. 3. hGBP1 mediates early replication of Toxoplasma gondii.
A. FACS analysis determined the number of A549 cells that had been invaded by Toxoplasma 1hpi. Cells had been primed or not with 10 U/ml IFNγ.
Representative of 3 independent experiments.
B. Immunofluorescence confocal images taken at 1hpi show the same numbers of parasites enter individual cells.
C. Immunofluorescence confocal images of A549 cells primed or not with 10 U/ml IFNγ.
D. Replicating parasites were determined by counting the number of parasites within vacuoles at specified times post infection. N = 2. Significance
was analysed using 2way ANOVA.
All scale bars 10 μm.
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contain significantly more parasites that have undergone
replication. To our knowledge this is the first report
demonstrating that an IFN-inducible GTPase can restrict
growth of an intracellular PV-resident pathogen indepen-
dently of any detectable association of the GTPase with
the PV itself.

Cell-autonomous restriction pathways for intracellular
pathogens driven by host resistance proteins often see the
protein localize to PVs. For example, ubiquitin-driven
autophagy and galectin-mediated control of Salmonella
relies on a pathogen-localization step of ubiquitin and
galectin (Perrin et al., 2004; Thurston et al., 2012).
Additionally in mouse, Immunity Related GTPases (IRGs)
and GBPs mediate cell-autonomous killing by directly
localizing and disrupting PVs (Martens et al., 2005; Ling
et al., 2006). We clearly define that endogenous hGBP1 is
not targeted to C. trachomatis, S. typhimurium or
Toxoplasma. We do, however, show that hGBP1
possesses the ability to recruit to Toxoplasma PVs when
heterologously expressed in mouse fibroblasts (Fig. S3A).
These results suggest that human cells lack a cellular
pathway for the delivery of GBPs to PVs that is present in
mouse cells. In support of this model, we recently
demonstrated that the translocation of mGBP1 and
mGBP2 to PVs in mouse cells requires GKS proteins, a
subset of IRG protein found in mouse but not in human
cells (Haldar et al., 2015). Therefore, it appears likely that
the deficiency of hGBP1 recruitment to PVs in human cells
is due in part to the absence of GKS encoding genes from
the human genome.

Conflicting reports attributed hGBPs to have a function
in intracellular C. trachomatis, but not Toxoplasma control
in non-hematopoietic cells (Tietzel et al., 2009; Ohshima
et al., 2014). Both reports find hGBPs localized to PVs
24hpi. Reduction of bacterial inclusions upon ectopic
expression of hGBP1 and 2 was observed in HeLa cells.
Curiously the demonstrated localization of hGBP1 is
observed for wild type, GTPase-deficient and helical-
domain-only protein. We, and others, have previously
shown that GTPase-activity deficient mouse GBP1 does
not recruit to PVs (Kim et al., 2011; Virreira Winter et al.,
2011). It is conceivable that detecting overexpressed
hGBP1 with antibody staining presents with different
results than detection of endogenous hGBP1. Equally,
overexpressed hGBP1 might exert a different effect than
endogenous hGBP1 and HeLa cells may present with a
different restriction pathway than other epithelial cells.

Ohshima et al. successfully knocked out the entire GBP
locus in haploid fibroblast-like human cancer cells, with
the resulting cells showing no defect in IFNγ-induced cell-
autonomous control of Toxoplasma at 24hpi. The early
restriction of the parasite by hGBP1 we observe may have
been missed or may not exist in fibroblasts. They also
demonstrate that a low percentage of Toxoplasma PVs

were decorated with hGBPs at 6hpi. The staining was
carried out using an antibody against hGBP1-5, so it is
conceivable that the protein present at that location
comprises another family member(s). In contrast to our
findings, hGBP1 has been shown to localize to the
bacterial inclusion in THP1 macrophages and restrict C.
trachomatis as demonstrated by shRNA knockdown
(Al-Zeer et al., 2013). It remains to be investigated if
human GBPs can localize to PVs of other pathogens in
macrophages. Combined with our results, this leads us to
speculate that hGBP1 may restrict select pathogens in a
cell type- and localization-dependent manner.

hGBPs are highly upregulated in all stages of infection
with intracellular pathogens and are often found in
transcriptional analysis of patient samples. Combined
with knowledge acquired from murine studies, it is almost
certain that hGBPs have an impact on the control of these
infections. We find that hGBP1 plays a role in mediating
early restriction of Toxoplasma soon after infection without
directly localizing to the pathogen. Previous definitions of
how this host restriction factor family is acting against
vacuolar intracellular pathogens were reliant on the
protein being present at the vacuole. Clearly, we have to
rethink this rather simplistic assessment as a proxy for
potential functions especially for the human GBPs. Early
restriction of pathogens directly after invasion is the first
step a cell takes to combat the invading foreign agent.
These early restriction mechanisms have to act in a rapid
and precise manner in order to start the cascade of
intracellular defense mechanisms. Because hGBP1 is
expressed at steady state level and we observe its
defense activity even in absense of interferon priming, it
most likely interacts with and directs specific cellular
machineries that do not require induction. Future work will
elucidate the mechanism by which hGBP1 can mediate
early restriction of Toxoplasma.

Experimental procedures

Cell culture

A549 lung epithelial cells were grown in DMEM with glutamine
(Life Technologies) supplemented with 10% FBS and cultured at
37 °C in 5% CO2. Where appropriate, cells were stimulated
overnight by addition of human IFNγ (R&D Systems) to growth
media. Human foreskin fibroblasts (HFF) were maintained in
DMEM with glutamine supplemented with 1% FBS and cultured at
37 °C in 5% CO2.

Bacteria culture and infection

C. trachomatis serovar L2 434/Bu containing a GFP expression
vector (Wang et al., 2011) was propagated in Vero cells.
Elementary Bodies (EBs) were purified by sequential density
gradients (Saka et al., 2011), and MOI was determined for purified
EBs through infection of confluent Vero cells. For infections,
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purified EBs were diluted in cell culture medium (DMEM+FBS),
and then added to tissue culture dishes containing cells. Infection
was facilitated by spinning for 30min at 1560 ×g at 10 °C.
Finally, infection was allowed to continue to the desired time
point at 37 °C and 5% CO2. S. typhimurium WT strain 22023S
(received from David Holden) was cultured in Luria-Bertani (LB)
broth and grown overnight at 37 °C in a shaking incubator. To
allow invasive properties of S. typhimurium, a further culture was
produced in anaerobic conditions, gently shaking for 2 h before
infection. An optical density reader was used to measure the
absorbance at 600 nm wavelength (OD600). The multiplicity of
infection (MOI) was calculated using 1.0164/OD600 = μl contain-
ing 1 × 106 bacteria and the bacteria were spun at 1000 rpm for
5min to synchronously infect cells. At 1hpi, cells were washed
with PBS and new DMEM medium was added containing
100 μg/ml gentamycin and 10mM HEPES. At 2hpi cells were
washed twice and 10 μg/ml gentamycin was added into new
DMEM medium.

Parasite culture and infection

Toxoplasma expressing luciferase/eGFP or tdTomato (RH type I
or Prugniaud type II) were maintained in vitro by serial passage
on monolayers of HFF cells. For infection, Toxoplasma were
syringe lysed from HFF cultures and added to cell cultures at an
MOI 2 for type I parasites, and MOI 5 for type II parasites. The
cultures were centrifuged at 1000 rpm for 5min to synchronize
infection, before being maintained at 37 °C in 5% CO2. Where
appropriate, parasites were irradiated in HFF cells with
15 000rads.

Antibodies

A unique sequence for hGBP1 was selected (QDLQTKMRRRKAC)
and the peptide conjugated to keyhole limpet haemocynin was
ordered from BioMatik Corporation, Canada. Rabbits were inocu-
lated with these peptides, and final bleeds taken after 11weeks
(APS, Cambridge).

Fixed immunofluorescent microscopy

For Toxoplasma and S. typhimurium infections, A549 cells were
plated on coverslips (Thermo Fisher) and cultured and infected as
above. The cells were fixed in 3% paraformaldehyde (PFA) and
permeabilized in Perm Quench (see Supporting Information)
before incubating sequentially with primary and secondary
antibodies diluted in PGAS (see Supporting Information) for 1 h
at room temperature. Coverslips with cells were washed in PBS,
with the final wash containing 1 μg/ml Hoechst. Coverslips were
mounted on glass slideswithMowiol 4-88. Slides were viewed on a
Zeiss Axioplan II Epifluorescence microscope or on an SP5-
inverted Confocal microscope and analysed using LAS-AF software.
Imageswere further formatted using ImageJ software. ForChlamydial
microscopy, A549 and MEF cells ectopically overexpressing
mCherry-hGBP1 were infected, as above. At 20hpi, cells were fixed
with 4% PFA, before being stained with Hoechst in PBS+300mM
Glycine. After thorough washing in PBS, slides were mounted with

Mowiol containing 0.01% p-phenylenediamine (PPD). Slides were
visualized using a Zeiss 510 Inverted Confocal Microscope, and
analysed using Zen Blue software.

Pathogen viability assays

An IFU assay was used to assess C. trachomatis replication. WT
and hGBP1-deficient A549 cells were plated to confluence in 12-
well plates and stimulated for approximately 16 h with 200U/ml
human IFNγ. Cells were infected with C. trachomatis, as above, at
an MOI of 1. At 40hpi, bacteria were harvested by lysing cells in
water for 10min at 37 °C with frequent mixing, and 5X sucrose-
phosphate-glutamic acid buffer (SPG) was added to a final
concentration of 1X. Bacteria-containing lysates were then added
to cell culture medium (DMEM+10% FBS), and 10-fold serial
dilutions were performed. These dilutions were used to infect
confluent Vero cells in black-walled 96-well plates, as above. At
24hpi, infected Vero cells were fixed and permeabilized for 5min
on ice with ice-cold Methanol, and blocked with 2% BSA in PBS.
Wells were stained with a mouse monoclonal anti-Chlamydia LPS
antibody, followed by goat anti-mouse IgG AlexaFluor 488 and
Hoechst. For each well, 10 images were taken on a Zeiss
Obzerver.Z1 scope using a 20X objective, and the number of
Chlamydia inclusions/field was enumerated and averaged across
the 10 images. The number of infectious units/well of A549 cells
was calculated, taking into account the well area represented by
each field and accounting for dilution. For each condition,
infections were performed in triplicate (3 wells of A549 cells) for
a single experiment. S. typhimurium CFU assays were performed
by infecting cells for desired period of time before washing twice
with ice-cold PBS and lysing with 0.5% Sodium deoxycholate
(NaDOC) (Sigma-Aldrich) in PBS. Each sample was mechanically
scraped and pipetted up and down. The lysates were diluted
appropriately in LB and spread on a pre-warmed 10 cm2 agar
plate, incubated overnight at 37 °C followed by colony counting.
Parasite viability was assessed by indirect plaque assay. A549
cells were infected with 300 type I parasites or 600 type II
parasites in 24 well plates for the desired length of time before
scraping and syringe lysing the cell layer to release the
Toxoplasma. This suspension was then plated onto confluent
HFF in a 24 well plate in serial dilutions of 1:2. This infection was
allowed to persist at 37 °C at 5% CO2 for 4 days, after which
plaques were counted using a microscope.

Parasite invasion assay using Flow cytometry

A549 cells were infected with irradiated type II Pru parasites for

1 h before washing twice in PBS. Cells were lifted with 2X Trypsin,

before quenching in DMEM. The cell pellet was washed twice in

PBA (see Supporting Information) before fixing with 4% PFA for

20min on ice. PBA was added to quench reaction before

suspension was centrifuged at 1500 rpm for 3min at 4 °C, after

which cell pellet was resuspended in PBA and analysed on a BD

LSR-II. Results were analysed using FlowJo software.
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Overexpression of mCherry-hGBP1

The mCherry or mCherry-hGBP1 plasmids were transfected into
A549 ∆hGBP1 or SV40 T-antigen immortalized Mouse Embryonic
Fibroblasts using lipid transfection.

CRISPR/Cas9 mediated deletion of Gbp1

The guide RNA sequence hGBP1 guide1, 5′ cattacacagcctatggtgg
3′ to human Gbp1 was selected using the optimized CRISPR
design site crispr.mit.edu. Oligonucleotides were synthesized
(Sigma-Aldrich) and annealed and cloned into the CRISPR vector
p48139 containing a puromycin selection cassette (Ran et al.
2013. pSpCas9 (BB)-2A-Puro (pX459)was a gift fromFengZhang.
Addgene plasmid no 48139), using the BbsI restriction site,
according to the Addgene CRISPR Genome Engineering Toolbox
(Zhang Lab) www.addgene.org/crispr/zhang/. Transfection of
A549 cells with hGBP1 guide RNA-containing p48139 plasmid
was performed using FuGENE6 reagent (Promega) according to
themanufacturer’s instructions. Selection using 2 μg/ml puromycin
was commenced 30–36 h post transfection and continued for 48 h.
The puromycin was then removed and the cells allowed to recover
before selecting individual clones. To confirm disruption of hGBP1,
clones were cultured and either lysed with cell lysis buffer
containing 1% Triton X100 (Sigma) for SDS-PAGE and immuno-
blotting with hGBP1-specific antibody or lysed with DNAreleasy
(Anachem Ltd) for subsequent DNA sequence analysis.
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