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Abstract 49 

Motoneurons derived from embryonic stem cells can be transplanted into the tibial nerve, 50 

where they extend axons to functionally innervate target muscle. Here, we studied 51 

spontaneous muscle contractions in these grafts three months following transplantation. 52 

One-half of the transplanted grafts generated rhythmic muscle contractions of variable 53 

patterns, either spontaneously or in response to brief electrical stimulation. Activity 54 

generated by transplanted embryonic stem cell-derived neurons was driven by glutamate 55 

and was modulated by muscarinic and GABAergic/glycinergic transmission. 56 

Furthermore, rhythmicity was promoted by the same transmitter combination that evokes 57 

rhythmic locomotor activity in spinal cord circuits. These results demonstrate that there is 58 

a degree of self-assembly of microcircuits in these peripheral grafts involving embryonic 59 

stem cell-derived motoneurons and interneurons. Such spontaneous activity is 60 

reminiscent of embryonic circuit development in which spontaneous activity is essential 61 

for proper connectivity and function, and may be necessary for the grafts to form 62 

functional connections with muscle.   63 
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Introduction 64 

Spontaneous activity of neurons during embryogenesis is important for the development 65 

of neural circuits (Kirkby et al., 2013). Such activity plays a role in synapse development 66 

as well as axon path-finding (Gomez and Spitzer, 1999; Hanson and Landmesser, 67 

2004). In early embryogenesis of the spinal cord, release of acetylcholine from 68 

developing motoneurons (MNs) has been shown to be crucial for the development of 69 

locomotor circuits (Myers et al., 2005). This is a transient requirement, as later in 70 

development eliminating cholinergic neurotransmission has little effect (Myers et al., 71 

2005), and glutamate and glycine/GABA release from interneurons plays an increasing 72 

role in bursting behaviour (Rosato-Siri et al., 2004). Thus, various neuronal populations 73 

and various transmitter phenotypes play different roles in spontaneous bursting activity 74 

at different time points in development, and this activity is essential for the development 75 

of synapses and circuits.  76 

Motoneurons can be derived in vitro from embryonic stem cells through exogenous 77 

application of signalling factors present in the ventral spinal cord during development 78 

(Wichterle et al., 2002). Although this results in enrichment of MNs in these cultures 79 

(Wichterle et al., 2002; Miles et al., 2004), a wide range of neuronal subtypes remains: 80 

the typical MN differentiation protocol generates about 30% MNs as well as different 81 

interneuron types: glutamatergic (10%), GABAergic (15%), and glycinergic (6%) 82 

(Deshpande et al., 2006). Some of these neurons express markers associated with 83 

specific excitatory or inhibitory ventral spinal interneuronal types (Deshpande et al., 84 

2006). Embryonic stem cell derived motoneurons (ESCMNs) can functionally innervate 85 

muscle in culture (Miles et al., 2004; Chipman et al., 2014), or following transplantation 86 

into either developing chick embryos (Soundararajan et al., 2006) or adult mouse 87 
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peripheral nerve (Yohn et al., 2008; Bryson et al., 2014; Magown et al., 2016), but we 88 

and others have had less success when transplanting purified ESCMNs. It is possible 89 

that neurons other than MNs facilitate neuromuscular innervation, possibly through 90 

inducing activity. In fact, spontaneous activity has been demonstrated in vitro in neurons 91 

derived from stem or pluripotent cells (Ban et al., 2007; Heikkilä et al., 2009; Illes et al., 92 

2014), but whether such activity is present following transplantation or involved in 93 

innervation is not known. 94 

We therefore asked whether there is evidence of circuit formation and spontaneous 95 

activity in ESCMNs transplanted into adult mouse peripheral nerve, isolated from the 96 

central nervous system. Our previously used model whereby neurons are implanted into 97 

the peripheral nervous system (Thomas et al., 2000; Yohn et al., 2008) avoids the 98 

growth-inhibiting environment of the central nervous system. Furthermore, this strategy 99 

ensures that all innervation following transplantation is attributable to transplanted rather 100 

than endogenous MNs. Using this peripheral nerve transplantation model, we previously 101 

reported spontaneous EMG activity in transplanted animals, but had thought this might 102 

be secondary to mechanical stimulation (Yohn et al., 2008). Here we extended these 103 

studies to characterize spontaneous circuit activity in these transplants, and found that 104 

they exhibited spontaneous and stimulation-evoked rhythmic muscle contractions. This 105 

activity was glutamate-dependent, suggesting formation of circuits with excitatory 106 

interneurons. Furthermore, GABA/glycine and acetylcholine activity modulated the circuit 107 

function. We conclude that after transplantation, a self-organized circuitry forms that is 108 

capable of driving rhythmic muscle contraction.  109 
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Methods 110 

Embryonic Stem Cell Derived Motoneurons 111 

Generation of mouse embryonic stem cell derived MNs has been previously described 112 

(Wichterle et al., 2002; Miles et al., 2004; Yohn et al., 2008). In summary, HBGB6 mouse 113 

stem cells expressing GFP under the motoneuronal promoter Hb9 (Magown et al., 2016) 114 

were agglomerated as embryonic bodies before differentiation with smoothen agonist 115 

(500 nM, Enzo) and retinoic acid (1 µM, Sigma) for 5 days. The presence of MNs was 116 

confirmed by the expression of GFP. 117 

ESCMN Transplantation 118 

All procedures were performed in accordance with protocols approved by the Dalhousie 119 

University Animal Care Committee, and conformed to the standards of the Canadian 120 

Council of Animal Care. Details of the ESCMN dissociation and transplantation can be 121 

found in a previous publication (Yohn et al., 2008; Magown et al., 2016). In summary, 122 

embryonic bodies were treated with 1 µg/ml mitomycin C (except for immediate 123 

transplants) for 2 hours followed by wash, dissociation and resuspension at 106 cells per 124 

10 µL of DFK10 with 10 µg/ml GDNF (Milipore), 20 µg/ml CNTF (Chemicon) and 0.01% 125 

DNaseI (Sigma-Aldrich). 126 

Transplantation was performed in 5 week-old mice either immediately after nerve 127 

transection or after a delay of 1, 2 or 4 weeks post transection as previously described 128 

(Magown et al., 2016). Briefly, the tibial nerve was transected proximal to the branching 129 

of the nerve to the medial gastrocnemius (MG). The proximal tibial nerve stump was 130 

ligated and buried into the adjacent muscle to prevent reinnervation. Ten thousand cells 131 

in 0.1 µL were transplanted in the distal tibial nerve with a glass pipette. 132 
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In Vitro Electrophysiological Recordings 133 

The MG muscle and the transplanted tibial nerve were harvested 3 months post 134 

transplantation and maintained in an in vitro chamber circulating oxygenated mouse 135 

Tyrode’s solution (125 mM NaCl, 24 mM NaHCO3, 5.4 mM KCl, 1 mM MgCl2, 1.8 mM 136 

CaCl2, and 5% dextrose) at room temperature (Yohn et al., 2008). Stimulation to evoke 137 

bursting activity was provided to the MG nerve with a suction electrode via a square 138 

pulse stimulator (S88, Grass Technologies) and a stimulus isolation unit (PSIU6, Grass 139 

Technologies) at 1.5x the maximal stimulus threshold (usually ~10 V, 100 µA). Three 140 

pulses of 0.2 ms at 5 Hz or 25 pulses at 50 Hz were used to elicit bursting activity. 141 

Forces were measured with a force transducer (FT03, Grass Technologies) connected to 142 

a strain gage amplifier (P122, Grass Technologies). Signals were recorded via a 143 

Digidata 1320A, using Axoscope 9.2 software (Molecular Devices). Forces were 144 

analyzed off-line. Bursts were detected using event analysis in pClamp 10 (Molecular 145 

Devices) using threshold detection set with a minimal amplitude of 0.5 mN (2 standard 146 

deviation above baseline noise recorded after nerve transection) and a minimum 147 

duration of 50 ms. 148 

The following drugs were used: CNQX 10 µM (disodium salt hydrate, #115066-14-3, 149 

Sigma), APV 100 µM (#76326-31-3, Sigma), bicuculline 10 µM (#485-49-4, Sigma), 150 

strychnine hydrochloride 1 µM (#1421-86-9, Sigma), atropine 10 µM (51-58-8, Sigma), 151 

NMDA 5 µM (#6384-92-5, Sigma), serotonin hydrochloride (5-HT) 10 µM (#153-98-0, 152 

Sigma) and dopamine hydrochloride 50 µM (#62-31-7, Sigma). All drugs were added as 153 

a concentrated stock to the circulating Tyrode’s solution to give the final concentrations 154 

indicated above. 155 

Statistical Analysis 156 
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Statistical analysis was performed before and after drug infusion on each animal 157 

individually. Because of the high variability of responses between animals, results were 158 

not combined for analysis and the number of animals is indicating by N. For individual 159 

animals, effects of drugs (measuring multiple bursts) were compared to baseline 160 

(multiple bursts) using unpaired t-tests with Welch’s correction or with a Mann-Whitney 161 

test if data groups failed a D’Agostino-Pearson normality test. When more than two 162 

groups were compared, a one-way ANOVA test was performed. A Chi-square test was 163 

performed when analyzing ratio. Results are presented as means ± standard deviations. 164 

Statistics were performed using GraphPad Prism version 6.0h for Mac (GraphPad 165 

Software, La Jolla, California USA).  166 
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Results 167 

Motoneurons derived from embryonic stem cells were transplanted into the tibial nerve 168 

acutely after transection or after a denervation period of up to four weeks. MG forces 169 

were recorded ex vivo three months after transplantation (Magown et al., 2016). Out of 170 

24 transplanted mice (the same mice as reported in Magown et al., 2016), 17 171 

demonstrated contraction of the MG upon electrical stimulation of the transplant site, 172 

indicating functional engraftment. Of these 17 mice, 9 (53%) had rhythmic contractions, 173 

of which 6 were spontaneously rhythmic in the absence of electrical stimulation (Movie 174 

1), and 3 had episodes of repetitive contractions evoked by either a single electrical 175 

pulse or a short train of pulses (Figure 1A). Cutting the tibial nerve distal to the transplant 176 

resulted in complete ablation of rhythmic contractions in all 9 mice. Using the 177 

nomenclature “burst” to indicate a single spontaneously terminating contraction, 178 

“bursting” to indicate repetitive bursts, and “episode” to indicate a period of repetitive 179 

bursting, transplantation of ESCMNs led to spontaneous or evocable bursting episodes 180 

in one-half (9 / 17) of the preparations. 181 

To determine the origin of the rhythmic activity, we next investigated the role of 182 

glutamatergic transmission in the contractions. Addition of the glutamate receptor 183 

blockers CNQX and APV to the preparations with evoked bursting completely prevented 184 

further prolonged stimulus-evoked bursting (N = 2; Figure 1A). That is, following 185 

glutamate receptor blockade, there was persistence of stimulation-evoked short latency 186 

contractions, consistent with our previous findings that following transplantation of these 187 

cells, NMJ transmission is cholinergic (Yohn et al., 2008; Magown et al., 2016). In 188 

transplants with spontaneous activity, the antagonists eliminated all large amplitude 189 

bursts, resulting in a significant reduction in mean amplitudes of burst forces (to 28% and 190 
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63% of baseline in the two preparations, p < 0.05) and a reduction in burst amplitude 191 

variance (Figure 1B, C). The remaining low amplitude bursts may reflect single motor 192 

units, as the forces recorded (< 4 mN) are similar to motor unit forces following 193 

transplantation (Magown et al., 2016). In addition to blocking the large amplitude bursts, 194 

glutamate antagonist application also led to a higher frequency of bursting (N = 2; Figure 195 

1B, C). Autocorrelation analysis revealed no significant burst rhythmicity (Figure 1D). 196 

The loss of high amplitude bursts indicates that intrinsic glutamatergic transmission 197 

leads to synchronization of MN activity. That is, glutamatergic inputs drive coordinated 198 

ESCMN activity. 199 

We next asked whether inhibitory inputs contribute to the rhythmicity. In one of two 200 

transplants that were spontaneously active, application of combined GABA and glycine 201 

antagonists led to a transient increase in force (Figure 1E-G). After 30 minutes without 202 

washout, forces returned to baseline (denoted “late” on Figure 1G). No further effect was 203 

seen on washout. While there was no change in frequency of the bursts, the activity 204 

became more organized over time, as demonstrated by the autocorrelogram (Figure 1H). 205 

Thus, GABA/glycine neurotransmission in the transplants limited burst amplitude, and 206 

also led to a degree of desynchronization of MN rhythmicity. Given the different time 207 

courses of these two effects, the roles of GABA and glycine in burst amplitude and burst 208 

synchrony were likely independent of one another with the former effect possibly due to 209 

MN inhibition and the latter to desynchronization of activity of the neurons involved in 210 

generating the bursting. 211 

We next focused on the effects of cholinergic transmission, given the known role of 212 

cholinergic activity in the generation of spontaneous activity in embryonic spinal cords 213 

(Wenner and O'Donovan, 2001; Myers et al., 2005; Czarnecki et al., 2014; Gonzalez-214 
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Islas et al., 2015). As nicotinic blockade would block muscle contraction, we were limited 215 

to studying muscarinic responses (N = 3). In the one preparation in which bursting 216 

activity was stimulus-evoked, the duration of the episode more than doubled. In 217 

transplants with spontaneous activity (N = 2), application of atropine led to an apparent 218 

increase in activity (Figure 2A). On closer examination of the baseline data, a 219 

background activity of low amplitude bursts (2.7 ± 0.5 mN at 3.4 Hz) could be identified 220 

amongst the larger amplitude bursts (17.8 ± 6.6 mN at 1.4 Hz) (Figure 2B), with each of 221 

the latter was comprised of multiple contractions (Figure 2A, inset). Following atropine, 222 

each large burst was a single contraction, rendering the mean instantaneous frequency 223 

of the large bursts lower following atropine. The mean frequency of the low amplitude 224 

bursts was also decreased (Figure 2C). Atropine also led to an increase in overall mean 225 

burst force amplitudes (Figure 2D) due to the greater proportion of large amplitude 226 

events (Figure 2E), but the forces of the low and high amplitude bursts were each 227 

unchanged (Figure 2D). Together, these findings suggest that the large amplitude bursts 228 

seen after atropine application resulted from summation of multiple small amplitude 229 

bursts. In other words, muscarinic activation has several effects. It results in 230 

desynchronization of MN firing, which leads to an increase in low amplitude bursts. 231 

Furthermore, muscarinic receptor activation leads to high frequency, intermittent MN 232 

bursting. 233 

Given the above evidence of circuit formation, we asked whether transplanted ESCMNs 234 

could sustain rhythmic contractions by adding the neurochemicals that induce locomotor-235 

like rhythmicity in the mouse spinal cord: NMDA, 5-HT and DA (Jiang et al., 1999). The 236 

addition of these neurochemicals did not transform transplants with evoked bursting 237 

activity (N = 2) into those with spontaneous activity. However, evoked bursting episodes 238 
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were significantly prolonged (Figure 3A, B). In the transplants that were spontaneously 239 

active (N = 2), burst frequency increased (Fig 3C-D). Furthermore, the numbers of bursts 240 

greater than 40 mN increased significantly, leading to an overall increase in mean 241 

contraction forces (Fig 3E-F). That is, addition of NMDA, 5-HT, and DA resulted in an 242 

enhancement of rhythmic motor output, raising the possibility that rhythm-generating 243 

elements akin to those in spinal locomotor circuits had formed.  244 
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Discussion 245 

We have shown that ESCMNs transplanted into the transected tibial nerve after muscle 246 

denervation can generate coordinated rhythmic bursting activity. These bursts are 247 

glutamate-dependent and are modulated by GABAergic/glycinergic and cholinergic 248 

inputs. Addition of neurochemicals that lead to locomotor activity in the spinal cord, 249 

NMDA, 5-HT and DA, promotes bursting episodes, lengthening their duration, increasing 250 

contraction forces, and increasing burst frequencies. Together, these data demonstrate 251 

that protocols to differentiate ES cells towards MN lineages generate neuronal 252 

populations capable of generating rhythmic activity. 253 

While these data indicate that there is a degree of self-assembly of microcircuits, the 254 

nature and interconnectivity of these circuits is not clear. It is likely that these circuits 255 

result from connectivity between a variety of neuronal types. While neuromuscular 256 

transmission in this preparation is cholinergic, it is possible that ESCMNs release 257 

glutamate locally as they do in the spinal cord (Mentis et al., 2005; Nishimaru et al., 258 

2005; Lamotte d'Incamps and Ascher, 2008), and this glutamate leads to bursting of 259 

ESCMNs (MacLean et al., 1997) coordinated by a high degree of MN-MN 260 

interconnectivity (chemical and/or electrical; Figure 4A). However this alone does not 261 

explain the effects of GABA/glycine, or the differential effects on force amplitudes vs 262 

rhythms when adding antagonists. For example, the results show that glutamatergic 263 

activity leads to large amplitude forces but no increase in rhythmicity, which would not be 264 

expected if the neurons producing the force-regulating output (MNs) were the same as 265 

those producing the rhythmicity. Furthermore, if the bursting resulted from MN-MN 266 

interactions alone, we would expect acetylcholine to have a synchronizing rather than 267 
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the desynchronizing effect seen. Thus, the bursting activity likely results from circuits that 268 

include interneuron types. 269 

It is known that basic elements for the formation of rhythmic motor circuits are present in 270 

these cultures. Despite using a differentiation protocol that leads to MN enrichment (Lee 271 

et al., 2000; Westmoreland et al., 2001; Barberi et al., 2003; Peljto and Wichterle, 2011), 272 

a wide range of neuronal subtypes remains. The typical MN differentiation protocol 273 

involves the use of smoothen agonist and retinoic acid (Wichterle et al., 2002), and 274 

generates about 30% MNs as well as different interneuron types including glutamatergic, 275 

GABAergic, and glycinergic (Deshpande et al., 2006). That is, neuronal types needed for 276 

fundamental circuit formation are present. The Sutton principal leads us to suggest that 277 

the inter-preparation variability in bursting behavior is explained by differences in the 278 

proportions of the neuron types in the transplants. The present neuron types together 279 

form an “emerging” circuit capable of generating a rhythm (Figure 4B). 280 

Embryonic Spontaneous Activity 281 

Spontaneous activity is an essential component for the development of embryonic neural 282 

circuits (Marder and Rehm, 2005; Blankenship and Feller, 2009) and is involved in 283 

various roles, including neurite outgrowth (Metzger et al., 1998), maturation of electrical 284 

properties (Xie and Ziskind-Conhaim, 1995), synaptogenesis and axon pathfinding 285 

(Hanson and Landmesser, 2004; 2006; Hanson et al., 2008). The roles of different 286 

transmitter systems may differ at different times of development. In the early phase of 287 

embryonic circuit activity, bursting is dependent on GABAergic and cholinergic 288 

transmission, while glutamatergic effects occur at later stages (Branchereau et al., 2002; 289 

Hanson and Landmesser, 2003; Myers et al., 2005; Scain et al., 2010). Thus, multiple 290 
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transmitter systems play different roles in spontaneous activity at different times during 291 

development. 292 

We studied rhythmic activity at a single time point when such transplants can 293 

successfully innervate host muscle (Yohn et al., 2008). The bursting activity we observed 294 

was largely glutamate-dependent, corresponding to glutamatergic predominance in late 295 

embryonic development. It is possible that earlier following transplantation, there was 296 

spontaneous activity produced by other transmitter systems similar to those in early 297 

embryogenesis, and that this activity set the stage for circuit formation.  298 

Whether spontaneous activity is necessary for successful transplantation is not clear. 299 

We and others have observed that transplantation of purified MNs has not been 300 

successful. Furthermore, we have shown that following transplantation of non-purified 301 

ESCMNs, reinnervation is sub-optimal: force recovery plateaus at 40 to 50%, forces are 302 

not always sustained during 50 Hz tetanic stimulation, neuromuscular transmission can 303 

decrease with repeated stimulation, and motor unit sizes are smaller than expected for a 304 

reinnervated muscle (Yohn et al., 2008). Together, these anomalies point towards 305 

defects in maturation of electrical properties, synaptogenesis, axonal pathfinding, and/or 306 

neurite outgrowth and sprouting. All of these processes are dependent on MN activity. 307 

Thus, we suggest that activity of the transplants facilitates successful reinnervation and 308 

improved functional outcomes. 309 

Functional Considerations 310 

Investigating spontaneous activity of ES cell-derived neurons could extend our 311 

understanding of developmental neurophysiology and circuit formation (Ban et al., 2007; 312 

Heikkilä et al., 2009; Illes et al., 2014). Such knowledge could provide insight into the 313 
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impacts of transplanted stem cell-derived neurons on host circuits, some of which may 314 

be unwanted and of clinical significance,	
  such as uncontrollable contractions 315 

(Weerakkody et al., 2013; Illes et al., 2014). Whether the microcircuit formation that 316 

resulted in spontaneous activity observed here plays an important role in the functional 317 

integration of the transplants, and/or whether it produces clinically undesirable effects 318 

remains to be seen.   319 
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Figure Legends 445 

Movie 1 – Spontaneous activity of differentiated ESCs produces rhythmic muscle 446 
contraction 447 

Ex vivo transplanted tibial nerve under surgical microscope. Enlargement at the end of 448 

nerve represents the transplantation site. Top muscle is the medial gastrocnemius 449 

spontaneously contracting. Femur is anchored on the left with pins. Suction electrode on 450 

top of muscle for EMG recording. Stimulating electrode at the bottom is not contacting 451 

the nerve and not stimulating. 452 

 453 

Figure 1 – Transplanted ESCMNs Generate A Neuronal Circuit Resulting In 454 
Rhythmic Muscle Contractions 455 

(A) Bursting activity evoked after three 5 Hz stimuli over 500 ms. Evoked activity was 456 

blocked after the addition of CNQX and APV (N = 2). Arrows represent electrical stimuli. 457 

(B) Spontaneous muscle contractions at baseline, after CNQX and APV infusion, and 458 

after washout (N = 2). Spontaneous contractions were significantly reduced after CNQX 459 

and APV infusion with residual low amplitude contractions shown in the inset. Grey bars 460 

indicate region of insets showing small amplitude bursts in the background. Note the 461 

smaller scale bars and truncated events above 5 mN. (C) Quantification of force and 462 

instantaneous contraction frequency before and after CNQX and APV. **** One-way 463 

ANOVA, p < 0.0001. “+” represents mean. (D) Autocorrelation of baseline, CNQX and 464 

APV, and washout conditions (N = 1). Dotted lines represent 5% confidence interval. (E-465 

F) Addition of GABA and glycine blockers, bicuculline and strychnine, resulted in an 466 

increase in force early, but not late after infusion of GABA and glycine blockers. Grey 467 

bars in (E) indicate regions depicted in (F). (G) Quantification of burst amplitude and 468 

instantaneous frequency. **** p < 0.0001 by one-way ANOVA (N = 1). (H) 469 
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Autocorrelation of baseline (solid black), early GABA / glycine blockade (dotted grey) and 470 

late GABA / glycine blockade (solid grey).  Rhythmicity can be seen after prolonged 471 

GABA / glycine blockade. Horizontal dotted lines represent 5% confidence interval. 472 

 473 

Figure 2 – Muscarinic Receptor Blockade Alters Bursting Patterns Produced by 474 
Transplants 475 

(A) Spontaneous activity at baseline and after addition of atropine. The addition of 476 

atropine increased the occurrence of large amplitude bursts. Stars indicate region 477 

expanded in inset: note the repetitive large bursts (~2 Hz) at baseline, but single burst 478 

following atropine. (B) Enlargement of 10s regions contained within the grey bars in (A) 479 

showing a decrease in frequency of small amplitude bursts. Post-drug forces are 480 

truncated for illustration. (C) Quantification of instantaneous frequency of bursts. 481 

Atropine decreases the overall instantaneous frequency. “+” represents mean. **** p < 482 

0.0001, unpaired t-test, N = 1. (D) Quantification of force shows an overall increase in 483 

force after the addition of atropine. **** p < 0.0001, unpaired t-test, N = 1. (E) Ratio of 484 

large and small events at baseline and after atropine. Chi-square p-value < 0.0001.  485 

 486 
Figure 3 – Transmitters that Evoke Spinal Locomotion Increase Activity of 487 
Transplants 488 

(A) The addition of NMDA, 5-HT and DA resulted in an increase activity demonstrated by 489 

a prolongation of burst duration in evoked activity. (B) Quantification of episode duration. 490 

** p = 0.004, Mann-Whitney test, 8 vs 4 repeats, N = 1. (C-E) In transplants with 491 

spontaneous activity, the addition of NMDA, 5-HT and DA increased the instantaneous 492 

frequency and the force of bursts. *** p = 0.0002 in (D) and p = 0.0004 in (E), unpaired t-493 
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test with Welch’s correction, N = 1. (F) Frequency histogram of burst amplitude at 494 

baseline and after addition of NMDA, 5HT and dopamine. 495 

 496 

Figure 4 – Potential Schematics of Transplant Circuits 497 

(A) Bursting is produced by a subset of neurons within the transplant, possibly primarily 498 

by MN-MN interactions. The circuit could be composed of an assortment of MNs and 499 

interneurons or only MNs. Modulation of the circuit is provided by glutamate, 500 

acetylcholine and GABA / glycine. Cholinergic release may be from MN collaterals or 501 

cholinergic interneurons. Co-release of glutamate and acetylcholine from MNs is 502 

depicted by the red and green boutons. MNs may be electrically coupled. Exogenous 503 

NMDA, 5HT, and DA provide a modulatory effect. (B) A rhythmogenic circuit provides 504 

glutamatergic inputs to MNs. Modulation of this interneuron circuit is provided by 505 

extrinsic or intrinsic glutamate, acetylcholine, and GABA / glycine. Direct modulation by 506 

acetylcholine and GABA / glycine onto MNs is also possible. The early effect of GABA / 507 

glycine blockade producing an increase in force without a change in burst frequency is 508 

shown as direct modulation of MNs. The late effect of GABA / glycine blockade is 509 

depicted as acting on the rhythmogenic interneuron circuit. Exogenous NMDA, 5HT and 510 

DA provide a modulatory effect. Inter-motoneuron connections (electrical or chemical) 511 

could contribute to the activity seen, as could MN collaterals projecting to the 512 

rhythmogenic circuit.  513 

 514 
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