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Abstract

A number of 5d transition metal oxides (TMOs) either undergo, or lie proximate to, a metal-

insulator transition (MIT). However these MITs frequently depart from a Mott-Hubbard picture,

in which the interactions are dominated by the interplay between the on-site Coulomb repulsion

and electronic bandwidth. In 5d TMOs the sizeable intrinsic spin-orbit coupling plays an impor-

tant role, and gives rise to electronic and magnetic ground states – at both sides of the MIT –

that cannot be adequately described within a purely L–S coupling scenario.

In this thesis the aim is to understand the role of spin-orbit coupling in determining the elec-

tronic and magnetic properties of 5d TMOs. There has been a large amount of recent interest

within this field (both experimentally and theoretically), however thus far has mostly been limited

to the 5d5, jeff = 1
2 limit. The perovskite iridates Sr2IrO4 and Sr3Ir2O7 lie within this limit. The-

oretical predictions suggest a significant easy-plane anisotropy is present for the single layer

Sr2IrO4. I show that this anisotropy can be observed and quantified, using magnetic critical

scattering and previously published resonant inelastic X-ray scattering (RIXS) data. This differs

from previous results that suggest purely 2D Heisenberg behaviour. Meanwhile the critical fluc-

tuations in bilayer Sr3Ir2O7 have a three-dimensional nature, which can be directly related to the

intra-bilayer coupling and significant anisotropy previously probed by RIXS.

I also demonstrate that resonant X-ray scattering techniques can be successfully applied

to other 5d systems, especially the d3 osmates. Both NaOsO3 and Cd2Os2O7 undergo MITs

directly linked to the onset of antiferromagnetic order (Slater or Lifshitz mechanisms). The first

ever high-resolution RIXS measurements at the Os L3 absorption edge reveal that there is a

correlated evolution of the electronic and magnetic excitations through the respective MITs. The

behaviour is consistent with a scenario in which the effect of spin-orbit coupling and electron

correlations are reduced with respect to the iridates, yet still manifests through a strong spin

wave anisotropy.

Finally I show that the study of 5d TMOs can be extended into the time domain. Through

the development of new instrumentation, the transient dynamics of photo-doped Sr2IrO4 were

probed by time-resolved resonant (in)elastic X-ray scattering. The relevant time scales can be

directly compared to the interaction strengths and anisotropies in the undoped state. Moreover,

there seems to be an effective mapping of the transient behaviour in the photo-doped state to

an equivalent level of bulk electron doping in Sr2-xLaxIrO4.

5





List of publications

1. S. Calder, J. G. Vale, N. Bogdanov, C. Donnerer, M. Moretti Sala, X. Liu, M. H. Upton,

D. Casa, Y. G. Shi, Y. Tsujimoto, K. Yamaura, J. P. Hill, J. van den Brink, D. F. McMorrow,

and A. D. Christianson, Strongly gapped spin-wave excitation in the insulating phase of

NaOsO3, Physical Review B 95, 020413(R) (2017)

2. C. Donnerer, M. C. Rahn, M. Moretti Sala, J. G. Vale, D. Pincini, J. Strempfer, M. Krisch,

D. Prabhakaran, A. T. Boothroyd, and D. F. McMorrow, All-in all-out magnetic order and

propagating spin-waves in Sm2Ir2O7, Phys. Rev. Lett. 117, 037201 (2016)

3. S. Calder, J. G. Vale, N. A. Bogdanov, X. Liu, C. Donnerer, M. H. Upton, D. Casa,

A. H. Said, M. D. Lumsden, Z. Zhao, J. -Q. Yan, D. Mandrus, S. Nishimoto, J. van den

Brink, J. P. Hill, D. F. McMorrow, and A. D. Christianson, Spin-orbit-driven magnetic struc-

ture and excitation in the 5d pyrochlore Cd2Os2O7, Nature Communications 7, 11651

(2016).

4. M. P. M. Dean, Y. Cao, X. Liu, S. Wall, D. Zhu, R. Mankowsky, V. Thampy, X. M. Chen,

J. G. Vale, D. Casa, Jungho Kim, A. H. Said, P. Juhas, R. Alonso-Mori, J. M. Glow-

nia, A. Robert, J. Robinson, M. Sikorski, S. Song, M. Kozina, H. Lemke, L. Patthey,

S. Owada, T. Katayama, M. Yabashi, Yoshikazu. Tanaka, T. Togashi, J. Liu, C. Rayan

Serrao, B. J. Kim, L. Huber, C. -L. Chang, D. F. McMorrow, M. Först, and J. P. Hill, Ultrafast

energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped

Mott insulator Sr2IrO4, Nature Materials 16, 601 (2016).

5. C. Donnerer, Z. Feng, J. G. Vale, S. N. Andreev, I. V. Solovyev, E. C. Hunter, M. Hanfland,

R. S. Perry, H. M. Rønnow, M. I. McMahon, V. V. Mazurenko, and D. F. McMorrow, Pres-

sure dependence of the structure and electronic properties of Sr3Ir2O7, Phys. Rev. B 93,

174418 (2016).

6. M. Moretti Sala, V. Schnells, S. Boseggia, L. Simonelli, A. Al-Zein, J. G. Vale, L. Pao-

lasini, E. C. Hunter, R. S. Perry, D. Prabhakaran, A. T. Boothroyd, M. Krisch, G. Monaco,

H. M. Rønnow, D. F. McMorrow, and F. Mila, Evidence of quantum dimer excitations in

Sr3Ir2O7, Phys. Rev. B 92, 024405 (2015).

7

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.020413
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.037201
http://www.nature.com/articles/ncomms11651
http://www.nature.com/articles/ncomms11651
http://www.nature.com/nmat/journal/v15/n6/full/nmat4641.html
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.174118
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.174118
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.024405


8

7. J. G. Vale, S. Boseggia, H. C. Walker, R. Springell, Z. Feng, E. C. Hunter, R. S. Perry,

D. Prabhakaran, A. T. Boothroyd, S. P. Collins, H. M. Rønnow, and D. F. McMorrow, Im-

portance of XY anisotropy in Sr2IrO4 revealed by magnetic critical scattering experiments,

Phys. Rev. B 92, 020406(R) (2015).

8. S. Boseggia, H. C. Walker, J. Vale, R. Springell, Z. Feng, R. S. Perry, M. Moretti Sala,

H. M. Rønnow, S. P. Collins, and D. F. McMorrow, Locking of iridium magnetic moments to

the correlated rotation of oxygen octahedra in Sr2IrO4 revealed by x-ray resonant scatter-

ing, J. Phys.: Condens. Matter 25, 422202 (2013).

http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.020406
http://iopscience.iop.org/article/10.1088/0953-8984/25/42/422202/meta


Contents

Abstract 5

List of publications 7

List of figures 26

List of tables 28

Introduction 29

1 Correlations and spin-orbit coupling in 5d transition metal oxides 36

1.1 Metal-insulator transitions 36

1.1.1 Mott-Hubbard transitions 37

1.1.2 Charge-transfer MIT 39

1.1.3 Lifshitz transition 40

1.1.4 Slater transition 42

1.2 Crystalline environment 44

1.2.1 Crystal field theory 45

1.2.2 Molecular orbital theory 47

1.2.3 Ligand field theory 47

1.3 Hund’s coupling (JH) 49

1.4 Spin-orbit coupling (SOC) 50

1.4.1 Effect of SOC on electronic behaviour 51

1.4.2 Effect of SOC on the magnetic Hamiltonian 52

1.5 Outlook 54

2 Resonant X-ray scattering 56

2.1 Numerical treatment 58

2.2 Resonant elastic X-ray scattering 62

2.2.1 A resonant elastic scattering beamline - I16 63

2.3 Resonant inelastic X-ray scattering (RIXS) 64

2.3.1 Comparison with optical absorption spectroscopy 65

2.3.2 Technical details 67

9



10

2.3.3 RIXS beamline - MERIX at the APS 68

2.4 Resonant X-ray scattering at XFELs 70

3 Magnetic correlations and the MIT in Cd2Os2O7 studied with RIXS 72

3.1 Literature review 73

3.1.1 Structure and general aspects of pyrochlore physics 73

3.1.2 Synthesis 74

3.1.3 Bulk properties 74

3.1.4 Optical conductivity 75

3.1.5 X-ray and muon spin relaxation (—SR) measurements 76

3.1.6 Theoretical calculations 77

3.2 Low resolution measurements 80

3.2.1 Incident energy dependence 81

3.2.2 Intra-t2g excitations 83

3.2.3 Excitations across ∆O 83

3.2.4 Momentum dependence at 60 K 86

3.2.5 Temperature dependence 88

3.3 High resolution RIXS measurements 92

3.3.1 Origin of peak A 93

3.3.2 Temperature dependence 95

3.3.3 Dependence on momentum transfer 99

3.4 Summary 107

3.4.1 Proximity to Lifshitz transition 107

4 Excitations through the Slater MIT in NaOsO3 109

4.1 Introduction to physical properties of NaOsO3 110

4.2 Low resolution RIXS measurements 113

4.3 High resolution RIXS measurements 117

4.3.1 Momentum dependence 117

4.3.2 Magnon dispersion 117

4.3.3 Validity of Hamiltonian 121

4.3.4 Temperature dependence 124

4.3.5 Discussion 127

4.4 Summary and outlook 130

5 Magnetic critical scattering measurements on Sr2IrO4 and Sr3Ir2O7 132

5.1 Critical scattering theory 134

5.2 2D Heisenberg antiferromagnet on a square lattice

(2DQHAFSL) 136

5.3 Critical scattering on Sr2IrO4 139



Contents 11

5.3.1 Introduction to physical properties 139

5.3.2 Experimental setup 142

5.3.3 Order parameter 142

5.3.4 Magnetic scattering above the Néel temperature 144

5.4 2D XYh4 model 149

5.4.1 Correlation length and amplitude for 2D XY 151

5.4.2 Comparison to experimental data 152

5.5 2D anisotropic Heisenberg model (2DAH) 153

5.6 RIXS on Sr2IrO4 155

5.7 Critical scattering from Sr3Ir2O7 163

5.7.1 Synthesis and bulk properties 163

5.7.2 Critical scattering experiment 165

5.7.3 Summary 172

6 Time-resolved resonant X-ray scattering measurements on Sr2IrO4 173

6.1 X-ray free electron lasers (XFELs) 176

6.2 System dynamics 179

6.3 Time-resolved RXMS measurements on Sr2IrO4 180

6.3.1 Experimental procedure 181

6.3.2 Results 184

6.4 Time-resolved RIXS (tr-RIXS) 187

6.5 tr-RIXS measurements 187

6.5.1 Spectrometer calibration 188

6.5.2 Measurements at (ı; ı) 192

6.5.3 Measurements at (ı; 0) 194

6.5.4 Comparison with chemical doping 196

6.5.5 Summary 197

7 Conclusions and future perspectives 199

7.1 Cd2Os2O7 199

7.1.1 ARPES 199

7.1.2 Resistivity under pressure 200

7.2 NaOsO3 201

7.2.1 Resistivity/magnetisation measurements as a function of applied pressure 201

7.2.2 Non-resonant magnetic X-ray diffraction (nRXMS) 202

7.2.3 Probing the band structure 203

7.2.4 Itinerant model for magnetic excitations 203

7.3 Sr2IrO4 204

7.3.1 Crossover phenomena 204

7.3.2 Sample dependence of magnetic properties 204



12

7.3.3 Imaging the Griffiths phase 204

7.3.4 Effect of carrier doping 205

7.4 Sr3Ir2O7 205

7.5 Summary 205

Appendices 207

A Energy resolution of RIXS instruments 207

B Linear spin wave theory applied to NaOsO3 209

Bibliography 213

Acknowledgements 228



List of Figures

1 Schematic phase diagram for electronic materials as a function of the electron

correlations U=t and the spin-orbit coupling –=t, where t is the hopping ampli-

tude. 5d transition metal oxides lie somewhere in the centre of the phase diagram,

with approximate positions for the materials studied in this thesis highlighted in

blue. Adapted from Ref. [5]. 30

2 (a): schematic of energy levels for Sr2IrO4 and Sr3Ir2O7, assuming a strong field

scenario ∆oct > – > U. Spin-orbit coupling splits the t2g manifold into jeff = 3
2

and jeff = 1
2 states, the latter of which is half-filled. A weak electron correlation U

is sufficient to open up an insulating gap at the Fermi level. The real space rep-

resentation of the corresponding wavefunctions is also shown, with red/blue re-

flecting spin up/down contributions to the wavefunctions respectively. (b): RXMS

data (red circles) and fluorescence (black solid line) obtained by Kim et al. [26].

Reprinted with permission from AAAS. There is a significant resonant enhance-

ment at the L3 absorption edge compared to the L2 edge. (c): Optical conductivity

measurements by Moon et al. [27], which show transitions between the UHB and

LHB (¸) and from the jeff = 1
2 → jeff = 3

2 states (˛). 32

1.1 Radial distribution functions for nd-orbitals, where a0 is the Bohr radius. The

orbitals become more diffuse as you move down the group, with the number of

radial nodes equal to n − (l + 1), where l = 2 for a d-orbital. 37

1.2 Schematic of a Mott-Hubbard transition for a system at half-filling within dynamical

mean-field theory (DMFT). In the weak-coupling limit (U=t → 0), there is the

simple case of a metallic band, filled up to the Fermi level EF. As U increases,

spectral weight shifts towards two bands below and above EF. These are the

lower and upper Hubbard bands (LHB/UHB). A quasiparticle peak remains at EF

below some critical ratio Uc=tc , with its width going to zero at the Mott-Hubbard

transition. 39

1.3 Illustration of the two types of Lifshitz transition tuned by some external parameter

g . The top row depicts an open Fermi surface changing to a closed surface

by disruption of a ‘neck’ (neck-forming type), whereas the bottom row depicts

splitting off of a new portion of Fermi surface (pocket forming/vanishing type). 41

13



14

1.4 Model band structure describing a Lifshitz MIT. The electronic bands are uniformly

shifted apart from each other with decreasing temperature, leading to the forma-

tion of an insulating gap. Here ∆D and ∆C refer to the direct (optical) and charge

gaps respectively. 42

1.5 Phase diagram of a general quantum phase transition (QPT). At T = 0, a Lifshitz

transition falls under these auspices. Dashed lines indicate crossovers between

phases, since singularities in the electronic density of states are only infinite at

T = 0. Solid blue line indicates proximity of certain 5d TMOs to the quantum

critical point at g = gc and T = 0. 43

1.6 Schematic of crystal field splittings obtained for various symmetry environments,

in the absence of correlation effects or spin-orbit coupling. Tetragonal (D4h) and

trigonal (D3d ) distortions are assumed as weak perturbations from the octahedral

case. The tetragonal and trigonal energy levels as drawn are appropriate for axial

elongation along the z-axis or local three-fold symmetry axis respectively. The

term ‚ arises from the contribution of off-diagonal parameters, and is defined [60]

as ‚ = 300Dq2 − 20Dq(3Dff − 5Dfi)− 3(3Dff − 5Dfi)2. 46

1.7 Molecular orbital (MO) diagram of a 5d TMO cation octahedrally coordinated to

six oxygen ligands. The MOs are hybridised, and have character arising both

from the transition metal and ligand atomic orbitals. Adapted from Katukuri [61]. 48

2.1 Left panel – Resonant X-ray scattering process as illustrated for an Ir4+ ion. In

the displayed scenario an electron has been excited from the j = 3
2 to the j = 1

2

manifold, and hence ~!k 6= ~!k′ . Right panel – Iridium X-ray absorption edges

along with their respective energies. 57

2.2 Rowland circle geometry. The distance between O and O′ is defined as R=2,

where R is the radius of the Rowland circle. 68

2.3 Top panel: General schematic of the upstream optical elements used at a RIXS

instrument. DCM stands for double crystal monochromator. Bottom panel: Pic-

ture of the MERIX spectrometer at 30-ID, Advanced Photon Source, USA. The

spectrometer is in horizontal scattering geometry (ı-polarized light incident), and

important components of the spectrometer have been labelled. 69

3.1 (a): Temperature dependence of the magnetic susceptibility (green symbols, [95]),

charge gap from resistivity data (solid: [94], dashed: [99]), and direct (optical) gap

from optical conductivity data (solid circles: [98], open triangles: [99]) which show

the link between the MIT and onset of AFM order. (b): Magnetic AIAO ground

state of Cd2Os2O7. 75
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3.2 Phase diagram adapted from Shinaoka [104]. The three phases are a non-

magnetic metallic state (NMM), an antiferromagnetic metal (AFM), and an an-

tiferromagnetic insulator (AFI). The Os moment (a), charge gap ∆C and optical

gap ∆O (b) increase with increasing electron correlation Ueff = U − J. 78

3.3 (a): RIXS spectra for Cd2Os2O7 as a function of incident energy collected at

300 K. Three features (B, C, D) can be observed, which correspond to intra-t2g ,

t2g → eg , and ligand-to-metal charge transfer (LMCT) excitations respectively.

Solid line is the best fit to the data. The fitting model comprised a sum of Gaussian

functions, each representing the elastic line and aforementioned inelastic fea-

tures. (b): Example spectrum collected for an incident energy of 10.875 keV. Su-

perimposed are the expected transitions based on the quantum chemistry (QC)

calculations [106]. 81

3.4 Fits of the low energy RIXS spectra at 30 K for the L (a) and Γ (b) points. The

quasi-elastic feature is fitted to a resolution limited Pearson VII function con-

strained to the width of the resolution function, whilst all other features are fit-

ted by Gaussians. The energies of the intra-t2g excitations comprising the broad

peak at ca. 1 eV (peak B in Fig. 3.3) were fitted to 3JH and 5JH respectively, with

JH as a fitted parameter. 82

3.5 Brillouin zone for the Fd3̄m space group, with high symmetry points highlighted.

The points ∆ and Σ – as referenced later – have been omitted from this diagram

as they are not high symmetry points, but correspond to (0; 1
4 ; 0) and ( 1

4 ;
1
4 ; 0)

respectively. 82

3.6 (a): Terms of a t3
2 configuration in a first (strong field) approximation, including

the effect of Coulomb repulsion. Spin-orbit coupling and distortions away from an

ideal octahedral geometry are neglected. The Hund’s coupling JH is equivalent

to 3B + C, where B and C are Racah parameters. The terms 2E and 2T1 are

accidentally degenerate. (b): Electronic terms when spin-orbit coupling is added

as a weak perturbation. Terms are calculated by decomposition of the direct

product Γ × D(3/2). The separation between terms originating from 2E and 2T1

is exaggerated for clarity. (c): Addition of a weak trigonal perturbative field to

the case presented in (b). Note that the 4A2 ground state is only split (zero field

splitting) by a combination of spin-orbit coupling and trigonal distortion, and even

then third-order perturbations are required. 85

3.7 (a): Momentum dependence at 60 K in a low-resolution setup. Spectra have

been offset for clarity. ∆ and Σ correspond to points intersecting the Γ − X

and Γ − K high symmetry directions respectively. The peak at 0.15 eV energy

loss corresponds to peak A, with the high energy tail resulting from the intra-

t2g excitations. (b,c): Example fits to spectra collected at L (b) and Γ (c), with

individual peak components superimposed. 87
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3.8 Energy (a) and intensity (b) of the feature at 160 meV energy loss (peak A) as a

function of momentum transfer. There is a weak variation of the peak energy and

intensity across the Brillouin zone. 88

3.9 (a): Temperature dependence of RIXS spectra collected at (2.5; 8.8; 8.8). Spec-

tra have been offset by a constant factor for clarity. (b): Comparison of spectra

at 60 K and 300 K. Peak A weakens and broadens with increasing temperature.

Solid line is the best fit to the data with the model given in the main text. (c): Fitted

peak intensity as a function of temperature, with a fit to a power law TC = 226 K,

˛ = 0.17(2) added as a guide. Such behaviour is consistent with a magnetic

excitation. 89

3.10 Exact diagonalization calculations performed by Satoshi Nishimoto on an 8-site

cluster for Cd2Os2O7. Markers correspond to experimental data points after back-

ground subtraction. Green, blue, and purple lines represent excitation spectra

I(!) for ∆Sz = 1,2,3 respectively, multiplied by identical scale factors and broad-

ened by the instrumental resolution. Inset shows similar calculations for a minimal

4-site cluster, along with the unbroadened excitation spectra. The energy scale

compares well with peak A. Adapted from Ref. [118]. 91

3.11 Best fits to high-resolution RIXS data collected in the (6; 7; 7) Brillouin zone,

using a symmetric Lorentzian (black dashed) or a phenomenological gap function

(Eqn. 3.4, solid) functional form at 30 K (a,c) and 200 K (b,d) for momentum

transfers Γ and L. The Lorentzian fails to adequately describe the region between

the elastic line and peak A for all temperatures and momentum transfers Q. Dotted

lines illustrate the functional form of the fitted and deconvoluted gap function,

which has been offset and multiplied by a constant scale factor for clarity. 93

3.12 Temperature dependence of RIXS spectra in the (7; 7; 8) Brillouin zone. (a):

Stack plot of data normalized to intensity of intra-t2g excitations at 0.7 eV, plotted

with best fit to gap function model. (b): RIXS intensity at 60 meV (open diamonds)

and 150 meV (filled triangles), which at 30 K correspond to the intra-gap and peak

regions respectively. The peak intensity is consistent with a power law (˛ ∼ 0.4),

whereas the intra-gap intensity follows Arrhenius-type behaviour. Both models

have critical temperature TMI. (c): Normalized data with elastic and intra-t2g con-

tributions subtracted. Dashed line indicates the location of the MIT. There is a

clear evolution of the lineshape from 30 K (bottom) to 300 K (top) as the gap closes. 96

3.13 Fits of RIXS spectra obtained at (7; 7; 8) and 30 K (a), or 275 K, with peak A

described by a gap function (Eqn. 3.4). 97

3.14 Fits of RIXS spectra obtained at (7; 7; 8) and 30 K (a), or 275 K (b), with peak A

described by a Fano resonance (Eqn. 3.5). 98
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3.15 Comparison of fitted parameters for peak A. (a,b): Fits of peak A to a Fano res-

onance. (a): Energy of uncoupled resonance !0 (filled squares) and maximum

of peak (open diamonds). (b): Intensity I0, a power law with critical exponent

˛ = 0.36 and critical temperature T = TN is added as a guide. Inset: spec-

tral weight taken from integral of Fano resonance. (c,d): Fits of peak A to a

gap function (Eqn. 3.4). (c): Extracted parameters from fitted gap function !gap

(filled squares) and !p (open diamonds). Solid line: Best fit with BCS function,

TMI = 230(4) K, ∆0 = 87(2) meV. (d): Peak intensity as a function of T . The

solid line is a guide to the eye. Inset: Spectral weight of gap as a function of T . 99

3.16 (a): Momentum dependence of the RIXS spectra, along with best fits of the data

(solid line). Unexplained feature at 0.3 eV energy loss indicated by asterisk, which

has not explicitly been accounted for in the fit. (b): Extracted parameters from

fitted gap function !gap (filled squares) and !p (open diamonds). (c): Peak inten-

sity (filled squares) and spectral weight (open circles) as a function of momentum

transfer. 100

3.17 Fitted parameters of peak A as a function of temperature for three different mo-

mentum transfers: L = (6.5; 7.5; 7.5) [purple circles], Γ = (6.5; 7.5; 7.5) [pink

stars], and X = (6.5; 7.5; 7.5) [green squares]. Note that this is a different Bril-

louin zone to the temperature dependence displayed in Fig. 3.15. (a): Peak inten-

sity as a function of temperature. The dashed line is guide to the eye. (b): !gap

[solid symbols] and !p [open symbols] as a function of temperature. The dashed

line is identical to that given in Fig. 3.15c. 100

3.18 Same layout as for Fig. 3.16, except fits include a Gaussian to account for the

feature at 300 meV energy loss, which has been highlighted in (a). Open circles

in (b) indicate its energy as a function of momentum transfer. 102

3.19 (a): Fits of the low-temperature data in the (6; 7; 7) Brillouin zone to the model

given in the main text as a function of momentum transfer. Right panels show the

energy (b) and integrated spectral weight (c) of peak A as a function of momentum

transfer. Solid line is the best fit to a representative Hamiltonian given by Eqn. 3.7. 104

3.20 Results from simulated annealing runs performed for different system sizes of

Cd2Os2O7. All data displayed occurs from the mean of five successive runs, with

error bars reflecting the standard deviation about this mean. Parameters plotted

(per magnetic moment) are the specific heat C (a), isothermal susceptibility ffl

(b), and mean internal energy 〈U〉 (c). Curves in (a) and (c) have been offset for

clarity. In (d) the fitted maximum of the specific heat (squares) and susceptibility

(diamonds) has been plotted. Dashed lines indicate the experimental Néel tem-

perature TN. There appears to be a convergence of the calculated TN with the

experimental one in the thermodynamic limit. 105
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4.1 (a): Crystal structure of NaOsO3. The magnetic moments lie along the c-axis.

(b): Unit cell volume through the MIT. (c): Lattice parameters through the MIT

normalised to the value at TMI. Subfigures (b) and (c) adapted from Ref. [131].

(d): Coupling of the magnetic, electronic, structural, and phonon degrees of free-

dom in NaOsO3. Adapted from Ref. [132]. (e): Optical gap (purple squares)

and charge gap (green circles) extracted from data presented in Refs. [57] and

[130] respectively. Solid line is a Slater model with Eg (T = 0) = 102 meV and

TMI = 410 K. 111

4.2 RIXS spectra from NaOsO3, collected at 300 K as a function of varying incident

energy (∆E = 275 meV). (a): RIXS map presented as a contour plot. Three

peaks are evident: peaks A, B, and C correspond to intra-t2g , t2g → eg , and

ligand-to-metal charge transfer (LMCT) excitations respectively. (b): Single RIXS

spectrum obtained for an incident energy of 10.879 keV. 115

4.3 Temperature dependence of the orbital excitations (offset for clarity). (a): RIXS

spectra out to 8 eV energy loss. Inset shows the fitted energy of peak B as a

function of temperature. (b): Spectra focussing on the low energy excitations

through the MIT. No significant difference can be seen as a function of temperature.116

4.4 (a): Momentum dependence of the RIXS spectra in the (5; 3; 4) Brillouin zone

at 300 K. Error bars on individual data points have been omitted for reasons of

clarity. There is a strongly momentum dependent feature at ca. 100 meV which

corresponds to a spin wave excitation. Solid lines are best fits to the data us-

ing the model described in the main text. (b,c): Representative fits at Γ and Y

respectively. 118

4.5 Fitted energy (a) and intensity (b) of dispersive feature, along with best fit to spin

wave model described in text (solid line). Inset illustrates exchange pathways J1

and J2. 119

4.6 Schematic of energy levels in a 5d3 material. The octahedral crystal field ∆ splits

the d-electron manifold into states with t2g and eg symmetry. The t2g manifold is

at half-filling, consequently the orbital angular momentum L is quenched in the LS

(Russell-Saunders) coupling limit. Strong spin-orbit coupling can split these levels

further, leading to jeff = 3
2 and jeff = 1

2 states. The orbital angular momentum is no

longer quenched. Cd2Os2O7 and NaOsO3 are likely intermediate between these

coupling schemes. 123
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4.7 RIXS spectra collected at the Γ (a), Γ–Y (b), and Y (c) points of the Brillouin

zone for various temperatures (300 K – 450 K). All data has been normalised to

the intensity of the d-d excitations at 1 eV energy loss. There is a progressive

increase in intensity at 0.2 eV with increasing temperature. (d): Intensity at points

A (solid symbols) and B (open symbols) as a function of temperature. A and B

correspond to the magnon peak and feature at 0.2 eV energy loss respectively.

Solid and dashed lines are guides to the eye. 125

4.8 Analysis of RIXS spectra collected at Γ. (a): Spectra with elastic line and d − d

contributions subtracted. Added are the best fit to the data (black solid line), and

relative components of the magnon peak (purple) and particle-hole continuum

(green). (b): Spectra from the second run normalised to the intensity of d − d

excitations at 1 eV. Fitted peak intensity (c), energy (d) and FWHM (e) of the two

components as a function of temperature. The two sets of symbols correspond

to the first (open) and second (filled) runs respectively. Dashed lines indicate the

metal-insulator transition at 410 K. 126

4.9 Analysis of RIXS spectra collected at Γ−Y . (a): Spectra with elastic line and d−d

contributions subtracted. Added are the best fit to the data (black solid line), and

relative components of the magnon peak (purple) and particle-hole continuum

(green). (b): Spectra normalised to intensity of d − d excitations at 1 eV. Fitted

peak intensity (c), energy (d) and FWHM (e) of the two components as a function

of temperature. Solid lines are guides to the eye. Dashed lines indicate the metal-

insulator transition at 410 K. 127

4.10 Analysis of RIXS spectra collected at Y . (a): Spectra with elastic line and d − d

contributions subtracted. Added are the best fit to the data (black solid line), and

relative components of the magnon peak (purple) and particle-hole continuum

(green). (b): Spectra normalised to intensity of d − d excitations at 1 eV. Fitted

peak intensity (c), energy (d) and FWHM (e) of the two components as a function

of temperature. Dashed lines indicate the metal-insulator transition at 410 K. 128

4.11 Top panels: Schematic of the orientation of antiferromagnetically (AFM) interact-

ing magnetic moments on a square lattice for T = 0, and finite temperatures in

the Heisenberg or Stoner limits. Bottom panels: Excitation spectra in the Heisen-

berg limit, for an itinerant AFM (with insulating gap 2∆), and for a metal with weak

AFM correlations. Dashed lines indicate damped excitations. 129

5.1 Schematic phase diagram of the quantum non-linear sigma model as a function

of temperature T and coupling strength g . The renormalized classical phase

exhibits Néel long range order (LRO) at T = 0. The dashed line represents the

2DQHAFSL. 135
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5.2 (a): Crystal structure of Sr2IrO4. The IrO6 octahedra are rotated by ±12◦ in the

ab-plane with respect to the ideal I4=mmm structure; alternate layers have the

opposite sign of rotation. The magnetic moments rigidly follow this distortion,

which is highlighted in (b). (c,d): Magnetization (c) and resistivity (d) measure-

ments by Cao et al. [21] on a single crystal of Sr2IrO4, which show significant

anisotropy in the respective bulk properties. 140

5.3 Magnetic critical scattering data previously obtained by Fujiyama et al. [38]. (a):

Intensity map in hl-plane of (1; 0; 22) magnetic Bragg peak at 229 K. (b): In-

plane (red squares) and out-of-plane (black circles) correlation length ‰a above

TN = 228.5(5) K. Overlaid are the theoretical models for the 2DHAFSQL [167]

(red), 2D XY model (green), and 2D Ising model (blue). A 2D Heisenberg model

with J = 100(10) meV apparently seems to give the best description of the in-

plane data, whilst the out-of-plane correlation length ‰c is best described by a

power law with critical exponent � = 0.748, consistent with 3D interactions. 141

5.4 (a): Energy scan of the (1; 0; 24) magnetic Bragg peak with ff–ı′ polarisation

(symbols). Overlaid is the total fluorescence yield (TFY) from the sample (solid

line). (b)–(d): Reciprocal space scans of the (1; 0; 24) peak at 180 K, which

was used to represent the resolution function. Nearby structural peaks exhibited

similar behaviour. Added are the best fit (solid lines) of the data to either an

asymmetric Lorentzian squared function (b,d) or an asymmetric Gaussian (c).

Bars indicate the FWHM of the peak. 143

5.5 (a): Temperature dependence of (1; 0; 24) magnetic Bragg peak for Sr2IrO4.

Plotted are the integrated intensities for the in-plane (squares) and out-of-plane

(diamonds) directions normalised to the in-plane scattering at 180 K. (b): Varia-

tion of ffl2 (squares) as a function of fits to IM ∝ [(TN−T )=TN]2˛ using fixed values

of TN. The minimum of the ffl2 surface occurs at TN = 226.8(2) K and ˛ = 0.195(2).144

5.6 (a): Observation of two order parameters for Sr2IrO4 as determined from rock-

ing curves (” scans). Red and grey curves are the primary [TN = 226.8(2) K ,

˛ = 0.195(4)] and secondary [Tc = 232.3(1) K , ˛ = 0.32(1)] order parameters

respectively. (b): Same as (a), but plotted on logarithmic axes and as a function

of reduced temperature fi = (Tc−T )=Tc. Open diamonds are Lorentzian squared

components of scattering from h-scans. (c): Variation of ffl2 as a function of Tc

(squares), with corresponding values of ˛ (circles). 145

5.7 Comparison of scattering in-plane [(a)–(d), purple] and out-of-plane [(e)–(h), green],

along with best fits to the data using the model described in the main text (solid

line). The separate Lorentzian and Lorentzian squared components to the scat-

tering are indicated by dashed and dotted lines respectively. A logarithmic y -axis

has been used to highlight the two components. 146
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5.8 (a): Correlation length of Lorentzian component both in-plane (purple squares)

and out-of-plane (green diamonds) given in terms of the Ir-Ir distance a0 = 3.9 Å.

(b): Amplitude of Lorentzian (filled symbols) and Lorentzian squared (open sym-

bols) components to observed scattering. Dashed line is the same as presented

in Figure 5.6. Solid line in (a) and (b) is the best fit to the 2DAH model at high

temperatures as plotted in Fig. 5.13. 147

5.9 Selected in-plane scans of the (1; 0; 24) magnetic Bragg peak above TN. Super-

imposed are the best fits to a Lorentzian convoluted with the resolution function

(full width at half maximum represented by solid bars). 148

5.10 Comparison of critical scattering in-plane (a,b) and out-of-plane (c) for the (1; 0; 24)

magnetic Bragg peak (filled squares) with that presented in Ref. [38] for (1; 0; 22)

(open circles). The data have been normalised to fit on the same axes and al-

low a direct comparison of the lineshapes and peak widths. Note that a sloping

background has also been subtracted from the Fujiyama et al. [38] data. 149

5.11 Comparison of various models for the 2DQHAFSL to the experimental data. (a):

In-plane correlation length ‰. (b): Structure factor S0. All models are calculated

assuming J = 60 meV, with the structure factor predictions scaled such that

they pass through the data point at 300 K. None of the theoretical models for

the 2DQHAFSL are a satisfactory fit to the data for the entire temperature range

studied. 150

5.12 (a): Experimentally determined correlation lengths ‰ (filled circles) and best fit

to 2D XYh4 model (solid red line). The data from Fujiyama et al. [38] (open

squares) divided by a factor a0 and the QMC result for the 2DQHAFSL [167] with

J = 60 meV (dashed black line) have been added as a guide. (b): Experimentally

obtained amplitudes S0 (filled circles) and best fit to 2D XYh4 (solid red line). 152

5.13 (a): Experimentally determined correlation lengths ‰ (filled circles) and best fit to

2DAH model (solid red line). The data from Fujiyama et al. [38] (open squares)

and the QMC result for the 2DQHAFSL [167] with J = 60 meV (dashed black

line) have been added as a guide. (b): Experimentally obtained amplitudes S0

(filled circles) and best fit to 2DAH model. Dashed line is 2DQHAFSL model

(J = 60 meV) scaled to pass through data point at 300 K. 154

5.14 (a,b): Magnon dispersion and intensity measured by Kim and colleagues [37] on

Sr2IrO4. Parameters were obtained from fits to medium resolution data (∆E = 130 meV).

Solid line in (a) is the best fit of the dispersion to a J−J ′−J ′′ model with J = 60 meV,

J ′ = −20 meV and J ′′ = 15 meV. (c): High resolution (∆E = 30 meV) RIXS data

for Sr2IrO4 measured by Kim et al. [192] at normal incidence. Dots at ca. 0.5 eV in-

dicate the spin-orbit exciton feature. The dispersive feature between 0 and 0.2 eV

is the magnon peak. There appears to be a magnon gap of ∼ 30 meV at (0; 0),

which has been highlighted. 156
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5.15 (a): Stack plot of the low energy RIXS data from Kim et al. [192] fitted to the

model described in the text (solid black lines). The fitted position of the magnon

peak is shown as the solid red line. (b),(c): Representative RIXS spectra at (0; 0)

and (ı; 0), along with best fits to data and their respective components. The

dashed line represents the magnon peak. (d): Magnon dispersion as a function

of in-plane momentum transfer. (e): Spectral weight as a function of momentum

transfer. Dashed lines in (d,e) represents the fitted model presented in Ref. [37]. 157

5.16 (a): Raw RIXS spectra [192] overlaid with the fitted magnon peak energy (orange

squares), gapped (solid) and gapless (dashed) modes of the 2D XYh4 model.

(b): Spin wave dispersion as simulated in SpinW, which highlights the two distinct

magnon modes. The simulated data has been convoluted with a Gaussian of

FWHM 10 meV. The colour scale reflects the real part of the spin-spin correlation

function components Sxx(Q; !) + Syy (Q; !) + Szz(Q; !). 158

5.17 (a): Raw RIXS spectra overlaid with the fitted magnon peak energy (orange

squares), gapped (solid) and gapless (dashed) modes of the 2DAH. (b): Spin

wave dispersion as simulated in SpinW, which highlights the two distinct magnon

modes. The simulated data has been convoluted with a Gaussian of FWHM

10 meV. The colour scale reflects the real part of the spin-spin correlation func-

tion components Sxx(Q; !) + Syy (Q; !) + Szz(Q; !). 160

5.18 (a): Crystal structure of Sr3Ir2O7. The material is a G-type antiferromagnet be-

low TN, as shown by the arrows on each Ir site. (b): Relationship between the

I4=mmm space group used for Sr3Ir2O7 compared to the I41=acd space group

used for Sr2IrO4. The I41=acd unit cell is enlarged by
√

2a×
√

2b and rotated by

45◦ with respect to the I4=mmm unit cell. (c): Intensity of the
`

1
2 ;

1
2 ; 24

´
mag-

netic Bragg peak obtained from XRMS, compared to magnetisation data obtained

from a SQUID magnetometer. Adapted from Ref. [233]. (d): In-plane resistivity of

Sr2IrO4 and Sr3Ir2O7. Adapted from Ref. [234]. 164

5.19 (a): Energy scan of the
`

1
2 ;

1
2 ; 24

´
magnetic Bragg peak with ff–ı′ polarisation

(symbols). Overlaid is the total fluorescence yield (TFY) from the sample (solid

line). Peaks marked with asterisks result from multiple scattering. (b)–(d): Re-

ciprocal space scans of the
`

1
2 ;

1
2 ; 24

´
peak at 200 K, which was used to repre-

sent the resolution function. Nearby structural peaks exhibited similar behaviour.

Added are the best fit (solid lines) of the data to either a Gaussian function (b) or

Lorentzian squared functions (c,d). 166
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5.20 (a): Order parameter of
`

1
2 ;

1
2 ; 24

´
magnetic Bragg peak in terms of the reduced

temperature |t| = |T − TN|=TN, as obtained from „–2„ scans. Solid line: Best fit

to power law convoluted with a Gaussian distribution of TN with FWHM 2.7(1) K.

Dashed line: Corresponding power law assuming single value of TN. Inset fo-

cusses on region around TN, highlighting the rounding of the transition. Dotted

line: Distribution of TN. (b): Variation of ffl2 (solid line) and ˛ (diamonds) as a

function of TN. The minimum of the ffl2 surface occurs for TN = 283.4(2) K and

˛ = 0.361(8), which is consistent with the theoretical value for 3D Heisenberg

interactions. 167

5.21 Evolution of the
`

1
2 ;

1
2 ; 24

´
magnetic Bragg peak above TN in the k- and l-directions

(left and right columns respectively). The critical scattering is nearly isotropic.

Solid lines are best fit to a Lorentzian-squared function convoluted with the reso-

lution function. 168

5.22 Lineshape comparison of fits to critical scattering for the in-plane (a,c) and out-

of-plane (b,d) directions. Solid line: Fit to Lorentzian scattering function. Dashed

line: Fit to Lorentzian squared scattering function. Results are displayed on a

logarithmic scale to highlight differences in the peak tails. 169

5.23 Values of ffl2 obtained using either a Lorentzian (squares), or Lorentzian squared

(circles) lineshape for the scattering function along ∆Q⊥ (a) or ∆Q‖ (b). A

Lorentzian squared function provides the best fit to the data over most of the

temperature range. 169

5.24 Inverse correlation length (a) and intensity (b) of
`

1
2 ;

1
2 ; 24

´
magnetic Bragg peak

as a function of reduced temperature t = T=TN − 1. Solid and dashed purple

lines are fits of the out-of-plane data to the relevant power law for two different

temperature regions: �1 = 0.49(4); ‚1 = 1.86(3); �2 = 1.4(1); ‚2 = 8.2(3). Solid

black lines are best fit to a power law convolved with a Gaussian distribution of

TN [FWHM 2.7(1) K]. Inset in (b) is the same as the main panel, only plotted on

linear axes. 170

6.1 Phase diagram for the hole-doped cuprates. There are expected to be a number

of similarities between this phase diagram and that for the electron-doped iridates.

Crossovers are indicated by dashed lines. There is a quantum critical point (QCP)

situated underneath the superconducting dome. 174

6.2 Formation of doublon-hole pairs upon excitation with some pump pulse. Left

panel: An electron is excited across the charge gap and populates the valence

band. Right panel: This excited electron hops to a neighbouring site, leading

to the formation a doublon-hole pair. These doublon-hole pairs then recombine

on some ultrafast timescale (∼ picoseconds) which depends on their energy of

formation and their separation. 175
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6.3 Power gain P (z) as a function of undulator distance z for a high-gain XFEL. La-

belled are the startup, self-amplified spontaneous emission (SASE) and satura-

tion regions. The SASE region is characterised by an exponential gain in the FEL

power as a function of z . After a critical distance ∼ 18Lg0, the FEL power satu-

rates as the electron beam begins to take energy away from the generated light

wave. 177

6.4 (a): Comparison of the spectra of a single FEL pulse using a SASE or a seeded

mode. (b): Temporal profile of two FEL pulses (different shades of purple), along

with average over 120 pulses (black). FEL parameters used were obtained from

Huang [246]. 178

6.5 Schematic time evolution of a system in a pump-probe experiment, with various

physical processes labelled. The time scale of the various phenomena are dic-

tated by the electronic bandwidth W , with the actual time in femtoseconds given

as a ballpark figure. Adapted from [251]. 180

6.6 (a): Sample mount as used at SACLA. Labelled are the GaAs, Bi (1; 1; 1) single

crystals, and Sr2IrO4 thin film. (b): Experimental setup. 182

6.7 Schematic of a single-stage optical parametric amplifier (OPA) as described in the

main text. WL stands for white light generator, DF for dichroic filter. The greyed

out or bold type font after the non-linear crystal represents the attenuation of the

pump and amplification of the seed respectively. 183

6.8 Rocking curves of (0; 0; 28) (a) and (−2; −2; 24) (b) structural Bragg reflections

collected at SACLA. Solid lines are fits to Lorentzian functions. Also plotted is the

fluorescence obtained at the Ir L3 edge (c). 184

6.9 (a,b): Rocking curves about the (−3; −2; 28) magnetic Bragg peak for delay

times of −1 ps (open circles) and 1 ps (filled squares) collected at SACLA. The

best Lorentzian squared fits to the data are given by the solid and dashed lines re-

spectively. The pump fluences used were (a): 0.4 mJ cm−2 and (b): 6.8 mJ cm−2

respectively. Long-ranged magnetic order has been melted within this timescale

at high pump fluences. (c): Intensity of the magnetic Bragg peak as a function of

pump fluence, normalised to the intensity with the pump laser off. 185

6.10 Intensity of the (−3; −2; 28) magnetic Bragg peak as a function of time delay

focussing on short (left panel) and long (right panel) timescales. Different sym-

bols correspond to different incident pump fluences. Two recovery timescales are

apparent from the data out to long time delays. 185

6.11 Fitted parameters for Eqn. 6.3 as a function of pump fluence. Symbols and

colours correspond to those plotted in Fig. 6.10. 186
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6.12 Photograph of RIXS spectrometer constructed at the LCLS. The photograph has

been annotated with the locations of key components and X-ray beam path. The

helium flight path is in fact a dry cleaning garment bag obtained nearby, with any

holes taped up to prevent leakage of gas. 188

6.13 Determination of the instrumental resolution. (a): CCD image of elastic line ob-

tained from scattering off transparent adhesive tape (after thresholding). White

box indicates region of interest used for subsequent plots. (b): CCD image

summed over the non-dispersive direction. Solid line is a fit to a Gaussian with

FWHM 8.09(5) px, equivalent to an instrumental resolution of 66.4(4) meV. (c):

Peak position extracted from fits of single cuts through the elastic peak. Neigh-

bouring pixels have been binned together to ensure a reliable fit. (d): Width of

elastic line (symbols), with width extracted from fit shown in (b) added as a com-

parison (solid line). 189

6.14 (a): Histograms of the entire CCD (purple), and a 310×150 px region of interest

(green), each summed over 1800×20 shots and before thresholding. (b): Raw

CCD image (within the aforementioned region of interest) and lineplot of the sum

in the non-dispersive direction resulting from a single run of 1800×20 shots. (c):

Same as for (b), but with dark image subtracted and lower threshold of 160 ADUs

applied. In (b) and (c), the extremes of the colorscale reflect the 5% and 95%

confidence limits. Additionally neighbouring pixels have been binned together in

the in-plane direction for clarity. 191

6.15 (a,b) Pump-probe RIXS spectra at (ı; ı) along with difference spectra Ion − Ioff

(open symbols) for different optical delays. (c): Overlay of difference spectra for

optical delays of 2 ps and 10 ps. Error bars have been omitted for clarity. (d):

Fitted intensity of magnon peak normalised to intensity with no pump laser (sym-

bols). Overlaid are models comprising Equation 6.3 with parameters interpolated

from the elastic data for a pump fluence of 6 mJ cm−2 and convoluted with a

Gaussian of FWHM 300 fs. The two models are identical apart from the value of

C: C = 1 (solid), C = 0.35 (dashed). 193

6.16 (a): RIXS spectra at (ı; 0) before (purple squares) and after (green diamonds)

the pump, along with their difference Ion− Ioff (open circles). The solid grey line is

the difference between the best fits to the two RIXS spectra. (b): Enlarged view

of the difference spectra at (ı; ı) (blue stars, dashed) and (ı; 0) (green circles,

solid), each normalised to the fitted maximum of the magnon peak at E0. (c):

Same as (b), except normalised to fitted maximum of SO-exciton at E0 ∼ 0.6 eV.

Again the dashed (solid) lines in (b,c) reflect the normalised difference between

the best fits to the RIXS spectra at (ı; ı) and (ı; 0) respectively. 195
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6.17 (a): RIXS spectra of (Sr1-xLax)2IrO4 at (ı; 0), collected for three doping levels

x = 0, 0.01, 0.035. Solid lines are the best fit to a sum of four Lorentzian squared

functions. The spectra have been offset vertically to aid comparison. Right panels

reflect the magnon peak position (b), FWHM (c) and intensity (d) relative to the

value for x = 0. Squares: values extracted from fits to data in (a). Triangles: data

extracted from Ref. [256]. The solid(dashed) line on each of the plots represents

the fitted value from the tr-RIXS data with pump laser on(off). 197

7.1 Pressure dependence of structural parameters for NaOsO3. (a): Lattice parame-

ters normalised to the zero pressure values at 300 K (lines) and 450 K (symbols).

(b): c/a ratio at 300, 420 and 450 K. (c): Equation of state at 300, 420 and

450 K show minimal volume change as a function of temperature, with no obvi-

ous anomalies characteristic of a first-order phase transition. (d): Above the MIT

an additional peak appears above 40 GPa which is consistent with a continuous

monoclinic distortion. 201
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Introduction

Transition metal oxides (TMOs) are an important source of novel electronic and magnetic

phenomena which are of significant interest to experimentalists, theoreticians and engineers

alike. These phenomena lead to a diverse range of potential practical applications; from ther-

mochromic window coatings which filter out sunlight above a certain temperature (VO2), to high

temperature superconductivity in the cuprates, colossal magnetoresistance (CMR) and multifer-

roicity in the manganites for use in memory storage for instance.

Competition between electron correlation (which acts to localise electrons) and the band-

width gives rise to the range of effects observed. 3d transition metal oxides are typically strongly

correlated (large U=t), as a consequence of localised valence orbitals. Progressing down the

periodic table, one generally finds that materials become less correlated (more itinerant), as

a consequence of diffuse and extended d orbitals due to increased screening of the nuclear

charge from the core orbitals. However this increased nuclear charge also gives rise to in-

creased spin-orbit coupling (SOC). This relativistic phenomenon has the effect of narrowing the

electronic bands and acting as the source of significant anisotropy in the magnetic Hamiltonian

for 5d TMOs.

This competing behaviour is illustrated in Figure 1. At the left hand side of the diagram (weak

spin-orbit coupling) are Mott insulators, band insulators and simple metals. In this region the

leading electronic behaviour is mainly governed either by the interaction between electrons for

the case of Mott insulators (large U=t), or by the interaction of electrons with the periodic lattice

potential for band insulators and simple metals (small U=t). The majority of 3d transition metal

oxides broadly fall within one of these two regimes. With increasing atomic number Z comes in-

creased spin-orbit coupling and reduced electron correlations. Consequently spin-orbit coupling

plays more of a role in the electronic Hamiltonian for 5d TMOs as opposed to 3d TMOs. Spin-

orbit coupling can enhance the splitting between degenerate or nearly degenerate bands. In the

case of weak U=t, this can give rise to topological insulating or semi-metallic states. Topological

insulators are characterised by bulk insulating behaviour, yet exhibit conducting surface states

as a consequence of broken time-reversal symmetry. These surface states are topologically

protected as a consequence of band crossing at the Fermi level. A great deal of experimental

and theoretical work has been performed on these materials over the past ten years [1–4].
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Figure 1: Schematic phase diagram for electronic materials as a function of the electron correlations

U=t and the spin-orbit coupling –=t, where t is the hopping amplitude. 5d transition metal oxides lie

somewhere in the centre of the phase diagram, with approximate positions for the materials studied in this

thesis highlighted in blue. Adapted from Ref. [5].

Upon increasing the electron correlation, further exotic electronic and magnetic phases be-

come accessible. Notable examples include the Weyl semimetal (WSM) [6–11] and quantum

spin liquid (QSL) phases [12–16], each celebrated in their own right and a continuing source

of interest. In the middle of this phase diagram lie the spin-orbit coupled Mott insulators. Here

the spin-orbit coupling and Coulomb repulsion compete to such an extent that there is evidence

of a Mott-Hubbard insulating gap separating electronic states where spin-orbit coupling plays a

leading role.

In truth Fig. 1 is a bit of an oversimplification; for 5d TMOs the local crystalline environment

– with corresponding ligand field – and the Hund’s coupling also play an important role. This

means that 5d TMOs lie in a rich multidimensional phase space giving rise to a panoply of

electronic and magnetic ground states. Seemingly weak perturbations to the Hamiltonian such

as tetragonal or trigonal distortions of the crystal field can drive the system to a new paradigm

within this phase space.

A prime example of this complex interplay of interactions is the electronic and magnetic

behaviour of the perovskite iridates Sr2IrO4 and Sr3Ir2O7. Remember that in a conventional

band theory, one would expect these materials to be metallic as a consequence of the extended

and diffuse valence orbitals. The 4d TMO Sr2RhO4 has Fermi liquid character [17–20], however

bulk measurements on the isostructural Sr2IrO4 showed insulating behaviour all the way to 600 K

[20–23]. This seemingly anomalous result is a direct manifestation of competition between the
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aforementioned energy scales, and in particular, the strong intrinsic spin-orbit coupling.

The theoretical framework behind this competition was built rather recently [24, 25]; in the

meantime it has been used to explain the electronic and magnetic interactions in a number of

iridates and other d5 systems with significant spin-orbit coupling.

The jeff = 1/2 ground state

The starting point is the d-orbitals of a transition metal ion in a large octahedral crystal field. The

role of this crystal field is to lift the orbital degeneracy such that two manifolds of t2g and eg sym-

metry are formed. If the crystal field is sufficiently large, then the five d-electrons only populate

the three orbitals with t2g symmetry. This leaves a single hole in the t2g subspace, which has

an effective angular momentum Leff = −1: |Lz = 0〉 = |xy〉, |Lz = ±1〉 = − 1√
2

(i |xz〉 ± |yz〉).

Now consider the effect of spin-orbit coupling on the t2g states. In an intermediate coupling

scheme, the degenerate t2g manifold is separated into a jeff = 3
2 quartet and a jeff = 1

2 doublet.1.

The jeff = 3
2 states are fully occupied with four electrons, whereas the jeff states are half filled.

In the hole representation, the jeff = 1
2 state is the ground state (Figure 2a)

Spin-orbit coupling entangles the spin and orbital components of the microscopic wavefunc-

tion. What this means is that the jeff = 1
2 ground state wavefunction is in fact a superposition

of |Lz = 0〉 and |Lz = ±1〉 states. Furthermore, since the system has five d-electrons, Kramers

theorem (a consequence of time reversal invariance) is realised and hence the jeff = 1
2 state is

a Kramers doublet of states with mixed spin and orbital components. These can effectively be

treated as spin-up and spin-down states |jeff = 1
2 ;±〉, also referred to as isospins. In the limit of

ideal octahedral crystal symmetry, and for magnetic moments pointing along the local z-axis (in

the octahedral reference frame), the wavefunction of the jeff = 1
2 state can be written [24] as:

|jeff = 1
2 ;±〉 =

± |xy;±〉+ |yz;∓〉+ i |xz;∓〉√
3

; (1)

where ± indicates the spin polarisation, and the mixing of different spin and orbital components

is readily apparent.

The fact that the ground state wavefunction is pseudo-cubic in real space, plus has mixed

spin and orbital character, has important implications for the magnetic interactions in real sys-

tems. In particular, the role of anisotropic exchange is heavily dependent on the lattice geome-

try. Jackeli and Khaliullin [25] found that the exchange Hamiltonian for isospins situated on 180◦

TM–O–TM bonds contained both isotropic Heisenberg and weaker anisotropic pseudodipolar

contributions, the latter arising purely from Hund’s coupling. This contrasts with the case where

spin-orbit coupling is a weak perturbation of the Hamiltonian, and anisotropy arises from expan-

sion in powers of –. Conversely, for isospins located on 90◦ TM–O–TM bonds, it was found

that the isotropic Heisenberg part of the Hamiltonian exactly vanishes by symmetry, and only

the anisotropic part remains. Furthermore the form of the remaining exchange interaction is

dependent on the spatial orientation of the bond between the two isospins. For certain lattices

1From the Clebsch-Gordan series j = |l − s|; |l − s|+ 1; : : : ; l + s:
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Figure 2: (a): schematic of energy levels for Sr2IrO4 and Sr3Ir2O7, assuming a strong field scenario

∆oct > – > U. Spin-orbit coupling splits the t2g manifold into jeff = 3
2 and jeff = 1

2 states, the latter of

which is half-filled. A weak electron correlation U is sufficient to open up an insulating gap at the Fermi

level. The real space representation of the corresponding wavefunctions is also shown, with red/blue re-

flecting spin up/down contributions to the wavefunctions respectively. (b): RXMS data (red circles) and

fluorescence (black solid line) obtained by Kim et al. [26]. Reprinted with permission from AAAS. There

is a significant resonant enhancement at the L3 absorption edge compared to the L2 edge. (c): Optical

conductivity measurements by Moon et al. [27], which show transitions between the UHB and LHB (¸) and

from the jeff = 1
2 → jeff = 3

2 states (˛).

(honeycomb for example) this leads to extensive frustration, and can be directly mapped onto

the Kitaev model, a theoretical model for a quantum spin liquid state [28–31].

There is significant experimental evidence for the jeff = 1
2 state. Kim and colleagues [24],

carried out angle-resolved photoelectron spectroscopy (ARPES) and X-ray absorption spec-

troscopy (XAS) measurements on Sr2IrO4, in order to measure the electronic band structure,

and compared it with LDA+SO+U first-principles calculations. Their measurements revealed the

opening of a gap of approximately 400 meV at the Fermi level, which they suggested was due

a transition from a jeff = 1/2 lower Hubbard band (LHB) to an upper Hubbard band (UHB). This

coincides with an optical transition at ca. 0.5 eV observed by Moon et al. [27, 32] (Figure 2c).

In a later work Kim et al. [26] examined the ratio of the scattering intensities for the (1 0 22)

magnetic reflection at the iridium L2 and L3 edges using resonant magnetic X-ray scattering

(RXMS). They found that there was a large resonant enhancement at the L3 edge, but no ap-

preciable enhancement at the L2 edge (Fig. 2b). The magnetic signal from XRMS arises from

the off-diagonal terms of the scattering matrix [33] and proposed that Sr2IrO4 was thus an ex-

ample of a jeff = 1
2 system, since the L3 : L2 ratio should be statistically equal to 2 if spin-orbit

coupling is negligible.
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However, Moretti Sala and colleagues [34] have recently suggested that the L3 : L2 ratio

cannot be used as evidence for a jeff = 1
2 ground state in a system with arbitrary magnetic

moment directions in the ab-plane. They determined that the RXMS intensity at the L2 edge in

the ff−ı′ polarization channel is exactly zero, regardless of the tetragonal crystal field splitting

of the t2g states. Strictly speaking, the precise form of Equation 1 depends on the orientation

of the magnetic moments in the octahedral reference frame. Moreover, the pure jeff = 1
2 state

is only realised in the limit of an ideal octahedral environment. The addition of tetragonal or

trigonal distortion ∆ for instance changes the admixture of the orbital components and hence

the ground state wavefunction. For ∆ � –, the classical S = 1
2 limit is recovered and there is

no mixing in of the orbital component.

This competition between different energy scales is not limited to the case of jeff = 1
2 iri-

dates, but occurs for the entire series of 5d TMOs. One of the most intriguing cases is that

of the d3; S = 3
2 osmates. These materials have a half-filled t2g manifold, which should nom-

inally result in insulating behaviour as a consequence of the large Hund’s coupling term and

quenched orbital component to the magnetisation. However a number of osmates, including

Cd2Os2O7 and NaOsO3 undergo metal-insulator transitions (MITs) concomitant with the onset

of antiferromagnetic order. This is, at least in part, due to competition between Hund’s coupling

and the intrinsic spin-orbit coupling.

In Cd2Os2O7, the onset of antiferromagnetic order likely results in a change in topology of

the Fermi surface, also known as a Lifshitz transition. Such a transition is normally limited to

metals, but the intrinsic spin-orbit coupling plays a direct role in the formation of the insulating

state below TMI = TN. For NaOsO3, the magnetic, electronic and structural degrees of freedom

are coupled to such an extent that a 3D Slater MIT has been proposed by multiple authors.

The Slater MIT mechanism requires that the onset of antiferromagnetic order itself drives the

formation of an insulating gap below the Néel temperature.

The key concept that links all of the compounds studied in this thesis is the proximity of the

MIT, and its influence upon the observed antiferromagnetic ground state and spin wave excita-

tions. Furthermore these materials undergo MITs which depart significantly from a conventional

Mott-Heisenberg picture as a direct result of competition between a number of energy scales.

However there remain a number of outstanding questions. The first of these refers to the

precise nature of the MITs in Cd2Os2O7 and NaOsO3, which remain somewhat controversial.

This includes the role of spin-orbit coupling, and the effect that antiferromagnetic correlations

have within the respective MITs. The Slater transition is driven by the onset of antiferromagnetic

order, yet implicitly assumes a weak coupling scenario. This is somewhat at odds with a situation

where spin-orbit coupling is a relevant parameter in the electronic Hamiltonian.

The second is the dimensionality of the magnetic interactions in the perovskite iridates. It

has been shown [35, 36] that the spin wave dispersion is strongly anisotropic in Sr3Ir2O7, yet the

behaviour in Sr2IrO4 has been claimed [37, 38] to be isotropic. This contrasts with the prediction
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by Jackeli and Khaliullin [25] of a pseudodipolar anisotropic term Γ=J ≈ 0.04 for Sr2IrO4, which

would give rise to a spin gap.

In this thesis, I attempt to answer these questions through resonant X-ray scattering tech-

niques. Resonant X-ray scattering techniques lend themselves naturally to studies of 5d TMOs.

Reasons for this include typically small samples which make neutron scattering measurements

difficult, absorption edges that are sensitive to magnetic phenomena at easily accessible ener-

gies, and element and orbital specificity.

This thesis is divided into seven chapters. The first chapter introduces some theoretical back-

ground behind different mechanisms of metal-insulator transition, in particular those which are

directly influenced by the onset of antiferromagnetism. Examples of these are the eponymous

Slater and Lifshitz transitions. The effect of spin-orbit coupling on the magnetic and electronic

degrees of freedom of the Hamiltonian shall also be discussed.

In the first part of chapter 2 I present a brief introduction into the X-ray resonant scatter-

ing formalism. In the second part, the characteristics of resonant (in)elastic X-ray scattering

instruments will be discussed, focussing on two instruments at Diamond Light Source and the

Advanced Photon Source (APS) where some of the work presented in this thesis was carried

out. This concludes the theoretical aspects of the thesis.

Chapter 3–6 contain the main experimental results. These are in turn split into two sections:

studies of osmates and studies of perovskite iridates. In Chapter 3, I present results of two

sets of resonant inelastic X-ray scattering (RIXS) measurements on Cd2Os2O7 at the Os L3

edge. Low resolution RIXS measurements at the APS, combined with theoretical calculations

from collaborators, reveal a non-dispersive feature consistent with an unusual type of magnetic

excitation, which reflects an admixture of ∆S = 1,2,3 spin-flip excitations. High-resolution RIXS

measurements at the European Synchrotron Radiation Facility (ESRF) suggest however that

the feature is more indicative of the optical gap and the Lifshitz metal-insulator transition, albeit

with some evidence of more conventional ∆S = 1 magnons.

Chapter 4 explores the magnetic and orbital excitations in NaOsO3, which is proposed to

undergo a Slater transition. RIXS measurements well below the Néel temperature reveal well-

defined spin wave excitations, which have been modelled within a linear spin wave theory inter-

pretation. These measurements reveal a large anisotropy, which manifests due to the interplay

of single-ion, Dzyaloshinskii-Moriya and symmetric anisotropic exchange terms in the Hamil-

tonian. The temperature dependence of the RIXS spectra show an increase of high-energy

spectral weight with increasing temperature, which is directly related to the onset of metallic

and itinerant magnetic behaviour through the MIT. A potential model linking the behaviour in the

antiferromagnetic insulating phase and paramagnetic metallic phase is briefly outlined.

Chapters 5 and 6 look at perovskite iridates. Chapter 5 contains magnetic critical scatter-

ing measurements on Sr2IrO4 and Sr3Ir2O7 as probed by resonant magnetic X-ray scattering

(RXMS). For Sr2IrO4, significant magnetic in-plane correlations are observed well above the
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Néel temperature, which agree with previous measurements that imply isotropic 2D Heisen-

berg behaviour. However an extension to higher temperatures, coupled with a more rigorous

treatment of the data, shows that the observed behaviour is in fact characteristic of a system

with weak easy-plane anisotropy. Such an interpretation is quantitatively consistent with high-

resolution RIXS measurements and a number of theoretical studies, and differs strongly from

previous experimental conclusions. The magnetic critical scattering from the bilayer Sr3Ir2O7 is

more isotropic. Whilst the analysis is complicated somewhat by obvious rounding of the transi-

tion from antiferromagnetic to paramagnetic order, the magnetic interactions appear consistent

with three-dimensional behaviour. This highlights the impact of the significant interlayer interac-

tions present in Sr3Ir2O7 compared to Sr2IrO4.

The final experimental chapter 6 focuses on time-resolved resonant scattering performed at

X-ray free electron lasers (XFELs). These experiments include the first ever time-resolved RIXS

(tr-RIXS) measurements ever performed in the hard X-ray regime. Using a 620 meV mid-infrared

pump, it was possible to photo-dope a thin film of Sr2IrO4, induce a metal-insulator transition,

melt the long-ranged magnetic order and probe the recovery dynamics as a function of optical

delay and pump fluence. The two recovery timescales observed are characteristic of the mag-

nitude of the in-plane and out-of-plane magnetic correlations, with an upper limit of the decay

timescale set by the jitter of the XFEL. Furthermore there seems to be an effective mapping of

the transient behaviour in the photo-doped state to an equivalent level of bulk electron doping in

Sr2-xLaxIrO4.

The final chapter 7 briefly summarises the conclusions presented in this thesis and suggests

future developments in this field.



Chapter 1

Correlations and spin-orbit

coupling in 5d transition metal

oxides

The electronic and magnetic properties of transition metal oxides (TMOs) are principally gov-

erned by five competing energy scales: the electron correlation U, the electronic bandwidth

W , the crystal field environment (generalised as ∆), ferromagnetic Hund’s coupling JH, and the

spin-orbit coupling “. The relative magnitudes of some of these interactions are summarised in

Table 1.1.

As you go down the periodic table, the d-orbitals become more extended and diffuse

(Fig. 1.1). This is a consequence of the increased screening that the orbital experiences due

to the core electrons. As a result, there is increased probability that an electron can be found

on a neighbouring site, so the kinetic energy term of the Hamiltonian increases, and hence the

bandwidth W increases. Furthermore, since the orbitals are more diffuse, the correlation be-

tween different electrons decreases, so the electron correlation U decreases. Thus the ratio U=t

decreases, and systems are expected to be more metallic as you move down the periodic table.

1.1 Metal-insulator transitions

Normally one thinks of materials as either insulators, semiconductors, or metals, depending on

their electrical conductivity. Yet a number of materials undergo transitions between these seem-

ingly discrete states as a function of temperature, carrier doping, pressure, or other intensive

thermodynamic variables. These are collectively known as metal-insulator transitions (MITs),

and are a prominent feature of TMOs. A few types of MITs are detailed below.

36
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Figure 1.1: Radial distribution functions for nd -orbitals, where a0 is the Bohr radius. The orbitals become

more diffuse as you move down the group, with the number of radial nodes equal to n − (l + 1), where

l = 2 for a d -orbital.

U ∆O JH “

3d 6–7 1–1.5 0.8–0.9 0.05–0.1

4d 3–4 1.5–2 0.6-0.7 0.15–0.25

5d 1–2 2.5–3 0.5 0.4–0.5

Table 1.1: Approximate values (in electronvolts) for the typical energy scales found in transition metal

oxides. From left to right these are the electron correlation (Hubbard U), the crystal field splitting in an oc-

tahedral environment ∆O, the ferromagnetic Hund’s coupling JH and the single-electron spin-orbit coupling

parameter “.

1.1.1 Mott-Hubbard transitions

The electronic and magnetic properties of transition metal oxides (TMOs) are not described

adequately by an elementary tight-binding model; interactions between electrons must also be

considered. A model that has been successfully used to model 3d TMOs is the eponymous

single-band Hubbard model:1

H = t
X
〈i j〉;ff

“
c†iffcjff + h:c:

”
+ U

X
i

ni↑ni↓; (1.1)

where the number operator niff = c†iffciff, t is the hopping integral, and U indicates the energy

cost required to put two electrons on the same lattice site (a so-called doublon-hole pair). This

model describes the competition between the two terms of the Hamiltonian: the kinetic (first)

term wants to delocalise the electrons and create a conductor, whereas the interaction (second)

term wants to force electrons to remain on a given site, and hence create an insulator. The

conduction behaviour of a given system is partly determined by the relative strength of these

1Note that an exact solution for this Hamiltonian only exists in the one-dimensional case and at half-filling.
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two interactions, and the band filling n. At some given ratio of U=t, and at half-filling (n = 1),

we would expect a transition between metallic and insulating behaviour. This is indeed the

case, and a Mott-Hubbard metal-insulator transition (MIT) is observed when U=t ∼ 1. This

can also be understood in terms of the bandwidth W . The bandwidth is proportional to t and

the lattice coordination number z (W = 2zt at half-filling). Increasing the kinetic energy (and

hence the likelihood that electrons will hop to adjacent sites) increases the bandwidth, and at

some critical point the individual bands will start to overlap with each other and form a metallic

state. In the insulating state, antiferromagnetism arises naturally in the strong coupling limit

(U � t) by treating the hopping term as a perturbation to second order. This leads to an

effective Hamiltonian:

Heff = const. +
4t2

U

X
〈nn〉

Si · Sj ; (1.2)

with the second term clearly reminiscent of a Heisenberg nearest-neighbour exchange Hamilto-

nian with exchange constant J = 4t2=U. This is the basis for understanding the phenomenology

of 3d TMOs, where the spin-orbit interaction can be treated as a weak perturbation, and often,

neglected all together.

The MIT can often be tuned experimentally by varying either the ratio U=t, or the band filling

n. Applying pressure for instance will compress the lattice and hence move ions closer to each

other. Consequently the hopping probability will increase, and the ratio U=t will decrease. This

implies a tendency to metallic behaviour at high pressure, and is an example of a bandwidth-

controlled MIT. Conversely varying the filling number n through carrier doping for example can

also induce an MIT. This is what is known as a band-filling controlled MIT.

The former case is illustrated in Figure 1.2 for a system at half filling (n = 1). For non-

interacting electrons (U=t = 0) there is the simple case of a metallic band, filled up to the Fermi

level, which in the case of n = 1, lies in the middle of the band. As the correlations increase,

there is a change in the shape of the quasiparticle peak close to the Fermi level; spectral weight

is transferred to incoherent features at ±U=2. These will become the upper and lower Hubbard

bands. A coherent portion of the density of states remains at the Fermi level consisting of

well-defined quasiparticles. The width of the quasiparticle peak continues to decrease with

increasing U=t, until some critical correlation strength Uc . At this point no states remain at the

Fermi level and the system is insulating (Mott insulator).

In an ideal Hubbard model, the MIT is expected to be continuous. However in real materials

the MIT is often sharply discontinuous (first-order), and often accompanied by some form of

lattice distortion or the onset of antiferromagnetic order at the MIT. This can be explained, at least

in part, by the fact that the ideal Hubbard model neglects coupling of the correlated electrons to

the lattice. In this sense, it is frequently unclear whether the structural distortion is driven by the

MIT, or vice versa.
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Figure 1.2: Schematic of a Mott-Hubbard transition for a system at half-filling within dynamical mean-field

theory (DMFT). In the weak-coupling limit (U=t → 0), there is the simple case of a metallic band, filled

up to the Fermi level EF. As U increases, spectral weight shifts towards two bands below and above EF.

These are the lower and upper Hubbard bands (LHB/UHB). A quasiparticle peak remains at EF below

some critical ratio Uc=tc , with its width going to zero at the Mott-Hubbard transition.

1.1.2 Charge-transfer MIT

In the Mott insulator case presented in the previous section, only interactions between d elec-

trons have been considered. Yet in real materials the transition metal cations are coordinated to

intermediate ligands, whose valence p-orbitals have a finite interaction with the metal d-orbitals.

Instead of considering a hopping from one d-orbital to another, consider what happens when

an electron is transferred from the filled p-shell of the ligand to the metal site. This costs a

charge-transfer energy ∆, defined as ∆ = ›d − ›p + Udd , where ›p(d) is the energy of the p(d)

electron levels, and Udd is the correlation energy for the d-orbitals on the metal site. It can also

be defined [39] as the energy required to go from the initial configuration dnp6 to the excited

configuration dn+1p5. Such a model can also be formulated in terms of p and d holes, which

has proved useful for the cuprates.

The character of any insulator [40] is governed by the smallest electronic energy scale in

the system. In a Mott insulator, the Fermi level lies between the two Hubbard bands separated

by Udd , with the ligand p-levels well below the Fermi level. This case corresponds to the limit

Udd < ∆. Consider instead what happens when Udd > ∆, that is, the ligand p-levels lie above

the lower Hubbard band. In this case the most relevant excitation process involves the removal

of a p-electron from the ligand, which is then transferred to the upper Hubbard band. This

process creates a d-like quasiparticle and a p-hole, which are then free to propagate through

the lattice. A substance which exhibits such behaviour is known as a charge-transfer insulator.

In a broad sense Mott insulator behaviour is most prevalent for early period TMOs, whereas

charge-transfer insulator behaviour dominates for late period TMOs. For late period TMOs, the

attractive potential is larger due to the increased nuclear charge. This leads to a large electron

removal energy and hence reduced screening. There is relatively little difference in terms of the

magnetic properties, in that the predominant behaviour tends to be antiferromagnetic superex-

change, albeit with a slightly different mechanism where two holes are situated on the same

ligand site in the intermediate state. The differences between the two become most apparent
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however upon hole doping. In the Mott-Hubbard regime, these holes would move to the metal

site. However in the charge-transfer case, it is more favourable for the holes to be situated on a

ligand site, which has ramifications for the electronic and magnetic properties. Just as for a Mott

insulator, a metal-insulator transition can be induced through bandwidth or band-filling control.

An example is the charge-transfer MIT undergone by NdNiO3 as a function of applied pressure

[41].

The metal-insulator transitions discussed thus far explicitly consider strong electron correla-

tions U. The following examples of MITs are more relevant in the weak-coupling limit U → 0.

1.1.3 Lifshitz transition

Prelude

A Lifshitz transition [42–44] is also known as an electronic topological transition (ETT), and

is associated with a change of topology of the Fermi surface. Consider some arbitrary band

structure with a bandwidth W = "max − "min. This band structure can be conveniently explained

in terms of so-called equienergy surfaces: "(n)(p) = ", where p refers to crystal momentum and

n indexes the band number. For real materials, there is significant variation in the topology and

connectivity of equienergy surfaces as a function of " as a consequence of electron repulsion

and local electronic environment.

A change in topology occurs when " coincides with a maximum or minimum of the

equienergy surface "(p) at p = pc . If the longitudinal and two transverse effective masses

mi are all positive (electron carriers), then pc corresponds to a local minimum. The result-

ing equienergy surface is ellipsoidal, and hence an electron pocket is formed (bottom row of

Fig. 1.3). Conversely if the three effective masses are all negative (hole carriers), then pc is a

local maximum, and a hole pocket is formed. If however one of the effective masses differs in

sign from the other two, then equienergy surfaces exist for " < "c and " > "c . At one side of

"c , a ‘neck’ is formed near pc which has the shape of a hyperboloid with two sheets (top row of

Fig. 1.3).

These maxima or minima are associated with a singularity in the electron density of states

(DOS) per unit energy range �(›) (Van Hove singularities). In the case of a free electron gas,

�(›) is proportional to
√
›:

�(›) =

√
2

ı2

V

~3m
3=2√›; (1.3)

wherem=m1 =m2 =m3 since the Fermi surface is isotropic. This can be extended to ellipsoidal

constant energy surfaces in the vicinity of minima (› > ›0) or maxima (› < ›1):

�(›) =

8><>:
√

2
ı2

V
~3

p
m1m2m3 (›− ›0)1=2

; › > ›0
√

2
ı2

V
~3

p
m′1m

′
2m
′
3 (›1 − ›)1=2

; › < ›1:

(1.4)

It is clear this leads to a singularity of the type
√
›− ›k near to ›0; ›1. What this means is that

a new sheet of the constant energy surface (dis)appears for minima(maxima) above the critical
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Figure 1.3: Illustration of the two types of Lifshitz transition tuned by some external parameter g . The

top row depicts an open Fermi surface changing to a closed surface by disruption of a ‘neck’ (neck-

forming type), whereas the bottom row depicts splitting off of a new portion of Fermi surface (pocket

forming/vanishing type).

value ›k . Such an analysis can also be extended to the ‘neck disruption’ case presented earlier

with equivalent results.

Formation of Lifshitz transition

Now these singularities can occur anywhere within the band, and often they play little to no role

in the bulk electronic properties of the material. However if ›k lies close to the Fermi energy ›F ,

then it may be possible to observe the change in band topology through the tuning of some suit-

able parameter g . Experimentally one can do this via a number of techniques, which include:

application of external pressure [45], carrier doping [46], application of an external magnetic

field [47], and temperature [48]. A simple schematic of a temperature-induced Lifshitz transition

is given in Figure 1.4. At the point where ›k = ›F one can observe anomalies in the thermody-

namic and kinetic properties of the metal, as a consequence of the singularities in the density

of states �(›). Thermodynamic parameters which have been shown to be particularly sensitive

to a change in the topology of the Fermi surface include the resistivity, thermoelectric power,

thermal expansion coefficient and electronic specific heat.

It should be stressed at this point that the singularities in the DOS are defined precisely

at T = 0; at finite temperature they are smeared out as a consequence of the Fermi-Dirac

distribution of electrons. What this means is that a transition at finite temperature which shows

Lifshitz-like behaviour cannot be considered as a transition in the classical sense within Landau

theory2; it is more of a crossover between the two phases. Consequently the thermodynamic

anomalies which are well defined at T = 0 are less apparent at finite temperatures.

2However within the Ehrenfest terminology it can be considered as a “2 1
2 order” phase transition. This notation

arises because the second derivatives of the thermodynamic potentials have a vertical kink at ›F − ›k = 0, and the

third derivatives have a singularity ∼ (›F − ›k)−1=2 [42].
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Figure 1.4: Model band structure describing a Lifshitz MIT. The electronic bands are uniformly shifted apart

from each other with decreasing temperature, leading to the formation of an insulating gap. Here ∆D and

∆C refer to the direct (optical) and charge gaps respectively.

A true Lifshitz transition is an example of a quantum phase transition (QPT), with a quantum

critical point at T = 0 and g = gc (Fig. 1.5). For g > gc the system is in a so-called quantum

disordered regime, where well characterised quasiparticle excitations can be observed [49]. The

majority of Lifshitz transitions observed experimentally are metal-metal transitions; this makes

sense given that the original theory considers the case of non-interacting fermions. The pres-

ence of interactions, such as a Coulomb interaction U or spin-orbit coupling, would likely induce

some form of semi-metallic, or even insulating, behaviour. It has been shown [50–53] that the

Lifshitz transition can be driven weakly first order (at least in two dimensions) by the presence

of interactions V at zero temperature, with a corresponding discontinuity observable in the elec-

tronic specific heat for NaxCoO2 as a function of doping x . The first order jump is predicted to

decrease continuously with increasing temperature, eventually vanishing at some second-order

critical point (Tc ; Vc).

As an aside, rather than by tuning some external parameter, it is intriguing whether a Fermi

surface reconstruction can be driven by the variation of some interaction strength. There are

two possibilities: symmetry breaking transitions such as Pomeranchuk instabilities, and non-

symmetry breaking transitions. The latter case includes continuous Mott transitions, which

Yanagi [54] argues are simply Lifshitz transitions driven by the on-site Coulomb repulsion U

for the two-dimensional Hubbard model.

The key points to remember are that a true Lifshitz transition is a continuous change in

topology of the Fermi surface, and does not require any symmetry breaking. However it is

strictly defined at T = 0 for the non-interacting case; transitions at finite temperature exhibit

crossover behaviour, and may even be driven weakly first-order by the presence of interactions.

1.1.4 Slater transition

In contrast to a Mott transition, where variation of the bandwidth or filling parameter drives the

MIT, Slater [55] argued that in certain cases, the onset of antiferromagnetic order may be suffi-

cient to open up an insulating gap. The argument goes as follows. Imagine a one-dimensional

system which can be divided into two interpenetrating sublattices. It is assumed that each site
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Figure 1.5: Phase diagram of a general quantum phase transition (QPT). At T = 0, a Lifshitz transition

falls under these auspices. Dashed lines indicate crossovers between phases, since singularities in the

electronic density of states are only infinite at T = 0. Solid blue line indicates proximity of certain 5d TMOs

to the quantum critical point at g = gc and T = 0.

is at half-filling, and the sites are sufficiently far apart such that there is minimal interaction be-

tween sites (U → 0). This latter point is the main distinction from the model examined earlier for

the Mott transition. The spin-orbit interaction is also neglected in the first instance. Since spin-up

and spin-down electrons mutually repel due to the Coulomb interaction, the two species of elec-

trons arrange themselves on alternating lattice sites in order to minimize their interaction energy.

Thus they form a spin-density wave (SDW) commensurate with the lattice. As a consequence

the volume of the Brillouin zone is reduced by a factor of two, and the initial band is separated

into two sub-bands at the zone boundary by the periodic potential between neighbouring ions.

This results in insulating behaviour.

At finite temperatures (but still below the Néel temperature TN), the two sublattices are par-

tially disordered, but importantly, the electrons remain localised on each site. Consequently the

charge gap decreases due to the reduction of the periodic potential. At the Néel temperature,

long-ranged magnetic order disappears, and hence so does the periodic potential driving the

insulating state. The system is now metallic and paramagnetic. Des Cloizeaux [56] derived an

expression for the magnitude of the charge gap ›g as a function of temperature which mirrors

that obtained from the BCS theory of superconductivity:

›cZ
0

tanh
“
˛
2

q
›2 + ›2

g

”
q
›2 + ›2

g

d› =
›c
g
:

The variables ›c and g are related to the bandwidth and Coulomb interaction between electrons

respectively, and ˛ = 1=kT . If one assumes that the charge gap goes to zero at the metal-

insulator transition temperature TMI, and that the system lies within the weak coupling regime,

then the temperature dependence of the charge gap is given by [57]:

›g (T )

›g (0)
= tanh

»
TMI

T

›g (T )

›g (0)

–
: (1.5)
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This model for a 1D Slater insulator contrasts with that required for a Peierls transition in that

there is no structural distortion required for the MIT to occur.3 Furthermore the Slater transition

is continuous, as a consequence of the charge gap depending on the degree of magnetic order.

The interpretation for the 1D Slater insulator can readily be extended to three dimensions, how-

ever Fermi surface nesting – which is a requirement for the MIT to occur – is much less prevalent

[40]. Consequently there are few examples of these materials experimentally. However it shall

be shown later in this thesis that there are some 5d TMOs which exhibit behaviour reminiscent

of a Slater MIT.

1.2 Crystalline environment

The electronic and magnetic behaviour of transition metal oxides is directly linked to the local

chemical environment of the transition metal ion. Thus far the discussion has been restricted to

the electron repulsion U and the bandwidth W ∝ t, and their role for a MIT. However there are

other contributions to the electronic Hamiltonian which play a considerable role for 5d TMOs,

starting with the crystal field interaction.

In a free atom, the five d orbitals are degenerate since the energy of these orbitals is directly

related to the effective nuclear charge Zeff that they experience: En;l = −hcR∞Z2
eff=n

2. The

shape of any particular d-orbital (l = 2) is related to a linear combination of spherical harmonics,

along with (n−3) radial nodes, where n is the principal quantum number. Ionising said atom and

placing it in a spherically symmetric Coulomb potential raises the energy of all of the d-orbitals

equally due to Coulomb repulsion.

Now consider what happens when that ion is placed in a molecular complex with non-

spherical symmetry, for instance the octahedral MO6 (symmetry Oh). For simplicity a Cartesian

coordinate system is assumed. The d-orbitals on the metal site have a finite overlap with the va-

lence 2p orbitals on the oxygen sites. The ligand p-orbitals point along the Cartesian axes px,y,z.

Consequently p–d overlap (and therefore repulsion) is highest for those d-orbitals with lobes

which also point along the Cartesian axes. These are the dx2−y2 and dz2 orbitals, which results

in these orbitals having a higher energy compared to the spherical case. On the other hand,

the lobes of the other three d orbitals (dxy, dyz, dxz) point between the metal-ligand bonds. This

leads to a reduced overlap, and effective stabilisation of the orbital compared to the spherical

case.

What this means is that there is a splitting of the d-levels with respect to the free ion: a

triply degenerate level and a doubly degenerate level higher in energy. From group theoretical

arguments these levels are indexed as t2g and eg respectively, with the separation between

them known as the octahedral crystal field splitting parameter. Qualitatively this analysis can be

extended to any arbitrary symmetry by considering the irreducible representations of the metal

d-orbitals for the relevant point group.

3In a Peierls transition, insulating behaviour is driven by dimerization of the lattice due to electron-lattice interactions.



Chapter 1. Correlations and spin-orbit coupling in 5d transition metal oxides 45

1.2.1 Crystal field theory

Quantitative estimates of the orbital energies can also be made by making various approxima-

tions. The simplest treats the central metal ion and the surrounding ligands as point charges,

and assumes purely Coulombic interactions. A detailed derivation is given in Hutchings [58],

however briefly the argument goes as follows.4 One can construct matrix elements of the form

〈lm|VCF|lm′〉, where VCF is the crystal field potential operating on some state |lm〉. If these

states are quantised along the fourfold symmetry axis, then the octahedral crystal field matrix is

given by:

Hoct =

266666664

Dq 0 0 0 5Dq

0 −4Dq 0 0 0

0 0 6Dq 0 0

0 0 0 −4Dq 0

5Dq 0 0 0 Dq

377777775
(1.6)

Diagonalising this matrix5 one finds two sets of eigenvalues and eigenvectors: a triply degener-

ate set with energy−4Dq, and a doubly degenerate set with energy 6Dq. These are equivalent

to the t2g and eg states referred to earlier. Hence the separation between the t2g and eg levels

in an octahedral crystal field is given by ∆CF = 10Dq.

This treatment can be extended to any arbitrary symmetry, however the most applicable in

this thesis are weak tetragonal (D4h) and trigonal (D3d ) distortions away from an ideal octahedral

environment. It should be emphasised at this point that we are considering weak perturbations;

this will become especially apparent in the trigonal case. The reader is referred to the discussion

by Perumareddi [59].

Tetragonal (D4h) distortions

Consider the effect of an axial distortion along the z-axis for an octahedral complex. In our case

the apical M–O bonds are elongated with respect to the equatorial bonds. Due to the increased

M–O distance, the overlap (and therefore repulsion) in the z-direction is reduced compared

to that in the basal plane. What this means is that those orbitals with components in the z-

direction are stabilised, and hence have a lower energy. The distortion can be parametrised by

two additional terms:

Ds =
2
7
Ze2 ˙r2¸ » 1

a3 −
1
b3

–
(1.8)

Dt =
2
7
Ze2 ˙r4¸ » 1

a5 −
1
b5

–
: (1.9)

4Note that the Russell-Saunders L–S limit is implicitly assumed.
5The widespread notation Dq is in fact a product of D and q:

∗ E(eg )− E(t2g ) = 10Dq =
35Ze2

4a5

2
105

˙
r4
¸
nd
: (1.7)

The parameterD refers to the strength of the main component of the crystal field, while q arises from the ratio of certain

matrix elements. In the above expression, 〈r¸〉nd =
R
r¸r2 |Rnd (r)|2 dr is the mean distance of the d-electron from

the nucleus to the ¸th power. The parameter a is the metal-ligand distance.
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Figure 1.6: Schematic of crystal field splittings obtained for various symmetry environments, in the ab-

sence of correlation effects or spin-orbit coupling. Tetragonal (D4h) and trigonal (D3d ) distortions are

assumed as weak perturbations from the octahedral case. The tetragonal and trigonal energy levels

as drawn are appropriate for axial elongation along the z-axis or local three-fold symmetry axis re-

spectively. The term ‚ arises from the contribution of off-diagonal parameters, and is defined [60] as

‚ = 300Dq2 − 20Dq(3Dff − 5Dfi)− 3(3Dff − 5Dfi)2.

Here a is the in-plane metal-ligand distance, and b is the metal-ligand distance along the axial

z-direction. Notably Ds and Dt are positive for an elongated octahedron, and negative for a

compressed octahedron. One can then construct the crystal field matrix analogously to the

cubic case, simply by summing the octahedral and tetragonal matrix elements:

Htet =

266666664

Dq+2Ds−Dt 0 0 0 5Dq

0 −4Dq−Ds+4Dt 0 0 0

0 0 6Dq−2Ds−6Dt 0 0

0 0 0 −4Dq−Ds+4Dt 0

5Dq 0 0 0 Dq+2Ds−Dt

377777775
(1.10)

Trigonal (D3d ) distortions

In a similar fashion, one can perform a distortion along the local three-fold symmetry axis. This

is known as a trigonal distortion. Consider the weak-field case, in which the trigonal distortion

is much smaller than the octahedral distortion (∆O � ∆trig). If the trigonal axis is chosen as the

axis of quantisation, then:

Htrig =

266666664

− 2
3Dq+2Dff−Dfi 0 0 − 10

√
2

3 Dq 0

0 8
3Dq−Dff+4Dfi 0 0 10

√
2

3 Dq

0 0 −4Dq−2Dff−6Dfi 0 0

− 10
√

2
3 Dq 0 0 8

3Dq−Dff+4Dfi 0

0 10
√

2
3 Dq 0 0 − 2

3Dq+2Dff−Dfi

377777775
(1.11)

The parameters Dff and Dfi are defined analogously to the tetragonal parameters Ds and Dt.

A summary of all the energy levels obtained upon diagonalising these crystal field matrices

is plotted in Fig. 1.6.
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1.2.2 Molecular orbital theory

However crystal field theory considers both the TM ion and the coordinating ligands as point

charges – the ionic limit. In reality the atomic orbitals (AOs) of the transition metal ion and the

ligand interact with each other and mix. This can be described within a molecular orbital theory.

Consider a perfect octahedral ligand environment (Oh point group). Within the Oh point

group, certain orbitals transform as the representations listed in Table 1.2. Orbitals with the

same symmetry mix and repel each other. Two sets of molecular orbitals (MOs) are formed:

bonding MOs when the AOs overlap in phase, and anti-bonding MOs, where the AOs overlap

out of phase. If the overlapping AOs are oriented parallel to the metal-ligand bond, then this is

known as ff-bonding, whereas if the overlapping AOs are oriented perpendicular to the metal-

ligand bond, then this is known as ı-bonding.

TM orbital Γi Ligand orbital Γi

5d t2g ⊕ eg O 2p (ff-bonding) a1g ⊕ eg ⊕ t1u
6s a1g O 2p (ı-bonding) t2g ⊕ t1u
6p t1u O 2p (non-bonding) t1g ⊕ t2u

Table 1.2: Symmetry of orbitals for a MO6 octahedral complex as obtained from a group theoretical analy-

sis.

Since the 5d orbitals with eg symmetry on the TM cation (dx2−y2 and dz2 ) point directly at the

ligands, there is a strong overlap – and hence hybridisation – with the ligand 2p-orbitals. This

leads to the occupied bonding (predominantly O 2p character) MO being pushed downwards

in energy, and unoccupied anti-bonding (predominantly TM 5d character) MO pushed upwards

in energy relative to the respective AO. There is a similar effect for orbitals with t2g symmetry

(dxy, dyz and dxz); however since these orbitals point between the O 2p ligands, there is reduced

overlap and hence reduced hybridisation. What this means is the effective octahedral crystal

field splitting ∆O is increased within a molecular orbital picture compared to crystal field theory

as a result of electron repulsion.

1.2.3 Ligand field theory

Whilst crystal field theory does reproduce a number of the features observed in ultraviolet-visible

spectroscopy of 3d1 TMO complexes for example, the method does not work as well for many-

electron ions. This is because orbital overlap between the metal and ligand ions is neglected,

as is the effect of electron-electron repulsion. Similarly molecular orbital theory is frequently

unsatisfactory due to its complexity, and the fact that it is more suited to neutral molecules – the

covalent limit.

Real TMOs are intermediate between these two extremes. Consequently ligand field theory

has been developed, which is predominantly based on crystal field theory, but takes electron-
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Figure 1.7: Molecular orbital (MO) diagram of a 5d TMO cation octahedrally coordinated to six oxygen

ligands. The MOs are hybridised, and have character arising both from the transition metal and ligand

atomic orbitals. Adapted from Katukuri [61].

electron repulsion into account. Such a theory has worked very well for 3d TMOs in particular.

A concise description follows.

Consider a d2 complex in a strong octahedral crystal field. We already know that the d-

electron manifold is split into two sets of levels with t2g and eg symmetry. It follows that the

d-electrons be configured as: t2
2g , t2geg or e2

g , each separated in energy by 10Dq. However

the Pauli exclusion principle forbids two electrons with the same spin state to occupy the same

orbital. To first order in a perturbation theory, electron-electron repulsion splits the t2
2g level

into four terms. Group theory predicts that the nine-dimensional representation t2g ⊗ t2g can

be reduced6 into four irreducible representations: t2g ⊗ t2g = 1a1g ⊕ 1eg ⊕ 3t1g ⊕ 1t2g . Each

term is associated with an appropriate many-electron wavefunction. Consequently to calculate

the effect of Coulomb repulsion, one calculates matrix elements such as 〈t2
2g

1a1g |H|t2
2g

1a1g 〉

for each of the symmetry-allowed terms. These simplify into combinations of the Coulomb and

exchange two-electron integrals, and the process can be extended to the t2geg and e2
g levels.

By making the approximation that the t2g and eg many-electron wavefunctions have pure

d-character – or in other words, weak hybridisation – then the two-electron integrals can be

6The direct product of the representations Γ1 and Γ2 is a representation whose basis consists of the products

’(Γ1‚1)’(Γ2‚2) [62].
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reduced into three semi-empirical parameters. Depending on the notation used, these can be

given as combinations of the related Slater-Condon parameters F0, F2, F4 or Racah parameters

A, B, and C. In this thesis, the Racah parameters shall be used as they are more frequently

used in spectroscopy. The parameter A is an average of the total interelectronic repulsion; it can

be neglected if we are only interested in the separation between levels.

One complication is that terms with the same symmetry can mix and mutually repel one

another. This is known as configuration mixing, and results in a shift of the energy levels com-

pared to the case with non-repeating terms. Hence in order to accurately calculate the energy

levels for a given term, one has to solve the complete set of secular equations containing the

interaction between the different states.

A key assumption has been made in the simplification of the two-electron integrals into

Racah (Slater-Condon) parameters: that the t2g and eg many-electron wavefunctions have pure

d-character, i. e. weak hybridisation. Whilst this assumption works well for the localised d-

orbitals in 3d TMOs, it is likely not as successful for more itinerant 5d TMOs. This is a limitation

of the model.

1.3 Hund’s coupling (JH)

In the limit of weak spin-orbit coupling, the electronic ground state of a system can be conve-

niently determined through the use of Hund’s rules. These three simple rules have in fact been

utilised previously in this chapter, yet not explicitly referred to. The first of these states that for a

given shell, those electronic configurations which maximise the total spin S lie lowest in energy,

provided that they are consistent with the Pauli exclusion principle. This can be understood

simply in terms of Coulomb repulsion: electrons with parallel spins will want to be situated in

different orbitals, hence minimising Coulomb repulsion and lowering the overall energy of the

system. An alternative way of phrasing this is that there an energy cost associated with putting

two electrons in the same orbital, which is parameterised by the Hund’s coupling JH. Assuming a

spherically symmetric interaction, and t2g wavefunctions obtained from crystal field theory, then

JH can be expressed7 in terms of the Racah parameters: JH = 3B + C.

Consider two isolated transition metal atoms, and in particular, what happens when one

electron is transferred from one to the other. Assume that the ground state has the maximum

value of Sz , as required by Hund’s rules. Furthermore assume all electrons are located in the

t2g manifold, with large separation from the empty eg manifold. This corresponds to a low-spin

electronic configuration applicable for 5d transition metal oxides. For systems at less than half

filling, the ground state energy only involves the pairwise interactions between parallel spins.

Filling all the orbitals with parallel spins lowers the total energy of the system. Consequently the

7There is a technicality which should be addressed [63]. There is a difference in definition of the Hund’s coupling

depending on whether a single t2g manifold or the entire d-shell is considered [64]. For an entire d-shell, it is customary

to define the Hund’s coupling JdH = 1
10 (35B + 14C), along with an additional parameter Cd = 9B=2. The two

definitions for the Hund’s coupling are related by the expression JH = 5JdH=7 + Cd=9.
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effective Hubbard interaction Ueff = U − 3JH is reduced compared to the case of zero Hund’s

coupling. Similar behaviour occurs for systems at more than half filling as a consequence of

particle-hole symmetry.

The situation is quite different for the case of exactly half filling
`
t3

2g

´
. The excited state`

t4
2g

´
involves one doubly-occupied orbital; hence its energy is pushed up with respect to the

ground state. The conclusion is that for systems at half filling, Ueff = U + 2JH is enhanced

with the inclusion of a finite Hund’s term. In practice this means that only a small Hubbard U

term is necessary to open up an insulating gap in t3
2g transition metal oxides (in the absence of

spin-orbit coupling).

1.4 Spin-orbit coupling (SOC)

Spin-orbit coupling is another important energy scale for 5d TMOs. For a single-electron atom,

the effect of spin-orbit coupling is to couple the spin and angular momenta (~s and~l respectively)

of a given electron into a total angular momentum~j =~l+~s. The relativistic spin-orbit interaction

is governed by the Hamiltonian HSO =
P

i “i
~li · ~si , where the sum runs over all electrons.

For a many-electron atom one obtains the total angular momentum ~J, not~j. There are two

limiting coupling schemes: Russell-Saunders (L–S) coupling, and j j coupling. Within Russell-

Saunders coupling, the total spin ~S and total orbital momentum ~L are determined from the

sum of the individual spin and orbital momenta: ~S =
P

i ~si and ~L =
P

i
~li . These are then

summed together to form ~J = ~L + ~S. For j j coupling, the spin-orbit interaction is deemed to be

stronger than spin-spin or orbital-orbital couplings. Consequently for a single electron ~ji = ~li+~si .

These total angular momenta ~ji are then summed to obtain the atomic total angular momentum

~J =
P

i
~ji .

Generally speaking Russell-Saunders coupling is appropriate for systems with weak spin-

orbit coupling, whereas j j-coupling is more applicable for systems with large spin-orbit cou-

pling.8 An oft-quoted statement is that the spin-orbit coupling scales with Z4, where Z is the

nuclear charge:

“nl =
¸2R∞Z

4

n3l
`
l + 1

2

´
(l + 1)

; (1.12)

where ¸ is the fine structure constant, R∞ is the Rydberg constant, n is the principal quan-

tum number, and l the orbital angular momentum quantum number. Strictly speaking this is

only the case for a single-electron atom of nuclear charge Z with hydrogenic orbitals. For

many-electron atoms the appropriate spin-orbit operator in the Russell-Saunders scheme is

given by HSO = –~L · ~S. The two spin-orbit coupling parameters are related by the expression

– = ±“nl=2S, with – positive if the valence shell is less than half-full, and negative if the valence

8The crossover between the schemes is approximately when the spin-orbit coupling is of similar magnitude to the

interelectronic repulsion. The electronic behaviour of a number of materials however can be explained in terms of an

intermediate coupling scheme, which has characteristics of both Russell-Saunders and j j-coupling. This is somewhat

complex, so the present discussion is limited to the two limiting cases.



Chapter 1. Correlations and spin-orbit coupling in 5d transition metal oxides 51

shell is more than half full (Hund’s third rule). Consequently atoms of the same type, but in

different valence states, will have different values of –. The role of SOC both for the electronic

and magnetic behaviour of 5d TMOs shall now be examined.

1.4.1 Effect of SOC on electronic behaviour

As previously discussed, the role of spin-orbit coupling is to entangle the spin and orbital com-

ponents of the angular momentum of an electron. Depending on the strength of this interaction

compared to the inter-electronic repulsion (parameterised by Racah parameters), SOC acts ei-

ther as a perturbation of the electronic energy levels – leading to fine structure – or is a leading

contribution to the electronic Hamiltonian.

Russell-Saunders limit

It is instructive to start with the case of zero SOC for an isolated atom.9 For a free-ion (SO3

symmetry), the d-orbitals are degenerate. Electron-electron repulsion breaks the degeneracy

of the d-orbitals, and leads to the formation of free-ion terms 2S+1L characterised by the angular

momenta of the electrons within that term. The ordering and ground state of the free-ion terms

are determined by Hund’s rules. Each term has a total degeneracy of L × S. Inclusion of

SOC breaks this degeneracy such that they are split into levels 2S+1LJ , with their order again

determined by Hund’s rules.

Incorporation into a crystalline lattice gives rise to a crystal field interaction as discussed

earlier. It is assumed that the crystal field interaction is stronger than the spin-orbit coupling,

which holds true for the materials studied in this thesis. In the weak field limit Eee > ECF > ESO,

where Eee refers to the inter-electronic repulsion. The effect of the crystal field is to branch

the free-ion terms with SO3 symmetry into the corresponding irreducible representations of the

point group for the crystal field. These new terms are then split by the spin-orbit interaction.

Although the discussion thus far has focussed on the weak field limit, it is equally applicable to

the strong field limit where ECF > Eee. Spin-orbit coupling simply acts as a perturbation to the

symmetry-adapted terms.

jj-coupling

In the j j-coupling limit however, the inter-electron repulsion is weaker than spin-orbit coupling.

The energy levels of the free-ion are not described by term symbols 2S+1LJ , but instead by

levels (j1; j2; : : : jn)J , where jn is the total angular momentum of one of the electrons. Each of

these levels can be directly related to states in the Russell-Saunders limit
`

2S+1LJ
´
, since the

number of available states is independent of the coupling scheme used.

Assuming that the crystal field is smaller than the spin-orbit coupling, then one can treat it

using the eponymous Stevens parameters Oml . Within this treatment the crystal field (operator

9This corresponds to the weak crystal field limit.
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equivalent) Hamiltonian is given by HCF =
P

lm B
m
l O

m
l , with Bml parameters either obtained

from experiment or determined within a point-charge model. Fortunately the number of these

parameters is strongly restricted by symmetry arguments.10

5d TMOs

However for iridates and osmates, the crystal field (∼ 4 eV) is much stronger than both the spin

orbit coupling (“ ∼ 0.5 eV) and the electron-electron repulsion (B, C ∼ 0.1–0.2 eV). Conse-

quently neither Russell-Saunders or j j-coupling is strictly correct. A more appropriate model is

to start from the t2g and eg states of the d-electron manifold. Depending on the magnitude of

– = ±“=2S, then one either applies spin-orbit coupling or electron-electron repulsion as the next

perturbation to the Hamiltonian. The remaining interaction then acts as a further perturbation.

Take the t2g manifold as an example. If – > B and C, then to first order the t2g states

are split into a jeff = 1
2 doublet and jeff = 3

2 quartet. Electron repulsion then acts to perturb

these levels. If electron-electron repulsion is dominant instead, then the t2g states are split into

a series of terms 2S+1Γ, which depend on the electron occupation of the manifold. Spin-orbit

coupling then either splits, mixes, or perturbs these states depending on how the direct product

of the term and the spin-orbit operator transforms.

1.4.2 Effect of SOC on the magnetic Hamiltonian

Spin-orbit coupling also has an important effect on the magnetic Hamiltonian. Magnetic inter-

actions in 5d transition metal oxides are mainly governed by superexchange between transition

metal cations mediated by the 2p orbitals on a mutually neighbouring oxygen atom. The mech-

anism is similar to that relevant for 3d TMOs. Anisotropy of these interactions arises as a result

of spin-orbit coupling. The reason for this is as follows [65]. In a purely Heisenberg interaction

picture, the interactions are isotropic (H = J
P

Si ·Sj ). The local spin directions have nothing to

do with the orientation of the spins within the lattice. Only through coupling to the orbital moment

L does the spin orientation align with the lattice.

There are two microscopic methods of magnetic anisotropy: single-ion anisotropy (SIA),

and exchange anisotropy. The latter is divided into symmetric and antisymmetric contributions,

frequently known as symmetric anisotropic exchange and the Dzyaloshinskii-Moriya (DM) inter-

action respectively. These methods shall be discussed in turn, with their relative magnitudes

outlined in Table 1.3.

Exchange anisotropy

In the absence of spin-orbit coupling the Heisenberg exchange term J
P

Si · Sj is the scalar

product of two vectors. However in general the interaction parameter J is not a scalar, but in fact

10As an example, the cubic crystal field Hamiltonian is given byHc = B0
4

ˆ
O0

4 + 5O4
4

˜
+B0

6

ˆ
O0

6 − 21O4
6

˜
, with the

Stevens operators and Bml parameters tabulated in [58].
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Source Scaling NaOsO3 (meV)

Single-ion anisotropy K ∼ –2

‹E
8.0

Dzyaloshinskii-Moriya (DM) D ∼ –
‹E
J 1.0

Exchange anisotropy ‹J ∼
`
–
‹E

´2
J 0.05

Table 1.3: Approximate scaling of various sources of anisotropy (Refs. [66] and [65]), assuming a d3

electronic configuration and uniaxial anisotropy. The relative magnitudes for these sources have been

estimated using suitable parameters for NaOsO3: – = “=3 = 0.172 eV, ‹E = 3.7 eV, J = 21 meV (see

Chapter 4).

a 3×3 tensor J̄¸˛, where the indices ¸; ˛ = {x; y ; z}. If this tensor is diagonal and J¸˛ = J‹¸˛,

then one returns to the Heisenberg exchange interaction. In general however it may contain

both symmetric and antisymmetric exchange terms off the leading diagonal.

Symmetric exchange anisotropy

The symmetric exchange11 terms are given by J(s)
¸˛ = J

(s)
˛¸, and can always be diagonalised.

The precise form of the diagonal components is dependent on the crystal symmetry, but as an

example consider the tetragonal case, with a distortion along the local z-axis: Hi j =
P

i j J‖S
z
i S

z
j

+ J⊥

“
Sxi S

x
j + Syi S

y
j

”
. The two parameters J‖ and J⊥ reflect exchange coupling along or per-

pendicular to the distortion direction respectively. In the case of an orbital singlet, the difference

between J‖ and J⊥ can be estimated as ‹J ∼ J (–=‹E)2 ∼ J (‹g=g)2. For partially occupied

t2g orbitals, the non-zero orbital component to the magnetisation increases results in increased

spin-orbit coupling and hence increased anisotropy. For the case that – ∼ ‹E, perturbation

theory breaks down and the anisotropy is directly governed by –.

Dzyaloshinskii-Moriya interaction

The antisymmetric exchange contribution can be written as Hi j = Di j · Si × Sj , where Di j is

known as the Dzyaloshinskii-Moriya (DM) vector. In contrast to Heisenberg exchange, which

favours collinear spins (as demonstrated by the dot product), the antisymmetric exchange term

prefers spin canting parallel with the DM vector Di j .

Moriya [66] formulated a set of rules which govern the direction of the DM vector – and

whether it is non-zero – for a given bond. These rules are derived from a symmetry analysis,

however they do not tell us about the magnitude, or more importantly, the sign of the DM vec-

tor. One example which shall be shown to be relevant later is the case of a nearest-neighbour

Heisenberg antiferromagnet on the pyrochlore lattice with DM interaction. Different antiferro-

magnetic ground states arise for different signs of the DM vector. Expansion within a perturba-

tion theory leads to the estimate that |d| ∼ J (–=‹E) ∼ J (‹g=g), which indicates that it should

be significantly stronger than the symmetric exchange anisotropy (when present).

11Symmetric exchange is also known as a pseudodipolar interaction [66, 67], and the two notations are used inter-

changeably in the literature.
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Single-ion anisotropy

One more important source of anisotropy remains, which is single-ion anisotropy. Single-ion

anisotropy is characteristic of the local crystal field environment of the metal cation. The single-

ion anisotropy term HSIA in the Hamiltonian is given by HSIA =
P

i Si · D̄ · Si , where

D̄ =

0BBB@
Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

1CCCA (1.13)

is a second-rank tensor. The coordinate system that diagonalises D̄ is called the magnetic

axis frame [68]. Transforming the initial coordinates into this new reference frame gives the

transformation matrix and zero-field splitting (ZFS) components:

D̄mag =

0BBB@
DXX 0 0

0 DYY 0

0 0 DZZ:

1CCCA (1.14)

In this reference frame z is defined as the highest symmetry axis. Consequently HSIA becomes

HSIA =
X
i

DS2
z + E

`
S2

x − S2
y

´
; (1.15)

where D and E are the axial and rhombic components to the zero field splitting respectively, and

defined by: D = DZZ − 1
2 (DXX +DYY), E = 1

2 (DXX −DYY). E is known as the rhombic split-

ting parameter because it vanishes for systems where the highest symmetry axis is threefold

or higher. If D is negative, then it corresponds to the easy axis of magnetisation. However the

single-ion anisotropy vanishes12 for S = 1
2 materials. This conclusion arises simply by consid-

eration of the spin operators S¸ in terms of the Pauli matrices: S¸ = Sff¸, where ¸ = {x; y ; z}.

Now given that single-ion anisotropy involves – as its name suggests – one site rather than

two, that it would have a larger magnitude than exchange anisotropy (symmetric and antisym-

metric). This is indeed the case. Assuming uniaxial anisotropy and an orbital singlet ground

state (and hence E = 0), then D scales approximately as D ∼ –2=‹E ∼ (‹g=g)2
‹E.

1.5 Outlook

What the present discussion has shown is that the electronic and magnetic interactions in 5d

TMOs are reliant on the interplay of a series of energy scales, including spin-orbit coupling. Two

sets of materials shall be studied within this thesis: the d5, jeff = 1
2 iridates, and the d3, S = 3

2

osmates. In both sets of materials, the octahedral crystal field splitting 10Dq is expected to be

the dominant energy scale. The differences in behaviour between the iridates and osmates is

12There is some debate whether this is indeed the case; DFT calculations suggest that for most S = 1
2 materials,

there should be some degree of single-ion anisotropy [69]. The original assumption that the magnetic ions are treated

as spin-only moments, with the unquenched orbital moments included in anisotropic g-factors may not be entirely valid.

Only in the ideal octahedral case does single-ion anisotropy completely vanish.
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primarily governed by the relative magnitudes of the other microscopic parameters discussed

thus far.

The iridates Sr2IrO4 and Sr3Ir2O7 are characterised by strong spin-orbit coupling in the elec-

tronic ground state, with insulating behaviour resulting from the perturbative effect of a weak

Coulomb term. These insulating states are relatively robust, with metal-insulator transitions

driven by carrier doping in both cases. The entangled nature of the jeff = 1
2 state leads to in-

trinsic anisotropic exchange terms in the Hamiltonian, which in the case of 180◦ Ir–O–Ir bonds,

arise purely from Hund’s coupling [25]. This contrasts with the conventional situation where

anisotropy results from the spin-orbit coupling.

The osmates Cd2Os2O7 and NaOsO3 on the other hand are nominally orbital singlets; spin-

orbit coupling is thus expected to play a reduced role in the electronic and magnetic Hamiltonian

compared to the iridates. The osmates lie in an intermediate regime where the spin-orbit inter-

action competes with the Hund’s coupling; this has important ramifications for the mechanism

of the MIT. Bulk measurements have shown that these materials undergo continuous MITs con-

comitant with the onset of long-ranged antiferromagnetic order.

The aim is to understand the role of spin-orbit coupling in determining the electronic and

magnetic interactions within these materials. Resonant X-ray scattering techniques are espe-

cially sensitive microscopic probes of the collective behaviour of transition metal oxides. The

following chapter shall examine some characteristics of resonant X-ray scattering, along with

some details pertaining to its implementation.



Chapter 2

Resonant X-ray scattering

This chapter details the use and characteristics of resonant X-ray scattering techniques, both

elastic and inelastic. Resonant X-ray scattering has proven itself as a unrivalled tool for the

study of electronic and magnetic correlations in 5d TMOs. The present treatment includes a

brief numerical description of the relevant interactions, along with a focus of its application at

two specific instruments. These instruments were used for a subset of the work presented in

this thesis. The final part of this chapter discusses the extension of resonant X-ray scattering to

X-ray free-electron lasers.

The advent of third- and fourth-generation synchrotron sources provides a tunable, intense

probe for the study of condensed matter systems. Depending on the precise setup, measure-

ments can be performed across a wide range of the electromagnetic spectrum, ranging from the

far infrared, all the way to gamma radiation. Electromagnetic radiation comprises perpendicular

electric and magnetic fields; one or both of these can couple to the electronic and magnetic

degrees of freedom of a system. In the X-ray regime, the wavelength of radiation is comparable

to the inter-atomic spacing, permitting studies of the structure and interactions of materials at

the atomic scale. X-ray diffraction, scattering and absorption are therefore complementary to

other analysis methods, such as neutron scattering or optical spectroscopy.

However conventional X-ray scattering does suffer from a couple of limitations. The first

of these is that the observed scattering is dominated by the heaviest elements present in a

system. This is because the atomic form factor f0(Q) scales with the atomic number Z, and

hence the observed intensity |f0(Q)|2 ∼ Z2. For some circumstances it can lead to obscuring

of the desired behaviour.

The second limitation is the magnitude of coupling to the magnetic degrees of freedom. The

interaction between the magnetic field of the electromagnetic wave and the magnetic moment

generated by the unpaired electrons in the material is due to perturbative relativistic effects [70].

Unfortunately this process is significantly weaker (106–108 times) than normal Thomson charge

scattering measured in a typical X-ray scattering experiment, and thus requires a high-intensity

X-ray source (such as a synchrotron) to observe.

56
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Initial Intermediate Final

j= 3
2

j= 1
2

~!k ~!k′

67.1 keV

13.4 keV

12.8 keV

11.2 keV

K (1s)

L1 (2s)

L2 (2p1/2)

L3 (2p3/2)

5d

Ir absorption edges

Figure 2.1: Left panel – Resonant X-ray scattering process as illustrated for an Ir4+ ion. In the displayed

scenario an electron has been excited from the j = 3
2 to the j = 1

2 manifold, and hence ~!k 6= ~!k′ . Right

panel – Iridium X-ray absorption edges along with their respective energies.

There is however a partial solution to these problems. Strictly speaking the scattering am-

plitude of an atom f (Q; !) is only equal to the atomic form factor for the free-electron case.

Electrons in atoms are bound to the nucleus. One assumption is that these electrons respond

to the driving field of the X-ray as classical damped harmonic oscillators. It follows [71] that the

scattering amplitude can be written in the form:

f (Q; !) = f0(Q) + f ′(!) + i f ′′(!); (2.1)

where f ′ and f ′′ are the real and imaginary parts of the dispersion corrections. These param-

eters reach their extremal values at an atomic absorption edge. Consequently the scattering

amplitude differs significantly from the free-electron case close to an absorption edge, the en-

ergy of which is specific to a particular element and orbital configuration. This is termed resonant

scattering.

From a quantum mechanical perspective, resonant scattering is a second-order process in-

volving the creation of some short-lived intermediate state. A schematic of the resonant process

is shown in Fig. 2.1. A photon with energy h!k excites a core electron to an unoccupied inter-

mediate state. This leaves a hole in a core orbital, which is inherently unstable. After a short

period of time (typically ∼fs), a valence electron decays to fill the core-hole, and emits a photon

with energy h!k′ in the process. If h!k 6= h!k′ , then one has resonant inelastic X-ray scattering,

else it is termed resonant elastic X-ray scattering.

Since the resonant process involves a specific combination of core and valence states (which

may be split by spin-orbit coupling), the process is spin and orbital specific. Consequently it is

especially sensitive to magnetic and charge ordering of a material. It was discovered by Gibbs

et al. [72] and Hannon et al. [73] that the magnetic cross-section can be dramatically enhanced

close to an X-ray absorption edge. In the case of the 5d L edges, the resonant enhancement

is around 100-fold compared to the non-resonant case. Whilst this is still considerably weaker
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than charge scattering, it does mean that magnetic phenomena can be readily observed in 5d

TMOs with careful choice of experimental setup.

The advantages of resonant X-ray scattering also extend to the inelastic case (Chapter 2.3).

Due to the resonant process, there is increased sensitivity towards electronic and magnetic

excitations (spin waves) as compared to inelastic X-ray scattering (IXS). Furthermore unlike X-

ray absorption spectroscopy (XAS) – which is a single-photon technique – the spectra are only

broadened by the core hole potential of the intermediate state. This gives rise to increased

spectral resolution, and has been put to use in a series of chemical applications. Recent devel-

opments in instrumental resolution have enabled the observation – and successful modelling –

of spin waves in a number of materials, including 5d TMOs. RIXS is thus unique in this regard

as a simultaneous probe of charge neutral electronic and magnetic excitations.

2.1 Numerical treatment

What follows is a brief numerical treatment of the resonant scattering process. This section

mostly follows the formalism presented by Blume and Gibbs [33], Paolasini [74], and Ament et

al. [75].

In general incident X-ray photons interact with the electron density of an atom. X-rays (like

all electromagnetic waves) have perpendicular electric and magnetic fields, and these couple

with the electronic charge to absorb or scatter a photon. The coherent elastic scattering cross-

section for a crystal can be written as follows:

dff

dΩ
= r2

0

˛̨̨̨
˛X
n

e iQ·Rn fn (k; k′; ›; ›′; ~!k)

˛̨̨̨
˛
2

;

where fn (k; k′; ›; ›′; ~!k) is the scattering amplitude of the electrons at site n for given incident

wavevector k, outgoing wavevector k′, incident and outgoing polarizations › and ›′ respectively,

and photon energy ~!k . The quantity r0 in this case is the classical Thomson radius for an

electron. The scattering amplitude generally contains four terms: f = f0 + fmag + f ′ + i f ′′.

f0 is the Thomson scattering amplitude and corresponds to the Fourier transform of the

electron density in the atom, normalised to Z at Q = 0. The magnetic scattering amplitude fmag

shall be discussed later. The anomalous terms f ′ and f ′′ are energy dependent, and typically

f ′ and f ′′ have local minima at an absorption edge. These absorption edges correspond to

transitions of core electrons into available electronic states above the Fermi level.

Theory of electron-photon interaction

The incident X-rays are defined by an electromagnetic (EM) field with vector potential A(r; t).

Consider an ensemble of N electrons which interact with such an EM field. There are three

terms in the subsequent electron-photon interaction Hamiltonian: one which relates to non-

interacting photons (Hph), another relating to non-interacting electrons (Hel ), and a final term
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describing the interaction between them (H′). In the non-relativistic limit, and assuming a small

photon potential, the total Hamiltonian H is given by:

H = Hph +Hel +H′

Hel =
X
j

1
2m

p2
j +

X
i j

V (ri j) +
e~

2(mc)2

X
j

ffj ·
`
∇ffij × pj

´
;

Hph =
X
»;›

~!»
„
a†»›a»› +

1
2

«
;

H′ =
NX
i=1

»
e

m
A(ri ) · pi +

e2

2m
A(ri )

2 +
e~
2m
ffi · ∇ × A(ri )

− e2~
(2mc)2ffi ·

„
@A(ri )

@t
× A(ri )

«–
; (2.2)

where pi , ri , and ffi are, respectively, the momentum and position operators, and the Pauli matri-

ces operating on an electron i . The operators a(†)
»" annihilate (create) a photon with wavevector

» and polarisation ›. At this point it is convenient to expand the vector potential into linearly

polarised plane waves:

A(r) =
X
»;"

s
~

2V "0!»

`
"a»" e

i»·r + "∗a†»" e
−i»·r´ : (2.3)

However we are predominantly interested in the resonant scattering cross-section, which

is governed by the term H′, and is considerably smaller than the other terms. Consequently

one can treat H′ as a weak perturbation to the Hamiltonian. For weak potentials this is a valid

assumption. In this scheme the incident photon is defined by the initial state |k; "〉 with energy

~!. The electron is initially in a state |¸〉, which is an eigenstate of the electronic Hamiltonian

Hel and energy E¸. The interaction between electrons and photons creates a new eigenstate

of the Hamiltonian |˛〉 for the electrons with energy E˛, and a photon is scattered in the state

|k′; "′〉 with final energy ~!′. This transition has a associated probability which can be calculated

by Fermi’s Golden Rule. Using second-order perturbation theory, the transition probability for N

incident photons is written as follows:

W =
2ı

~

˛̨̨̨
˛〈f |H′|i〉+

X
n

〈f |H′|n〉 〈n|H′|i〉
Ei − Ef

˛̨̨̨
˛
2

‹(Ei − Ef ); (2.4)

where the initial state |i〉 = |¸; k; ›〉, the final state |f 〉 = |˛; k′; "′〉, Ei = E¸ + ~!k and

Ef = E˛ + ~!′k . (There are two cases: elastic and inelastic scattering. In elastic scattering

E¸ = E˛, and for inelastic scattering E¸ 6= E˛. For now we shall only consider elastic scat-

tering, but we shall come back to the inelastic case later.) In general the first order amplitude

dominates the second order one, however the second term in W becomes large when the inci-

dent photon energy corresponds to an atomic transition in the material. In this case a resonant

process occurs: a core electron is excited into an orbital above the Fermi energy. This produces

a hole in the core electron orbital. A valence electron decays and fills the core hole, with a

photon being emitted with energy Ef , wavevector k′ and polarization "′. Hence the two terms in

the scattering probability correspond to non-resonant and resonant processes respectively.
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Compare Equation 2.4 with the expression of the interaction Hamiltonian H′, which is re-

peated here for convenience:

H′ =
NX
i=1

»
e

m
A(ri ) · pi +

e2

2m
A(ri )

2 +
e~
2m
ffi · ∇ × A(ri )−

e2~
(2mc)2ffi ·

„
@A(ri )

@t
× A(ri )

«–
= H′1 +H′2 +H′3 +H′4

Terms that are quadratic in A(ri ) contribute to the non-resonant scattering amplitude (H′2;H′4),

whereas terms linear in A(ri ) contribute to the resonant scattering amplitude (H′1;H′3). This is

because we are interested in processes which contain both the creation and annihilation of a

photon. The vector potential A(ri ) is linear in photon annihilation and creation, so conservation

of the number of photons only occurs for even degrees of A.

One can thus write the transition probability as:

W =
2ı
~
|〈˛; k′; "′|H′2 +H′4 |¸; k; "〉

+
X
n

〈˛; k′; "′|H′1 +H′3 |n〉 〈n|H′1 +H′3 |¸; k; "〉
Ei − Ef + ~!k′ − ~!k

˛̨̨̨
˛
2

; (2.5)

Experimentally one measures the double differential cross-section, d2ff
dΩdE , which is propor-

tional to the number of incident probe particles scattered within an energy range ∆E and mo-

mentum variation into a solid angle ∆Ω. It is possible to derive a theoretical expression for d2ff
dΩdE

from the transition probability W , if one makes the assumptions that the unperturbed radiation

is monochromatic and that the intermediate states have a finite lifetime Γc . After some algebra,

one can rewrite the double differential cross-section as

d2ff

dΩdE
=

„
e2

mc2

«2
!k′

!k
|A0 + ANRXMS + Ares|2 ‹(Ei − Ef + ~!k − ~!k′) ; (2.6)

where A0, ANRXMS and Ares represent the Thomson, non-resonant magnetic and resonant scat-

tering amplitudes respectively. It is clear that there are three main contributions in this expres-

sion, which shall be discussed in turn.

Thomson scattering

The first, A0, is given by:

A0 =

*
˛; k′; "′

˛̨̨̨
˛̨X
j

e iQ·rj

˛̨̨̨
˛̨¸; k; "

+
"′ · "; (2.7)

where Q = k′ − k. In the case that |¸〉 = |˛〉 and !k = !k′ , then A0 represents Thomson

(charge) scattering ∝ Zr0, where r0 is the classical electron radius. Thomson scattering is

directly related to the Fourier transform of the electron density. If the periodicity of the crystal

is considered (as applicable for the
P

j e
iQ·rj term), then Bragg scattering occurs. Finally if

|¸〉 6= |˛〉 and !k 6= !k′ , then this gives rise to non-resonant inelastic X-ray scattering (IXS).

This can in turn be related to the dynamic structure factor S(Q; E) which can be obtained from

neutron scattering, allowing a direct comparison between the two techniques.
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Non-resonant magnetic scattering

The second component ANXRMS is a purely non-resonant magnetic scattering term, which far

from any absorption edge reads:

ANXRMS = −i ~!
mc2

*
f

˛̨̨̨
˛̨X
j

e iQ·rj
„
iQ× Pj
~Q2 · A′ + sj · B′

«˛̨̨̨˛̨ i
+

= −i ~!
mc2

„
1
2
L(Q) · A′′ + S(Q) · B′

«
: (2.8)

In the above expressions, A′, A′′ and B′ are vectors which describe the polarisation dependence

of the magnetic scattering [76, 77]:

A′ = "̂′ × "̂;

A′′ = −2(1− k̂ · k̂′)("̂′ × "̂) + (k̂− k̂′) · ("̂′ × "̂)(k̂− k̂′);

B′′ = "̂′ × "̂+ (k̂′ × "̂′)(k̂′ · "̂)− (k̂× "̂)(k̂ · "̂′)− (k̂′ × "̂′)× (k̂× "̂); (2.9)

whilst S(Q) and L(Q) refer to the Fourier transforms of the spin and orbital components to the

magnetisation respectively.

Compared to classical charge scattering, the pure non-resonant magnetic scattering ampli-

tude is reduced by a factor of ~!=mc2. Given that the topic of this thesis is resonant scattering,

the non-resonant magnetic component shall not be considered further. However the key point to

take home is that the orbital and spin components to the magnetisation can be discriminated in

non-resonant magnetic X-ray scattering (NRXMS). This contrasts with susceptibility and neutron

measurements for example, which are sensitive only to the total magnetic moment.

Resonant scattering amplitude

Finally we come to the resonant scattering amplitude. The derivation is rather complex, and the

author refers the reader to Ament’s review [75] for a full discussion. However it can be shown

that the pure resonant scattering amplitude can be written as the Kramers-Heisenberg formula:

Ares ≈ −
1
m

X
n

X
i j

Eg − En
~!k

D
f
˛̨̨
e−ik

′·ri ("′ · pi )
˛̨̨
n
E ˙
n
˛̨
e ik·rj (" · pj)

˛̨
g
¸

Eg − En + ~!k − iΓn=2
:

This equation gives the amplitude for both elastic (|f 〉 = |g〉) and inelastic (|f 〉 6= |g〉) scat-

tering.1 Recall that the primes refer to photon emission events. Assuming that dipole-dipole

contributions are dominant in the scattering,2 then the Kramers-Heisenberg equation can be

rewritten as:

AE1-E1
res = m

X
n

X
i j

(En − Eg )3

~3!k

»
〈f | ("′ · ri ) | n〉 〈n | (" · rj) | g〉
Eg − En + ~!k − iΓn=2

–
(2.10)

1Note that the notation for the initial state has been changed from i to g to avoid confusion with the summation

indices, and is consistent with the notation given in Ref. [75].
2In general the term e ik·r can be Taylor expanded as e ik·r ∼ 1 + k · r + : : : Truncating this at first-order gives the

dipole-dipole only terms.



62

This can be conveniently rewritten (by taking care of some pre-factors) in terms of the dipole

operator D = " · ri :

AE1-E1
res =

X
n

˙
f
˛̨
D′†
˛̨
n
¸
〈n | D | g〉

Eg − En + ~!k − iΓn=2
(2.11)

The matrix elements contain information about the unoccupied electronic states. In particular,

since the resonant scattering amplitude is so strongly dependent on the incident photon en-

ergy, then it becomes possible to discriminate between elements and even different orbitals,

depending on what absorption edge is chosen. One key point is the resonant scattering ampli-

tude is dependent on the lifetime of the intermediate states, as shown by the factor of Γc in the

denominator.

In Equation 2.11, it is not immediately apparent where the sensitivity to magnetism lies.

However the sensitivity to magnetism arises from symmetry breaking of the spin states. Un-

like the non-resonant case, resonant scattering is insensitive to the individual spin and orbital

magnetisation components as spin-orbit coupling entangles the two.

2.2 Resonant elastic X-ray scattering

Solving the Kramers-Heisenberg equation (Equation 2.11) is generally not required for resonant

elastic X-ray scattering. The scattering amplitude for magnetic systems in particular is strongly

dependent on the incident polarization and the magnetic moment orientation. Hannon [73]

derived an expression for the scattering amplitude per magnetic site, which Hill and McMorrow

developed further [78]. Using the notation of Hill and McMorrow, the scattering amplitude can

be written as:

AE1
XRES =

ˆ
("′ · ")F (0) − i ("′ × ") · ẑnF (1) + ("′ · ẑn) (" · ẑn)F (2)˜ (2.12)

with

F (0) = (3=4k) [F11 + F1−1]

F (1) = (3=4k) [F11 − F1−1]

F (2) = (3=4k) [2F10 − F11 − F1−1] :

The terms FLM are determined by atomic properties and correspond to the strength of the res-

onance, and ẑn is a unit vector corresponding to the direction of the magnetic moment. Let’s

return to the electric dipole-dipole (E1-E1) resonant scattering amplitude given in Equation 2.12.

The first term corresponds to the charge Bragg peak, the second term is linear in the magnetiza-

tion direction and hence produces a resonant magnetic contribution, and the third term produces

second order magnetic satellites in antiferromagnets. This third term shall be neglected for now.

One point to focus on from Equation 2.12 is the polarization dependence of the scattering

for both the charge and first-order magnetic terms. The charge term is dependent on the scalar

product of the incident and outgoing photon polarizations, whereas the magnetic term is de-

pendent on the cross product. This implies that for magnetic scattering, the polarization of the
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outgoing photon is rotated with respect to the incident photon. Typically a basis is defined such

that the ff direction is perpendicular to the scattering plane, and the ı direction is parallel to the

scattering plane. Hence it is possible to define the polarization dependence of the scattering

amplitude in terms of a 2× 2 Jones matrix:

("′; ") =

0@("′ff; "ff) ("′ff; "ı)

("′ı; "ff) ("′ı; "ı)

1A
Applying this Jones matrix to the first two terms in the scattering amplitude gives the following

result:

("′ · ") =

0@1 0

0 k̂′ · k̂

1A ; ("′ × ") · ẑn =

0@ 0 k̂

−k̂′ k̂′ × k̂

1A ; (2.13)

where k̂′ · k̂ = cos 2„. The key points to note are that a non-zero amplitude for charge scat-

tering is only observed when the incident and outgoing polarizations are the same (ff−ff′ and

ı−ı′ scattering). On the other hand, resonant magnetic scattering can be observed when the

outgoing polarization is rotated with respect to the incident polarization, however scattering in

the ff−ff′ channel is forbidden.3 This suggests that through the careful consideration of experi-

mental setup, it may be possible to discriminate between charge and magnetic contributions to

the resonant scattering. This is indeed the case, and a number of instruments around the world

have been built to do exactly this.

2.2.1 A resonant elastic scattering beamline - I16

Resonant X-ray scattering is a complementary technique to neutron scattering, and as dis-

cussed above, it has a number of advantages, including the ability to measure small samples,

polarization analysis, high Q resolution, and element and orbital specificity. For these reasons, a

RXS instrument should exploit each of these advantages. However the scattering cross-section

is still relatively low, making it prohibitive to perform in a laboratory setting. Synchrotron radi-

ation sources provide an incredibly luminous source of X-rays with a small beam divergence,

almost perfect in-plane polarization (on an undulator insertion device at least) and tunable inci-

dent energies. One RXS instrument at a synchrotron source is I16 (Materials and Magnetism)

at Diamond Light Source, which shall be briefly discussed.

TThe beamline consists of a number of different components. The first of these is the in-

vacuum undulator, which provides a continuous spectrum of X-rays with energies from 3–15 keV.

The energy can be varied by varying the gap between the undulator poles. However the band-

width of the undulator is typically on the order of 1%, so a channel cut Si (1; 1; 1) monochro-

mator is used to further select a particular incident energy with a typical bandwidth of 1.5 eV.

Slits and mirrors are used to focus the beam, improve the beam profile, and reject higher undu-

lator harmonics that may contaminate the X-ray spectrum. If the incident energy is sufficiently

3Remember that the assumption is that dipole-dipole (E1-E1) processes are dominant. In reality, there may be

higher-order terms which contribute to the magnetic scattering in the ff−ff′ channel, and give a non-zero intensity.
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low (E ≤ 7 keV), then a diamond quarter-wave phase retarder can be employed to circularly

polarize the beam. This type of setup has proved useful for the study of magnetic domains in

multiferroics [79–81].

A Newport six-circle kappa diffractometer enables the sample environment to be oriented in

a number of different configurations. The advantage of a kappa diffractometer over one based

on Eulerian cradles is that the geometry is much more open, which means that a number of

different sample environments can be accommodated, such as applied magnetic fields and

cryostats. However the circle rotations themselves are non-intuitive, since they correspond to

combinations of the traditional Eulerian rotations.

Finally the detector arm includes a number of different detectors, all suited for different pur-

poses. These include an avalanche photodiode (APD) and Pilatus 100k position-sensitive de-

tector, which is useful for sample alignment and imaging a large region of reciprocal space. A

linear polarization analyser crystal can also be fitted to the detector arm, which enables the

outgoing photon polarization to be determined. This crystal is chosen such that for a given inci-

dent energy, there is a strong Bragg reflection which is as close to 2„P = 90◦ as possible. The

reasoning for this follows from the polarization dependence for the charge scattering given in

Equation 2.13. If 2„P = 90◦, then it becomes possible to completely separate out the scattering

component perpendicular to the scattering plane of the analyzer. Rotating the analyzer crystal

about its principal axis enables individual components of the polarization vector to be selected.

However since the resonant X-ray scattering process requires a specific incident energy, 2„P

will never be precisely equal to 90◦. There will always be some ‘leakage’ from one polarization

channel to another, which approximately scales as cos2(2„P ): Imagine that we are looking at a

reflection in the ff−ı′ polarization channel. So for example, if 2„P = 89◦ for a particular photon

energy, then the leakage will be approximately 0.03%. This does not seem large, but remember

that the intensity of charge reflections can be orders of magnitude more than for magnetic re-

flections. There is a further advantage in that fluorescent background is also subtracted by this

method, which is useful when looking at particularly weak signals. This shall be demonstrated

in Chapter 5.

2.3 Resonant inelastic X-ray scattering (RIXS)

Thus far only elastic scattering has been discussed, whereby the final state of the system is

at the same energy as the initial state (ki = kf). With inelastic scattering, the final state is at a

different energy to the initial state, i.e ki 6= kf . The interaction HamiltonianH′ is given once more

by Eqn. 2.2, with the corresponding double-differential cross-section by Eqn. 2.6. As mentioned

previously, the non-resonant IXS scattering amplitude derives from Thomson scattering. Terms

linear in p · A (the resonant terms H′1 and H′3) dominate the scattering amplitude close to an

absorption edge; thus it shall be assumed that the non-resonant IXS contribution is negligible.
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The resonant scattering amplitude Ares is given by the Kramers-Heisenberg equation

(Eqn. 2.11), which is repeated here for convenience:

AE1-E1
res =

X
n

〈f |D′†|n〉 〈n|D|g〉
Eg + ~!k − En + iΓn

:

Note that the scattering amplitude is dependent on the polarisation vectors " and "′, just as for

the elastic case. Consequently any determination of the scattering cross-section has to take this

into account.4

2.3.1 Comparison with optical absorption spectroscopy

RIXS allows for the study of charge neutral excitations. Consequently RIXS can be directly

compared to ultraviolet-visible (UV-vis) absorption spectroscopy, an optical probe which is com-

monly used by chemists to examine the coordination environment and electronic excitations in

transition metal oxide complexes. UV-vis spectroscopy measures the attenuation of light when

the light passes through a sample or is reflected from a sample surface. This attenuation can

result from absorption, scattering, reflection or interference. The majority of UV-vis experiments

are carried out in transmission geometry. A solution of the desired complex is placed in a cu-

vette and light of a given wavelength shines through it. This light is generally generated from a

continuous source (usually a lamp) and dispersed by a diffraction grating. Rotation of the grat-

ing changes the wavelength of incident light. Assuming a weak concentration of the absorbing

species, then the intensity of light incident on the detector is related to the Beer-Lambert law.

In a reflection geometry, light is incident on a clean, polished sample. The diffuse reflectance

spectra are recorded by an integrating sphere.

In optical spectroscopy, only transitions which satisfy the condition ∆S = 0 are allowed

(in the Russell-Saunders limit).5 Furthermore transitions which conserve parity are forbidden

(Laporte selection rule). However transitions that are forbidden by the Laporte selection rule

(such as d–d transitions) may be allowed if the centre of symmetry of the absorbing species

is disrupted. In practice this occurs at finite temperature even for centrosymmetric species as

the actual transitions are coupled to antisymmetric vibrations which have the same symmetry

as the dipole moment operator (T1u in Oh symmetry). For transition metal complexes, spin-

forbidden d–d transitions (such as t3
2g → t3

2g ) are the weakest, with spin-allowed d–d transitions

(t3
2g → t2

2geg ) stronger, and spin-allowed charge transfer excitations stronger still.

There are a number of issues with using conventional optical spectroscopy to study magnetic

5d TMOs. The first is that the observed spectrum is an average of all the different processes

going on within the system; this can prove especially problematic when there are multiple tran-

sition metal species present. Secondly only bimagnon excitations which satisfy ∆S = 0 can be
4See the review by Ament and colleagues [75] for a discussion of the decoupling of the experimental geometry from

the intrinsic RIXS cross-section.
5Finite spin-orbit coupling relaxes this selection rule; “spin-forbidden” transitions can still occur, albeit with a lower

transition probability than those where ∆S 6= 0. In the j j-coupling limit, the appropriate selection rule is ∆J = 0;±1,

however j = 0→ j = 0 transitions are forbidden.
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observed. Furthermore only the area around k → 0 can be probed, as a consequence of the

low photon energy limiting the available energy-momentum phase space for scattering events.

Finally since the photon energy is so low, exceptionally clean surfaces are required when per-

forming UV-vis measurements in a reflection geometry, or very thin/dilute samples used in a

transmission geometry. This is a consequence of the limited optical penetration depth.

RIXS on the other hand is a bulk sensitive technique (at least in the hard X-ray regime); the

penetration depth at 11 keV is on the order of 10 —m. Because an X-ray photon is much more

energetic than a visible or ultraviolet photon (or a neutron for that matter), then the scattering

phase space is that much larger. In the hard X-ray regime the entirety of multiple Brillouin

zones can be mapped as a function of momentum transfer. Secondly the resonant process

leads to element and orbital specificity as it requires tuning of the incident energy to a particular

elemental absorption edge. When the incoming photon energy is tuned to a L absorption edge,6

an electron with spin s is excited from a core p-level to a valence d-shell. However the strong

spin-orbit coupling in the core p state means that the resultant core hole can flip its spin from s

to −s. Consequently a d-electron with spin −s can decay from the valence shell to fill the core

hole, emitting an X-ray in the process. This effectively corresponds to a spin-flip excitation in the

valence state, which is not only allowed, but strong. This means that RIXS lends itself naturally

as a technique for studying d–d transitions.

Recent developments have vastly improved the energy resolution of RIXS spectrometers

around the world, permitting the characterisation of dispersive spin waves as a function of mo-

mentum transfer, which was formerly the reserve of inelastic neutron scattering (INS). One fur-

ther advantage of RIXS over INS is that much smaller sample volumes are required for RIXS;

the more intense undulator source, and stronger probe-matter interaction, permits the use of a

smaller beam. The incident beam size at a RIXS instrument has dimensions ∼10 —m× 10 —m,

whereas at a neutron triple-axis spectrometer it is on the order of centimetres across.

However there are two main drawbacks with RIXS. The first is that even though the photon-

matter interaction is stronger than the neutron-matter interaction, the technique still remains

‘photon-hungry’ since only a small number of photons are scattered with a given final energy.

This leads to long counting times, especially using high-resolution setups. Furthermore the

energy resolution is only sufficient to resolve magnetic features at a small subset of absorption

edges. This is a consequence of technical constraints, primarily finding a suitable choice of

crystal analyser and secondary monochromator reflections.

6Single spin-flip scattering at a K absorption edge is generally forbidden. This is because spin-orbit coupling is

absent in the isotropic 1s core state. However, single magnon excitations can be observed at the oxygen K edge if

there is spin orbit coupling in the transition metal d shell, and if inversion symmetry is broken at the oxygen site. This

has been demonstrated both experimentally [82, 83] and theoretically [84].
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2.3.2 Technical details

The general principle of performing a hard X-ray RIXS7 experiment is as follows. Just as for

resonant elastic X-ray scattering (REXS), X-rays are produced by an undulator source and are

monochromated to the desired energy (with some intrinsic bandwidth governed by the Darwin

width of the monochromator), which corresponds to an atomic transition in the material to be

studied. However there is a trade-off: monochromators with a low bandwidth have a large

Bragg angle „M , which corresponds to a small Darwin width and hence good energy resolution.

However higher order reflections are less intense, so the diffraction intensity is lower. The

incident energy resolution is one component to the overall energy resolution (and hence which

features can be measured), more detail is given in Appendix A. These pseudo-monochromatic

X-rays are focussed by mirrors – often Kirkpatrick-Baez type – so that small samples can be

measured and improve the incident energy resolution further. The incident X-rays scatter off the

sample and those which satisfy the Bragg condition for the sample are diffracted towards the

spectrometer. Note that due to inelastic processes these photons are no longer monochromatic.

The spectrometer itself usually comprises a diced analyser crystal and a position-sensitive

detector (PSD). The diced analyser crystal is made up of blocks of a material with a small Dar-

win width (typically Si or Ge) and a specific crystal orientation, chosen that the Bragg angle of

the analyser 2„ is close8 to 90◦, and is placed on the Rowland circle with radius R=2 (Fig. 2.2).

Photons which satisfy the Bragg condition for the analyser are diffracted and focussed towards

the PSD. A diced spherical analyser is used since bent spherical analysers have historically

suffered from elastic distortions. However diced analysers add a geometrical broadening term

to the energy resolution, which is due to the individual crystals comprising the analyser each

focussing onto a slightly different spot on the detector. Spectral analysis is performed by si-

multaneously varying the analyser angle 2„A and detector angle, such that the focussed spot

remains approximately in the same position on the PSD. There is a well-defined relationship

between the position of the spot on the detector surface x (in the dispersive direction), and the

photon energy E:
dE
dx

=
E

2R
cot „B (2.14)

Here R is the analyser-to-detector distance. As an example the dispersion at the Ir L3 edge is

about 210 meV mm−1 for a analyser of radius 2 m. The resulting spectrum is then the binned

intensity from each channel summed over the non-dispersive direction.

The RIXS cross-section derived from the Kramers-Heisenberg formula contains geometri-

cal terms which are suppressed when the spectrometer angle 2„ = 90◦. Operating close to

7RIXS in the soft X-ray regime is somewhat different due to the requirement of ultra high vacuum (UHV) conditions

and the lack of suitable crystal reflections in this energy window. In this thesis only hard X-ray RIXS shall be discussed

in detail.
8The crystal analyser has an energy acceptance window, where photons with an energy corresponding to this

window are diffracted by the analyser. If the geometry is perfectly backscattering, then only elastic photons will be

diffracted, which defeats the purpose of an inelastic measurement! However if 2„ is too far from 90◦, then it adds

negative contributions to the spectrometer energy resolution, as detailed in Appendix A.
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Figure 2.2: Rowland circle geometry. The distance between O and O′ is defined as R=2, where R is the

radius of the Rowland circle.

90◦ has the added advantage of suppressing the elastic component to the inelastic spectrum –

which fundamentally derives from "′ · " – since its intensity typically scales as cos2 (2„). RIXS

measurements are also usually performed at low temperature for two main reasons. Firstly one

purpose for performing RIXS measurements is to measure the magnon dispersion for a partic-

ular system. Since the magnetic excitations can mostly only be observed below the magnetic

transition temperature, then performing these measurements below this temperature is required.

Secondly the energy resolution of a RIXS spectrometer is typically not good enough to resolve

phonons. Thus contributions from phonons (especially acoustic phonons) are usually absorbed

into the elastic line. Since the population of phonons follows the Bose-Einstein distribution, then

there a greater number of phonons at high temperatures, and hence a greater probability of scat-

tering from them, which means a larger elastic line. A lower phonon population also minimises

broadening of electronic features due to electron-phonon coupling.

2.3.3 RIXS beamline - MERIX at the APS

As an example, the MERIX spectrometer at the Advanced Photon Source (APS), Chicago, shall

be examined. An overview of the spectrometer is given in Fig. 2.3, and further details are given

in the report by Shvyd’ko et al. [85].

The MERIX spectrometer is situated at the undulator beamline, 27-ID, which comprises two

planar in-vacuum undulators (3.0 cm period), situated in tandem in order to maximise the num-

ber of photons produced (3× 1013 ph/sec at 9 keV). MERIX is a medium-resolution instrument:

it uses a double bounce Si (1; 1; 1) liquid nitrogen cooled monochromator, followed by a four-

bounce secondary monochromator in order to reduce the bandpass to the tens of meV range.

The precise secondary monochromator used is dependent on the system to be measured, and

the degree of resolution required. The incident X-ray beam is focussed to dimensions of 6 —m

(V) × 45 —m (H) by planar mirrors in the horizontal direction, and Kirkpatrick-Baez mirrors in

the vertical (energy dispersive) direction. This arrangement was chosen primarily for improved

energy resolution, but has the added advantage that small samples can be measured. A series

of slits help to define the beam profile.
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Figure 2.3: Top panel: General schematic of the upstream optical elements used at a RIXS instrument.

DCM stands for double crystal monochromator. Bottom panel: Picture of the MERIX spectrometer at 30-ID,

Advanced Photon Source, USA. The spectrometer is in horizontal scattering geometry (ı-polarized light

incident), and important components of the spectrometer have been labelled.

The spectrometer itself is situated on a Huber four-circle diffractometer in an Eulerian geom-

etry. MERIX can operate in either horizontal or vertical scattering geometry, however horizontal

geometry is generally used for RIXS (ı-incident polarisation) since this minimises elastic terms

which have a (" · "′) polarisation dependence. This means that the 2„ arm rotates in the hor-

izontal plane. A diced spherical analyser crystal of 100 mm diameter is typically mounted on

a Rowland circle at a distance RA = 2 m away from the sample position (put into the centre

of rotation of the spectrometer) and detector; however one usually varies this distance slightly

in order to focus the diffracted spot on the detector surface. Consequently the angular accep-

tance of the analyser is approximately ±2.86 degrees. The detector currently used on MERIX

is a Mythen micro-strip detector with pixel size 50—m. Finally the analyser and majority of the

flightpath is situated within a Perspex tank filled with helium gas. The reason for this is to min-

imise absorption and the background from air-scattering, since helium is lighter than air, and

evacuating the whole chamber would be prohibitive.
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Variations on spectrometer setup

Different RIXS beamlines have come up with slightly alternative setups, however the general

principle remains the same. The first of these is the use of a 2-dimensional CCD instead of a 1D

strip detector. This has the advantage of a larger collection area (and thus theoretically speaking

higher count-rates), however some post-processing is required to extract the RIXS spectra. The

second is the use of lead masks to reduce the usable area of the crystal analyser. This has the

benefit of improved momentum resolution, since the angular acceptance is reduced;9 however

this also reduces the collected intensity as a consequence of Liouville’s theorem.

2.4 Resonant X-ray scattering at XFELs

The radiation emitted from an undulator at a third-generation synchrotron is one of the most

brilliant light sources known to mankind. However users are pushing towards experiments that

require shorter length-scales and performed on shorter timescales. Additionally there is an

increasing requirement for high transverse coherence of the incident beam, for example in co-

herent diffractive imaging (CDI) where the phase problem can be solved through phase recon-

struction of a speckle pattern. The typical electron bunch duration in a synchrotron is typically

on the order of 100 ps; this is a considerably longer timescale than many electronic and mag-

netic phenomena.10 The transverse coherence of the incident beam in a synchrotron is limited

because whilst each individual electron radiates coherently, the electrons in each bunch radiate

incoherently with each other. Ideally what one would want is a scenario where all of the elec-

trons in a bunch radiate coherently with each other. This scenario is an X-ray free electron laser

(XFEL).

This topic shall be explored in more detail later (Chapter 6), but a few comments are notewor-

thy at this point. From a practical point of view resonant X-ray scattering experiments at XFELs

are rather similar to those performed at synchrotrons. The incident photon energy is tuned to

a suitable absorption edge for the material to be studied. Depending on the operation mode

(SASE or self-seeded), a monochromator may or may not be used to limit the incident band-

width. Plane or circularly polarised X-rays are incident on the sample and scatter (in)elastically,

with the scattered X-rays collected by a two-dimensional detector. The main difference is that

at an XFEL, incredibly intense, short (∼100 fs) X-ray pulses are incident on the sample, each

separated by 1–100 ms. Contrast this with a synchrotron, where pulses of 100 ps duration are

separated by 1–10 ns. The short pulses generated at an XFEL allow pump-probe experiments

to be carried out, whereby the system to be measured is excited by an external perturbation

(such as an optical pulse), then probed with the XFEL pulse. These types of experiments have

9The in-plane momentum resolution ∆Q is given by ∆|Q| = 4ı
–

sin ‹„, where ‹„ is the angular acceptance of the

analyser.
10Synchrotron slicing sources, for example FEMTO at the Swiss Light Source, can push this down to the femtosecond

regime. However this comes at a cost of six orders of magnitude lower incident flux.
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already been used to shed insight into the mechanism of high-temperature superconductivity for

example, and have been extended towards 5d transition metal oxides.

Summary

The theory behind resonant elastic and inelastic X-ray scattering has been briefly discussed, as

well as detailing instruments where it is possible to perform these techniques. One reason for

using these techniques is to probe the electronic and magnetic dynamics of a given material.

As detailed above, 5d TMOs are an ideal case for the use of resonant X-rays.
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Magnetic correlations and the MIT

in Cd2Os2O7 studied with RIXS

One of the unique aspects of resonant inelastic X-ray scattering (RIXS) is the ability to follow

both electronic and magnetic correlations through the MIT. The pyrochlore osmate Cd2Os2O7

undergoes a continuous Lifshitz MIT concomitant with the onset of long-ranged Néel order at

227 K. RIXS was used to determine the role of spin-orbit coupling and magnetic interactions

upon the MIT. These measurements show broad orbital excitations consistent with a scenario

wherein electron correlations and spin-orbit coupling appear to play a reduced role in the elec-

tronic Hamiltonian. Furthermore a weakly dispersive feature at 150 meV energy loss shows

evidence of both the continuous closing of the charge gap and strong magnetic anisotropy. This

provides further indication that the electronic and magnetic interactions are intimately linked for

Cd2Os2O7.

The metal-insulator transition is of continuing interest in condensed matter physics. A num-

ber of transition metal oxides (TMOs) undergo MITs, either by bandwidth control, filling control,

temperature, or the onset of magnetic order. In the insulating phase one would expect localised

magnetic and electronic excitations, which become more itinerant in the metallic phase. How-

ever, there is a dearth of literature in which these excitations are systematically characterised

through the MIT. This is especially the case for 5d TMOs where, as previously alluded to, the

onset of magnetic order and MIT are directly linked for a number of materials. This appears to

manifest as some degree of Slater character. Fortunately RIXS is uniquely placed as a method

with which to simultaneously probe the spin and electronic degrees of freedom that govern the

Hamiltonian.

One prime example where RIXS has proven to be a useful tool is the set of pyrochlore

iridates, which have been predicted to exhibit a variety of non-trivial topological states such as

the in vogue Weyl semimetallic phase. Pyrochlore iridates Ln2Ir2O7, where Ln3+ is a rare-earth

ion, and Ir4+ has 5 d-electrons (S = 1
2 ), undergo an MIT through bandwidth control. The ionic

72
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radius of the rare earth site decreases moving across the period,1 which leads to insulating

behaviour for early-period rare-earths, and metallic behaviour for late-period rare-earth ions.

Those in the centre of the period (Eu, Sm, Nd) undergo finite-temperature MITs concomitant

with the onset of long-ranged antiferromagnetic order.

RIXS measurements on these materials [86–89] surprisingly reveal little change through

the MIT; the only significant difference between the spectra in the insulating antiferromagnetic

phase and metallic paramagnetic phase is the intensity of the magnon peak. This demonstrated

that structural distortions were not responsible for the MIT. Furthermore the presence of well-

defined spin wave excitations in the insulating phase for Sm2Ir2O7 – albeit somewhat damped

– indicated that significant electronic correlations were present [90]. This suggests a departure

from the ideal Weyl semimetal scenario.

The isostructural osmate Cd2Os2O7 (S = 3
2 , d3) also undergoes a metal-insulator transi-

tion concomitant with the onset of antiferromagnetic order. The mechanism of this MIT has

been much debated, and in particular, the role of magnetic correlations and spin-orbit coupling.

Furthermore the proposed “all-in, all-out” (AIAO) magnetic structure is somewhat tentative. For-

tunately RIXS provides information about the electronic and magnetic interactions throughout

the Brillouin zone, which allows characterisation of the MIT from a microscopic perspective.

3.1 Literature review

3.1.1 Structure and general aspects of pyrochlore physics

Cd2Os2O7 is an example of a osmate on the pyrochlore lattice. The general formula of a py-

rochlore is A2B2O6O′, with the A [Wyckoff position 16d, lattice coordinates ( 1
2 ;

1
2 ;

1
2 )] and B [16c,

(0,0,0)] sites usually A3+ and B4+ respectively; however A2+ and B5+ examples exist where the

ionic radius of the A site is especially large. The two sites form interpenetrating FCC sublattices,

with a network of corner-sharing tetrahedra. Each A and B site is coordinated to 8 and 6 oxy-

gen atoms respectively
ˆ
O at (x; 1

8 ;
1
8 );O′ at ( 3

8 ;
3
8 ;

3
8 )
˜

The pyrochlore structure is consequently

a member of the cubic Fd 3̄m space group, with the only variable parameters the lattice con-

stant a and the O x-coordinate. For an ideal pyrochlore x = 5
16 = 0.3125, which gives a perfect

octahedron about the B sites, however real systems typically exhibit weak trigonal distortions

give x ∼ 0.320–0.345 [91].

Notably the lattice topology plays a key role for the magnetic ground state. Consider a single

set of A or B sites, which form a network of corner-sharing tetrahedra. These sites are assumed

to be magnetic, and interact to first order via isotropic Heisenberg exchange H = J
P

Si · Sj .

If these interactions are ferromagnetic, then the result is long-ranged collinear magnetic order.

However if the interactions are antiferromagnetic, then the lattice geometry means that the sys-

tem is unable to satisfy all of its pairwise interactions simultaneously. This is known as geometric

1This is the so-called lanthanide contraction.
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frustration. As a compromise the system is forced to adopt a non-collinear spin arrangement,

which leads to a ground state without long-ranged magnetic order. The distinguishing feature of

this ground state is that it is highly degenerate, leading to an extensive ground state entropy. In

the ideal case, this leads to a spin-liquid phase [92], in which the spins are strongly correlated

yet remain dynamic to T = 0. Additional contributions including single-ion anisotropy, dipolar

and further-neighbour exchange interactions can lift this degeneracy and result in the formation

of an ordered ground state. This is what occurs for the pyrochlore iridates; the intrinsic geomet-

ric frustration is lifted by the presence of anisotropy. In general competition between a number

of magnetic interactions is a defining feature of systems on the pyrochlore lattice.

3.1.2 Synthesis

Sleight et al. [93] report the initial synthesis of Cd2Os2O7 by sealing ‘appropriate quantities’

of CdO, Os metal, and OsO4 in a quartz tube and heating to 800◦C. Upon cooling octahedral

crystals ca. 1 mm across were formed. However the use of OsO4 is extremely hazardous due

to its high toxicity and volatility, and hence is discouraged. Current synthesis methods [94, 95]

oxidise elemental osmium in situ, by using KClO3 or AgO as an oxygen source.

Mandrus and colleagues [94] were the first to perform a thorough structural characterisa-

tion of Cd2Os2O7. Using laboratory X-ray diffraction they found a = 10.16 Å, which was in

good agreement with the initial study in [93], and varied very little as a function of tempera-

ture. This implied no structural distortion occurred between 180 K and 295 K. Refinement of

the O(1) x-position gave x = 0.319(2), indicative of a weak distortion from the ideal cubic case.

These observations were corroborated by neutron diffraction measurements by Reading and

Weller [96]. Neutron diffraction has the advantage of greater sensitivity to the oxygen positions

compared to X-ray scattering. However in the case of Cd2Os2O7, naturally occurring cadmium

is strongly neutron absorbing (it is frequently used as shielding for inelastic neutron scattering

measurements). This would strongly affect Rietveld refinements; consequently powder sam-

ples were enriched with 114Cd. The only significant observations were a point of inflexion in the

lattice constant around 225 K, and the absence of magnetic Bragg reflections which would be

indicative of magnetic long-ranged order.

3.1.3 Bulk properties

Resistivity measurements by Sleight et al. [93] demonstrated that Cd2Os2O7 undergoes a con-

tinuous metal-semiconductor transition around TMI = 225 K, with an increase in resistivity of

three orders of magnitude at low temperature compared to room temperature. This is consistent

with the point of inflexion observed in the lattice constant. Magnetic susceptibility and specific

heat measurements also observed a transition at the same temperature (Fig. 3.1a), however

the authors argued that the transition was entirely electronic in origin. Later measurements by

Mandrus et al. [94], and Hiroi et al., [97] found the same observations.
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Figure 3.1: (a): Temperature dependence of the magnetic susceptibility (green symbols, [95]), charge gap

from resistivity data (solid: [94], dashed: [99]), and direct (optical) gap from optical conductivity data (solid

circles: [98], open triangles: [99]) which show the link between the MIT and onset of AFM order. (b):

Magnetic AIAO ground state of Cd2Os2O7.

The lack of structural distortion implies an unconventional mechanism for the MIT. It was

proposed by Mandrus et al. that Cd2Os2O7 undergoes a continuous Slater-type transition, in

which the resistivity varies exponentially with temperature: ∆ = T ln (=0). Calculation of

the activation energy found that it was consistent with a BCS-type function for T=TMI > 0:8,

and implied the zero temperature charge gap ∆ = 750 K ≡ 63 meV. For T=TMI < 0.8 there

was significant suppression of the charge gap, which was assumed to be due to extrinsic con-

duction mechanisms. Application of an external pressure of 20 kbar weakly suppressed the

metal-insulator transition. Susceptibility measurements indicated that the interactions below

TMI were antiferromagnetic, albeit with a small parasitic ferromagnetic component induced by

defects. Thermopower measurements in polycrystalline samples showed a change in sign of

the Seebeck coefficient S, which is typical of a gap opening up at the Fermi energy and the

corresponding metal-insulator transition.

3.1.4 Optical conductivity

Infrared reflectance measurements were performed by Padilla and colleagues [98] as a function

of temperature. At room temperature metallic behaviour could be observed, with a gradual

transition to insulating behaviour at room temperature. The real part of the optical conductivity

was extracted via Kramers-Kronig analysis, and showed a continuous development of a gap as

the temperature was reduced. Spectral weight within the intra-gap region was transferred to

higher energies. The temperature dependence of the gap could be fit to a BCS-type function,

with the magnitude at zero temperature 2∆0 = 100 meV, which is broadly consistent2 with the

value obtained from bulk resistivity data. The fact that ff(!) ∼ !1/2 above the gap edge, and not

2There is a subtle distinction between the charge and optical gaps, see Section 3.3.2 for more details.
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∼ !3/2 as observed in the Hubbard limit, was suggested by the authors as proof that Cd2Os2O7

is indeed an example of a Slater insulator.

This proposition is, however, refuted by Sohn et al. [99], who instead claim that Cd2Os2O7

undergoes a Lifshitz transition at TMI. The temperature dependence of the square of the absorp-

tion coefficient ¸2(!) revealed a linear shift to lower energy with increasing temperature, whilst

the gradient of ¸2(!) remained constant. The authors argue that as d¸2(!)
d! ∝ m3

r , where mr is

the reduced mass of the conduction and valence bands, then the constant gradient of ¸2(!) as

a function of temperature implies a rigid shift of the valence and conduction bands with minimal

change in band dispersion. Furthermore the square of the plasma frequency !2
p was found

to be inconsistent with thermally excited carriers, as would be expected for a Slater insulator.

Interestingly however, bulk measurements [93, 94, 97] determined that TN = TMI = 227 K,

whereas Sohn [99] suggests the presence of a antiferromagnetic metallic phase between 210 K

and 227 K. The latter fact suggests that the onset of magnetic order is not a driving force for the

MIT. On the other hand, it may also be evidence of differences between the surface and bulk

electronic phenomena, since optical spectroscopy – in the energy range used – is a surface-

sensitive technique.

3.1.5 X-ray and muon spin relaxation (—SR) measurements

X-ray resonant magnetic scattering (XRMS) measurements by Yamaura and colleagues [95]

showed the existence of forbidden Bragg reflections present at (0; 0; 4n+2) positions, which

could only be observed in the ı-ff′ polarisation channel. This latter point indicates that they can-

not arise from Bragg scattering from a structural peak, since these will only be observed in the

ı-ı′ polarisation channel. Moreover the temperature dependence of these reflections was con-

sistent with a second-order transition at 227 K, which implied that the origin of these reflections

was magnetic and reflected commensurate q = 0 antiferromagnetic order below TN. Represen-

tational analysis, coupled with the lack of a significant ferromagnetic component, indicated that

the magnetic structure below TMI was the “all-in, all-out” structure.3 In this structure the local

Os spins point into/out of an Os tetrahedron, with the spins pointing along the local [1 1 1] axes

(Fig. 3.1b). The frustration arising from the pyrochlore lattice is lifted as a result of the strong

magnetic anisotropy from the intrinsic spin-orbit coupling. The fact that the magnetic structure

and crystal structure are commensurate with other was argued as proof that Cd2Os2O7 is not

an example of a Slater insulator, since in a simple Slater picture, unit cell doubling magnetic

order is expected in the insulating regime.4

X-ray circular magnetic dichroism (XMCD) measurements by Matsuda et al. [100] revealed

that the induced orbital component to the magnetization was non-negligible [mL=mS = 0.16(2)].

3Strictly speaking such an analysis utilising one family of forbidden reflections is insufficient to determine the mag-

netic structure a priori ; see [89].
4In Chapter 4, I discuss how this condition can be relaxed for three-dimensional systems.



Chapter 3. Magnetic correlations and the MIT in Cd2Os2O7 studied with RIXS 77

This contrasts with the expected behaviour for a d3 ion in the Russell-Saunders L-S limit:

Mj =
X
j

mj = 1 + 0− 1 = 0

Sj =
X
j

sj = 1
2 + 1

2 + 1
2 = 3

2 ;

that is, the orbital angular momentum is quenched. However in 5d TMOs spin-orbit coupling

cannot be neglected; the spin and orbital components of the magnetisation are mixed and hence

the orbital angular momentum can no longer be considered as quenched for Cd2Os2O7. The

positive sign of the ratio indicates that the two angular momentum components are parallel; a

result that seems counter-intuitive considering the fact that the osmium ions have the d3 electron

configuration, and the t2g manifold is at half-filling. One possibility for the observed result is that

the spin and orbital angular momenta are aligned at an angle to one another, but the applied

magnetic field cants the angular momenta to align with themselves.

Longitudinal muon spin relaxation (—SR) measurements by Koda and colleagues [101] sug-

gested the presence of strong spin fluctuation between 150 K and TN, based on the decay of

the muon spin precession frequency above 150 K, and the external field dependence of the

muon relaxation rate. Fitting the muon relaxation rate with the Redfield model (a Lorentzian-like

dependence) gave the fluctuation rate of the local field � ≥ 5.2(2)× 108 Hz. Koda initially deter-

mined the long-ranged order to be spin density wave-like, but subsequent measurements [102]

disproved this hypothesis.

3.1.6 Theoretical calculations

Density functional theory (DFT)

The first theoretical calculations were performed by Mandrus and colleagues [94]. In this study

the full-potential linearised augmented plane-wave method (LAPW) was used, which is a varia-

tion on density functional theory (DFT). Within the local density approximation (LDA), Cd2Os2O7

was found to be metallic. The authors argued that this was further proof of a Slater mechanism

for the MIT, since a metallic state would be expected in the absence of magnetism. Inclusion of

spin-orbit coupling merely shifted the bands upwards by 80 meV.

Subsequent calculations by Singh et al. [103] (LDA and generalised gradient approximation

[GGA] within LAPW) found that the inclusion of spin-orbit coupling in fact substantially changed

the electronic structure close to the Fermi energy, with two electron-like Fermi surfaces leading

to a semimetallic ground state. Singh proposed, at least conceptually, that Cd2Os2O7 could be

made insulating by increasing the gap between the two bands crossing the Fermi level. The

centres of mass of the t2g and eg manifolds were separated by approximately 4 eV, giving a

first estimate for the crystal field splitting 10Dq. It was found that Cd2Os2O7 was close to an

antiferromagnetic state within GGA, but not within the local spin density approximation (LSDA).

Shinaoka et al. [104] also used the local spin density approximation (LSDA), however also

included the effect of the electron correlation U and Hund’s coupling J through an empirical
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Figure 3.2: Phase diagram adapted from Shinaoka [104]. The three phases are a non-magnetic metallic

state (NMM), an antiferromagnetic metal (AFM), and an antiferromagnetic insulator (AFI). The Os moment

(a), charge gap ∆C and optical gap ∆O (b) increase with increasing electron correlation Ueff = U − J.

parameter Ueff = U−J. Through increasing Ueff (Fig. 3.2), they found a progression from a

non-magnetic metallic state (NMM), to an antiferromagnetic metal (AFM), and finally an anti-

ferromagnetic insulator (AFI). A continuous MIT occurred at Ueff = 1.2 eV, characterised by

vanishing electron and hole surfaces, as appropriate for a Lifshitz transition. The magnetic mo-

ments in the AFI phase were found to be most stable for an all-in, all-out (AIAO) configuration,

in agreement with the previous XRMS study [95]. Furthermore Shinaoka et al. predicted a sig-

nificant single-ion anisotropy comparable to the nearest neighbour exchange, which stabilises

the AIAO order and leads to a magnon gap of “several tens of meV”.

Based on the relativistic LDA bandstructure, Uehara and colleagues [105] constructed the

multiband tight-binding model for the Os 5d orbitals with t2g symmetry. From this they could

estimate tight-binding parameters using maximally-localised Wannier function (MLWF) analysis:

the spin-orbit interaction – = 2 〈dxy ; ↑|HLDA |dyz ; ↓〉 = 332 meV, nearest-neighbour hopping

|t| = 178 meV, and trigonal crystal field splitting ∆ = 〈dxy ; ↑|HLDA |dyz ; ↑〉 = 96.6 meV. Inclu-

sion of the electron correlation (U = 0.7 eV) and Hund’s coupling (JH=U = 0.2) led to significant

spin fluctuations along the local 〈1 1 1〉 moment axes, consistent with all-in, all-out order.

Quantum chemistry

Bogdanov et al. [106] performed many-body quantum chemistry calculations on a small cluster

of Cd2Os2O7. These differ from DFT calculations in the following ways. In DFT, the assumption

is that the atomic wavefunctions can be expressed as a set of plane waves. Consequently

the translational symmetry can be exploited through the use of periodic boundary conditions,

and the ground state problem solved in momentum space. Various properties can then be

calculated from the ground state charge density. However, the formulations of DFT which are

typically used (LDA and GGA for instance) treat electron-electron interactions on a mean-field

level, where an individual electron is assumed to be moving in an effective field of the other

electrons. In strongly correlated TMOs for instance, the underlying physics is dominated by the
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5d3 splittings MRCI MRCI + SOC (× 2)
4A2 (t3

2g ) 0.00 0.00; 0.014
2E (t3

2g ) 1.51; 1.51 1.40; 1.53
2T1 (t3

2g ) 1.61; 1.61; 1.62 1.63; 1.66; 1.76
2T2 (t3

2g ) 2.46; 2.49; 2.49 2.63; 2.76; 2.87
4T2 (t2

2ge
1
g ) 5.08; 5.20; 5.20 5.14; . . . ; 5.45

4T1 (t2
2ge

1
g ) 5.89; 6.01; 6.01 6.02; . . . ; 6.33

4T2 (t1
2ge

2
g ) 10.29; 10.63; 10.63 10.41; . . . ; 11.00

Table 3.1: MRCI and MRCI + SOC relative energies (eV) for the Os5+ 5d3 multiplet structure in Cd2Os2O7,

as obtained by Bogdanov [106]. As cubic symmetry is lifted, the triplet states are split even without SOC.

Each MRCI + SOC value stands for a spin-orbit doublet; for the 4T states, only the lowest and highest

components are shown.

mutual Coulomb repulsive interactions, which are rather local in nature. This leads to systematic

discrepancies in calculated properties between theory and experiment.

Ab initio calculations on the other hand aim to solve the many-body wavefunction Ψ (r1; r2;

: : : rn) directly. In the simplest approximation (Hartree-Fock), Ψ(r1; r2; : : : rn) is approximated as

a Slater determinant of spin-orbitals situated at rn, which is obtained via minimisation of the en-

ergy in accordance with the variation theorem. Through the use of post Hartree-Fock methods,

such as the configuration interaction (CI), and a suitable choice of basis set, it is possible to

go beyond the single determinant approximation and include the effect of correlations between

electrons. Unfortunately, the complexity of this approach means that is typically restricted to

small clusters, especially for large Z elements where there are a large number of core electrons

which have to be treated relativistically. The behaviour of the extended solid is recovered by

embedding the cluster in an external Madelung potential formed by an array of point charges at

the lattice positions, and subtracting the contribution from the cluster ions.

The electronic structure of the Os 5d atomic orbitals was determined for a cluster of seven

OsO6 octahedra surrounded by six Cd2+ ions. The results of these calculations are summarised

in Table 3.1. What is apparent is the large octahedral crystal field splitting t3
2g → t2

2geg of

10Dq = 5.2 eV. The ab initio results were then mapped onto a single site magnetic Hamil-

tonian with single-ion anisotropy (SIA) HSIA = S · D̄ · S, which gave the axial component

D = −6.774 meV, and the rhombic component E = 0. In general the diagonalisation of the

single-ion anisotropy tensor requires that the axial component points along the highest symme-

try axis, which in this case is along the 〈1 1 1〉 direction. The negative sign of D indicates that

this axis is an easy axis. Interestingly similar calculations on a cluster without trigonal distortions

found D = 2.50 meV, which gives rise to easy-plane anisotropy.

Calculations of the inter-site magnetic couplings were performed on a ten octahedra cluster,

which included two active Os 5d3 sites. This was mapped onto a nearest-neighbour Heisenberg

Hamiltonian with antisymmetric (Dzyaloshinskii-Moriya, DM) exchange: H = J S1·S2+d·S1×S2,
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where d is the DM vector with components (dx; dy; dz). It was found that the nearest neighbour

exchange parameter J = 6.43 meV, indicating antiferromagnetic interactions in agreement with

experiment, and d = (1.17;−1.17; 0), which implies |d| = 1.65 meV. The fact that J is similar

in magnitude to D was proposed as the origin of the AIAO ground state observed in RXMS

measurements [95].

This concludes the brief literature survey. The quantum chemistry calculations have esti-

mated the electronic energy levels and local exchange parameters for Cd2Os2O7. However an

experimental study of the electronic and magnetic excitations is still lacking. To this end resonant

inelastic X-ray scattering (RIXS) measurements were performed by the author to characterise

the dynamics of this material.

3.2 Low resolution measurements

This section has been partly published as S. Calder et al., Nature Comms. 7, 11651 (2016).

Choosing the correct energy resolution is critical for any spectroscopic measurement. There

is generally a trade-off between the bandpass of the spectroscopic probe and its resultant in-

tensity, which, in the end, all boils down to Liouville’s theorem of phase space. A increase in

energy resolution (reduced ∆E=E) leads to a corresponding decrease in the probe intensity.

Lower resolution RIXS measurements allow fast characterisation of the orbital excitations out to

large energy loss. This includes the determination of crystal field parameters such as 10 Dq.

Since the orbital excitations tend to be relatively broad (especially at high energy), then energy

resolution is not a limiting factor. Moreover, as each individual spectrum is collected relatively

quickly in this setup, spectra can be collected at various incident energies and compared to

determine which one results in the maximum intensity of the desired feature.

Single crystals of Cd2Os2O7 were measured with RIXS at the Os L3-edge on Sector 30 at

the Advanced Photon Source (APS) using the MERIX spectrometer. All measurements were

performed in a horizontal scattering geometry, that is ı-incident polarisation.5 The sample was

mounted such that the [1 1 1] direction was normal to the sample surface, and placed in a closed-

cycle refrigerator. The incident energy was determined through two monochromators: a primary

Si (1; 1; 1) and a secondary Si (4; 4; 4) four-bounce, for a total bandpass of ∆E = 120 meV.

The beam was focussed by Rh plated mirrors down to ∼ 20 × 10—m2. The energy of the X-

rays scattered from the sample was discriminated via a Si (4; 6; 6) 2 m diced analyzer situated

on the Rowland circle, and detected by a MYTHEN strip detector (pixel size 50 × 50 —m2).

The combined RIXS energy resolution was 130 meV at FWHM, as calculated from fitting non-

resonant scattering off a piece of adhesive tape.

5An undulator source at a synchrotron provides a highly plane-polarised (polarisation factor P ' 1) and collimated

X-ray beam. It is henceforth assumed that the incident beam is entirely ı-polarised, that is, parallel to the scattering

plane defined by ki and kf . This notation is the same as described in Chapter 2.
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Figure 3.3: (a): RIXS spectra for Cd2Os2O7 as a function of incident energy collected at 300 K. Three

features (B, C, D) can be observed, which correspond to intra-t2g , t2g → eg , and ligand-to-metal charge

transfer (LMCT) excitations respectively. Solid line is the best fit to the data. The fitting model comprised

a sum of Gaussian functions, each representing the elastic line and aforementioned inelastic features.

(b): Example spectrum collected for an incident energy of 10.875 keV. Superimposed are the expected

transitions based on the quantum chemistry (QC) calculations [106].

3.2.1 Incident energy dependence

RIXS spectra were collected as a function of incident photon energy out to 10 eV energy loss.

These are plotted in Figure 3.3. Three features are apparent at 1 eV, 4 eV and 7 eV, henceforth

labelled as B, C, and D respectively (the reason for this notation shall become clear later).

Peaks B and C are localised at a fixed energy loss, whereas peak D appears to increase with

increasing incident energy. The fact that B and C resonate at different energies reflects the

fact that they result from different processes. Based on comparison with the QC calculations,

B and C can be associated with intra-t2g and t2g → eg excitations respectively. Feature D on

the other hand is more reminiscent of ligand-to-metal charge transfer (LMCT). Note that there

is a constant offset between the experimental peak energies and the calculated values (see

bottom of Figure 3.3b and Table 3.1), which may be due to some itinerant effects which are

not taken into account within the cluster model used in QC. Nevertheless, the salient features

are separated sufficiently in energy such that their present assignment is reasonable. Since the

main aim was to study modes which involved transitions between t2g states, the incident energy

was fixed to maximise the RIXS intensity for peak B. Consequently the incident energy was kept

fixed at 10.875 keV. Discussion of the different features in the RIXS spectra follows, starting with

the intra-t2g excitation peak.
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3.2.2 Intra-t2g excitations

Representative RIXS spectra are plotted in Figure 3.4, which were collected at Γ (3; 9; 9) and

L (2.5; 8.5; 8.5). These points correspond to the Brillouin zone centre and zone boundary

respectively (Figure 3.5).

Calculation of Hund’s coupling JH

The starting point is a localised Os5+ (d3) ion in the Russell-Saunders limit. To first order,6 one

can estimate the ∆S = 1 intra-t2g excitations as transitions from a 4A2 ground state to either:

(a) an accidentally degenerate state with (2E; 2T1) symmetry, or (b) a state with 2T2 symmetry.

These terms arise as a result of Coulomb repulsion. Such an excitation is not a pure spin-flip

transition, as the excited state wavefunction includes a linear combination of atomic d-orbitals.

In the atomic limit the two states (a) and (b) are separated from the ground state by 3JH and 5JH

respectively, where JH parameterises the Hund’s coupling [107]. Alternatively from an atomic

physics perspective, one can express JH = 3B + C, where B and C are Racah parameters.7 A

schematic of the various energy levels is displayed in Fig. 3.6a.

It is possible to estimate JH by fitting the intra-t2g excitations observed in the RIXS spec-

tra with two Gaussians centered at 3JH and 5JH respectively. If one does this, one obtains

JH = 0.29(4) eV. This differs slightly from estimates for JH = 0.16 eV used in DFT calculations

for instance [105]. It should be stressed at this point that the estimate given above applies in the

atomic limit, and only to first order.

3.2.3 Excitations across ∆O

Peak C corresponds to a t2g → eg excitation. The energy of this peak is, to first order,8 an

estimate of the octahedral ligand field splitting ∆O (10Dq in the crystal field approximation). In

the utilised low resolution setup (∆E = 275 meV), 10Dq = 4.2(1) eV, which is significantly

larger than for the isostructural pyrochlore iridates (Y,Eu,Pr)2Ir2O7, and the isoelectronic double

perovskite Sr2FeOsO6 (Table 3.2). The difference can mainly be attributed to the reduced bond

distance for Cd2Os2O7, increased effective charge for the osmium site compared to the iridium

site (Os5+ vs. Ir4+), and larger Os 5d – O 2p hybridisation. What this means is that there is very

little mixing between the eg and t2g states for Cd2Os2O7. Consequently in the case that SOC is

treated as a perturbation to the Hamiltonian (close to the Russell-Saunders limit), it would have

the effect of splitting the electronic terms into levels Γi , but the centre of mass of those levels

would remain almost constant.

6The validity of this assumption shall be discussed later.
7These in turn can be related to the Slater integrals: B = F2 − 5F4, C = 35F4.
8As mentioned earlier, electron-electron repulsion splits the eg levels into a series of multiplets, the energy of which

each contain 10Dq as a prefactor.
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Cd2Os2O7 Sr2ScOsO6 Y2Ir2O7 Eu2Ir2O7 Pr2Ir2O7

10Dq (eV) 4.2(1) 3.6(2) 3.90(5) 3.68(2) 3.40(2)

M–O (Å) 1.9344(4) 1.968(6), 1.957(6) 1.991 2.033(12) 2.013(8)

M–O–M (◦) 86.95(5) 87.4(2) 81.471 80.3(9) 83.7(7)

Table 3.2: Crystal field parameters (as obtained by spectroscopic methods), M–O bond distances, and

M–O–M bond angles for Cd2Os2O7 [96], the double perovskite Sr2ScOsO6 with Os5+ [108, 109], and the

pyrochlore iridates (Y,Eu,Pr)2Ir2O7 [86, 88, 110, 111]. All bond distances are given for ambient temperature.

Discussion

In the atomic limit these transitions would be expected to be sharp, however even at 30 K the

observed features are intrinsically broad. For example the peak centered at 3JH has a width of

0.43(3) eV, significantly larger than the resolution of 0.13 eV. There are a number of reasons

for this. One is that the excited state has a finite lifetime, and hence through the Heisenberg

uncertainty principle, a finite bandwidth. For electronic transitions this is expected to be very

short (∼ fs), which is equivalent to an energy scale on the order of 0.1 eV. Another consideration

is that the t2g manifold is relatively broad in Cd2Os2O7. This occurs as a direct consequence of

weak to moderate electron correlations U and significant hybridisation between Os 5d and O 2p

states.

However, these are not the only factors which contribute to the observed broad peaks in the

RIXS spectra. These contributions include the effects of spin-orbit coupling and distortions away

from an ideal cubic symmetry. Spin-orbit coupling has three main effects on the electronic terms

within an L-S coupling scheme. The dominant effect is that it splits terms for which the direct

product D(S) × Γ is reducible. According to the Wigner theorem, each resulting irreducible rep-

resentation corresponds to a certain energy level. Thus spin-orbit coupling results in so-called

fine structure levels. Secondly mixing of many electron terms can occur if the direct product

Γ1 × Γ2 contains representations which transform in the same manner as those of the orbital

angular momentum operators l̂x;y;z . This leads to a mutual ‘repulsion’ of the corresponding

terms. Finally those terms for which D(S)× Γ is irreducible (and hence not split by the spin-orbit

interaction) are perturbed in accordance with second-order perturbation theory.

Distortions of the cubic environment result in a reduction of symmetry and a corresponding

point group with fewer irreducible representations. Doubly or triply degenerate levels can be split

by this low symmetry field. A canonical example is a tetragonal axial field with D4h symmetry

acting on a set of degenerate t2g orbitals. The field acts along the local z-axis to stabilise the

dxz and dyz orbitals, whilst simultaneously raising the energy of the dxy orbital relative to the

undistorted complex.

For a d3 ion, quantitative calculations of the energy levels, whilst including both spin-orbit

coupling and trigonal distortion, are rather complex. The procedure applied also depends on the

relative magnitudes of the perturbations relative to the cubic splitting and electronic repulsion
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2Ã
Ẽ
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Figure 3.6: (a): Terms of a t3
2 configuration in a first (strong field) approximation, including the effect

of Coulomb repulsion. Spin-orbit coupling and distortions away from an ideal octahedral geometry are

neglected. The Hund’s coupling JH is equivalent to 3B + C, where B and C are Racah parameters. The

terms 2E and 2T1 are accidentally degenerate. (b): Electronic terms when spin-orbit coupling is added

as a weak perturbation. Terms are calculated by decomposition of the direct product Γ × D(3/2). The

separation between terms originating from 2E and 2T1 is exaggerated for clarity. (c): Addition of a weak

trigonal perturbative field to the case presented in (b). Note that the 4A2 ground state is only split (zero

field splitting) by a combination of spin-orbit coupling and trigonal distortion, and even then third-order

perturbations are required.

terms (strong or weak-field cases). From now on it is assumed that 10Dq > B;C > “ > ∆trig,

that is, the strong field limit. In this case the trigonal distortion is applied after the spin-orbit

interaction. The assumption that “ > ∆trig is reasonable given the expected magnitude of the

spin-orbit coupling (“ ∼ 0.5 eV) and near-cubic symmetry for Cd2Os2O7. The assumption that

B;C > “ however is less convincing; this approach was chosen as it allows previously published

analytical expressions to be used, and highlights the potential deficiencies of these calculations

in the Russell-Saunders limit.

Practically what one has to do is solve the secular equation in which all nSΓ terms are

involved [62]:

|〈¸iSiΓi | ĤSO |¸jSjΓj〉 − ›ffi j | = 0

Symmetry arguments simplify this equation somewhat, in that only the states belonging to the

same irreducible representations Γ′ contained within D(Si ) × Γi are mixed by ĤSO.

Example calculations were performed for a model Os5+ system including a strong octahe-

dral crystal field, Coulomb repulsion terms and spin-orbit coupling. The trigonal distortion was

neglected to a first approximation for the reasons given above. Energy matrices used were the

same as those presented in the manuscripts by Tanabe and Sugano [112], and Runciman and

Schroeder [113]. The four variable parameters were 10Dq, the Racah parameters B and C, and

the spin-orbit coupling “. In the first instance, B = 35 meV, C = 165 meV, and “ = 330 meV,
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were fixed to values determined9 from spectroscopy on a Os5+ complex [114]. The values of the

Racah parameters are consistent with JH = 3B+C = 0.29(4) eV as obtained from fitting of the

RIXS spectra.

If spin-orbit coupling is included in addition to the octahedral crystal field and Coulomb re-

pulsion, then to first order one finds that the 2T1 and 2T2 terms are split by approximately 20

and 80 meV respectively, whilst the 4A2 and 2E states are not. This is somewhat smaller than

the values predicted within the MRCI+SOC quantum chemistry calculations by Bogdanov for an

ideal octahedral environment. Furthermore the quantum chemistry calculations predict a small

splitting of the 4A2 and 2E states. Both effects can be understood however in terms of a single-

ion anisotropy contribution which was added in the prior theoretical study, but is not considered

here.

It is somewhat surprising that the electronic transitions appear, at least to first order, to be

consistent with a model in which spin-orbit coupling acts as a perturbation to the Hamiltonian.

This is especially the case when comparing to RIXS data on the iridates for example, which

show transitions between the jeff = 1
2 and jeff = 3

2 bands. Recall that these bands arise as a

result of the strong intrinsic spin orbit coupling – ≈ 0.5 eV. However the difference can at least

be partly explained simply by considering the difference between the single-electron and many-

electron spin-orbit coupling parameters “ and – = “=2S. Iridium and osmium have similar

nuclear charges, so “5d should be similar for the two atoms (“ ∼ Z4). For the iridates (d5,

S = 1
2 ), – = “5d ≈ 0.5 eV so the effect of spin-orbit coupling is strong. However for the osmates`

d3 , S = 3
2

´
, – = “5d=3 ≈ 0.17 eV [115], which means that the role of SOC on the electronic

states is effectively reduced compared to the iridates.

3.2.4 Momentum dependence at 60 K

Issues with the sample environment meant that it was not possible to cool below 60 K. Ideally

one would want to perform RIXS measurements at as low a temperature as possible for a num-

ber of reasons. The predominant ones are to minimise the elastic line intensity, and maximise

any intrinsic magnetic contribution to the inelastic spectra. Nevertheless a temperature of 60 K

puts Cd2Os2O7 well in the antiferromagnetic insulator phase, as determined by bulk measure-

ments. The Cd2Os2O7 single crystal was oriented in the (H; K; K) scattering plane in order to

access high symmetry directions in the (3; 9; 9) Brillouin zone. This zone was chosen such that

the scattering angle was within a few degrees of 2„ = 90◦ for all high symmetry points.

The momentum dependence of the RIXS spectra at 60 K is displayed in Fig. 3.7. All spectra

displayed are the result of collecting for 25 seconds per point. Three peaks can be observed: a

quasi-elastic feature, a peak at 150 meV, and a high-energy Gaussian tail. The intensity variation

of the quasi-elastic feature is caused predominantly by RIXS matrix element effects as one goes

away from the ideal 2„ = 90◦ scattering condition. The high-energy tail is due to the intra-

9Note that B;C; “ are reduced from the free ion values as a consequence of covalency effects (nephelauxetic

effect).
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Figure 3.7: (a): Momentum dependence at 60 K in a low-resolution setup. Spectra have been offset

for clarity. ∆ and Σ correspond to points intersecting the Γ − X and Γ − K high symmetry directions

respectively. The peak at 0.15 eV energy loss corresponds to peak A, with the high energy tail resulting

from the intra-t2g excitations. (b,c): Example fits to spectra collected at L (b) and Γ (c), with individual peak

components superimposed.

t2g excitations seen previously for the incident energy dependence. The feature at 150 meV

energy loss however is the most unusual (henceforth referred to as peak A). Qualitatively it

appears to have little dispersion or intensity variation as a function of momentum transfer. In

order to parametrise these observations, the RIXS spectra were fitted with a functional form

comprising the sum of a Lorentzian representing the quasi-elastic line, and two Gaussians for

peak A and the intra-t2g excitations respectively. The position and width of the intra-t2g excitation

was constrained to values obtained from the longer scans presented earlier.

Selected fits of the RIXS spectra are presented in Figures 3.7b and 3.7c, with the energy

and intensity of peak A displayed in Figure 3.8. The energy of the feature indeed shows little

variation as a function of momentum transfer, and could even be considered as dispersionless

within error [E = 170(10) meV]. The intensity on the other hand varies by around 50% through
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Figure 3.8: Energy (a) and intensity (b) of the feature at 160 meV energy loss (peak A) as a function of

momentum transfer. There is a weak variation of the peak energy and intensity across the Brillouin zone.

the Brillouin zone. This observation can in part be explained by differences in the attenuation

of the scattered beam as a function of sample orientation, but this is likely to be a rather small

effect.

3.2.5 Temperature dependence

Further insight into the origin of peak A can be gathered by considering its dependence on tem-

perature. Spectra were collected at (2.5; 8.8; 8.8); this point was chosen as it gave reasonable

intensities of both the quasi-elastic line and peak A, which would aid in fitting. The resulting

spectra are plotted in Figure 3.9. Peak A appears to weaken and broaden with increasing tem-

perature, whereas the intra-t2g excitations remain approximately constant. The variation of the

quasi-elastic feature is likely due to the increased population of phonons present at high tem-

perature in accordance with the Bose-Einstein distribution. These would be indistinguishable

from the elastic line for an energy resolution of 130 meV.

In order to quantify these observations, the data were fitted with the model presented in

Section 3.2.4. As displayed in Figure 3.9c, the intensity of peak A decreases continuously

with increasing temperature, reaching a minimum around 225 K. This coincides with the metal-

insulator transition (MIT) and the onset of antiferromagnetic order. Based on the power law-like

dependence of the peak intensity [˛ = 0.17(2)] it is suggested that the feature is magnetic in

origin.10 Residual intensity above TN may be indicative of short-ranged magnetic correlations in

the paramagnetic phase.

10The value of the critical exponent is consistent with that expected for an all-in, all-out magnetic structure [116, 117].

However caution should be taken with this result, since the power law dependence is only strictly valid close to TN, and

there is insufficient data close to the transition to fully characterise the dimensionality of the critical fluctuations.
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Figure 3.9: (a): Temperature dependence of RIXS spectra collected at (2.5; 8.8; 8.8). Spectra have been

offset by a constant factor for clarity. (b): Comparison of spectra at 60 K and 300 K. Peak A weakens

and broadens with increasing temperature. Solid line is the best fit to the data with the model given in the

main text. (c): Fitted peak intensity as a function of temperature, with a fit to a power law TC = 226 K,

˛ = 0.17(2) added as a guide. Such behaviour is consistent with a magnetic excitation.

The non-dispersive nature of peak A however is somewhat puzzling. Conventionally one

would expect dispersive spin wave excitations, which for an antiferromagnet would have a band-

width ∼4J. Furthermore quantum chemistry calculations [106] predict J = 6.4 meV, albeit with

a significant uniaxial anisotropy D = −6.8 meV which stabilises all-in, all-out magnetic order.

This energy scale is considerably lower than seen here.

One suggestion proposed by theoretical collaborators in Dresden (Jeroen van den Brink,

Satoshi Nishimoto and Nikolai Bogdanov) is that the proposed mode is in fact an unconventional

magnetic excitation driven by spin-orbit coupling from an all-in, all-out ground state. The argu-

ment goes as follows. In Cd2Os2O7 the interactions can be considered Ising-like to first order,

as a direct result of the strong uniaxial single-ion anisotropy as predicted by quantum chemistry

(QC) calculations. Consequently the dominant contribution to fluctuations are ∆Sz terms, with

S = 3
2 for a d3 system. It is assumed that there is no orbital component to the magnetization.

The non-collinear spin arrangement for an all-in, all-out magnetic structure requires that the lo-

cal Dzyaloshinskii-Moriya (DM) vector d is non-zero. In the classical limit, three types of local

spin excitations would thus be expected: S = 3
2 →

1
2 ;−

1
2 ;−

3
2 (∆Sz = 1, 2, 3 respectively).
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These excitations would have the following discrete energies:

∆Sz = 1 : ∆E =

„√
2d +

1
2
J

«
N −D

∆Sz = 2 : ∆E =
“

2
√

2d + J
”
N −D

∆Sz = 3 : ∆E =

„
3
√

2d +
3
2
J

«
N; (3.1)

where J = 6.4 meV, D = −6.8 meV, and d = |d| = 1.6 meV, are the same as determined from

the QC calculations.

However this classical model does not take into account the quantum nature of the states

and the interactions between them, so exact diagonalization (ED) calculations were performed

using the following Hamiltonian:

H = J
X
〈i ;j〉

Si · Sj +D
X
i

(Si · Ai )2 + d
X
〈i ;j〉

ei j [Si × Sj ] ; (3.2)

with the unitary vectors Ai ∈ 〈111〉, and ei j ∈ 〈110〉. The ground state and all possible excited

states were obtained for a 4-site and an 8-site cluster; the former is the minimum required to

fully describe the all-in, all-out magnetic ground state. All parameters used were identical to

those determined from the QC calculations. The corresponding excitation spectrum for a given

∆S transition is evaluated as follows:

I(!) =
X
n

|〈 n| Ô | 0〉|
2
‹(! − En − E0); (3.3)

where  n and En are the nth eigenstate and eigenenergy (n = 0 corresponds to the ground

state). Here the operator Ô refers to Ô = S+, (S+)2, and (S+)3 for ∆Sz = 1,2,3 respectively. It

is important to note that this spectrum is in fact equal to the density of states, and not the RIXS

cross-section.

The results are displayed in Figure 3.10. The excitation spectra I(!) have been broadened

by the instrumental resolution and compared to background subtracted data points. Clearly the

ED calculations reproduce the energy of peak A very well using the same parameter set as that

used for the quantum chemistry calculations.

What is surprising however is that the largest contribution to the density of states (and the

best fit to the experimental date) appears to be the ∆Sz = 3 transition. Such a transition is

forbidden within the RIXS spin-only selection rules, which limit ∆Sz = 1,2. However spin-orbit

coupling has two main effects which mean that contributions from ∆Sz = 3 can indeed be seen

with RIXS in this scenario.

In the classical limit, the excitation energies as calculated by Equations 3.1 are discrete.

However within the ED calculations the ∆Sz excitations are mixed. This gives rise to the broad

central peak in I(!). The mixing occurs due to quantum fluctuations which leads to a superpo-

sition of spin states. This superposition is a direct result of the sizeable Dzyaloshinskii-Moriya

interaction calculated for Cd2Os2O7 which is directly linked to the intrinsic spin-orbit coupling.

The DM term mixes states with different spin projection Sz into both the ground and excited

states.
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Figure 3.10: Exact diagonalization calculations performed by Satoshi Nishimoto on an 8-site cluster for

Cd2Os2O7. Markers correspond to experimental data points after background subtraction. Green, blue,

and purple lines represent excitation spectra I(!) for ∆Sz = 1,2,3 respectively, multiplied by identical

scale factors and broadened by the instrumental resolution. Inset shows similar calculations for a minimal

4-site cluster, along with the unbroadened excitation spectra. The energy scale compares well with peak

A. Adapted from Ref. [118].

Furthermore remember that the RIXS process is a virtual transition involving an intermediate

state. In this intermediate state, the electronic configuration of an osmium ion is 2p55d4, which

has a non-zero orbital component. Consequently spin-orbit coupling is increased due to the

finite orbital component, and S is no longer a good quantum number in the intermediate state.

The spin-only selection rules are thus invalid, and hence ∆Sz = 3 transitions become allowed.

However the fact that they become allowed does not necessarily imply that they are the dominant

excitation mechanism. Equation 3.3 does not take the finite lifetime of the core hole onto account

and the interaction with the intermediate state. One would still expect a single magnon process

to be the dominant term in the RIXS cross-section, followed by ∆S = 2 and ∆S = 3 terms.
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3.3 High resolution RIXS measurements

The observed magnetic feature occurs at an energy comparable to the energy resolution. Fur-

thermore no significant dispersion could be observed. High resolution RIXS measurements

were thus performed at the ESRF in order to determine whether the proposed magnetic mode

is purely local in nature, or whether it shows dispersion which would be indicative of a propagat-

ing collective excitation.

Experimental setup

RIXS measurements at the Os L3 edge (10.871 keV) were performed on a single crystal of

Cd2Os2O7 (ca. 0.5 mm across) on the ID20 spectrometer at the ESRF, Grenoble. The sample

was oriented such that the [1; 1; 1] direction was perpendicular to a copper sample mount,

fixed with GE varnish and placed in a closed-flow He cryostat. The scattering plane and incident

photon polarisation were both horizontal, i. e. ı-incident polarization, with the incident beam

focussed to a size of 20 × 10 —m2 (H×V) at the sample position.

A Si (6; 6; 4) four-bounce secondary monochromator was used to define the incident en-

ergy, with a Si (6; 6; 4) diced spherical analyser (2 m radius) used to reflect the scattered

photons towards a Medipix CCD detector (pixel size 55 —m). Total energy resolution was deter-

mined to be ∆E = 48 meV based on scattering from a charge peak. This compares well with

the theoretical energy resolution.

Initial findings

A qualitative comparison (Fig. 3.11) of the RIXS spectra in the (6; 7; 7) Brillouin zone at 30 K

and 200 K reveals the same non-dispersive feature (peak A) as seen within the lower resolution

data presented earlier, which weakens and broadens with increasing temperature. The energy

scale of the peak is also rather similar. The main distinctions of the higher-resolution data

however are an intrinsic asymmetry of peak A, combined with a suppression of spectral weight

between the elastic line and the peak.

In order to quantify these observations, the salient features in the RIXS spectra were repre-

sented by a Gaussian for the quasi-elastic excitations, a Gaussian for the intra-t2g excitations

(position and width fixed based on selected scans which were performed out to large energy

loss), and various functional forms for the asymmetric peak A, which are described below. All

of these features were convoluted with the resolution function (Pearson VII function with width

48 meV, profile parameter — = 1.6) and fitted to the data via a non-linear least-squares ap-

proach.
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Figure 3.11: Best fits to high-resolution RIXS data collected in the (6; 7; 7) Brillouin zone, using a sym-

metric Lorentzian (black dashed) or a phenomenological gap function (Eqn. 3.4, solid) functional form at

30 K (a,c) and 200 K (b,d) for momentum transfers Γ and L. The Lorentzian fails to adequately describe

the region between the elastic line and peak A for all temperatures and momentum transfers Q. Dotted

lines illustrate the functional form of the fitted and deconvoluted gap function, which has been offset and

multiplied by a constant scale factor for clarity.

3.3.1 Origin of peak A

A number of possible scenarios for the inherent asymmetry of peak A were explored. These are

discussed in turn below.

I. Excitonic mode

The first scenario is a discrete exciton mode and associated electron-hole continuum arising

from an excitation across the direct charge gap, as seen for example in Na2IrO3 and other

iridates [119]. There are three main problems with this interpretation. The first is that fitting

the peak to a Lorentzian (or a Lorentzian plus Gaussian, not displayed) as appropriate for such

a mode fails to describe the low-energy suppression of spectral weight adequately (Fig. 3.11).

The second is that the intensity of peak A is practically momentum independent, which is at

odds with the band structure calculations by Shinaoka et al. [104] for Cd2Os2O7, and previous

studies on iridates [119], the latter of which shows a distinct localization of spectral weight at

the zone centre. One would expect a large intensity for a Q-point with a high density of states.

Finally if peak A were indicative of a simple excitation across the charge gap, then its energy
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would decrease concurrently with the gap energy. This proposition is not supported by the data.

Consequently an excitonic model was disregarded from future analysis.

II. Gap opening

One of the main failures of the excitonic model was the poor fitting of the low-energy suppression

of spectral weight. The second interpretation thus considered is somewhat related to the first, in

that peak A has an electronic origin. Rather than an excitonic process however, the hypothesis

was that the low-energy suppression of spectral weight was evidence of an electronic gap below

the MIT. The reasoning is as follows.

Above the MIT Cd2Os2O7 is metallic, and hence states cross the Fermi level over the entire

Brillouin zone. Below the MIT the charge gap opens up continuously, as demonstrated by optical

conductivity and resistivity measurements. Those states which previously crossed the Fermi

level are continuously transferred to lower energies, and spectral weight builds up either side of

the gap. This spectral weight gives rise to peak A.

At first glance, the proposed gap appears to continuously shift to lower energy loss with in-

creasing temperature (Fig. 3.11). The transfer of spectral weight can be described by a modified

damped Lorentzian functional form, given by:

S(Q;!) = H(!gap) Im
»

A(Q)2

!2
p − !2 − i‚(! − !gap)

–
; (3.4)

where H(!gap) is the Heaviside step function, A(Q) is a scale factor, !p (corresponds to the

mid-point of the spectral weight), ‚ is the damping factor,11 and !gap is the energy where the

function goes to zero. A similar function has been used to describe the optical spectra of super-

conducting cuprates [120]. In the underdamped limit (‚ → 0), !p tends to !0, where !0 is the

peak maximum; while in the overdamped limit (‚ →∞), !gap tends to !0.

III. Fano resonance

The final scenario is that peak A arises as a result of interference between a discrete resonant

process and a continuum spectrum [121, 122]. This interference results in a shift from the

original peak position and a characteristic asymmetry of the observed peak. This process is

known as a Fano resonance and is well known for Raman spectra; for instance it has been

observed in the hyperkagome 5d TMO Na4Ir3O8 [123], and for Sr2IrO4 [124]. The resonance is

described by the Breit-Wigner-Fano (BWF) formula:

I(!) = I0

»
1 + q›

1 + ›

–2

; (3.5)

with › = (! − !0) =Γ, where !0 is the uncoupled resonance energy, Γ is the spectral width, and

|1=q| is a parameter which is proportional to the coupling between the resonant mode and the

11This is a variable, however ‚ was fixed to ‚ = 0.3 for all future analysis in order to minimise the number of

parameters in the fitting procedure.
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continuum.12 In the limit |q| → ∞ this formula simplifies to a Lorentzian. Particularly for small

|q|, there is a reduction in intensity at the low energy side of the peak which appears similar to

that observed for Cd2Os2O7. In order to discriminate between scenarios II and III, a detailed ex-

amination of the dependence of the RIXS spectra on both temperature and momentum transfer

was performed.

3.3.2 Temperature dependence

RIXS spectra were collected as a function of temperature at the (7; 7; 8) Brillouin zone centre,

which for the experimental geometry was the closest to the ideal case of 2„ = 90◦ (2„ = 91.1◦).

These spectra are plotted in Figure 3.12a, and were fitted using either a gap function (Eqn 3.4)

or a Fano resonance (Eqn. 3.5) to describe peak A. It should be noted that for the fits to a Fano

resonance, it was found that the width Γ and |q| were strongly correlated as a consequence

of insufficient data at low energy loss, since the reduction of spectral weight in that region is

highly dependent on |q|. Henceforth all data presented has been obtained using a fixed value

of |q| = 7, which was found to give an adequate description of the data across all temperatures.

This value of |q| indicates moderate coupling between the resonant mode and the electronic

continuum. Figures 3.13 and 3.14 show the results of fits to a Fano resonance or a gap function

respectively at 30 K and 275 K. Both the Fano resonance and gap function models provided

a good fit to the data across all temperatures, (ffl2 < 2), with only slight differences in the

ffl2 values obtained for a given temperature. On this basis alone, it is difficult to discriminate

between the two scenarios.

Extracted parameters from the fits are displayed in Figure 3.15 as a function of temperature.

Previous measurements [118] observed a order parameter-like decay of peak A, with a critical

temperature coincident with TMI. Indeed the data show a continuous decay in the peak intensity

and an associated spectral broadening with increasing temperature, both of which appear to

saturate above TMI and are independent of the model considered. The spectral weight is also

approximately conserved through the MIT for both models. Quantitative analysis of the observed

behaviour for both models shall be compared in turn.

Electronic gap

Within an electronic gap interpretation, the hypothesis is that the weakening and broadening of

peak A with increasing temperature occurs as a result of the gap closing at the MIT. This gap

closing explains two main features in the RIXS spectra: a continuous increase of spectral weight

in the region between the elastic line and peak A, coupled with a shift of spectral weight to higher

energies. The latter is shown by the increasing value of !p with increasing temperature.

One point of note is that a distinction has to be made between the optical gap and the charge

gap: the direct optical gap is the ∆k = 0 transition between two bands separated by the Fermi
12Strictly speaking q may be complex in the antiferromagnetic phase since time-reversal symmetry is broken [125].

In the paramagnetic phase, q is real since time-reversal symmetry is preserved.
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Figure 3.12: Temperature dependence of RIXS spectra in the (7; 7; 8) Brillouin zone. (a): Stack plot of

data normalized to intensity of intra-t2g excitations at 0.7 eV, plotted with best fit to gap function model.

(b): RIXS intensity at 60 meV (open diamonds) and 150 meV (filled triangles), which at 30 K correspond to

the intra-gap and peak regions respectively. The peak intensity is consistent with a power law (˛ ∼ 0.4),

whereas the intra-gap intensity follows Arrhenius-type behaviour. Both models have critical temperature

TMI. (c): Normalized data with elastic and intra-t2g contributions subtracted. Dashed line indicates the

location of the MIT. There is a clear evolution of the lineshape from 30 K (bottom) to 300 K (top) as the gap

closes.

level, whilst the indirect charge gap is the minimum between the conduction and valence bands

and governs the MIT. This distinction is illustrated in Fig. 1.4. If !gap is representative of an

electronic gap, then it is expected to follow a BCS-like dependence. By fitting their data to a

BCS-type gap function,
∆(T )

∆0
= tanh

∆(T )TMIT

∆0 T
; (3.6)

Padilla and colleagues [98] determined the zero temperature optical gap to be 2∆D = 100 meV,

whilst Mandrus et al. [94] determined the charge gap 2∆C = 130 meV. However Mandrus

et al. observe a clear suppression of the activation energy at low temperatures due to extrin-

sic conduction mechanisms, and only fits data close to the MIT with the BCS function. In the

present study there is insufficient data close to the MIT to do this adequately. Thus fitting !gap to
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Figure 3.13: Fits of RIXS spectra obtained at (7; 7; 8) and 30 K (a), or 275 K, with peak A described by a

gap function (Eqn. 3.4).

a BCS function over the whole temperature range measured gives TMI = 230(4) K, ∆0 = 87(2)

meV and ∆0=kBTMI = 4.4(2). The transition temperature and value for ∆0 compare well with

parameters extracted from optical conductivity measurements by Sohn et al. [99], who finds

2∆D ∼ 160 meV, where ∆D is the direct optical gap. Hiroi et al. [97] note that whilst the value

of TMI is fairly consistent between samples and batches, 2∆ (as extracted from resistivity mea-

surements) varies significantly even within samples from the same batch. Their supposition is

that the T = 0 charge gap is actually fairly constant between samples, but very small deviations

in oxygen stoichiometry (∼ 10−4 f .u.) or impurity states within the gap causes the observed

behaviour. Given this information (along with the instrumental energy resolution), the results

presented are believed to be consistent with the previous studies. The value of 2∆0=kTMI is sig-

nificantly larger than the theoretical value for a BCS model with weak coupling (2∆0=kTMI = 3.5)

and implies that spin-orbit coupling may play some role in the electronic behaviour.

The fact that the spectral weight of the gap feature extends to ca. 0.6 eV agrees with ob-

servations in optical conductivity measurements by Padilla and colleagues [98], where they

see a significant reduction of spectral weight in the intra-gap region. This spectral weight is

transferred to the region above 3∆, which in their study is surprisingly not exhausted until al-

most 40∆ ≈ 2 eV. The full extent of the spectral weight transfer in the RIXS data is masked

somewhat by the intra-t2g excitations. Furthermore band structure calculations by Shinaoka et

al. [104] reveal a pseudogap in the density of states originating in the metallic phase close to

the MIT, which they argue originates from the modification of the band structure near the Fermi

level with the magnetic order. The data presented here is consistent with their interpretation.

These conclusions suggest that the gap parameterised by ∆0 is indeed electronic in origin, and

is likely to be the direct optical gap (which according to Sohn et al. [99] can be directly related to

the charge gap magnitude for any given temperature).
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Figure 3.14: Fits of RIXS spectra obtained at (7; 7; 8) and 30 K (a), or 275 K (b), with peak A described

by a Fano resonance (Eqn. 3.5).

Fano resonance

Within a Fano resonance interpretation the feature also weakens and broadens with increasing

temperature, but the broadening occurs as a result of increased damping (with the caveat that |q|

is fixed as a function of temperature, which may not be a valid assumption). The Fano lineshape

itself occurs as a result of interference between a resonant mode and a continuum of states. The

two most plausible options for the identity of the resonant mode are a Raman-active phonon

or a magnetic excitation. However the former is unlikely for the following reasons. Yamaura

and colleagues [95] identified the highest energy T2g (4) phonon mode at 760 cm−1 (95 meV).

This is significantly lower than !0 at 30 K, which suggests that this mode is not responsible

for the resonance unless a magnon or another phonon is also involved. The cross-section

for this type of interaction is likely to be very small. Furthermore the uncoupled resonance

energy is practically independent of temperature, whereas the T2g (4) phonon undergoes a slight

hardening with increasing temperature.

It is thus proposed that this resonance is in fact magnetic in origin. Such an interpretation

of the data is supported by the following observations. Firstly the intensity of peak A as a

function of temperature can be reasonably13 described by a power law with a critical temperature

equal to TN, and ˛ = 0.4(1). This critical exponent is consistent with a 3D magnetic ordering

scenario. Secondly the increased damping at high temperatures would be appropriate for any

model involving a harmonic oscillator of some form.

The temperature dependence alone is insufficient to distinguish between an electronic or

magnetic origin for peak A. Fortunately one of the main advantages of RIXS over other optical

techniques is the ability to measure as a function of momentum transfer.

13Within the limitations of fitting thermodynamic parameters with a power law far from the critical temperature.
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Figure 3.15: Comparison of fitted parameters for peak A. (a,b): Fits of peak A to a Fano resonance. (a):

Energy of uncoupled resonance !0 (filled squares) and maximum of peak (open diamonds). (b): Intensity

I0, a power law with critical exponent ˛ = 0.36 and critical temperature T = TN is added as a guide. Inset:

spectral weight taken from integral of Fano resonance. (c,d): Fits of peak A to a gap function (Eqn. 3.4).

(c): Extracted parameters from fitted gap function !gap (filled squares) and !p (open diamonds). Solid line:

Best fit with BCS function, TMI = 230(4) K, ∆0 = 87(2) meV. (d): Peak intensity as a function of T . The

solid line is a guide to the eye. Inset: Spectral weight of gap as a function of T .

3.3.3 Dependence on momentum transfer

The momentum dependence of the RIXS spectra was measured14 in the Brillouin zone around

(6; 7; 7) at 30 K, with the results plotted in Fig. 3.16. In agreement with lower resolution RIXS

(Chapter 3.2), there is little to no dispersion in peak A (Fig. 3.16b), and near constant intensity

across the Brillouin zone (Fig. 3.16c). At first glance the only significant variation with momentum

transfer is the intensity of the elastic line, which as before is almost entirely due to RIXS matrix

element effects.

The data were fitted with the same model as used in the previous section, along with the

same functional forms for peak A. Quantitative comparisons of the two models will now be

made, starting with the optical gap.

14Measuring in the (7; 7; 8) Brillouin zone would have resulted in very large elastic line intensities at the zone

boundaries, and made determination of the gap energy difficult.
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Figure 3.16: (a): Momentum dependence of the RIXS spectra, along with best fits of the data (solid line).

Unexplained feature at 0.3 eV energy loss indicated by asterisk, which has not explicitly been accounted for

in the fit. (b): Extracted parameters from fitted gap function !gap (filled squares) and !p (open diamonds).

(c): Peak intensity (filled squares) and spectral weight (open circles) as a function of momentum transfer.
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(a): Peak intensity as a function of temperature. The dashed line is guide to the eye. (b): !gap [solid

symbols] and !p [open symbols] as a function of temperature. The dashed line is identical to that given in

Fig. 3.15c.
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Optical gap

Fitting peak A with the functional form as appropriate for an optical gap provides a good fit to

the data across all momentum transfers (Fig. 3.16), albeit with some discrepancy between 0.3–

0.4 eV which seems to be consistent given the choice of damping parameters. This shall be

discussed later in this section. The parameter !gap appears to show some weak dispersion of

around 20 meV, however considering the intrinsic energy resolution of 45 meV it is unclear if this

is significant. Nevertheless this dispersion is significantly smaller than that predicted by band

structure calculations by Shinaoka et al. [104] and others for plausible values of U, and an all-in,

all-out magnetic structure. Such an observation suggests that the electronic bands close to the

Fermi level are flatter than previously considered. This is supported by the weak variation of

the spectral weight as a function of momentum transfer indicative of a near constant density of

states.

A similar temperature dependence is observed as a function of momentum transfer (Figure

3.17). This suggests a collective excitation involving electrons and holes at all locations in the

Brillouin zone. The momentum independence is a signature of the ‘relativistic’ Lifshitz transition;

at the MIT the occupied bands are uniformly pulled downward and the unoccupied ones are

pushed up.

One observation discussed briefly earlier is that there is an additional weak feature at 0.3 eV

energy loss which cannot be explained in terms of this gap or a d-d excitation (henceforth re-

ferred to as peak B). Interestingly it is particularly localised at the W point, which corresponds

to a vertex of the Brillouin zone. Peak B proved difficult to fit across the Brillouin zone, given that

its width and intensity vary significantly with momentum transfer. The constraint ‚ = 0.2 was re-

quired to give sensible fits to the experimental data, with the results summarised in Figure 3.18.

Nevertheless the values for !gap and !p are broadly consistent with those shown in Figure 3.16,

along with the associated peak intensity and spectral weight (albeit with increased uncertainty).

Furthermore the quality of the fits improve consistently when fits to peak B are considered.

In contrast to peak A, peak B appears to be much more dispersive in energy, with minima

at the zone centre and maxima at the zone boundaries. This feature is proposed to be elec-

tronic in origin for the following reasons. Recent LDA + U band structure calculations by Uehara

et al. [105] provide further insight into the possible nature of peak B. These DFT calculations

utilised U = 0.8 eV; the presence of electron and hole pockets indicate that Cd2Os2O7 is metal-

lic for this value of U. Sohn et al. [99] find that the effect of increasing U from 0.8 eV to 1.5 eV is

to separate the valence and conduction bands by around 0.2 eV (and thus inducing a Lifshitz-

type MIT), with only a slight variation in the band dispersion.15 If one applies this shift to the

data close to the Fermi energy as presented in Ref. [105], then semi-quantitative agreement is

found between the dispersion of peak B and the LDA + U calculations at the zone boundaries.

15Only the band structure between W−L−Γ was presented in the manuscript, however, hence the motivation for

shifting the U = 0.8 eV data as presented in Ref. [105].
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Figure 3.18: Same layout as for Fig. 3.16, except fits include a Gaussian to account for the feature at

300 meV energy loss, which has been highlighted in (a). Open circles in (b) indicate its energy as a

function of momentum transfer.

The momentum dependence of the RIXS spectra at low temperature are thus supportive of

peak A having an electronic origin. The weak dispersion of !gap is indicative of relatively flat

bands close to the Fermi energy. Complementary information could be gathered from angle-

resolved photo-electron spectroscopy (ARPES) measurements, which unlike RIXS probes the

occupied valence states.

Magnetic excitation

The alternative is that peak A is magnetic can also be confirmed or disproved via consideration

of its dependence upon momentum transfer. Fits of the low temperature RIXS spectra to the

Fano resonance model given earlier are displayed in Fig. 3.19. At this point it should be noted

that it proved difficult to reliably fit peak B across the Brillouin zone, so the analysis presented

does not take it into account.

As with fitting to an electronic model, a magnetic description is also compatible with the low-

temperature data. However, in common with Ref. [118], simple antiferromagnetic Heisenberg

interactions are insufficient to describe the excitation spectra. Evidence is given by the very

large gap (∼120 meV) and relatively weak dispersion as a function of momentum transfer.

This conclusion naturally arises simply by considering the AIAO non-collinear magnetic

ground state as proposed from the XRMS measurements by Yamaura et al. [95]. Elhajal and

colleagues [126] argue that a ‘direct’ Dzyaloshinskii-Moriya (DM) interaction lifts the geometric
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frustration intrinsic to the pyrochlore lattice, and helps to stabilise the AIAO state; whereas an

‘indirect’ DM interaction results in a preferred XY ground state.16 Specifically for Cd2Os2O7,

ab initio quantum chemistry calculations [106] determined that trigonal distortions away from

an ideal pyrochlore structure (along with SOC) induce an easy-axis anisotropy (D = 6.8 meV)

which is comparable to the nearest-neighbour antiferromagnetic exchange (J = 6.4 meV). This

easy-axis anisotropy applies along the local 〈1 1 1〉 crystal directions, and thus also helps to

stabilise the AIAO ground state in tandem with a direct DM interaction (|d| = 1.65 meV).

The sizeable anisotropy has two main effects on the magnetic ground state and resulting spin

wave dispersion. The first is to break the spin rotation symmetry (which leads to a Goldstone

mode in the isotropic case) and lift the magnon energy away from zero at the magnetic zone

centre. The spin wave spectrum is now gapped. The second effect is to effectively flatten the

magnon dispersion.

The energy and dispersion of peak A appears compatible with a strongly anisotropic model.

In order to investigate this, the dispersion was fit within a linear spin-wave theory (LSWT) to the

following nearest neighbour Hamiltonian:

H = J
X
i j

Si · Sj + d
X
i j

Si × Sj +
X
i

Si · D · Si ; (3.7)

where the three terms on the right-hand side of the equation represent nearest-neighbour an-

tiferromagnetic exchange, an antisymmetric DM interaction, and single-ion anisotropy respec-

tively. This Hamiltonian is identical to that given in [106]. Linear spin wave theory is expected

to be a reasonable approximation for Cd2Os2O7 in the low-temperature, localised limit given

that S = 3
2 for a d3 ion. Calculations were done within the SpinW package [129] available for

MATLAB, which has advantages in that the magnetic ground state and interactions can be easily

visualised.

The experimental dispersion and spectral weight were fitted simultaneously to a model de-

rived from Equation 3.7 within SpinW, with the resulting best fit to the data plotted in Fig. 3.19.

As can be seen, the data is well described by such a Hamiltonian, with the resultant fitted pa-

rameters17 given by J = 6.5(4) meV, D = −6.6(6) meV, and |d| = 3.5(2) meV. These values

are in surprisingly good agreement with those derived from the earlier quantum chemistry calcu-

lations, with the exception of the DM term which is a factor of 2 larger than previously calculated.

However since the error bars in the fitted parameters have been derived without consideration

of the experimental energy resolution (45 meV), then such a discrepancy is not unreasonable.

In any case, the significant gap observed for peak A across all momentum transfers is indicative

of a strong anisotropy and consistent with a magnetic interpretation. The anisotropy arises as a

direct result of spin-orbit coupling acting as a perturbation within the magnetic Hamiltonian.

16Since rotational symmetry is still preserved, one can still see a Goldstone mode. This type of interaction is exem-

plified by Er2Ti2O7 [127, 128], with a small spin gap of 15 —eV occurring as a result of ‘order-by-disorder’.
17It should be noted that the values obtained within SpinW itself are a factor of 2 larger than those given here; with

the discrepancy arising from a difference in the definition of J between SpinW and the quantum chemistry calculations.
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Figure 3.19: (a): Fits of the low-temperature data in the (6; 7; 7) Brillouin zone to the model given in the

main text as a function of momentum transfer. Right panels show the energy (b) and integrated spectral

weight (c) of peak A as a function of momentum transfer. Solid line is the best fit to a representative

Hamiltonian given by Eqn. 3.7.

As mentioned earlier, it proved difficult to fit peak B within the current approach. Its en-

ergy and bandwidth as fitted within the electronic model could also be consistent with a double

magnon process or bimagnon continuum.

In Ref. [118], it is argued that ∆S = 1,2,3 excitations are mixed as a result of spin-orbit

coupling, with the greatest density of states for the ∆S = 3 process. The alternative interpre-

tation presented here is not incompatible with the previous theory. Remember that the density

of states as calculated via exact diagonalization is not equivalent to the RIXS cross-section.

For this particular experimental geometry, it is found that ∆S = 1 processes are the greatest

contribution to the RIXS cross-section. There may indeed be contributions from ∆S = 2 or

∆S = 3 processes, but they seem to contribute only weakly to the cross-section. This is not

unsurprising.

The present analysis does not preclude the presence of longer-ranged exchange interac-

tions. Indeed this would be expected given the extended 5d valence orbitals on Os. However

given the large Os–O–O–Os distance, this is likely to be weak and can be neglected to first

order.
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Figure 3.20: Results from simulated annealing runs performed for different system sizes of Cd2Os2O7. All

data displayed occurs from the mean of five successive runs, with error bars reflecting the standard devi-

ation about this mean. Parameters plotted (per magnetic moment) are the specific heat C (a), isothermal

susceptibility ffl (b), and mean internal energy 〈U〉 (c). Curves in (a) and (c) have been offset for clarity.

In (d) the fitted maximum of the specific heat (squares) and susceptibility (diamonds) has been plotted.

Dashed lines indicate the experimental Néel temperature TN. There appears to be a convergence of the

calculated TN with the experimental one in the thermodynamic limit.

Monte Carlo simulations

Further support for a magnetic interpretation for peak A can be garnered from results of sim-

ulated annealing runs. These simulations, whilst rather rudimentary, do seem to accurately

reproduce the observed AIAO ground state and Néel temperature for the parameters derived

from the fits to the spin wave dispersion. The classical Monte Carlo code was written by the

author in MATLAB.

Simulated annealing runs were performed on system sizes of L × L × L unit cells, where

L ranges from 1 to 5 (16 – 2000 spins in total). The energy of the system and its interactions

were determined via the Hamiltonian given by Equation 3.7, with the microscopic parameters

used identical to those obtained from the spin-wave dispersion. The simulated annealing was

performed with a standard Metropolis spin-flip algorithm, with 5× 104 Monte Carlo steps (MCS)

per spin to equilibrate the system for a given temperature, followed by a further 5 × 104 MCS

per spin to evaluate thermodynamic parameters.

The thermodynamic parameters which were evaluated were the mean system energy 〈U〉,

the specific heat C, and the isothermal susceptibility ffl = 1
3 (fflxx + fflyy + fflzz). The latter two
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quantities are determined via the following expressions:

C =
˛

T

ˆ
〈U2〉 − 〈U〉2

˜
; ffl¸¸ = ˛

ˆ
〈M2

¸〉 − 〈M¸〉2
˜
; (3.8)

with ˛ = 1=kBT , and M¸ referring to the component of the classical magnetic moment along

the respective Cartesian direction. All parameters are given per magnetic moment. In practice

the numerators in Eqns. 3.8 are identical to the variance of the mean energy and magnetisation

respectively as a function of Monte Carlo time.

Two sets of runs were performed for each system size: one with a relatively coarse temper-

ature step (Tnew = 0.92T ) initialised at 2000 K (T=J ≈ 25) with the spins oriented randomly,

and a dataset focussing on the critical region. The latter was initialised at 320 K (experimentally

TN + 93 K) with the state obtained from the coarse dataset at the same temperature, and run

with a step-size of 5 K. This procedure was performed five times for each system size.

The results from the average of these five runs are plotted in Figure 3.20, with the error bars

reflecting the standard deviation. The specific heat and magnetisation both show evidence of a

continuous second-order transition in the vicinity of the Néel temperature TN = 227 K, with the

transition becoming sharper for larger system sizes. This would be expected as one progresses

towards the thermodynamic limit. Furthermore the energy minimized magnetic structure coin-

cides with that for an AIAO system at T=J ∼ 0.

There are however a number of limitations with the simulations performed thus far. Most

importantly, the number of equilibration and averaging steps per spin is relatively low. Ide-

ally, one would want to perform the simulations with a large number of steps after equilibration

(fiav ∼ 100 fieq), in order to gain reliable information about the fluctuations of the system en-

ergy and magnetisation as a function of Monte Carlo time. As previously mentioned, these

fluctuations parametrise the specific heat and susceptibility respectively. Moreover, the ther-

modynamic parameters can be accurately determined with appropriate statistical error bars by

averaging over multiple runs, and performing a full autocorrelation analysis. The initial number

of MCS performed per spin was sufficient to ensure equilibration for each temperature and lat-

tice size, as determined from the temporal dependence of the internal energy. However, close

to TN, fiav = 5× 104 MCS per spin is only a couple of times larger than fieq.

This is linked to the second point. The Metropolis spin-flip algorithm suffers badly from the

fundamental problem of ‘critical slowing-down’. In the vicinity of the critical point, equilibration is

slow as both the length and time-scales involved diverge. Thus there are frequently issues with

accurate determination of transition temperatures and critical exponents within this approach.

This effect can be seen in Fig. 3.20c, where the statistical error in the susceptibility is large

for L = 1 and L = 2 close to the critical point. Improvements could be made by utilising a

cluster-flipping algorithm where critical slowing down is dramatically reduced.

Thirdly sharp fluctuations can be observed in the internal energy 〈U〉 and magnetisation at

low temperature. These fluctuations occur over a single temperature step, and may be due to
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some long time-scale behaviour which has been incorrectly compensated for in the averaging

procedure. Performing a full autocorrelation analysis is likely to improve this.

Finally a full finite-size scaling analysis has not been performed. Transition temperatures de-

termined from the magnetisation for example for a given lattice size frequently do not represent

the true behaviour of the system in the thermodynamic limit. This is partly the reason why the

maximum of the specific heat and susceptibility curves plotted in Figure 3.20d diverge from one

another slightly. Practically what one would do within a finite-size scaling analysis is to calculate

the Binder cumulant for each temperature and lattice size, and determine their crossing point

via a data collapse. Such an analysis is somewhat subjective however, since it requires some

fine-tuning of the critical temperature and critical exponents to obtain the correct crossing-point.

Despite these limitations, the simulations appear to reproduce the correct magnetic ground

state and transition temperature, at least to first order. This validates the choice of Hamiltonian

and values of the parameters used to fit the spin-wave dispersion. More accurate simulations

addressing the limitations given above, whilst instructive, are beyond the scope of this thesis.

3.4 Summary

Resonant inelastic X-ray scattering (RIXS) measurements have been performed on the py-

rochlore osmate Cd2Os2O7. The electronic excitations are, at least to first order, consistent

with a d3 multiplet model in which the spin orbit coupling (SOC) is a weak perturbation to the

Hamiltonian. This seems at odds with the measurements performed on the iridates for example,

which show transitions between jeff = 1
2 and jeff = 3

2 states as a result of the strong intrinsic

SOC. However the effective role of spin-orbit coupling is reduced in d3 osmates as a conse-

quence of increased S (recall – = “=2S) and the large Os-O hybridisation, giving rise to a large

bandwidth of the t2g states (W ∼ 3 eV).

Meanwhile a feature at ca. 150 meV energy loss appears to exhibit signatures of both elec-

tronic and magnetic behaviour, however it is difficult to disentangle the effects of one from the

other within the experimental resolution. In a purely electronic model, this peak arises as a result

of a continuous transfer of spectral weight from states close to the Fermi energy as the insulat-

ing gap is formed at the MIT. Such a transfer is associated with the Lifshitz transition proposed

within previous studies [95, 97, 99]. On the other hand, it can also be described by a pre-

dominantly single magnon mode with microscopic parameters in good agreement with quantum

chemistry calculations, and supported by Monte Carlo simulations. The significant anisotropy

occurs as a direct result of spin-orbit coupling. Such behaviour is hence a further signature that

the electronic and magnetic properties are indeed intimately linked for Cd2Os2O7.

3.4.1 Proximity to Lifshitz transition

This leads to the question: To what extent does the MIT in Cd2Os2O7 resemble a Lifshitz transi-

tion? It has already been stated that a true Lifshitz transition can only occur at zero temperature,
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and that any finite temperature transition with Lifshitz-like phenomena is in fact a crossover be-

tween the two regions.

There are a number of experimental features which seem to indicate that Cd2Os2O7 exhibits

such behaviour. The first is that the metal-insulator transition is continuous, with no observed

symmetry breaking through the MIT. The second is that q = 0 magnetic order arises in the

insulating phase without Brillouin zone folding. These are the more obvious ones, but subtle

variations in thermodynamic parameters are also suggestive of a Lifshitz crossover. A point of

inflexion can be observed in the lattice constant a as a function of temperature [96], which can be

linked to a washed out discontinuity in the thermal expansion coefficient: ¸ = V −1 (dV =dT )p.

Further synchrotron powder diffraction measurements – which are more sensitive to unit cell

parameters – are proposed to examine this further. The concurrent observation of spin and

charge excitation phenomena within the RIXS spectra implies that the two are inextricably linked

for Cd2Os2O7. This supports the notion that Cd2Os2O7 undergoes a Lifshitz transition driven by

the onset of antiferromagnetic order.

DFT calculations by Shinaoka et al. [104] and Sohn et al. [99] are also suggestive of a Lifshitz

mechanism for the MIT. An enhancement of U (argued to be similar to the onset of AIAO order)

separates the valence and conduction bands without any significant band dispersion change.

All of these factors lead to the conclusion that the MIT for Cd2Os2O7 is indeed Lifshitz-like.

There are however some outstanding questions. These include the possibility that interac-

tions – such as spin-orbit coupling – drive the transition weakly first order. A discontinuity in the

electronic specific heat (as observed for NaxCoO2 for instance) would be a distinct telling point.

There does appear to be a small jump in the electronic specific heat data given in Ref. [94]

(∼ 2 J mol−1 K−1), however this may also be an artefact from the subtraction from the lattice

contribution to the specific heat. It may be the case that the first order perturbation due to in-

teractions is simply too weak to observe in the thermodynamic parameters, partly due to the

departure from the T = 0 limit.

Summary of contributions

The low resolution RIXS measurements were carried out by the author in collaboration with Stu-

art Calder and Andy Christianson from Oak Ridge National Laboratory, and Christian Donnerer

from UCL. Analysis of the RIXS data was carried out in tandem between the author and Oak

Ridge, with converging results. Exact diagonalisation and quantum chemistry calculations are

from Jeroen van den Brink’s group in Dresden. High resolution RIXS measurements were car-

ried out by the author, assisted by Christian Donnerer and Davide Pincini from UCL. All analysis

and interpretation of the data, along with the supplementary Monte Carlo simulations, was per-

formed by the author.



Chapter 4

Excitations through the Slater MIT

in NaOsO3

The perovskite osmate NaOsO3 is a candidate Slater insulator, in that the onset of antiferro-

magnetic order directly drives a continuous metal-insulator transition (MIT) at 410 K. RIXS was

used to characterise the electronic and magnetic excitations through the MIT. Broad orbital ex-

citations similar to those observed for Cd2Os2O7 imply that electron correlations and spin-orbit

coupling play a weak role in governing the electronic ground state. Well-defined spin wave

excitations are evident deep in the antiferromagnetic insulating phase (T < TMI), which can

be successfully modelled by a minimal nearest-neighbour Hamiltonian with sizeable anisotropy.

With increasing temperature, these excitations damp into a particle-hole (Stoner) continuum,

which is a signature of an itinerant system. A spin-fluctuation model is proposed to explain the

magnetic interactions through the MIT.

The Slater transition is one of the more experimentally elusive concepts in condensed mat-

ter physics. It is characterised by a continuous metal-insulator transition (MIT) concomitant with

the onset of antiferromagnetic order. The theoretical basis is that the onset of antiferromagnetic

order itself drives the formation of the insulating gap, without a corresponding distortion of the

lattice. Until relatively recently, the most concrete example of a Slater insulator in three dimen-

sions was the pyrochlore osmate Cd2Os2O7. In the previous chapter it was shown however that

the metal-insulator transition in Cd2Os2O7 has characteristics consistent with a Lifshitz transi-

tion. In this picture a rigid shift of the bands close to the Fermi energy gradually annihilates the

Fermi surface. Optical conductivity measurements by Sohn et al. [99] suggest that there may be

a substantial region (210–227 K) where antiferromagnetic metallic behaviour can be observed,

at least on the surface. Consequently it can be argued that magnetic order cannot be the driving

force for the MIT in Cd2Os2O7, contrary to previous reports [94, 95, 98, 103]. The perovskite

osmate NaOsO3 (d3, S = 3
2 ) remains the most robust example of a 3D Slater insulator. Whilst a

number of properties of this material have been well characterised, the nature of the magnetic

109
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Hamiltonian and its effect on the MIT has not. This is the basis of the present chapter.

4.1 Introduction to physical properties of NaOsO3

What follows is a brief survey of the literature published thus far on NaOsO3. This will prove

useful in the discussion of the true nature of the MIT.

Crystal structure

The general formula of a perovskite is ABO3, which in the undistorted case, has cubic Pm3̄m

symmetry. In this structure, the A cation sit on the corners of the cube, the smaller B cation

sits at the centre of the cube, and is octahedrally coordinated to oxygen ions located at the face

centres. NaOsO3 (Figure 4.1a) exists in the orthorhombic Pnma space group [130], with lattice

parameters a = 5.384 Å, b = 7.580 Å, c = 5.328 Å. The orthorhombic distortion (GdFeO3

distortion, a–a–c+ in Glazer notation) arises as a result of a concerted rotation of the OsO6

octahedra in the a-c plane, coupled with a tilting about the b-axis. Both of these distortions are

of magnitude ∼ 10◦, with a weak dependence on temperature (Figure 4.1b,c). This latter point

shall be discussed in more detail later.

Bulk properties

Shi et al. [130] observed a MIT at 410 K, concomitant with the onset of antiferromagnetic long-

ranged order. The charge gap appears to open continuously in the insulating phase, reaching

a zero temperature value 2∆C ≈ 100 meV. Laboratory X-ray diffraction and electron diffrac-

tion measurements showed that there was no significant structural symmetry change through

the MIT. These observations indicate that the MIT is second-order in NaOsO3, and deviates

somewhat from the Mott-Hubbard paradigm.

Optical conductivity

Optical conductivity measurements by Lo Vecchio et al. [57] show a clear continuous transition

from metallic to insulating behaviour through the MIT. The temperature dependence of the band

gap 2∆O, as extracted from the intersection of a linear conductivity term (! < 2∆O) and a !1/2

(! > 2∆O) term, resembled that of a BCS function. Fitting determined a zero temperature

optical gap of 2∆O = 102(3) meV, comparable to that observed for Cd2Os2O7, and agrees

with the charge gap obtained from the resistivity data [130] (Figure 4.1e) Moreover the ratio

2∆O=kTMIT = 3.0(1), which is indicative of a weak coupling BCS-like regime.1

1Compare this to 2∆O=kTMIT ∼ 5 for Cd2Os2O7.
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Figure 4.1: (a): Crystal structure of NaOsO3. The magnetic moments lie along the c-axis. (b): Unit cell

volume through the MIT. (c): Lattice parameters through the MIT normalised to the value at TMI. Subfigures

(b) and (c) adapted from Ref. [131]. (d): Coupling of the magnetic, electronic, structural, and phonon

degrees of freedom in NaOsO3. Adapted from Ref. [132]. (e): Optical gap (purple squares) and charge

gap (green circles) extracted from data presented in Refs. [57] and [130] respectively. Solid line is a Slater

model with Eg (T = 0) = 102 meV and TMI = 410 K.

Neutron and X-ray measurements

Calder et al. [131] performed powder neutron diffraction, polarized elastic neutron scattering and

resonant X-ray scattering measurements, in order to determine the magnetic structure and the

effect of spin-orbit coupling upon the ground-state electronic structure. Powder neutron diffrac-

tion revealed the presence of additional reflections below TN, which were consistent with a k = 0

magnetic propagation vector. Polarized neutron scattering confirmed that these reflections were

indeed magnetic – since the reflections were only present in the spin-flip scattering channel –

and not due to a structural symmetry change. Neutron pair distribution measurements [132]

confirmed no structural symmetry change through the MIT on any length scale. Refinement of

the powder neutron diffraction data, coupled with representation analysis, revealed a G-type an-

tiferromagnetic structure. The local moment was determined from the magnetic refinement and

found to be equal to 1.0(1) —B, significantly reduced from the nominal spin-only value of 2.67 —B

for a S = 3
2 d3 system. The temperature dependence of the lattice parameters (Figure 4.1b,c)

showed an anomaly in a and c at the MIT; however this was attributed to a cooperative rotation

of the OsO6 octahedra such that the octahedra better align with the unit cell axes. Below the

MIT the Os ions are sufficiently close together such that they interact and form the long-ranged
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ordered phase.

Later neutron measurements by Calder and colleagues [132] found a significant spin-phonon

coupling in NaOsO3, with a large shift of 40 cm−1 of the B2g breathing mode as a function

of temperature. This cooperation between magnetic order and the lattice drives octahedral

isotropy, which in turn promotes the breathing distortion and the insulating gap below the MIT.

Notably the spin-phonon coupling was considerably larger than that observed for Cd2Os2O7

(∆! = 4 cm−1), which further highlights the differences in the mechanisms of the MIT for the

two compounds.

Resonant X-ray diffraction and simulations with FDMNES [133] showed that the observed

L3 = L2 intensity ratio of 1.14 could only be realized if spin-orbit coupling did not break the

degeneracy of the t2g manifold. The integrated intensity of the white lines at the two ab-

sorption edges follows a similar trend, with the branching ratio BR = 2.6(1) similar to those

obtained for Cd2Os2O7 [100] and Sr2FeOsO6 [134], but somewhat larger than the statistical

branching ratio of 2. A branching ratio of 2.6 implies 〈L · S〉 ∼ ~2 (assuming the number of

holes in the d-manifold nh = 7), considerably lower than that expected if SOC were dominantˆ
〈L · S〉 = 2.66~2

˜
. This can be compared with the iridates Sr2IrO4 and Sr3Ir2O7 [24, 26], where

spin-orbit coupling splits the t2g states into the jeff = 3
2 and jeff = 1

2 bands, and the intensity

ratio L3 / L2 > 50. Such a result for NaOsO3 suggests an intermediate regime where there

is competition between the SO coupling and Hund’s coupling, probably leading to some orbital

component to the magnetization and magnetic anisotropy. It was also argued that the correla-

tion U is small for NaOsO3 since the calculated lineshape for the L2 resonance gave a poorer

fit to the data for larger U. These observations are consistent with a weak coupling scenario for

NaOsO3, which is required for a Slater transition to occur.

Theoretical studies

First-principles calculations with LDA + U suggested [130] that antiferromagnetic correlations

were key to opening up the electronic gap, whilst the spin-orbit coupling played only a minor role.

This was the first theoretical evidence that NaOsO3 is an example of a Slater insulator. Du et

al. [135] performed further calculations with a local spin density approximation (LSDA) approach,

and also determined that inclusion of the spin-orbit coupling only perturbed the band structure

slightly. The calculated total density of states close to the Fermi energy was dominated by

hybridisation between the Os 5d and O 2p orbitals, indicating an itinerant nature to the magnetic

moment. They compared the effects of various magnetic structures on the band structure, and

determined that G-type antiferromagnetic order had the lowest energy and was the only one that

formed an insulating gap at the Fermi energy. This agrees with the experimental observations.

Jung et al. [136] found that spin-orbit coupling doubles the effective coupling strength Ueff,

but has no effect on reducing the local moment. The local moment is reduced from the S = 3
2

value of 3 —B to ∼ 1 —B as a result of the itinerant conduction electrons and p-d hybridisation.

The obtained value of the local moment is consistent with that obtained from neutron scattering
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[131]. An additional notable feature was that each Os effectively had 4.3 d-electrons, which is a

significant departure from the formal value of 3 for Os5+, and is a further signature for itinerancy.

This also gives rise to a significant orbital component to the local moment (—O=—S ∼ −0.1),

which would not be expected for a pure orbital singlet.

Middey and colleagues [137] focussed on the magnetic properties of NaOsO3. They found

that a modest correlation energy U = 0.8 eV was sufficient to stabilise the G-type AFM ground

state, considerably less than the t2g bandwidth of around 3 eV. Furthermore an estimate of the

spin-wave dispersion was obtained by considering various spin spiral configurations, parame-

terised by a vector q. They estimated the total magnon bandwidth 6J1 + 12J2 ≈ 0.8 eV.

Summary

The bulk, optical spectroscopy, neutron scattering, and X-ray measurements, combined with

first-principles calculations, all point towards NaOsO3 undergoing a MIT driven by magnetic

order. In particular there are a number of characteristics of the eponymous Slater transition

[55]. The situation of a Slater transition occurring for NaOsO3 is complicated somewhat by

the magnetic propagation vector being zero. This contrasts with the expected non-zero vector

generally required for Fermi surface nesting. However, Slater’s proposition in his original paper

[55] did not require finite-q, so long as the charge gap opened up at the newly formed zone

boundaries [136].

Apart from the aforementioned DFT study [137], there has been no examination of the mag-

netic excitations in NaOsO3. Resonant inelastic X-ray scattering (RIXS) has previously been

shown to successfully model the unconventional magnetic excitations present for Cd2Os2O7.

The remainder of this chapter pertains to RIXS measurements performed by the author on

NaOsO3. In summary, these measurements reveal well-defined spin wave excitations at 300 K

consistent with an anisotropic Heisenberg model. At higher temperatures, there is evidence of

a transition to more itinerant behaviour.

4.2 Low resolution RIXS measurements

Preliminary measurements were performed at 9-ID, Advanced Photon Source, with additional

low-resolution data collected at ID20, ESRF. The two experiments differed somewhat in their

setup, but had similar energy resolution. As mentioned previously in Chapter 3, low-resolution

measurements permit fast collection of the orbital excitations out to large energy loss, including

determination of the crystal field strength. Furthermore it allows a direct comparison with the

results already obtained for Cd2Os2O7.
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APS experimental setup

A single crystal of NaOsO3 (approx. 0.5×0.5×0.3 mm3) was mounted in a high-temperature

Displex cryostat (temperature range 10–800 K) on a Huber six-circle diffractometer equipped

with an xyz translation stage to allow full orientation of the sample. The sample was mounted

with the (5; 0; 5) direction approximately parallel to the direction of the incident beam. This

direction was chosen as analysis using FullProf showed that (h; 0; h) reflections would have

a non-zero magnetic structure factor. Additionally this was the only suitable reflection in the

range 95◦ ≤ 2„ ≤ 105◦; a criterion that was partly imposed to minimise the intensity of the

elastic line, and partly due to the restrictive setup of the spectrometer. However, the direction

can only be given as approximate as it was not possible to observe a Bragg peak in the limited

region of reciprocal space that was accessible. Due to the setup of the spectrometer, rotations

of no larger than about 10◦ were possible. This essentially means that the sample has to be

pre-aligned before mounting in the cryostat. Without access to a Laue diffractometer on site, it

was not possible to orient the sample such that the (5; 0; 5) direction was parallel to the incident

beam.

The incident X-ray energy was selected by a Si (4; 4; 4) secondary monochromator, chosen

to optimise the intensity at the expense of energy resolution. Rhodium plated mirrors focussed

the incident beam to dimensions of 300×300 —m. The flight path of the X-ray beam between

the sample and the detector was shrouded in a Perspex container filled with He gas, with the en-

trance and exit protected by kapton tape. A spherical Si (5; 5; 6) diced analyser was mounted

at a distance of 1 m from the sample in horizontal scattering geometry. The diffracted X-rays

were collected by a MYTHEN strip detector with pixel size 50 —m. The energy of the incident

X-rays was matched to the Os L3 absorption edge (10.875 keV). This energy corresponded to

the maximum in intensity of a feature present at 1.1 eV. The total energy resolution obtained

(∆E = 300 meV) was considerably worse than the theoretical resolution of ≈150 meV. The

main reason for this is the large spot size of the incident X-ray beam, which was due to degra-

dation of the Rh coating on the mirror.

ESRF data

Low resolution RIXS measurements were performed at the Os L3 edge on the ID20 spectrome-

ter at the ESRF, Grenoble. A single crystal of NaOsO3 (approx. dimensions 0.3×0.3×0.3 mm3)

was oriented such that the (1; 0; 1) direction was normal to the sample surface. The sample

was mounted with epoxy resin and placed in a custom-made heater setup filled with helium

exchange gas. Temperature stability was better than ±0.5 K. The scattering plane and incident

photon polarisation were both horizontal, i.e. ı incident polarization, with the incident beam

focussed to a size of 20×10 —m2 (H×V) at the sample position.

The incident energy was selected with a Si (3; 1; 1) channel-cut secondary monochromator.

A Si (6; 6; 4) diced spherical analyser (2 m radius) was used to reflect the scattered photons to-
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Figure 4.2: RIXS spectra from NaOsO3, collected at 300 K as a function of varying incident energy

(∆E = 275 meV). (a): RIXS map presented as a contour plot. Three peaks are evident: peaks A, B,

and C correspond to intra-t2g , t2g → eg , and ligand-to-metal charge transfer (LMCT) excitations respec-

tively. (b): Single RIXS spectrum obtained for an incident energy of 10.879 keV.

wards a Maxipix CCD detector (pixel size 55 —m) and discriminate the scattered photon energy.

The total energy resolution was determined to be ∆E = 275 meV, based on scattering from a

charge peak. This compares well to the theoretical energy resolution of 305 meV.

The energy loss dependence of the RIXS intensity as a function of incident energy (RIXS

map) provides an insight into the relevant excitation processes for that material. Such a RIXS

map has been performed for NaOsO3, with the results plotted in Fig. 4.2. Three peaks are evi-

dent (A, B and C), which correspond to ∆S = 1 excitations within the t2g manifold, between the

t2g and eg orbitals, and ligand-to-metal charge transfer (LMCT) respectively. This assignment

is based on the quantum chemistry calculations [106] and RIXS measurements performed for

Cd2Os2O7 (Chapter 3).

Given the similar local coordination environment and valence state for both NaOsO3 and

Cd2Os2O7, one would expect the orbital excitations to occur at similar energies for the two

compounds. Fitting the intra-t2g peak (peak A) to two excitations at 3JH and 5JH respec-

tively, one finds that JH = 0.31(4) eV, which is identical to the value obtained for Cd2Os2O7

[JH = 0.29(4) eV]. This is unsurprising given that Os is nominally in the same oxidation state,

and surrounded by the same ligands, for the two materials. Furthermore it also suggests that

NaOsO3 is in a similarly weak-to-intermediate spin-orbit coupling regime, wherein the effect of

SOC is insufficient to noticeably split the t2g manifold into jeff = 3
2 ;

1
2 bands.

However the energy of peak B (3.7 eV) is considerably lower than that observed for

Cd2Os2O7 (4.3 eV). From a purely crystal field perspective, the subtle differences in coordi-

nation environment are not sufficient to explain these differences. The trigonal distortion is
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Figure 4.3: Temperature dependence of the orbital excitations (offset for clarity). (a): RIXS spectra out

to 8 eV energy loss. Inset shows the fitted energy of peak B as a function of temperature. (b): Spectra

focussing on the low energy excitations through the MIT. No significant difference can be seen as a function

of temperature.

parametrized by the angle between the ligand-metal bond and the threefold rotation axis. One

quantitative measure of the distortion is given by the ratioDfi=Dq [59, 107, 138]. For Cd2Os2O7,

one can estimate Dfi=Dq ≈ −0.08, whilst for NaOsO3, Dfi=Dq ≈ −0.01. Negative values of

Dfi=Dq are indicative of trigonal compression. Consequently in the limit of zero SOC, and for

plausible [114] values for the Racah parameters B and C, one finds that the spin-allowed 4T1

multiplet for example is split by 100 meV for Cd2Os2O7, whereas it is only split by 10 meV for

NaOsO3. The former value is consistent with quantum chemistry calculations [106]. SOC will

split these multiplets further (including zero-field splitting of the 4A2 ground state), however the

centre of mass should remain constant. Thus it is concluded that other effects must be responsi-

ble for the difference between the two compounds, which may include longer-ranged electronic

interactions due to itinerancy.

Measurements at the APS revealed no significant variation in the orbital excitations with

temperature (Fig. 4.3). This suggests that the coordination environment varies little through the

MIT, which agrees with the neutron scattering results [131, 132]. Indeed the only discernible

difference between the spectra is the intensity of the quasi-elastic excitations, which increases

with increasing temperature. This can be understood in terms of increased phonon population in

accordance with the Bose-Einstein distribution. Scattering from phonons is a likely contribution

to the quasi-elastic excitations.
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4.3 High resolution RIXS measurements

Thus far only electronic excitations have been considered; the energy scale of magnetic excita-

tions is considerably lower. To this end high resolution RIXS measurements were performed at

ID20, ESRF, in order to characterise the magnetic Hamiltonian and the relevant interactions.

Experimentally the only difference in the setup to that of the previously presented low-

resolution measurements was the use of a Si (6; 6; 4) backscattering channel-cut secondary

monochromator. This improved the energy resolution to ∆E = 46 meV, as determined from

scattering from a charge peak. The incident photon energy Ei was fixed at 10.880 keV, since

this maximized the intensity of the intra-t2g excitations (peak A) in the low-resolution measure-

ments.

4.3.1 Momentum dependence

Insight into the magnetic Hamiltonian can be obtained from the momentum dependence of the

low energy RIXS spectra deep in the antiferromagnetic insulating phase. RIXS spectra were col-

lected at 300 K as a function of momentum transfer in the (5; 3; 4) Brillouin zone (2„ = 91.1◦).

The data are plotted in Fig. 4.4. Two resolution limited peaks can be observed: one corre-

sponding to quasi-elastic excitations, and a dispersive feature at around 100 meV. The intensity

variation of the quasielastic line as a function of momentum transfer is almost entirely due to

RIXS matrix element effects, which occur away from the ideal 2„ = 90◦ condition. The second

feature appears to be gapped at the Brillouin zone centre (the magnetic and structural Brillouin

zones coincide as k = 0), and progressively weakens towards the zone boundary. Furthermore

a significant variation of the spectral weight can be observed across the Brillouin zone. It is

proposed that this feature is of a magnetic origin, which shall be justified later in this chapter.

In order to quantify these observations, the data (both as a function of momentum transfer

and temperature) were fitted with a Pearson VII function for the quasi-elastic line (profile param-

eter — fixed to 1.55), and two Gaussians representing the dispersive feature and an intra-t2g

excitation background centered at 1.1 eV respectively.

4.3.2 Magnon dispersion

The significant gap for T < TN indicates highly anisotropic exchange interactions. Thus the

following minimal model for the Hamiltonian was used to describe the data:

H = J1

X
nn

Si · Sj + J2

X
nnn

Si · Sj +HA; (4.1)

where the first sum is over nearest neighbours (in the a-c plane), the second sum is over next-

nearest neighbours (in the b-direction), and the final term represents some degree of anisotropy

The nearest-neighbour and next-nearest neighbour distances vary only slightly; the difference

between them is due to the weak orthorhombic distortion. Thus Equation 4.1 is in effect an
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dependent feature at ca. 100 meV which corresponds to a spin wave excitation. Solid lines are best fits to

the data using the model described in the main text. (b,c): Representative fits at Γ and Y respectively.

anisotropic nearest-neighbour Hamiltonian. Two sources for the observed anisotropy HA were

considered. These were: (i) single-ion anisotropy (SIA), with HA =
P

i Si · Ā · Si , and (ii)

symmetric anisotropic exchange, where HA = Γ
P

nn;nnnS
z
i S

z
j . The main assumption was that

only one of these terms contributed significantly to the Hamiltonian at any one time. Furthermore

as the magnetic moments in NaOsO3 rigidly lie along the c-axis (as determined by neutron

powder diffraction), the assumption was made that Ā is dominated by the Azz element and all

other elements can be neglected to a first approximation. Hence from now on A represents Azz .

The experimental RIXS data were fitted with Equation 4.1 within a linear spin wave (LSW)

approximation. This is expected to be appropriate given a nominal S = 3
2 model for NaOsO3.

Diagonalizing Eqn. 4.1 within a linear spin wave approximation gives the following expression

for the spin wave energy !:

! = S
p
” − X − Y ; with

X = 4J2
1 cos 2ıh + 2J2

2 cos 2ık + 4J2
1 cos 2ıl;

Y = 2J2
1 cos [2ı(h − l)] + 2J2

1 cos [2ı(h + l)]

+ 16J1J2 cosıh cosık cosıl: (4.2)
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Figure 4.5: Fitted energy (a) and intensity (b) of dispersive feature, along with best fit to spin wave model

described in text (solid line). Inset illustrates exchange pathways J1 and J2.

The parameter ” contains all of the anisotropic contributions to the spin wave dispersion;

whilst X and Y are the same for both anisotropy models, ” differs. These are given by

”aEx = 36A2 + 48AJ1 + 24AJ2 + 12J2
1 + 2J2

2 + 16J1J2

”SIA = 4Γ2 + 16ΓJ1 + 8ΓJ2 + 12J2
1 + 2J2

2 + 16J1J2; (4.3)

with the relevant spin wave dispersion obtained by simply substituting in the relevant expression

for ”. In a similar fashion the intensity can be expressed by:

S(q; !) = F

»
” − (X − Y )

” − (X + Y )

–
‹(!; !q); (4.4)

where F is an arbitrary scale factor.

Neutron powder diffraction measurements [131] revealed that the ordered osmium moment

in NaOsO3 is significantly reduced [S = 1.0(1) —B] compared the nominal spin only value of

S = 1.5 —B expected for a d3 system. Consequently fits to the experimental dispersion and

intensity were performed for both values of S, in order to determine whether the reduced moment

also extends to the magnetic excitations.

The best fit to the experimental dispersion and intensity is shown in Figure 4.5 for the case of

S = 1.0(1) —B, with the corresponding fitted parameters given in Table 4.1. Fits to either source

of anisotropy or value of S gave fits of identical quality. Furthermore J2 was fixed to be equal to

J1; allowing both J1 and J2 to vary made no improvement in the quality of the fits (ffl2 = 1.25

for J1 = J2; ffl2 = 1.31 for J1 6= J2). This reflects the pseudo-cubic nature of the crystal

structure. The analytical model was checked by comparing the result to numerical calculations

using the SpinW code [129]; the two approaches gave identical results. The magnon bandwidth

and exchange parameters are comparable to those obtained via DFT by Middey et al. [137] for

small (but non-zero) values of U, consistent with a Slater weak-coupling picture.2

2It should be noted that the dispersion displayed in Ref. [137] is not a true spin wave dispersion, but is an energy

minimization of various spin spiral configurations with spin spiral vector q. This explains the lack of a gap in their data.
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S (—B) J1 = J2 (meV) A (meV) Γ (meV) TMF
N (K)

1.5 13.9(4) 4.3(3) 1.4(1) 510(20)

1.0(1) 21(3) 6(1) 2.2(4) 410(40)

Table 4.1: Summary of fitting parameters for NaOsO3, and obtained mean field Néel temperature TMF
N .

Note that the fits to the data involved either A or Γ as a free parameter; the other parameter was set to

zero. The uncertainties for the S = 1.0(1) —B row include both the uncertainty in the moment size and the

errors obtained from the least-squares routine.

The results of the fitted intensity to this model are plotted in Fig. 4.5(b), which gives a good

description of the data with the scale factor F = 0.25. The slight discrepancies between the

fitted model and the data can be explained as follows. Firstly the RIXS spectrometer has a finite

momentum resolution. Consequently the obtained spectra are an average over a portion of the

Brillouin zone. Secondly, unlike neutrons, the RIXS magnetic cross section is only approximately

equal to the spin dynamical structure factor S(q; !) [75, 139]. The validity of this approximation

however is very good, at least in the localised limit. Finally, strictly speaking, one may have

consider contributions from self-absorption in correctly normalising the intensities. The latter

contribution is expected to be very small however since the orientation of the crystal varies little

for measurements within a single Brillouin zone.

Clearly the minimal model is representative of the observed spin wave dispersion, however

there are at present four parameter sets which give apparently identical descriptions of the data.

One criterion by which the best parameter set can be identified is the mean field value of the

Néel temperature. This simplified picture neglects fluctuations of the moments from their mean

value, and TN can be evaluated using the expression:

TN =
2S(S + 1)

3—kB

X
j

ziJi ; (4.5)

where — = ΘCW=T
exp
N is a mean field constant, and the summation goes over all neighbours

with which a given spin interacts. This summation reduces to 6J in the case that J1 = J2. Shi

et al. [130] determined ΘCW = −1949 K and T exp
N = 410 K, thus — = −4.75 for NaOsO3.

In the limit of zero anisotropy, and J1 = J2, one finds that TMF
N [S = 1.5 —B] = 510(20) K,

whereas TMF
N [S = 1.0(1) —B] = 410(40) K. Mean field theory typically overestimates TN, but

there is better agreement between the mean field transition temperature and the experimental

one (TN = 410 K) if S = 1.0(1) —B, in accordance with the value extracted from neutron powder

diffraction [131]. Note that the analysis at present only includes nearest neighbour interactions.

Addition of anisotropy would increase TMF
N , whilst the effect of ferromagnetic next-nearest neigh-

bour interactions for example (which would recover the cubic limit) would be to reduce TMF
N .

Furthermore the bandwidth and dispersion displayed in [137] is in units of J0 = 6J1 + 12J2. Taking this into account,

there is good agreement with the present study.
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Source Scaling Estimated (meV) Experiment (meV)

Single-ion anisotropy A ∼ –2

‹E
8.0 6(1)

Dzyaloshinskii-Moriya (DM) |d| ∼ –
‹E
J 1.0 –

Exchange anisotropy ‹J ∼
`
–
‹E

´2
J 0.05 2.2(4)

Table 4.2: Approximate scaling of various sources of anisotropy (Ref. [65]), assuming a d3 electronic

configuration and that they are the sole source of uniaxial anisotropy. The relative magnitudes for these

sources have been estimated using suitable parameters for NaOsO3: – = “=3 = 0.172 eV, ‹E = 3.7 eV,

J = 21 meV.

To conclude, one observes coherent spin fluctuations with a reduced local magnetic moment

at 300 K. This is consistent with the observation of magnetic long-ranged order in the insulating

phase of NaOsO3.

4.3.3 Validity of Hamiltonian

It should be noted at this point that the addition of either a symmetric exchange anisotropy or

single ion anisotropy term to the Hamiltonian is a bit of an oversimplification. In reality contribu-

tions from symmetric and antisymmetric exchange anisotropy, plus a single-ion anisotropy term

would be required to fully describe the magnon dispersion. This results in the following general

Hamiltonian of the form:

H =
X
i ;j

J‖S
z
i S

z
j + J⊥

“
Sxi S

x
j + Syi S

y
j

”
+
X
i ;j

Di j · (Si × Sj)

− Azz
X
i

(Szi )2
; (4.6)

where the first(second) summation represents (anti)symmetric exchange anisotropy, and the fi-

nal term represents a single-ion anisotropy. For simplicity summations are restricted to nearest-

neighbours, and a uniaxial anisotropy has been assumed. Anisotropy in the magnetic Hamil-

tonian is driven by spin-orbit coupling. The relative contributions of each of these terms to the

magnetic Hamiltonian are discussed below. Note that all scaling relations (as given in Table ??)

stated assume an orbital singlet (quenched orbital angular momentum).

Single-ion anisotropy

Single-ion anisotropy arises due to the non-cubic environment for Os, and scales approximately

as A ∼ –2=‹E, where ‹E = 10Dq in the case of weak crystal field distortion away from

octahedral symmetry. The OsO6 octahedra are weakly trigonally and tetragonally compressed,

both of which would stabilise magnetic order predominantly along the local z-axis. However due

to octahedral tilting and rotation resulting from the GdFeO3 type distortion, this does not coincide

with the crystallographic c-axis. Using the scaling relation above, one can estimate A = 8 meV

for NaOsO3, which is in good agreement with the obtained value from the fits to the spin wave

dispersion.
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However there are a couple of complications with this result. Firstly the above scaling expres-

sion assumes uniaxial anisotropy, which given the combined trigonal and tetragonal compres-

sion, is not strictly true. Furthermore the almost ideal cubic octahedral environment for the Os

ions implies that the magnitude of single-ion anisotropy is small. Finally if single-ion anisotropy

were the only contribution to the spin gap, then spin canting and weak ferromagnetism would

be expected. A weak ferromagnetic (FM) component has been observed in bulk magnetisa-

tion data by Shi [130], with magnitude 0.005 —B. This is significantly smaller than the ordered

moment size of ∼1 —B obtained from neutron powder diffraction, and may be evidence for spin

canting. The degree of this canting can be estimated from the ratio of the weak FM component

to the ordered moment size: „ ≈ arctan [0.005= 1.0(1)] = 0.3◦. Such a small canting would not

be readily observable with neutron powder diffraction, and further suggests that the effect of the

single-ion anisotropy is indeed small.

Dzyaloshinskii-Moriya interaction

In NaOsO3 one would expect a non-zero local Dzyaloshinskii-Moriya (DM) vector, as the oxygen

anion mediating the superexchange between the two Os sites does not sit at an inversion centre

[66]. This results from rotation of the OsO6 octahedra in the ac-plane, and concurrent tilting

about the b-axis. Both distortions are on the order of 10◦ away from the cubic Pm3̄m case.

The Dzyaloshinskii-Moriya interaction scales approximately as |d| ∼ (–=‹E) J. Evaluating

this for NaOsO3, one obtains |d| = 1 meV. Assuming that the DM interaction is the only source

for any spin canting, then one can estimate „ ≈ |d|=J = 2.7◦. Yet neutron powder diffrac-

tion measurements [131] found that the Os magnetic moments are collinear (within resolution),

whereas the DM interaction stabilizes a canted ground state. Furthermore the magnitude of the

weak FM component observed from the magnetisation data would imply that the DM interaction

should be a order of magnitude weaker than the scaling prediction. This suggests that the DM

interaction is weak to first order in NaOsO3.

Symmetric anisotropic exchange

Finally consider the effect of symmetric anisotropic exchange. Such a pseudodipolar effect

results as a consequence of second-order SOC effects between two neighbouring ions, and

hence is generally weaker than both the DM interaction and single-ion anisotropy. This can be

shown by the scaling relation ‹J = J (–=‹E)2, which when evaluated for NaOsO3, gives the

estimate ‹J = 0.05 meV. This alone would imply that symmetric anisotropic exchange does not

contribute significantly to the observed anisotropy in the case of a S = 3
2 , d3 orbital singlet.

It should be noted that exchange anisotropy has been implicated as the source of the spin

gap in the d3 double perovskites Sr2ScOsO6 [109] and Ba2YOsO6 [140]. However these studies

were performed using inelastic neutron scattering on powder samples, leading to the use of a

minimal model similar to that which was used earlier for NaOsO3. Furthermore it was found
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Figure 4.6: Schematic of energy levels in a 5d3 material. The octahedral crystal field ∆ splits the d -electron

manifold into states with t2g and eg symmetry. The t2g manifold is at half-filling, consequently the orbital

angular momentum L is quenched in the LS (Russell-Saunders) coupling limit. Strong spin-orbit coupling

can split these levels further, leading to jeff = 3
2 and jeff = 1

2 states. The orbital angular momentum is no

longer quenched. Cd2Os2O7 and NaOsO3 are likely intermediate between these coupling schemes.

for Sr2ScOsO6 that the spin wave dispersion could be fit equally well with a model containing a

single-ion anisotropy term rather than exchange anisotropy.

Discussion

None of the three anisotropic contributions to the magnetic Hamiltonian are sufficient to explain

the observed magnetic ground state and excitations in NaOsO3 on their own. This is exacer-

bated by the nominally quenched orbital moment for a d3 electronic configuration in the Russell-

Saunders limit, and large crystal field splitting ‹E which prevents mixing of excited states. How-

ever NaOsO3 (and other d3 osmates) do not lie in the Russell-Saunders limit. Systems with a

5d3 electronic configuration are believed to be intermediate between the L–S and j j–coupling

schemes [115]. In the j j–coupling limit, the ground state is not an orbitally quenched t3
2g con-

figuration, but rather a partially occupied jeff = 3
2 quartet. This leads to a finite value of the

orbital magnetization which is anti-parallel to the spin magnetization.3 Consequently the spin-

orbit coupling –L · S is larger, which in turn leads to larger anisotropy and a partial breakdown

of the previously mentioned scaling relations.

An outstanding question is the observed magnetic ground state. Whilst the microscopic

parameters used in the spin wave analysis did reproduce the correct ground state, it was with

the assumption that the anisotropy was entirely along the moment direction. This is, as previ-

ously mentioned, not strictly correct. One possibility is that the DM interaction and single-ion

anisotropy compete with each other, to give rise to an approximately collinear magnetic struc-

ture. This is supported by consideration of the direction of the DM vector for a given Os–Os

exchange pathway, and the single-ion anisotropy for a given Os site. Combined with a weak

symmetric anisotropic exchange term, this would stabilise a collinear antiferromagnetic ground

state. One can crudely estimate the magnitude of the Dzyaloshinskii-Moriya interaction required

3Supported by DFT calculations [135, 136] and RXMS measurements [131, 132].
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to compensate for the effect of the single-ion anisotropy as |d|=J ≈ 0.2, which is comparable to

the value obtained within the quantum chemistry calculations on Cd2Os2O7 by Bogdanov and

colleagues [106]. Unfortunately the RIXS measurements presented here do not permit straight-

forward disentanglement of the relative magnitudes of these contributions, as a consequence of

the limited energy resolution.

As already discussed in Chapter 1, the valence orbitals in 5d TMOs are greatly extended

compared to their 3d counterparts. What this means is that one would expect further than

nearest-neighbour interactions to be important for NaOsO3, as is the case for Sr2IrO4 for exam-

ple (see later). In a classical J1–J2–Jnnn model on a cubic lattice (as calculated in Ref. [141]), G-

type antiferromagnetic order is stabilised over the stripe ordered phase if J1 > 0 and J1 > 2Jnnn.

Furthermore for G-type order to occur along the c-axis, there is the additional constraint that

J2 > 0. Note that Jnnn can have either sign, as long as J1 > 2Jnnn is satisfied. A ferromagnetic

(negative) Jnnn will stabilise the G-type ground state, and hence enhance TN; whereas an anti-

ferromagnetic (positive) Jnnn will lead to frustration and thus suppress TN. The fact that further

than next-nearest neighbour interactions do not seem to contribute significantly to the magnetic

Hamiltonian supports the robustness of the G-type phase for NaOsO3.

Moreover, the result that a LSW theory model works so well for NaOsO3 at 300 K implies

comparatively strong correlations and localized magnetic moments. This is unsurprising given

that NaOsO3 is well within the insulating regime. Closer to the MIT we would expect LSW theory

to fail as a consequence of moving farther from the localized limit.

4.3.4 Temperature dependence

Further insight into the origin of the dispersive feature can be garnered by measuring its depen-

dence on temperature. Preliminary measurements were performed during the same beamtime

as the momentum dependence presented in Section 4.3.1, but time constraints meant that it

wasn’t possible to obtain a full characterisation.

Measurements were performed with a similar setup once again at the ESRF. Two details

differ from the previous data: the incident photon energy was set to 10.8765 keV, as this was

found to maximise the intensity of the intra-t2g excitations, and the instrumental resolution was

56 meV as determined from elastic scattering from clear adhesive tape. Furthermore the reso-

lution function was found to be clearly asymmetric; this was a consequence of the analyser.

RIXS spectra were collected at three different momentum transfers as a function of temper-

ature: Γ (4.95; 2.95; 3.95),4 Γ − Y (4.75; 3; 4), and Y (4.5; 3; 4). This reflects a progression

from the Brillouin zone centre to the zone boundary. Four spectra with count times of 30s/pt

were averaged together to obtain the data presented, and normalised to the intensity of the

intra-t2g excitations at 1 eV energy loss.

It should be noted that there was a variation in the intensity of the elastic line for successive

scans at the same temperature. However this problem only occurred at Γ, which was the first

4Once more this was to avoid elastic scattering from the weak magnetic Bragg peak at (5; 3; 4).
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Figure 4.7: RIXS spectra collected at the Γ (a), Γ–Y (b), and Y (c) points of the Brillouin zone for various

temperatures (300 K – 450 K). All data has been normalised to the intensity of the d -d excitations at

1 eV energy loss. There is a progressive increase in intensity at 0.2 eV with increasing temperature.

(d): Intensity at points A (solid symbols) and B (open symbols) as a function of temperature. A and B

correspond to the magnon peak and feature at 0.2 eV energy loss respectively. Solid and dashed lines are

guides to the eye.

point measured per temperature step, and only below 400 K. Furthermore the inelastic features

remained consistent between scans, which suggests that the observed behaviour may be due

to some local surface reconstruction or such like which added extraneous elastic scattering.

Selected measurements were repeated over a limited range, which show a much reduced elastic

line intensity and aids full characterisation of the salient features. The inelastic features are

comparable to those collected in the initial run which allows a comparison to be made.

In summary there is a pronounced anisotropy in the temperature dependence at different

momentum transfers. This can be seen in the raw spectra, which are plotted in Figure 4.7.

Two main features are apparent. The first is a peak around 100 meV, which is the magnon peak

observed earlier. With increasing temperature this feature progressively weakens and broadens.

The second observation is that there is a concurrent increase in spectral weight in the region

between 0.1 and 0.6 eV with increasing temperature, whilst there is no obvious change in the

d-d excitations. These two observations are roughly quantified in Figure 4.7(d), with the solid

symbols reflecting the intensity of the magnon peak, and the open symbols showing the intensity

at 0.2 eV energy loss.
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Figure 4.8: Analysis of RIXS spectra collected at Γ. (a): Spectra with elastic line and d − d contributions

subtracted. Added are the best fit to the data (black solid line), and relative components of the magnon

peak (purple) and particle-hole continuum (green). (b): Spectra from the second run normalised to the

intensity of d − d excitations at 1 eV. Fitted peak intensity (c), energy (d) and FWHM (e) of the two

components as a function of temperature. The two sets of symbols correspond to the first (open) and

second (filled) runs respectively. Dashed lines indicate the metal-insulator transition at 410 K.

In order to quantify these observations further, the data were fitted with the same model used

for the momentum dependence, but with two additional constraints. The first is that a Gaussian

was added to the fitting model in order to take the increased spectral weight at 200 meV into

account. Secondly the fits in the low energy portion of the RIXS spectra were corrected to take

the Bose factor into account. All of the features were convoluted with the experimental resolution

function. Fits to the data are presented in Figures 4.8 – 4.10.

Magnon peak

In general the magnon peak becomes less intense with increasing temperature (Figures 4.8c

– 4.10c), showing order parameter like behaviour with a critical temperature ∼400 K. This is

consistent with what would be expected for magnetic excitations and is similar to what was

observed for Cd2Os2O7. At Y the temperature dependence is less clear, however it appears to

decay more quickly than at the two other points measured in reciprocal space. Similarly whilst

there is a monotonous increase in the peak width (Figures 4.8e – 4.10e) at Γ and Γ − Y with

increasing temperature, this increase abates above 350 K at Y . Intriguingly the magnons appear

to soften along Γ and Γ − Y by 10–20 meV below the MIT, with an abrupt hardening above the
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Figure 4.9: Analysis of RIXS spectra collected at Γ − Y . (a): Spectra with elastic line and d − d contri-

butions subtracted. Added are the best fit to the data (black solid line), and relative components of the

magnon peak (purple) and particle-hole continuum (green). (b): Spectra normalised to intensity of d − d

excitations at 1 eV. Fitted peak intensity (c), energy (d) and FWHM (e) of the two components as a function

of temperature. Solid lines are guides to the eye. Dashed lines indicate the metal-insulator transition at

410 K.

MIT. Conversely for Y , a weak hardening of 20 meV can be observed between the data collected

at 300 K and 450 K.

High energy peak

At all reciprocal lattice points there is a increase in intensity of the peak present at 0.3 eV energy

loss, coupled with a weak broadening as a function of increasing temperature. However whereas

the energy of this peak is relatively constant as a function of temperature at Γ and Γ− Y , there

is a significant hardening at Y .

4.3.5 Discussion

Clearly there is a significant variation of the RIXS spectra through the MIT. The observed be-

haviour can, at least qualitatively, be explained in terms of a spin-fluctuation model for NaOsO3

[142]. The premise is as follows. Note that for itinerant systems, the concept of a spin wave has

no real meaning. Instead one should really think about a statistical fluctuation of the magnetic

moment or spin density. The following discussion uses this terminology.
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Figure 4.10: Analysis of RIXS spectra collected at Y . (a): Spectra with elastic line and d − d contributions

subtracted. Added are the best fit to the data (black solid line), and relative components of the magnon

peak (purple) and particle-hole continuum (green). (b): Spectra normalised to intensity of d − d excita-

tions at 1 eV. Fitted peak intensity (c), energy (d) and FWHM (e) of the two components as a function of

temperature. Dashed lines indicate the metal-insulator transition at 410 K.

Normally magnetic interactions in materials are defined in terms of one of two limits. In the

local moment (Heisenberg) limit, the spin fluctuations – and electrons – are local in real space.

At some temperature T (Fig. 4.11b), the orientation of the magnetic moments varies, but their

magnitude remains fixed at the T = 0 value. Consequently only the transverse component

of the local spin density fluctuation (LSF) is important. This gives rise to collective spin wave

excitations and is generally applicable for magnetic insulators (Fig. 4.11d).

At the other extreme (itinerant or Stoner limit), the electrons and spin fluctuations are ex-

tended in real space. Thermodynamic properties of the system are governed by electron-hole

pair interactions which have some collective nature. At some temperature T , the orientation

of the magnetic moments remains fixed, but their magnitude is reduced from the T = 0 value

(Fig. 4.11c). In this limit, the longitudinal components of the LSF or the temperature variation of

the magnitude of LSF are important. The spin-fluctuation model is an intermediate between the

Heisenberg and itinerant limits, whereby both the transverse and longitudinal components are

important. For NaOsO3, it is proposed that there is a continuous progression from the Heisen-

berg limit towards the itinerant limit through the MIT.

At 300 K, NaOsO3 is weakly insulating (charge gap ∼80 meV) and well-defined collective

magnetic excitations (spin waves in the Heisenberg picture) can be observed with a moment
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Figure 4.11: Top panels: Schematic of the orientation of antiferromagnetically (AFM) interacting magnetic

moments on a square lattice for T = 0, and finite temperatures in the Heisenberg or Stoner limits. Bottom

panels: Excitation spectra in the Heisenberg limit, for an itinerant AFM (with insulating gap 2∆), and for a

metal with weak AFM correlations. Dashed lines indicate damped excitations.

magnitude of 1 —B. Due to the strong Os–O hybridisation, there is a degree of itinerant character

which leads to weak scattering from intra-band particle-hole excitations. This is partially the

origin for the observed peak at 0.3–0.4 eV. These observations lead to the conclusion that the

system is close to the local moment limit, with transverse spin fluctuations dominating.

As the temperature increases, the charge gap continues to close. The system becomes

more itinerant, and the transverse fluctuations become more damped due to scattering from

the emergent electron-hole (Stoner) continuum (Fig. 4.11e). This effect is largest for larger q

as there are a greater number of available states for the magnon to decay into. Longitudinal

spin fluctuations become more important, which have two main effects. The first is to effectively

reduce the value of S from the ordered value. Evidence of this can be seen for Γ and Γ − Y ,

where a weak reduction in the energy of the magnon peak can be observed as a function of

increasing temperature (below TN). This agrees with theoretical calculations by Kim et al. [143],

which predict a reduction of the magnetic moment from 0.98 —B to 0.88 —B when going from

300 K to 450 K. The second effect is that two-magnon excitations (∆S = 0,2) become more

prominent in the excitation spectra, since the two-magnon scattering cross-section is directly

proportional to the longitudinal component of the spin-spin correlation function, Szz(Q; E). This

can be seen through the progressive increase in spectral weight around 0.2 eV energy loss.

Above TN, NaOsO3 is in the metallic paramagnetic phase. Short-ranged magnetic correla-

tions persist, which gives rise to heavily damped collective paramagnon modes, combined with

scattering from an electron-hole continuum. This is consistent with behaviour in the itinerant

limit (Fig. 4.11f). Similarities of the behaviour at high temperature can be drawn with neutron
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scattering5 measurements on the pnictides [144].

One complication is that RIXS is sensitive to both spin and charge scattering, and it is fre-

quently difficult to disentangle the two components. In particular for NaOsO3, there are issues

with resolving the separate contributions of the particle-hole continuum and spin fluctuations,

just as for Cd2Os2O7. Ideally one would use polarisation analysis of the scattered beam to

separate the spin and charge components, however the limited studies of polarisation analysis

within RIXS thus far [145, 146] report a factor of 10–100 times less flux. Consequently this shall

have to remain a long-term goal.

4.4 Summary and outlook

The magnetic and electronic correlations in NaOsO3 have been probed by resonant inelastic

X-ray scattering through the metal-insulator transition. The electronic excitations are consis-

tent with a weak coupling scenario, in which spin-orbit coupling acts as a perturbation to the

electronic Hamiltonian, and is similar to that observed for Cd2Os2O7.

As a general point, the RIXS spectra of the d1, d2, d3 osmates appear to show a progression

from the strong spin-orbit coupling limit (for the d1 Ba2LiOsO6), through to the d3 osmates which

can be adequately described within a weak spin-orbit coupling scenario. In Ba2LiOsO6, a sharp,

well defined jeff = 1
2 → jeff = 3

2 excitation can be observed [147], which is at noticeably higher

energy and broader for Pb2CaOsO6. Such behaviour occurs despite a similar local chemical

environment, which further demonstrates that the effective magnitude of spin-orbit coupling is

dependent on the valence state of the metal cation. This has important ramifications for the

electronic and magnetic interactions within 5d TMOs in general.

Well-defined spin excitations were observed at 300 K in NaOsO3, which exhibit an

anisotropic gap on the same order as the magnon bandwidth. The magnon dispersion is well

described by a minimal anisotropic nearest-neighbour Hamiltonian with a magnetic moment re-

duced from the nominal spin-only value of 1.5 —B. The source of this anisotropy is likely to be a

combination of single-ion, anisotropic exchange, and Dzyaloshinskii-Moriya contributions, how-

ever it was not possible to disentangle the relative contributions of these interactions within the

experimental energy resolution.

Through the MIT the spin excitations show evidence of a continuous progression from lo-

calised to itinerant behaviour. Softening of the magnon peak with increasing temperature sug-

gests a reduction of the ordered magnetic moment due to longitudinal spin fluctuations, which is

consistent with a spin-fluctuation model for NaOsO3. The presence of longitudinal spin fluctua-

tions, along with a possible Higgs mode in the RIXS spectra, may be indicative of a proximity to

a quantum phase transition. Finally Kim et al. [143] propose that NaOsO3 is not an example of

5In NaOsO3, the magnetic propagation vector q = 0, whereas q = (ı; ı) for the pnictides. Due to kinematic

constraints, Fe L-edge RIXS on the pnictides can only access the region of reciprocal space around (0,0), whereas

neutron scattering can only access the region around (ı; ı).
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a Slater insulator, but instead undergoes a “spin-fluctuation induced Lifshitz MIT”. Consequently

it may be possible to suppress TN by applying pressure and eventually go through the possible

quantum critical point.

Summary of contributions

The RIXS measurements were carried out by the author in collaboration with Stuart Calder and

Andy Christianson from Oak Ridge National Laboratory, and Christian Donnerer and Davide

Pincini from UCL. All analysis and interpretation of the data was performed by the author.
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Magnetic critical scattering

measurements on Sr2IrO4 and

Sr3Ir2O7

The perovskite iridates Sr2IrO4 and Sr3Ir2O7 manifest as examples of materials wherein strong

spin-orbit coupling plays a leading role for the electronic and magnetic behaviour. The magnetic

ground state in these jeff = 1
2 systems is governed by the subtle interplay between the local

crystal field environment, spin orbit coupling, and the ratio JH=U. X-ray magnetic critical scatter-

ing was used to probe the spin and lattice dimensionality of the magnetic interactions in Sr2IrO4

and Sr3Ir2O7. In Sr3Ir2O7 the observed behaviour is broadly consistent with 3D Heisenberg

interactions, as expected for a bilayer material with significant interlayer correlations previously

demonstrated by resonant inelastic X-ray scattering (RIXS). Meanwhile in Sr2IrO4 the scatter-

ing can be successfully described by a two-dimensional model with appreciable easy-plane

anisotropy. The presence of easy-plane anisotropy explains a previously overlooked spin gap

present in high-resolution RIXS data, and quantitatively agrees with a number of theoretical

predictions, including that presented within the seminal work by Jackeli and Khaliullin [25].

Thus far the discussion has been restricted to osmates (d3, S = 3
2 systems), which undergo

metal-insulator transitions strongly linked to the onset of magnetic order. From now on the focus

shall be on materials which exhibit broadly Mott-insulating behaviour, the perovskite iridates

Sr2IrO4 and Sr3Ir2O7. The term ’broadly’ has been used since spin-orbit coupling plays a leading

role in the formation of the jeff = 1
2 ground state, with insulating behaviour resulting from on-

site Coulomb repulsion U within this band. For these reason they are frequently referred to in

the literature as ‘spin-orbit Mott insulators‘. Furthermore there is some evidence of Slater-like

phenomena for Sr2IrO4 [148–152], and polaronic behaviour for Sr3Ir2O7 [153], which means that

these materials lie some distance away from the conventional Mott-Heisenberg paradigm.

132
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As discussed by Jackeli and Khaliullin [25], the magnetic exchange parameters in the jeff = 1
2

ground state are parameterised by three quantities. The first of these is the ratio of Hund’s

coupling to the on-site Coulomb repulsion: ” = JH=U. The second is the effective distor-

tion away from the ideal cubic jeff = 1
2 state, „. In the case of weak tetragonal distortion:

tan (2„) = 2
√

2–= (–− 2∆), where – is the many-electron spin-orbit coupling parameter, and

∆ reflects the tetragonal crystal field splitting. The final parameter is the rotation angle ¸ of the

IrO6 octahedra within the basal plane.

The dimensionality of magnetic interactions – and hence the magnetic ground state – can

be tuned by tuning the effective distortion „ and octahedral rotation within the basal plane.

Increasing „ beyond some critical value „c induces a spin-flop transition which aligns the S = 1
2

isospins collinearly along the z-axis. This partly1 explains the difference in magnetic structure

for Sr2IrO4 compared to Sr3Ir2O7: in Sr2IrO4 the magnetic moments lie in the ab-plane, whereas

for Sr3Ir2O7 the magnetic moments are collinear along the c-axis.

Furthermore Jackeli and Khaliullin hypothesised that the dominant part of the Hamiltonian

for Sr2IrO4 could be given by:

H =
X
i j

J̃ S̃i · S̃j − Γ1S̃
z
i S̃

z
j ± Γ2

“
S̃xi S̃

y
j − S̃

y
i S̃

y
j

”
; (5.1)

where the first term reflects effective isotropic exchange, with the second and third terms de-

scribing anisotropic exchange. If Γ1 is positive, then the system exhibits easy-plane anisotropy

and the spins lie in the basal plane. The presence of anisotropic exchange means that any spin

wave excitations will be gapped; this Hamiltonian predicts the existence of an out-of-plane spin

gap with approximate magnitude !0 ∼
h
J̃Γ1

i1/2
.

Given the difference in the magnetic ground state for Sr2IrO4 and Sr3Ir2O7, one could pre-

dict that there would be a corresponding difference in the spin or lattice dimensionality of the

magnetic interactions. Normally one attempts to determine the dimensionality of a material

by fitting the magnetisation below the critical temperature Tc to a power law M ∼ t˛, where

t = (T − Tc) =Tc. The obtained value of the critical exponent ˛ can then be compared to the

theoretical value for a particular universality class. For a magnetic system these universality

classes are governed by the spatial dimensions and spin degrees of freedom. A number of ther-

modynamic parameters, including the susceptibility, correlation length, and magnetic specific

heat, exhibit similar behaviour – with their own critical exponents – in the vicinity of the critical

point.

An important point is that the power law dependence is strictly speaking only exact precisely

at T = Tc; away from Tc it is an approximation, albeit rather a good one if t is not too large.

Consequently in order to accurately and precisely determine the critical exponents – and corre-

sponding universality class – for a given material, one needs to perform detailed measurements

1The collinear magnetic moments in Sr3Ir2O7 are stabilised as a result of intra-bilayer interactions, which are absent

in Sr2IrO4.
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in the vicinity of Tc. For X-ray or neutron scattering measurements this is given the umbrella

term critical scattering.

5.1 Critical scattering theory

A brief introduction to critical scattering theory is given here. The reader is referred to Collins

[154] for a more detailed discussion.

Consider an antiferromagnet2 which undergoes a continuous magnetic phase transition at

T = TN. At T = 0, the system is fully ordered. As temperature increases the spins begin to

fluctuate about their mean positions. Near the critical point there are fluctuating microclusters

of both the ordered magnetic and paramagnetic phases with mean size ‰, where ‰ is known as

the correlation length. Furthermore the microclusters have a finite response time fi ∼ ‰z , where

z is known as the dynamical critical exponent. As the critical point is reached, both ‰ and fi

increase dramatically, to the extent that at T = TN, both quantities diverge to infinity: ‰ ∼ |t|−� ,

fi ∼ |t|−z� . The correlation between the fluctuations of these microclusters can be described in

terms of a correlation function C¸˛:

C¸˛(R) = 〈S¸i S
˛
j 〉 − 〈S

¸
i 〉〈S

˛
j 〉 (5.2)

= (S¸i − 〈S¸i 〉)
“
S˛j − 〈S

˛
j 〉
”
; (5.3)

where ¸ and ˛ index the two phases. In magnetic critical scattering one probes the correlation

function in reciprocal space [154], so the Fourier transform of the real space correlation function

C¸˛ is defined as:

Ĉ¸˛(q; h) =
X
R

e iq·R C¸˛(R) (5.4)

=
X
R

[〈S0 · SR〉 − 〈S0〉〈SR〉] ; (5.5)

Defining spin variables Sq as the Fourier transform of SR, the correlation function reduces to

Ĉ¸˛(q; h) =

Z
〈Sq′ · Sq〉 dq′:

In the zero-field limit this equality can be simplified and expressed in terms of a scaling function,

f̂ :

Ĉ¸˛(q) = |q|”−2
f̂ (|q|‰);

where ” is a critical exponent defined by this equation, and ‰ is the correlation length. The

scaling function f̂ is typically a complicated quantity, however a useful approximation by Orn-

stein and Zernike [155] sets ” equal to zero, an approximation which is not too drastic in three

dimensions.3 Away from the critical point, the generalized form for the correlation function then

2The following discussion is equally valid for ferromagnets.
3Note that different magnetic models have different values for ”, and consequently a slightly different shape of the

correlation function.
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Figure 5.1: Schematic phase diagram of the quantum non-linear sigma model as a function of temperature

T and coupling strength g . The renormalized classical phase exhibits Néel long range order (LRO) at

T = 0. The dashed line represents the 2DQHAFSL.

becomes:

Ĉ¸˛(q) ∼ 1
»2 + q2 ;

or in other words, a Lorentzian function with »−1 = ‰. More sophisticated expressions [156, 157]

for Ĉ¸˛(q) allow for a non-zero value of ” by substituting »2 + q2 by (»2 +  q2)1−”=2, but this is

a small correction which is very difficult to resolve experimentally. The physical significance of

this is that the critical fluctuations are expected to exhibit a (near) Lorentzian dependence as a

function of q, and the half-width at half maximum (HWHM) corresponds to the correlation length

‰. Furthermore for T > Tc, the amplitude of the critical fluctuations is directly proportional to the

susceptibility ffl.

Motivation

Magnetic critical scattering has been shown to be particularly useful when looking at 2D ma-

terials. Mermin and Wagner [158] hypothesised that “at any non-zero temperature, a one- or

two-dimensional isotropic spin-S Heisenberg model with finite-range exchange interaction can

be neither ferromagnetic nor antiferromagnetic”. This concept was found to apply to any system

with continuous symmetry. The generalised statement of the Mermin-Wagner theorem states

any isotropic system with fewer than three spatial dimensions does not exhibit long-ranged order.

Experimental manifestations of a 2D Heisenberg system do however typically have a non-zero

magnetic ordering temperature, since real materials are three-dimensional and exhibit some

degree of inter-plane coupling or anisotropy.
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5.2 2D Heisenberg antiferromagnet on a square lattice

(2DQHAFSL)

The 2D Heisenberg antiferromagnet on a square lattice (2DQHAFSL) is one of the simplest, yet

most intriguing model systems. It is defined by the Hamiltonian

H = J
X
i<j

Si · Sj ; (5.6)

where the sum is over nearest neighbours. The realization by Chakravarty, Halperin and Nelson

(CHN) that the long-wavelength, low-temperature behaviour of the 2DQHAFSL could be mapped

onto a (2+1)-dimensional quantum non-linear sigma model is a celebrated piece of theoretical

work [159]. The quantum non-linear sigma model exhibits long-ranged order at T = 0 provided

that the coupling

g =
~c
√

2ı
kBsa

;

which expresses the strength of the quantum fluctuations [160], satisfies g < gc . Indeed for the

2DQHAFSL g=gc = [1 + ZfflZc=2]−1 = 0.77, where Zffl and Zc are renormalisation parameters.

Furthermore for T > 0, the correlation length and spin susceptibility could be expressed in

terms of a purely classical model, however with the spin-wave stiffness and spin-wave velocity

renormalized by quantum fluctuations. This is described as the ‘renormalized classical’ regime

in the literature (and the phase diagram in Fig. 5.1) for this reason. The original work considered

a one-loop renormalization group method in the theoretical determination of the structure factor

and correlation length; there have been a number of extensions to the model including up to

three-loop corrections [161, 162] and prevention of cut-off effects in the quantum Heisenberg

model [163]. The cut-off corrections are somewhat difficult to evaluate analytically, thus the

model that shall be used for the remainder of this thesis to describe this CHN-type model is

the three-loop model given by Hasenfratz and Niedermayer [161], henceforth referred to as

CHN-HN. In this model the correlation length ‰3l
CHN can be expressed as:

‰3l
CHN-HN =

e

8
~c

2ıs
e2ıs=T

"
1− 1

2
T

2ıs
+O

„
T

2ıs

«2
#
; (5.7)

where e is the base of the natural logarithm, s = Z S
2J = 0.181J is the spin-wave stiffness,

c = 2
√

2ZcSJa = 1.18
√

2Ja is the spin-wave velocity, and a is the lattice constant. Strictly

speaking the spin-wave stiffness s and spin-wave velocity c are temperature dependent quan-

tities, the latter of which could be extracted experimentally from the magnon dispersion in the

long-wavelength limit. The amplitude of the instantaneous structure factor S0 can be similarly

derived as [164, 165]

S0 ∝ N2
0‰

2 T 2

(2ıs)
2 ; (5.8)

where N0 = 0.307 is the zero-temperature staggered magnetization, which is reduced to around

61% of its classical value as a result of quantum fluctuations. There are two things to take away

from this analysis: firstly the correlation length follows an exp (1=T ) dependence to leading

order, and secondly the ratio S0=‰
2 should scale as T 2.



Chapter 5. Magnetic critical scattering measurements on Sr2IrO4 and Sr3Ir2O7 137

Quantum critical regime

The 2DQHAFSL lies close to a quantum critical point at g = gc , and thus it would be expected

[162] that there would be evidence of a crossover from the ‘renormalized classical’ regime to

a ‘quantum critical’ (QC) regime at some finite temperature T . This QC region of the phase

diagram as shown in Fig. 5.1 is characterised by a J=T scaling of the correlation length:

‰ = ~c
»
TΘ

„
1 +

0.2373
N

«–−1

; (5.9)

where Θ = 2 ln
“√

5+1
2

”
and N = 3 from the mapping to the (2+1)-dimensional quantum non-

linear sigma model. Furthermore in the long-wavelength limit (k → 0) the structure factor S0

can be written as:

S0 =
N2

0

s

„
NkBT

2ıs

«” √5
2
‰

„
1− 0.1925

N

«
; (5.10)

where the exponent ” = 8=3ı2N, and ‰ is the experimental correlation length. Note that these

expressions are valid precisely at the critical point g = gc , and further corrections are likely to

be required away from this.

Quantum disordered phase

The quantum disordered phase exists for g > gc , and its behaviour is dictated by a gap be-

tween the (non-magnetic) global singlet ground state and the lowest (magnetic) triplet excited

states at T = 0. In the N = ∞ limit, the magnitude of this zero temperature gap is given by

∆ = 4ı
`
g−1
c − g−1

´
, and scales with ∆ ∼ (g − gc)� as a function of coupling strength [162].

Consequently the inverse correlation length can be expressed in the form

‰−1(∆; T ) =
2kBT
~c

arcsinh
„
e∆=2T

2

«
; (5.11)

which in the limit of ∆�T implies a correlation length of the order of ∆−1, that is, independent

of temperature.

However the mapping of the 2DQHAFSL to the quantum non-linear sigma model is only

valid for kBT�s ; there is some question of the validity of this mapping in the high-temperature

regime. In particular, there are question marks over the predicted crossover between the RC and

QC regimes. Chubukov et al. [162] predict a crossover for T ∼ 0.4J, however the expression

used for the quantum critical regime applies in the limit of g = gc . Elstner and colleagues [166]

predict some crossover between 0.45J ≤ T ≤ 0.65J for S = 1
2 , based on considerations of the

temperature dependence of the spin-wave mass.

It should be noted that there are a number of alternative models which attempt to de-

scribe the temperature dependence of the properties for the 2DQHAFSL. These include fitting

to quantum Monte Carlo (QMC) [167, 168] simulations, semi-classical approaches (PQSCHA)

[169, 170], or series expansions [171]. Each of these models is suited for a particular tempera-

ture range T=J or value of S, and there is at present no unified model for the 2DQHAFSL.
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Materials exhibiting almost 2DQHAFSL behaviour

As discussed earlier, there are no physical manifestations of a pure 2DQHAFSL, as a conse-

quence of anisotropies, disorder, dipolar interactions etc. which are present in any real system.

Most studies looking for 2DQHAFSL-like behaviour focus on S = 1
2 systems, since these sys-

tems offer the greatest departure from classical behaviour and hence better approximate to the

quantum non-sigma model limit.

One prototypical example is La2CuO4, a perovskite material comprising of 2D layers of CuO6

octahedra, with Cu in the +2 oxidation state. The electronic configuration of Cu2+ is 3d9, which

leaves a hole in the dx2−y2 orbital and hence a S = 1
2 ground state. Doping this material with ad-

ditional oxygen leads to a high-temperature superconductor, similarly to YBa2Cu3O7-‹ . Inelastic

neutron scattering [172, 173] has revealed that the nearest-neighbour interactions in this ma-

terial are antiferromagnetic, with significant next-nearest, third-nearest neighbour, and four-spin

ring exchange contributions. Above TN, the correlation length was found to agree very well with

the CHN prediction [174, 175], implying that La2CuO4 was an example of a 2DQHAFSL.

However one issue with studying the precise temperature dependence of the correla-

tion length (and related thermodynamic parameters) for La2CuO4 is the large value of J

(J ∼ 1500 K). Typically these types of materials are studied using neutron scattering, and it

is difficult to measure at such high temperatures using this method. This thus limits the range of

‰(T=J) that can be measured. Other examples of 2D Heisenberg antiferromagnets on a square

lattice include Cu(COOH)2 · 4 H2O [164, 176–179] (plus its deuterated equivalent, useful for INS

measurements) and Sr2CuO2Cl2 [180–184]. These materials have much lower values of J and

as such have proved more accessible for the study of a potential crossover between the RC and

QC regimes and fitting to theoretical models. Additionally these materials exhibit much lower

inter-layer anisotropy, thus providing a much closer realisation to a true 2DQHAFSL.

A common theme in all of these materials is that the spin-orbit coupling is a weak perturba-

tion to the electronic and magnetic properties. In 4d and 5d transition metal oxides, spin-orbit

coupling is expected to play a much stronger role. Examples of this are the Ruddlesden-Popper

perovskite iridate compounds Sr2IrO4, and Sr3Ir2O7, where the jeff = 1
2 ground state is a direct

result of spin-orbit coupling.
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5.3 Critical scattering on Sr2IrO4

This section has been partly published as J. G. Vale et al., Physical Review B 92, 020406(R)

(2015).

5.3.1 Introduction to physical properties

Sr2IrO4 is an example of a Ruddlesden-Popper perovskite4 material, which comprises of a se-

ries of 2D Ir-O layers, interspersed with Sr2+ cations. The general formula for these Ruddlesden-

Popper phases is An−1A
′
2BnX3n+1, where n is an index which represents the number of layers.

So in this interpretation Sr2IrO4 can be described as a single-layer compound, and this notation

will be used throughout this thesis. Sr2IrO4 adopts a tetragonal crystal structure
`
a = 5.48 Å,

c = 25.76 Å, structure shown in Fig. 5.2a
´

with space group I41=acd , and differs5 from the

ideal I4=mmm space group through a correlated rotation of the IrO6 octahedra by 12◦ [188].

In this material iridium is in the 4+ oxidation state, and hence the iridium ions have five d-

electrons in a low spin configuration, due to the comparatively large crystal field and extended

5d orbitals. This means that it can be initially considered as a S = 1
2 system. Strictly speaking

however this is incorrect, and the reasons for this shall be detailed later.

Bulk measurements by Cao et al. [21] indicated insulating behaviour up to 300 K (Fig. 5.2d),

which was unexpected considering the reduced value of U and increased value of the kinetic

energy t for 5d systems compared to 3d systems (see Table 1.1). For example, the isostructural

cuprate La2CuO4 is a Mott insulator and the rhodate Sr2RhO4 is metallic at room temperature

[189]. The susceptibility was also shown to be strongly anisotropic (Fig. 5.2c), with the suscepti-

bility approximately a factor three larger in the a-direction compared to the c-direction. Further-

more the saturation magnetization revealed an effective paramagnetic moment of 0.50 —B per Ir

atom, considerably less than the Hund’s rule coupling value of 1.7 —B per Ir. Cao et al. attributed

this to hybridisation between the Ir 5d and O 2p orbitals, however in reality the formation of the

jeff = 1
2 ground state – as described in Chapter 1 – is the origin for the reduced moment.

Kim and colleagues [26] suggested that the Ir magnetic moments resulting from the jeff = 1
2

isospins were oriented in the ab-plane, based on the existence of allowed reflections at

(1; 0; 4n+2) and (0; 1; 4n) positions. This was confirmed by Boseggia et al. using XRMS [190],

and further measurements showed that the magnetic moments rigidly follow the rotation of the

IrO6 octahedra [191]. Neutron scattering measurements by [185, 186] corroborate this finding,

4Strictly speaking only the infinite layer member of this series, SrIrO3, is a true perovskite as detailed in Chapter

4. The other members – including Sr2IrO4 and Sr3Ir2O7 – have layered structures reminiscent of the true perovskites,

which gives rise to the misnomer prevalent in the scientific literature.
5There is still some controversy over the correct space group, since the assignment is dependent on the positions of

oxygen atoms within the crystal structure, which X-rays are not especially sensitive to. Neutron diffraction measurements

(both on powders [185] and single crystals [186]) find structural reflections forbidden within I41=acd , which appear to

be consistent with the lower symmetry I41=a. This is corroborated by recent second and third harmonic generation

experiments [187]. Within this thesis however, the I41=acd convention shall be used to better compare with literature.
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Figure 5.2: (a): Crystal structure of Sr2IrO4. The IrO6 octahedra are rotated by ±12◦ in the ab-plane with

respect to the ideal I4=mmm structure; alternate layers have the opposite sign of rotation. The magnetic

moments rigidly follow this distortion, which is highlighted in (b). (c,d): Magnetization (c) and resistivity (d)

measurements by Cao et al. [21] on a single crystal of Sr2IrO4, which show significant anisotropy in the

respective bulk properties.

but as previously mentioned, the observation of weak structural reflections which violate the

I41=acd space group suggest a reduction of symmetry at high temperature.

Resonant inelastic X-ray scattering measurements (RIXS) have also been performed on

Sr2IrO4, in order to determine the magnon dispersion, and the origin of the mode at 400 meV

as observed by optical spectroscopy. Jungho Kim [37] and colleagues obtained the inelastic

spectra for Sr2IrO4 for an entire Brillouin zone close to 90 degrees with approximately 130 meV

energy resolution. They fitted the experimental magnon dispersion to a J−J ′−J ′′ model and

obtained a value for the nearest-neighbour exchange constant J of 60 meV. This was consistent

with theory predictions made by Jackeli and Khaliulin [25]. Furthermore the inelastic feature

at 400 meV energy loss was found to be strongly dispersive – which indicates some propaga-

tion mechanism – and was attributed to an excitation of a hole from the jeff = 1
2 band to the

jeff = 3
2 band, coupled with a hopping to an adjacent site. This strongly dispersive mode was

dubbed a “spin-orbit exciton”, and is characteristic of the exotic electronic and magnetic be-

haviour observed in the iridates. Recent measurements obtained by Kim and colleagues [192]
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Figure 5.3: Magnetic critical scattering data previously obtained by Fujiyama et al. [38]. (a): Intensity

map in hl -plane of (1; 0; 22) magnetic Bragg peak at 229 K. (b): In-plane (red squares) and out-of-plane

(black circles) correlation length ‰a above TN = 228.5(5) K. Overlaid are the theoretical models for the

2DHAFSQL [167] (red), 2D XY model (green), and 2D Ising model (blue). A 2D Heisenberg model with

J = 100(10) meV apparently seems to give the best description of the in-plane data, whilst the out-of-

plane correlation length ‰c is best described by a power law with critical exponent � = 0.748, consistent

with 3D interactions.

using a significantly improved energy resolution (∆E = 30 meV) display a sharp dispersive fea-

ture, which is believed to be a quasiparticle peak reminiscent of those observed in the cuprates

[193].

This is merely a selection of the literature that has been published for Sr2IrO4, however it

highlights that Sr2IrO4 is not a metal, as would be predicted from trends in the electron corre-

lation and kinetic energy alone. Spin-orbit coupling plays a significant role in the formation of

an insulating state with one electron in the uppermost jeff = 1
2 band, and hence Sr2IrO4 is often

referred to as a “jeff = 1
2 spin-orbit assisted Mott insulator”.

Previous experimental results

Fujiyama et al. [38] measured the critical scattering from Sr2IrO4 and found that there was

persistent intensity for the (1; 0; 22) magnetic Bragg peak up to 254 K, well above the Néel

temperature TN = 228.5(5) K. The temperature dependence of the diffuse scattering (Fig. ??)

revealed a significant dichotomy between the in-plane and out-of-plane directions. Using po-

larization analysis they were able to conclude that the diffuse scattering was magnetic. Fur-

thermore the in-plane correlation length could be fitted very well to a model [167] consisting of

isotropic 2D Heisenberg interactions with a nearest-neighbour exchange of J = 100(10) meV:

‰(T ) = 0.276 a0e
1.25J=kBT ; (5.12)
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as obtained from quantum Monte Carlo (QMC) calculations. From this they concluded pro-

vided evidence that the type and magnitude of interactions in Sr2IrO4 were very similar to those

in La2CuO4, in spite of the increased spin-orbit coupling and octahedral rotations present for

Sr2IrO4.

There are however a couple of problems with their interpretation of the data. The first is that

close to TN, the intrinsic resolution of the diffractometer becomes comparable to the width of

the intrinsic critical fluctuations in reciprocal space. This means that careful fitting of the data

including these resolution effects is required in order to extract the true correlation length. The

second is that there appears to be a numerical error in the correlation length data as plotted in

the manuscript. The data which have been plotted are too large by a factor of a0 (a0 = 3.9 Å

is the Ir-Ir nearest-neighbour distance) when compared to their raw data. This means that their

value of the nearest-neighbour exchange parameter J is too large, which is consistent with other

estimates of J that place its value between 45 and 60 meV, depending on the method used.

5.3.2 Experimental setup

Consequently critical scattering experiments were performed at beamline I16, Diamond Light

Source, UK, and P09, PETRA III, DESY, Germany. These experiments exploited the large

enhancement of the X-ray resonant magnetic scattering cross-section at the Ir L3 edge. The

single crystals of Sr2IrO4 used in this study (dimensions 2×1×0.05 mm3) were flux grown from

phase-pure polycrystalline Sr2IrO4, using techniques described elsewhere [148], and attached

to the copper sample mount of a closed-cycle refrigerator. This was in turn mounted on a six-

circle diffractometer configured to operate in a vertical scattering geometry. The energy of the

incident photon beam was set to 11.218 keV, just below the L3 edge of iridium, a value found

to maximise the intensity of the X-ray resonant magnetic scattering (Fig. 5.4a). The incident

beam size was determined to be 200× 20 —m2 (H×V). The polarization of the scattered X-rays

was determined by using a Au (3; 3; 3) crystal analyser mounted on the detector arm. The

temperature was measured to a precision of ±0.01 K via a thermocouple secured to the sample

mount by Teflon tape. The wavevector resolution of the instrument (at FWHM), including the

effects of sample mosaic, was determined by mapping Bragg peaks in reciprocal space and

was found to be typically 1.7×10−3 and 2.0×10−3 Å−1 perpendicular and parallel to Q in the

scattering plane respectively, and 1.3×10−2 Å−1 out of the plane (Figs. 5.4b–5.4d).

5.3.3 Order parameter

The first objective was to determine TN and ˛, which was achieved by measuring the temper-

ature dependence of the (1; 0; 24) magnetic peak intensity IM. The results are summarized in

Fig. 5.5 for both the in-plane and out-of-plane directions. As can be seen, the scattering is prac-

tically isotropic in this temperature range. A fit of the in-plane data to the simple power-law form

IM ∝ [(TN − T )=TN]2˛ is shown in Fig. 5.5(a) which yields TN = 226.8(2) K and ˛ = 0.195(4).
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Figure 5.4: (a): Energy scan of the (1; 0; 24) magnetic Bragg peak with ff–ı′ polarisation (symbols).

Overlaid is the total fluorescence yield (TFY) from the sample (solid line). (b)–(d): Reciprocal space scans

of the (1; 0; 24) peak at 180 K, which was used to represent the resolution function. Nearby structural

peaks exhibited similar behaviour. Added are the best fit (solid lines) of the data to either an asymmetric

Lorentzian squared function (b,d) or an asymmetric Gaussian (c). Bars indicate the FWHM of the peak.

These values are consistent with that provided by neutron scattering measurements [185, 186]

and muon spin relaxation [194]. The value of ˛ deduced by this analysis deviates significantly

from theoretical values for both 2D Ising (˛ = 1/8) and 3D systems (˛ ∼ 0.35), but rather is

consistent with the value for the 2D XYh4 universality class in the strong anisotropy limit [195].

The 2D XYh4 model shall be discussed later in more detail.

However this is not the full story. There is evidence of a secondary order parameter just

above TN, which appears to have a different critical exponent and transition temperature. This

is displayed in Figure 5.6. After fitting this to a power law, one obtains TC = 232.3(1) K —

which corresponds to TN + 5.5(2) K — and ˛ = 0.32(1). The value of the critical exponent

˛ is more consistent with three-dimensional interactions, which implies that it is relevant for

the formation of long-ranged antiferromagnetic order. When approaching TN from above, the

interlayer coupling J ′ causes an antiferromagnetic correlation between adjacent planes.

Yet the presence of 3D critical behaviour in the vicinity of TN is not unprecedented for layered

S = 1
2 materials. A dimensionality crossover from 2D XY to 3D XY behaviour has been observed

in YBa2Cu3O7-x by single crystal neutron diffraction [196] and 63,65Cu NMR [197]. Pozzi et

al. [197] suggested that the 3D XY fluctuations for TN ± 5 K result as a consequence of a

weak XY anisotropy Jxy ≈ 1 × 10−4J, which is two orders of magnitude weaker than the intra-
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Figure 5.5: (a): Temperature dependence of (1; 0; 24) magnetic Bragg peak for Sr2IrO4. Plotted are the

integrated intensities for the in-plane (squares) and out-of-plane (diamonds) directions normalised to the

in-plane scattering at 180 K. (b): Variation of ffl2 (squares) as a function of fits to IM ∝ [(TN − T )=TN]2˛

using fixed values of TN. The minimum of the ffl2 surface occurs at TN = 226.8(2) K and ˛ = 0.195(2).

bilayer coupling J ′ ≈ 0.01 J. With increasing temperature, there is a continuous crossover from

anisotropic to isotropic spin fluctuations on the magnetic Cu(2) site, with 2DQHAFSL behaviour

above 500 K (TN + 85 K).

5.3.4 Magnetic scattering above the Néel temperature

The second objective was to investigate the critical scattering above TN. For these studies the

high photon energy and relatively broad energy resolution of X-ray diffractometers (& 1 eV) offer

an advantage over neutrons in that they provide an accurate frequency integration to yield the in-

stantaneous magnetic scattering function S(Q). On the other hand the intrinsic high wavevector

resolution of X-ray techniques presents a challenge in terms of following weak critical magnetic

scattering to high temperatures as it broadens and weakens further. X-ray experiments to de-

termine the magnetic critical scattering above TN have revealed that the critical fluctuations just

above TN have two components: a sharp “central” peak, typically with a Lorentzian squared line-

shape, believed to be an extrinsic feature due to the presence of defects; and a broader, weaker

peak with a Lorentzian line shape arising from intrinsic critical fluctuations [154, 198, 199]. Re-

alisation that the magnetic critical scattering above TN can have two such components mirrors

earlier results for structural phase transitions [200–202].

To summarise, above TN, scattering in the out-of-plane direction was observed to decay

rapidly with increasing temperature, and was practically unobservable at TN + 7 K. For the

in-plane direction however, the critical scattering could be followed out to TN + 73 K. This is

consistent with the previous study by Fujiyama et al. [38], roughly trebling the region probed
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Figure 5.6: (a): Observation of two order parameters for Sr2IrO4 as determined from rocking curves
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corresponding values of ˛ (circles).

above TN, which, as shall be shown, places a much tighter constraint on the relevant form of the

effective Hamiltonian.

Vicinity of critical temperature

Representative scans of the magnetic critical scattering in the vicinity of TN are shown in Fig. 5.7.

The in-plane scans show two distinct peaks. The first is a sharp peak centred at the Bragg po-

sition which weakens considerably with increasing temperature. The second is a broad weaker

peak slightly offset in the h-direction, with a smaller dependence on temperature. Meanwhile the

out-of-plane scans show a broad diffuse background superimposed on the Bragg peak. Careful

examination of the lineshapes of these peaks (convoluted with the instrumental resolution func-

tion) found that the sharp component was best fitted to a Lorentzian squared function, whereas

the broad component was best fitted to a Lorentzian. This implies that the broader component

is indicative of critical fluctuations. The offset in h for the broader peak compared to the Bragg

reflection may be due to some weak magnetostriction upon the formation of long-ranged order

(corresponding to a change in the lattice parameter on the order of 0.003 Å). Such an obser-

vation is corroborated within laboratory powder X-ray diffraction by Bhatti and colleagues [203],

who observe that the lattice parameters exhibit a discontinuity of similar magnitude at TN.
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Figure 5.7: Comparison of scattering in-plane [(a)–(d), purple] and out-of-plane [(e)–(h), green], along with

best fits to the data using the model described in the main text (solid line). The separate Lorentzian and

Lorentzian squared components to the scattering are indicated by dashed and dotted lines respectively. A

logarithmic y -axis has been used to highlight the two components.

Quantitative comparisons of the correlation length ‰ – inversely proportional to the half-width

at half maximum (HWHM) of the Lorentzian critical fluctuations – and the peak amplitude S0 are

displayed in Figure 5.8 as a function of temperature. Only the correlation length of the Lorentzian

squared component has been plotted as it was found that the Lorentzian squared component

was resolution limited.

First of all there is a clear dichotomy between the behaviour of the in-plane and out-of-plane

correlation lengths, in good agreement with the previous study by Fujiyama et al. [38]. Above

232.2 K (TN + 5.4 K), the obtained out-of-plane correlation length is sufficiently short such that



Chapter 5. Magnetic critical scattering measurements on Sr2IrO4 and Sr3Ir2O7 147

228 230 232
T (K)

0

20

40

60

9 
(a

0
)

(a)

2 4 6

T - T
N

 (K)

228 230 232
T (K)

100

101

102

S
0
 (

ct
s 

s-1
)

(b)

2 4 6

T - T
N

 (K)

Figure 5.8: (a): Correlation length of Lorentzian component both in-plane (purple squares) and out-of-

plane (green diamonds) given in terms of the Ir-Ir distance a0 = 3.9 Å. (b): Amplitude of Lorentzian (filled
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the same as presented in Figure 5.6. Solid line in (a) and (b) is the best fit to the 2DAH model at high

temperatures as plotted in Fig. 5.13.

the interactions can be considered to be confined within in a single Ir-O layer. On the other hand,

there are significant in-plane correlations ‰a ∼ 30 a0 indicative of short-ranged magnetic order.

Furthermore whilst the Lorentzian squared component exhibits order parameter behaviour, the

Lorentzian component decreases much more slowly with increasing temperature. Again the

latter is consistent with two-dimensional fluctuations in-plane.

These observations imply that there is simultaneously evidence of two- and three-

dimensional behaviour between TN and TN +6 K. The former arise from the high temperature in-

plane critical fluctuations, whereas the latter are indicative of the transition to three-dimensional

Néel order. One possibility is that the sample is weakly inhomogeneous and that different sam-

ple domains have slightly varying transition temperatures. Given the size of the incident X-ray

beam (200×20 —m2), then this is not unreasonable. However no obvious rounding of the phase

transition can be observed, which suggests that is a minor effect.

Far from TN

Clearly at higher temperatures, the Lorentzian squared component decays away and only the

intrinsic Lorentzian critical fluctuations remain. These critical fluctuations are rather broad in

reciprocal space, whilst the momentum resolution of the incident X-rays is extremely good. Con-

sequently one only probes a very small region of momentum space at a time, and thus counting

times are correspondingly long. Representative scans of the magnetic critical scattering above

TN are shown in Fig. 5.9. Counting times varied, but at higher temperatures 15 minutes were
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Figure 5.9: Selected in-plane scans of the (1; 0; 24) magnetic Bragg peak above TN. Superimposed are

the best fits to a Lorentzian convoluted with the resolution function (full width at half maximum represented

by solid bars).

required per data point. As can be seen, there is a progressive weakening and broadening of

the magnetic Bragg peak with increasing temperature, which is indicative of a degree of short-

ranged correlations in-plane.

The critical scattering above TN was fitted with several different lineshapes convoluted with

the instrumental resolution function. The most satisfactory over most of the temperature range

was a Lorentzian, as expected for intrinsic magnetic critical scattering. Additionally the width

of the diffraction peaks (Fig. 5.10) are comparable to the previous critical scattering study

(Ref. [38]). This allows a direct comparison between the two datasets, and confirms the propo-

sition that there was a numerical error in the original manuscript.

The temperature dependence of the correlation length ‰ and the peak amplitude S0 are plot-

ted in Fig. 5.11. Both quantities appear to decay monotonically with increasing temperature,

which would be expected for a 2DQHAFSL. Superimposed are a number of theoretical models

which attempt to describe the behaviour of a 2DQHAFSL with a nearest-neighbour exchange

parameter J = 60 meV, chosen to agree with the value obtained from RIXS measurements by

Kim and coworkers [37]. The theoretical amplitudes S0 have been scaled to pass through the

point at 300 K to compare their functional forms. However regardless of which model is chosen,

or the specific value of J, the 2DQHAFSL is not satisfactory in explaining the observed temper-
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ature dependence of the correlation length across the full temperature range studied. This does

not preclude the possibility that 2D Heisenberg behaviour is observed at higher temperatures.

Indeed this is expected; at high enough temperatures all relevant anisotropies will become in-

significant and isotropic behaviour will dominate. It should be noted that Kim et al. could not

obtain a good fit to the RIXS data without including significant second- and third-nearest inter-

actions (J ′ = −20 meV, J ′′ = 15 meV); these longer-ranged interactions are not included in

any of the theoretical models for the 2DQHAFSL given above. In particular a ferromagnetic

next-nearest neighbour exchange term J ′ has the effect of stabilising the Néel ordered state

below TN. On the other hand, Chakravarty, Halperin, and Nelson [159] conjecture that inclusion

of antiferromagnetic next-nearest neighbour interactions would have the effect of pushing the

system towards the quantum disordered regime (g > gc). This highlights the role that longer

ranged interactions may have on the magnetic ground state.

Alternative models were therefore pursued, in particular those which would preserve the two-

dimensional nature of the critical scattering. Two possibilities were explored: strong easy-plane

anisotropy (2D XYh4) and weak easy-plane anisotropy (2D anisotropic Heisenberg).

5.4 2D XYh4 model

The pure 2D XY model has been well described by Berezinskii, Kosterlitz, Thouless (BKT) [204–

206], and many others over the years. Inclusion of an additional fourfold anisotropy term in the

Hamiltonian (h4) results in the so-called 2D XYh4 model. This is distinct from both the 2D Ising

and 2D XY models, with its own universality class. In the classical limit, the 2D XYh4 universality



150

CHN-HN

QMC

PQSCHA

Series expansion

HTE

QC

QNL<M

230 250 270 290
T (K)

100

101

102

9/
a 0

(a)

0.35 0.40
T / J

230 250 270 290
T (K)

10-1

100

101

S
0

(b)

0.35 0.40
T / J

Figure 5.11: Comparison of various models for the 2DQHAFSL to the experimental data. (a): In-plane

correlation length ‰. (b): Structure factor S0. All models are calculated assuming J = 60 meV, with

the structure factor predictions scaled such that they pass through the data point at 300 K. None of the

theoretical models for the 2DQHAFSL are a satisfactory fit to the data for the entire temperature range

studied.

class can be described by the following Hamiltonian:

H4 = −J
X
〈i ;j〉

cos („i − „j)− h4

X
i

cos (4„i ); (5.13)

where „i are the orientations of classical spins on a square lattice and confined to the XY

plane and J is the coupling constant. The two limiting cases are h4 → 0 and h4 → ∞. As

h4 → 0, the system approaches the pure XY universality class, with behaviour well described by

BKT theory. In BKT theory, the critical exponent ˛ has been derived analytically [207, 208] as

˛ = 3ı2=128 ∼ 0.231. In the opposite limit h4 →∞; XYh4 crosses over to the four-state clock

model, which is equivalent to two perpendicular Ising models, and hence fits into the 2D Ising

universality class. This universality class is characterized by ˛ = 0.125. In between the two

limits ˛ varies continuously as a function of h4. The 2D XYh4 model is thus predicted to have a

range of non-universal critical exponents which depend on the magnitude of h4 [209]. These ex-

ponents exhibit ‘weak universality’ with both the 2D Ising and 2D XY models,6 in that the critical

exponent ” = 1/4 for all values of h4. The crossover between XY and Ising behaviours is slow as

a function of increasing h4; this is a direct consequence of ” having the same value for the two

universality classes. Typically h4 is a small perturbation for ferromagnets and classical systems;

this is demonstrated by the ferromagnet Rb2Cu2Cl4 for example which exhibits all of the charac-

teristics of the XY universality class [211]. However there is an argument that antiferromagnets

6Suzuki [210] proposed that in systems with weak universality, ”, ‹, and the reduced critical exponents ˆ̨ = ˛=�′,

‚̂ = ‚=�, ffî = (2=¸)=� were all independent of the system Hamiltonian.
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should always be pushed towards the strong h4 limit, as a result of quantum confinement that

forces the spins to lie in the easy plane [195]. This results in a partial breakdown in the scaling

for the XY equations, and hence more Ising-like critical behaviour close to TN.

In real systems exhibiting 2D XYh4 behaviour, there are two possible sources for h4 [212]:

an in-plane crystal field or an order-by-disorder type mechanism. Additionally three-dimensional

order occurs below TN >TKT due to weak interlayer coupling J ′ amplified by the diverging size

of correlated regions ‰(T )2. Here TKT is the Kosterlitz-Thouless temperature, which is associ-

ated with unbinding of vortex-antivortex pairs in the 2D XY model.7 This model shall now be

compared with experiment.

As shown above (Fig. 5.5), the intensity of the (1; 0; 24) magnetic Bragg peak decreases

continuously with increasing temperature. These data can be fit to a power law I = A(T−TN)2˛,

where the critical exponent ˛ = 0.195(4) and the Néel temperature TN = 226.8(2) K. This

value of ˛ is intermediate between the 2D Ising (˛ = 0.125) and 2D XY limits (˛ = 0.231),

and hence is consistent with the 2D XYh4 universality class. Based on this value for ˛, it is

possible to estimate the strength of h4. Taroni et al. [195] performed Monte Carlo simulations

on systems of 104 spins, and determined the critical exponents ˛ and � for various values of h4.

They determined ˛ by two different methods: data collapses, or fixing the critical temperature

to the maximum in the susceptibility, then deriving ˛ from a log-log plot. The two methods

gave somewhat similar results with a linear dependence8 of ˛ on h4: ˛(h4) = 0.125 + a=h4,

where a = 0.04(1). From this scaling relation, and the experimentally determined value of ˛,

h4 = 0.5(2) for Sr2IrO4. This comparatively large value of h4 indicates that in-plane anisotropy is

clearly important below TN, and places Sr2IrO4 at the boundary between the weak- and strong-

field regimes.

5.4.1 Correlation length and amplitude for 2D XY

As mentioned previously, TKT is characteristic of the 2D XY universality class. Above TKT,

Kosterlitz predicted that the correlation length ‰ diverges according to

‰ ∼ exp
h
ı=
p
c (T − TKT)

i
, where c is a constant.9 This expression for ‰ can be rewritten

in terms of the dimensionless quantities b and t = (T − TKT) =TKT as:

‰ ∝ exp
`
bt−1/2´ ; (5.14)

which is appropriate since TKT is a non-universal quantity. Theoretical studies [207] have shown

b≈1.9, and is weakly system dependent. Note that for the 2D XY model the critical exponent �

defined by ‰ ∼ t� does not exist, since the correlation length diverges exponentially and hence

faster than any power law [206]. From general scaling relations, the susceptibility ffl can be

7Below TKT, a spin wave peak can be observed. Above TKT, vortex-antivortex pairs unbind, and their diffusion

results in a quasielastic peak at S(!; q).
8There appears to be a typographical error in the original paper; fitting the 1=h4 dependence of the ‘true’ exponents

as written gives a = 0.023(6), not 0.032.
9The value of c has been somewhat debated, however consensus now puts c = 2.2 K−1.
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determined from the correlation length through ffl = ‰2−”, where ” = 1
4 is a critical exponent

derived from the correlation function. For the 2D XY model, this value of ” is universal [206].

Since the peak amplitude S0 is proportional to the dynamical susceptibility at zero wavevector,

the amplitude can be written as:

S0 ∝ exp
ˆ
(2− ”) bt−1/2˜ : (5.15)

In the 2D XYh4 universality class, the correlation length and amplitude are expected to follow

the theoretical expressions for the 2D XY model, provided that h4 is not too large. This is due to

the perturbative effect of h4 and the partial breakdown of the XY scaling relations.

5.4.2 Comparison to experimental data

The next stage is to compare the 2D XYh4 model with the experimentally obtained temperature

dependence of the correlation length ‰ and amplitude S0 for Sr2IrO4. The correlation length

and the amplitude were fit simultaneously, and ” was fixed to equal 0.25. The best fits of this

model to the data for T > 233 K are shown in Fig. 5.12. This corresponds to the temperature

range where no extrinsic Lorentzian squared component could be observed. At first glance it

appears that this model fits the data very well across the whole temperature range studied, which

contrasts with the results for the 2DQHAFSL. However extracting the fitted parameters reveals

TKT = 184(8) K and b = 3.4(8); the latter value being significantly larger than the theoretical

value for the 2D XY model (b ≈ 1.9). This can partly be explained by the finite value of h4, and

the breakdown of the XY scaling relations.
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Figure 5.12: (a): Experimentally determined correlation lengths ‰ (filled circles) and best fit to 2D XYh4

model (solid red line). The data from Fujiyama et al. [38] (open squares) divided by a factor a0 and the

QMC result for the 2DQHAFSL [167] with J = 60 meV (dashed black line) have been added as a guide.

(b): Experimentally obtained amplitudes S0 (filled circles) and best fit to 2D XYh4 (solid red line).
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From these values of TKT and b, it is possible to estimate the ratio between the in-plane and

out-of-plane exchange couplings, J and J ′ respectively. Following the derivation by Als-Nielsen

[211], the ratio J ′=J is given by J ′=J = exp
`
−2b=

√
t
´
, where t = (TN − TKT) =TKT. Evaluating

this ratio gives J ′=J = 8 × 10−7, however there is a significant uncertainty in this quantity (ap-

proximately two orders of magnitude) as a consequence of the uncertainty in both b and TKT.

This value for J ′=J is considerably lower than the typical value for the cuprates (J ′=J ∼ 5×10−5)

such as La2CuO4 [174, 193], and is unphysical for the following reasons. Firstly if one com-

pares the local coordination environment for the metal cations in Sr2IrO4 and orthorhombic

La2CuO4, the in-plane M-O bond lengths are remarkably similar [185, 213]
ˆ
rIr–O = 1.981 Å,

rCu–O = 1.9049(1) Å
˜
. The out-of-plane M-O bond lengths differ more strongly

ˆ
rIr–O = 2.055 Å,

rCu–O = 2.4210(5) Å
˜
, but can be partly explained by Cu2+ being a Jahn-Teller ion and the im-

proved stability associated with a tetragonal distortion along z . Nevertheless the separation

between layers of MO6 octahedra are comparable (Sr2IrO4: 6.4575 Å, La2CuO4: 6.5716 Å),

which implies that in the absence of other contributions, J ′=J should be similar for the two

compounds.10 However if one considers the ground state orbitals, then a difference should be

observed between the two systems. The ground state for La2CuO4 is the 3dx2−y2 orbital – again

as a consequence of Jahn-Teller distortion – and lies predominantly in the xy -plane. Yet the

ground state in the hole representation for Sr2IrO4 is an admixture of 5d orbitals with t2g sym-

metry, which in the limit of zero tetragonal crystal field splitting reduces to the pure jeff = 1
2

isospin state [34]. This tetragonal field splitting ∆ has been determined by Boseggia [191] to

be −60 meV ≤ ∆ ≤ 35 meV, and hence Sr2IrO4 is close to the ideal jeff = 1
2 limit. The sign

of ∆ governs the shape of the ground state wavefunction (and the relative contributions from

the ‘spin-up’ and ‘spin-down’ components of the isospin); however the experimental value of

∆ is sufficiently close to zero such that the shape of the wavefunction can be assumed to be

cubic as a first approximation. A cubic wavefunction naturally has a significant component in

the z-direction, and thus one would expect interactions to increase in this direction compared to

a wavefunction predominantly polarised in the xy -plane. Based on this argument the ratio J ′=J

should be larger for Sr2IrO4 than for La2CuO4, which is at odds with the calculated result for the

2D XYh4 model. An alternative explanation for the observed critical scattering behaviour above

TN is required.

5.5 2D anisotropic Heisenberg model (2DAH)

The 2D XYh4 model is relevant for systems with strong easy-plane anisotropy, and as shown

above, does not provide an adequate explanation of the observed critical scattering above TN.

Consider what happens when the easy-plane anisotropy is instead treated as a weak pertur-

bation to a nearest neighbour Heisenberg Hamiltonian. A representative Hamiltonian is given

10Compare this for example with Sr2CuO2Cl2, where the increased layer separation results in a much smaller ratio

J ′=J ∼ 10−8 [214].
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by:

H = J
X
〈nn〉

h
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j + (1−∆–)Ŝzi Ŝ

z
j

i
; (5.16)

where ∆– is the easy-plane anisotropy, and is equal to or smaller than unity. In the limit ∆– = 1,

then there is only exchange coupling in the xy -plane. However there is still the possibility for

fluctuations to occur in the z-direction, unlike for the 2D XY model. In the limit ∆– = 0, then the

interactions are isotropic and hence Heisenberg-like.

Cuccoli et al. [215, 216] performed quantum Monte Carlo simulations within the 2DAH model,

and characterised the behaviour of thermodynamic parameters for small values of ∆. In the limit

of long correlation lengths, ‰ and S0 scale the same way as for the pure 2D XY model. However,

with increasing temperature there is a crossover towards:

‰(T ) ∝ exp (b=t) (5.17)

S0 ∝ (2− ”) exp (b=t) (5.18)

for ‰.100 a0. The data presented here fall in this regime. The experimental correlation length

and amplitude data (T > 233 K) were thus fitted simultaneously to Eqns. 5.17 and 5.18, with

the results of these fits shown in Fig. 5.13.
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Figure 5.13: (a): Experimentally determined correlation lengths ‰ (filled circles) and best fit to 2DAH model

(solid red line). The data from Fujiyama et al. [38] (open squares) and the QMC result for the 2DQHAFSL

[167] with J = 60 meV (dashed black line) have been added as a guide. (b): Experimentally obtained

amplitudes S0 (filled circles) and best fit to 2DAH model. Dashed line is 2DQHAFSL model (J = 60 meV)

scaled to pass through data point at 300 K.

Clearly these fits also provide a good description of the data, with TKT = 162(11) K and

b = 2.1(7), the latter of which is much more consistent with the theoretical value for the 2D

XY model. Once again one can estimate the ratio J ′=J using the fitted parameters from the
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2DAH model, which in this case gives J ′=J = 3×10−5(2). This value is comparable to that

obtained for La2CuO4, which as mentioned above, is sensible if only structural contributions are

considered. However once again there is a significant error in J ′=J as a direct result of the

inability to constrain the estimates for TKT and b any further.

An alternative method of estimating J ′=J is by considering the value of the correlation length

at TN. As TN is approached from above, the system can be described in terms of an effective

length scale Leff, which is of the order
p
J=J ′. This length scale can be approximated to be

equal to the correlation length, and hence J ′=J ∼ ‰(TN)−2. Using this expression it is possible to

estimate J ′=J∼4× 10−4 for Sr2IrO4, which assuming an in-plane nearest-neighbour exchange

of J = 60 meV would imply J ′∼ 0.03 meV, consistent with the previous estimate. This energy

scale is significantly smaller than can be resolved by RIXS for example. What this shows is that

magnetic critical scattering is a useful probe of magnetic interactions and weak anisotropies

present in a given Hamiltonian.

5.6 RIXS on Sr2IrO4

Resonant inelastic X-ray scattering (RIXS) has already been shown to be a useful technique for

studying the electronic and magnetic excitations in 5d TMOs. As previously mentioned, Kim and

coworkers [37] performed RIXS measurements on Sr2IrO4, with a combined energy resolution

of ∆E = 130 meV. Their conclusion was that the low temperature magnon dispersion is well

described by a phenomenological J−J ′−J ′′ model, with J, J ′ and J ′′ representing the exchange

between nearest, next-nearest and third nearest neighbours respectively. Fitting this model to

the experimental data (Fig. 5.14) revealed J = 60 meV, J ′ = −20 meV, and J ′′ = 15 meV,

with a ferromagnetic next-nearest neighbour interaction J ′ required to adequately fit the data

between (ı=2; ı=2) and (ı; 0). This helps to stabilise Néel order below TN. The lack of a gap

at (0; 0) and (ı; ı) is highly suggestive of 2D Heisenberg interactions, which corroborates the

conclusions of Fujiyama [38], albeit with a discrepancy in the value of J.

More recent RIXS measurements by the same group [192] however are more suggestive of

some degree of intrinsic anisotropy. These measurements were performed with a much better

energy resolution (∆E = 30 meV), and there appears to be a gap in the spin wave dispersion

of approximately 30 meV at the structural zone centre (0; 0), which is qualitatively consistent

with the existence of XY anisotropy (Fig. 5.14c). The presence of any sort of gap at (ı; ı) is

less clear as the spin-wave intensity diverges due to the magnetic Bragg peak, plus RIXS data

is only shown up to (0.9ı; 0.9ı). However the possible existence of a gap was not alluded to in

the paper in question. Therefore models consistent with easy-plane anisotropy were fitted to the

experimental data provided in the paper, in order to ascertain whether this would be responsible

for such a gap.

The data was digitised from the paper and the low energy (< 0.4 eV) portion of the spectra

were fitted with Gaussians representing the elastic line (and quasi-elastic features), magnons
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Figure 5.14: (a,b): Magnon dispersion and intensity measured by Kim and colleagues [37] on Sr2IrO4.

Parameters were obtained from fits to medium resolution data (∆E = 130 meV). Solid line in (a) is the

best fit of the dispersion to a J−J ′−J ′′ model with J = 60 meV, J ′ = −20 meV and J ′′ = 15 meV. (c):

High resolution (∆E = 30 meV) RIXS data for Sr2IrO4 measured by Kim et al. [192] at normal incidence.

Dots at ca. 0.5 eV indicate the spin-orbit exciton feature. The dispersive feature between 0 and 0.2 eV is

the magnon peak. There appears to be a magnon gap of ∼30 meV at (0; 0), which has been highlighted.

and bimagnons. The best fits to the data with the 2DAH are shown in Fig. 5.15, along with the

extracted momentum dependence of the magnon dispersion and the spectral weight. The fitted

data appears consistent with that shown in Fig. 5.14, however there are two key differences. The

first is the aforementioned gap at (0; 0) of 38 meV, which is significant compared to J = 60 meV.

The second difference is a reduction of spectral weight at (ı=2; ı=2) compared to (ı; 0). Closer

inspection reveals a distinct variation of lineshape between (ı=2; ı=2) and (ı; 0), with the latter

being much broader and showing a pronounced asymmetry11.

As discussed above, there are two possible scenarios which would explain the existence of

such a gap. The first is easy-plane anisotropy caused by a four-fold crystal field (XYh4), and the

second is easy-plane anisotropy as a result of anisotropic exchange (2DAH). Both models shall

be considered in turn.

11Igarashi [217] suggests that this may be evidence of split magnon modes.
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Figure 5.15: (a): Stack plot of the low energy RIXS data from Kim et al. [192] fitted to the model described

in the text (solid black lines). The fitted position of the magnon peak is shown as the solid red line.

(b),(c): Representative RIXS spectra at (0; 0) and (ı; 0), along with best fits to data and their respective

components. The dashed line represents the magnon peak. (d): Magnon dispersion as a function of in-

plane momentum transfer. (e): Spectral weight as a function of momentum transfer. Dashed lines in (d,e)

represents the fitted model presented in Ref. [37].

2D XYh4

An alternative formulation of Eqn. 5.13 can be written [195]:

H = J
X
〈i ;j〉

Si · Sj +D
X
i

(Szi )2 + 1
2e
`
S4

+ + S4
−
´
;

where D is a crystal field anisotropy confining the spins to an easy plane, and the four-fold term

e breaks symmetry within that plane. In this model inter-plane exchange is ignored, however

as demonstrated above, the ratio J ′=J ∼ 10−4 and is hence negligible for our purposes. This

Hamiltonian can be diagonalized (through a suitable choice of Bogoliubov transformations if

there is antiferromagnetic exchange), leading to a magnon dispersion. Following the reasoning

of Thurlings et al. [218], the spin-wave dispersion can be written to first order as:

!¸;˛k = z |J|S
q

(1+A)2 − (‚k±B)2
; (5.19)

with A = (D−3E)=z |J|, B = (D+E)=z |J|, ‚k = 1
2 [cos (qx) + cos (qy )], E ≈ 6eS2, and z = 4.

In the antiferromagnetic case, and in the limit D = e = 0, this leads to two magnon modes

which are gapless at the zone centre (Goldstone modes). These two modes pertain to the

degenerate in-plane and out-of-plane spin fluctuations of equal amplitude. If D or e is non-zero,

then the degeneracy is lifted and the magnon dispersion is gapped throughout the Brillouin zone.
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Figure 5.16: (a): Raw RIXS spectra [192] overlaid with the fitted magnon peak energy (orange squares),

gapped (solid) and gapless (dashed) modes of the 2D XYh4 model. (b): Spin wave dispersion as simulated

in SpinW, which highlights the two distinct magnon modes. The simulated data has been convoluted with

a Gaussian of FWHM 10 meV. The colour scale reflects the real part of the spin-spin correlation function

components Sxx(Q; !) + Syy (Q; !) + Szz(Q; !).

The size of these gaps at the zone centre are given by:

!out-of-plane
o ≈ 2S

p
Dz |J| (5.20)

!in-plane
o ≈ 2S

p
2|E|z |J|: (5.21)

It is possible to estimate an upper bound on D for Sr2IrO4 using the experimental gap at zero

wavevector; for !0 = 38 meV and J = 60 meV one obtains D ≤ 6 meV, which is sizeable

compared to J. The in-plane gap is too small to be observed by RIXS; thus an estimate for e

cannot be determined. This analysis is complicated somewhat by the strong second- and third-

nearest neighbour interactions which are relevant for Sr2IrO4, but were not taken into account in

the original theory. Thurlings and colleagues [218] made some headway on the problem, with

Eqn. 5.19 now becoming:

!k = z |J|S

s»
1 +

„
J2

J

«“
‚

(2)
k − 1

”
+

„
J3

J

«“
‚

(3)
k − 1

”
+ A

–2

− (‚k ± B)2
; (5.22)

where ‚(2)
k = cos qx cos qy and ‚(3)

k = 1
2 (cos 2qx + cos 2qy ). One finds a good fit to the ex-

perimental dispersion using this model, with exchange parameters in good agreement with

those obtained originally by Kim et al. : J1 = 59(7) meV, J2 = −18(4) meV, J3 = 15(2) meV,

D = 8.7(9) meV. The large value of D implies a significant easy-plane anisotropy arising from

a in-plane crystal field component. However note that in the Hamiltonian given in Eqn. 5.6,

the component arising from h4 — D
P

i (Szi )2 + 1
2e
`
S4

+ + S4
−
´

— is effectively a single-ion

anisotropy (SIA). Furthermore remember that SIA vanishes for S = 1
2 systems as a conse-

quence of Kramers degeneracy (Chapter 1). This would also be expected to apply in the pure

jeff = 1
2 limit since the ground state can be described by S = 1

2 isospins |↑↓〉. Tetragonal or
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trigonal distortions mix in contributions from jeff = 3
2 states [34], which gives rise to non-zero

SIA. Consequently one would expect a spin wave gap in the case of distortions away from the

ideal jeff = 1
2 limit.

Liu and colleagues [219] include an easy-plane SIA term in their spin Hamiltonian, and find

that D = 0.10 meV. This is considerably smaller than their estimate for the nearest-neighbour

exchange J = 45 meV, and implies a weak tetragonal distortion. Such an observation is unsur-

prising [191]. Inserting the theoretical value of D into the expression for the spin wave energy

(Eqn. 5.22), one finds a spin gap of ≈ 5 meV, which although sizeable, is significantly smaller

than the observed spin wave gap.

This suggests that the experimentally obtained value for D is artificially large. Whilst this can

be partly explained by the finite momentum and energy resolution of the RIXS measurements,

it is likely that other sources of anisotropy are also relevant for Sr2IrO4. Nevertheless, to leading

order, XYh4 interactions appear to be consistent with the observed behaviour in Sr2IrO4.

2DAH

Kim and colleagues [37, 192] found that the interactions in Sr2IrO4 were Heisenberg-like with sig-

nificant second and third-nearest neighbour interactions. In order to directly compare the 2DAH

with the RIXS data, the Hamiltonian given in Eqn. 5.16 can be extended to include second- and

third-nearest neighbour interactions:

Hab =
X
〈i ;j〉

J̃
h
Sxi S

x
j + Syi S

y
j + (1−∆–)Szi S

z
j

i
+
X
〈〈i ;j〉〉

J2~Si · ~Sj

+
X
〈〈〈i ;j〉〉〉

J3~Si · ~Sj : (5.23)

Here J̃ = Jiso=(1 −∆–) is the effective nearest-neighbour (nn) exchange parameter, Jiso is the

isotropic Heisenberg nn exchange, and J2; J3 symbolizes the exchange between next-nearest

and third nearest neighbours respectively. Out-of-plane exchange coupling has been neglected

since as demonstrated above, it is a factor of ∼ 103 weaker than the in-plane terms, and thus

not resolvable with RIXS at present. The out-of-plane spin gap at the structural zone centre is

given to leading order by !0 = 4JSZc
√

2∆– [214], and hence an initial estimate for ∆– can be

made. Setting J = 60 meV, and !0 = 30 meV, one obtains ∆– = 0.023, or in other words, a

weak anisotropy in the xy-plane.

This estimate can be improved by fitting the experimental data to a theoretical magnon dis-

persion. The energy of the two magnon modes is given by:

!± = 2S
q
A2
q − B2

q;

Aq = 2
“
J̃ − J2 − J3 + J2 cos qx cos qy

”
+ J3 (cos 2qx + cos 2qy ) + Γ;

Bq = J̃ (cos qx + cos qy )∓ Γ; Γ = J̃∆–=2: (5.24)

Here the positive sign refers to the gapped mode, and the negative sign to the gapless mode.

As the gapless mode could not be unambiguously resolved in the experimental data, only the
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Figure 5.17: (a): Raw RIXS spectra overlaid with the fitted magnon peak energy (orange squares), gapped

(solid) and gapless (dashed) modes of the 2DAH. (b): Spin wave dispersion as simulated in SpinW, which

highlights the two distinct magnon modes. The simulated data has been convoluted with a Gaussian of

FWHM 10 meV. The colour scale reflects the real part of the spin-spin correlation function components

Sxx(Q; !) + Syy (Q; !) + Szz(Q; !).

gapped mode was fitted with the above model. The best fit to the data was obtained with the fol-

lowing coupling parameters: J̃ = 59(7) meV, J2 = −18(4) meV, J3 = 15(2) meV, ∆– = 0.10(2).

There is good agreement between the experimental dispersion and that calculated from the

anisotropic model, with the fitted exchange constants essentially identical to those obtained

from the earlier low-resolution study within the statistical error [37]. The agreement for the peak

intensity is perhaps less compelling but can be said to be qualitatively reasonable; in particular

the model reproduces the non-zero intensity observed at the zone centre. Moreover, it proved

difficult to extract the spectral weight from the RIXS data [192] as there appears to be a sig-

nificant variation of lineshape as a function of momentum transfer, which may be evidence for

an additional excitation mode between the single magnon and bi-magnon peaks (the latter was

accounted for in the fitting procedure). The easy-plane anisotropy parameter ∆– = 0.10(2) de-

termined here should probably be considered as an upper bound to the true anisotropy, since

the finite momentum and energy resolution means that the excitation energy at the zone centre

cannot be fully resolved. Nevertheless this is significantly larger than that observed for La2CuO4

(∆– = 2.0(5) × 10−4) [220], which further illustrates the relative importance of XY anisotropy

for Sr2IrO4.

Fitting the dispersion and intensities to the localized spin model proposed by Igarashi

[221, 222] provided similar results, corroborating their prediction of an out-of-plane gap for

Sr2IrO4. Note that the data plotted in Figure 5.17b shows the sum of spin-spin correlation func-

tion components Sxx(Q; !) + Syy (Q; !) + Szz(Q; !). Igarashi and Nagao [221, 222] neglect

the Sxx(Q; !) component as they argue that it results purely from two-magnon scattering. The

Sxx(Q; !) component accounts for the finite intensity of the gapless mode at (0; 0).
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U U ′ JH t “SO J D ‹Jxy ‹Jz

Igarashi et al.12 [221, 222] 3.5 2.6 0.45 0.3 0.4 60 — 1.8 -1.8

Perkins et al. [223] 2.4 1.8 0.3 0.1313 0.4 59 35 2.2 9.4

Kim et al. [224] (‹ = 0.15 eV) 1.86 0.86 0.5 0.1914 0.4 76.8 -26.2 8.6 5.9

Solovyev et al. [225] 3.05 2.09 0.48 0.17 0.43 39.0 3.97 1.2 -2.3

Table 5.1: Comparison of microscopic parameters used in theoretical studies of Sr2IrO4. All parameters as-

sume zero tetragonal distortion ‹ = 0 unless otherwise stated. Definitions used in some of the parameters

calculated in this table: U ′ = U − 2JH, J = 4t2=U, ‹Jxy = Jxx − J, ‹Jz = Jzz − J.

This work Igarashi et al. [222] Perkins et al. [223] Kim et al. [224] Solovyev et al. [225]

∆– 0.10(2) 0.058 -0.116 0.039 0.087

Table 5.2: Comparison of anisotropy parameter ∆– derived from different theoretical studies and the

parameters given in Table 5.1. All models show some degree of weak anisotropy. For reference

∆– = 1− (Jzz=Jxx) = (‹Jxy − ‹Jz) = (‹Jxy + J).

In fact a number of theoretical studies predict some degree of anisotropy in Sr2IrO4. Each of

these studies takes a slightly different approach, with varying microscopic parameters, however

are all restricted to nearest-neighbour exchange. These are summarised in Table 5.1. The key

thing to note is that some of these models include a Dzyaloshinskii-Moriya (DM) term, which

arises as a consequence of the finite rotation of the IrO6 octahedra. This term is frequently con-

sidered to be gauged away as a consequence of opposing rotation of IrO6 octahedra between

alternate layers.

It is possible to determine ∆– for each of these models, if one carefully considers the differ-

ences in the definition of various parameters between studies. These results are summarised in

Table 5.2. The calculated anisotropies are of the same magnitude as that obtained from RIXS,

with most indicative of easy-plane anisotropy. The one exception [223] is more suggestive of

Ising anisotropy, which arises due to the large ‹Jz term, and competes with the DM interaction.

There is however a strong dependence of the exchange parameters on the magnitudes of the

spin-orbit coupling, tetragonal distortion and rotation of the IrO6 octahedra, along with some

inconsistency in the figures in the manuscript. Slightly different values of these leads to a state

with weak easy-plane anisotropy; for instance including a tetragonal distortion of 0.15 eV gives

∆– = 0.007.

ESR measurements

Electron spin resonance (ESR) measurements by Bahr and colleagues [226], and Bogdanov et

al. [227], also reveal the presence of an out-of-plane spin gap, however the magnitude of said

12Localised spin picture.
13Actually teff = t2=∆pd, where ∆pd is the charge-transfer gap. If ∆pd = 3.3 eV [32], then t = 0.65 eV.
14Calculated from J = 4t2=U; in manuscript hopping determined in terms of the Slater-Koster parameters

tpdff = −1.8 eV and tpdı = 0.83 eV.
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gap (0.83 meV and 1.1 meV respectively) is considerably smaller than that observed via RIXS

(38 meV). As stated earlier however, the finite energy and momentum resolution means that the

true spin gap energy cannot be fully resolved via RIXS, and that it should be treated as an upper

estimate. Bogdanov proposed an alternative Hamiltonian which takes the rotation of the iridium

octahedra into account via a Dzyaloshinskii-Moriya term D · Si × Sj , and symmetric anisotropy

by a symmetric traceless second-rank tensor Γ̄, but neglects the effect of second- and third-

nearest neighbours. The main reason for the latter is the difficulty of including longer-distance

interactions in quantum chemistry calculations. These ab initio calculations determined the

nearest-neighbour magnetic couplings for a Ir2O11 cluster, obtaining values of J = 47.8 meV,

D = ±11.9 meV, Γxx = Γzz = 0.42 meV, and Γyy = −0.84 meV. If a magnetic field h is applied

parallel to the z-direction, then two modes should be observed by ESR: a Goldstone mode and

a gapped excitation. Using the Hamiltonian proposed by Bogdanovet al. , the frequency of this

gapped excitation �‖ is given by

�2 = ‹2 +
2g2
‖h

2
‖J̃

2 (J + Γzz) + J̃
; (5.25)

where ‹ =

r
2J̃
h
J̃ − 2 (J+Γzz)

i
, J̃ =

q
4D2 + (2J−Γzz)2 and g‖ = 2.31. Consequently in

the zero-field limit, and using the values for the couplings given above, the out-of-plane spin

gap �‖ = ‹ = 18 meV, somewhat comparable to that measured by RIXS. However a good fit to

experiment (� = 1.1 meV) could only be achieved if Γzz were set to 0.98 meV. Nevertheless the

ratio Γzz=J̃ – which is approximately equivalent to ∆ in the expression for the 2DAH15 – can be

evaluated as Γzz=J̃ = 0.015(7), with the quantum chemistry calculations and experiment taken

as the upper and lower limits respectively. This value is of similar magnitude to that obtained

for ∆ via RIXS, and Igarashi and Nagao’s predictions for a localized model, and thus further

corroborates the conclusion presented here that easy-plane anisotropy is indeed important for

Sr2IrO4.

15From [225], anisotropy ∆ = 1− Jzz=Jxx .
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5.7 Critical scattering from Sr3Ir2O7

The single layer compound Sr2IrO4 is merely the first in a series of so-called Ruddlesden-Popper

perovskite iridates, which follow the progression Srn+1IrnO3n+1. The successive compound in

the Ruddlesden-Popper series, the bilayer Sr3Ir2O7, exhibits considerably different behaviour,

despite at first glance appearing to be structurally similar. What follows is a brief précis of the

relevant properties of this material.

5.7.1 Synthesis and bulk properties

Subramanian et al. [228] first report the synthesis of single crystals16 of Sr3Ir2O7, and via lab-

oratory X-ray diffraction determined the space group to be the tetragonal I4=mmm (lattice pa-

rameters a = 3.896 Å; c = 20.879 Å). In this structure (Fig. 5.18a), the IrO6 octahedra have a

correlated rotation of 12◦ about the c-axis, but unlike in Sr2IrO4, alternate layers have the same

rotation.

However there is a degree of controversy over the true space group for Sr3Ir2O7. Later X-

ray measurements by Cao et al. [230] and electron diffraction measurements by Matsuhata et

al. [231] determined the space group to be Bbca and Bbcb respectively. These space groups

were assigned based on the existence of weak oxygen superlattice reflections that cannot easily

be observed by laboratory X-ray diffraction, which result due to slight octahedral tilting perpen-

dicular to the c-direction. Recent single crystal neutron diffraction and second harmonic gen-

eration (SHG) [232] show further reduction in symmetry to a C2=c space group, caused by an

additional octahedral tilt. It should be noted however that these distortions are very small (< 1◦),

and are expected to play little to no significant role for the magnetic correlations and excitations.

Consequently the I4=mmm convention shall be used for the remainder of this thesis.

Resistivity measurements by Cao and colleagues [230] revealed that Sr3Ir2O7 was insulating

(Fig. 5.18d), bordering on semiconducting for all temperatures up to 1000 K. Optical conductivity

measurements by Moon et al. [32] showed that the optical gap decreases dramatically when

moving down the Ruddlesden-Popper series. For Sr3Ir2O7, only a very small optical gap could

be observed, however no quantitative analysis was performed. Based on DFT calculations,

Moon suggested that the increased bandwidth of the jeff = 1
2 state for the bilayer was responsible

for the reduced optical gap. ARPES measurements by Wojek et al. [235] and King et al. [153]

indicated that the charge gap was on the order of 100 meV, however they noticed that the

bandwidth of the jeff = 1
2 states was in fact reduced compared to the single layer compound.

This implies that Sr3Ir2O7 lies close to the metal-insulator boundary, and perturbation of the band

structure with pressure may force a metal-insulator transition. However Zocco and colleagues

[236] observed no metal-insulator transition in the resistivity, even under 55 GPa of applied

pressure.

16However synthesis of powder samples of Sr3Ir2O7 were reported as early as 1972 by Kafalas and Longo. [229]
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Figure 5.18: (a): Crystal structure of Sr3Ir2O7. The material is a G-type antiferromagnet below TN, as

shown by the arrows on each Ir site. (b): Relationship between the I4=mmm space group used for

Sr3Ir2O7 compared to the I41=acd space group used for Sr2IrO4. The I41=acd unit cell is enlarged by
√

2a ×
√

2b and rotated by 45◦ with respect to the I4=mmm unit cell. (c): Intensity of the
`

1
2 ;

1
2 ; 24

´
magnetic Bragg peak obtained from XRMS, compared to magnetisation data obtained from a SQUID

magnetometer. Adapted from Ref. [233]. (d): In-plane resistivity of Sr2IrO4 and Sr3Ir2O7. Adapted from

Ref. [234].

The initial report by Cao et al. [230] suggested that Sr3Ir2O7 exhibits weak ferromagnetism

below Tc = 280 K, with an ordered moment of 0.037 —B, considerably below the spin-only value

for S = 1
2 of 1 —B. Nagai et al. [237] postulated that the weak ferromagnetic moment in the

basal plane occurs a result of canted antiferromagnetism arising from the Dzyaloshinskii-Moriya

interaction.

In order to determine the true magnetic structure, Boseggia and colleagues [238] performed

RXMS measurements and determined propagation vectors of k =
`

1
2 ; ±

1
2 ; 0

´
. The two dif-

ferent propagation vectors are due to the presence of two different magnetic domains. Later

work by Boseggia et al. [239] showed that the magnetic domains had typical dimensions of

100 —m, and the azimuthal dependence of the magnetic scattering revealed a G-type antiferro-

magnetic ordering (Ir ions coupled antiferromagnetically with all of their nearest neighbours) with

the Ir magnetic moments along the c-axis.17 This differs significantly from Sr2IrO4, where the

17According to Hogan et al. [232], the magnetic moments likely remain locked to the orientation of the IrO6 octahedra,

and consequently the weak FM component observed by bulk methods is a direct result of the octahedral tilting away
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Ir moments are oriented in the ab-plane. The L3 : L2 intensity ratio of the
`

1
2 ;

1
2 ; 24

´
magnetic

reflection was found to be almost 100, and hence Sr3Ir2O7 was implicated as a jeff = 1
2 system,

in a similar fashion as Sr2IrO4. Given that the tetragonal distortion in Sr3Ir2O7 is smaller than

that observed for Sr2IrO4 (or Ba2IrO4 for that matter), then it can be concluded that Sr3Ir2O7 lies

close to the ideal jeff = 1
2 limit.

RIXS measurements by Jungho Kim et al. [35] mapped the magnon dispersion with 30 meV

energy resolution (cf. 130 meV for Sr2IrO4), and observed rather different behaviour to that

observed for the single-layer compound. The most prominent feature was the presence of a

magnon gap of ∼ 90 meV, which the authors attribute to contributions from anisotropic pseu-

dodipolar and Dzyaloshinskii-Moriya interactions. The former is driven by large Hund’s rule ex-

change (JH=U = 0.24), whilst the latter occurs due to the staggered rotation of IrO6 octahedra.

Moretti Sala et al. [36] offer an alternative model in which the magnetic excitations of Sr3Ir2O7

exhibit some degree of singlet character. In anisotropic bilayer systems, the quantum critical

point, as shown in Figure 5.1, is replaced by a transition between a gapped antiferromagnet and

a gapped quantum dimer system. Based on the observation of a longitudinal (Higgs) magnon

mode, along with conventional spin wave excitations, it is believed that Sr3Ir2O7 is intermediate

of these two regimes.

The perovskite iridates Sr2IrO4 and Sr3Ir2O7 exhibit very different magnetic behaviour, de-

spite both systems being realisations of jeff = 1
2 systems. The out-of-plane interaction mediated

by an oxygen ion in Sr3Ir2O7 results in a reduced electron correlation and hence a reduced

charge gap. This mechanism is also responsible for potential superexchange pathways, which

may be responsible for some of the observed magnetic behaviour.

Given that the magnetic interactions differ so greatly between the two compounds, one would

expect the critical scattering to show some differences as well. To this end critical scattering

experiments were performed on Sr3Ir2O7. All measurements were indexed in the tetragonal

notation, which effectively averages over the two different magnetic domains.

5.7.2 Critical scattering experiment

Experimental setup

The critical scattering experiments were performed on beamline I16, Diamond Light Source. A

single crystal of Sr3Ir2O7 (dimensions 0.5×0.5×0.3 mm3) was flux grown from the phase-pure

polycrystalline compound using techniques described elsewhere [148]. The experimental setup

was identical to that used for the measurements on Sr2IrO4, with the exception that a graphite

(0; 0; 8) analyser crystal was used to discriminate between the scattered polarization channels.

The wavevector resolution of the instrument, including the effects of sample mosaic, was deter-

mined by mapping Bragg peaks in reciprocal space and was found to be typically 2.0×10−3

from the c-axis (in the I4=mmm setting). Such a small canting of the spins would be very difficult to observe with

neutron or magnetic X-ray scattering.
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Figure 5.19: (a): Energy scan of the
`

1
2 ;

1
2 ; 24

´
magnetic Bragg peak with ff–ı′ polarisation (symbols).

Overlaid is the total fluorescence yield (TFY) from the sample (solid line). Peaks marked with asterisks

result from multiple scattering. (b)–(d): Reciprocal space scans of the
`

1
2 ;

1
2 ; 24

´
peak at 200 K, which

was used to represent the resolution function. Nearby structural peaks exhibited similar behaviour. Added

are the best fit (solid lines) of the data to either a Gaussian function (b) or Lorentzian squared functions

(c,d).

Å−1 and 1.8×10−3 Å−1 perpendicular and parallel to Q in the scattering plane respectively, and

7.4×10−3 Å−1 out of the plane (Fig. 5.19).

Scattering below TN

The temperature dependence of the
`

1
2 ;

1
2 ; 24

´
magnetic Bragg peak was measured in order

to determine the value of TN and the critical exponent ˛. This is displayed in Fig. 5.20. The

intensity decreases continuously as a function of increasing temperature, as would be expected

for a second-order magnetic phase transition, going towards zero around 290 K. However unlike

a perfect second-order phase transition, the transition is not especially sharp but exhibits some

rounding. Rounding of the transition can occur due to sample inhomogeneity or defects for

example. Consequently the integrated intensity (as determined from fits to a Lorentzian-squared

lineshape) was fitted with a power law: IM ∝ [(TN − T )=TN]2˛ convoluted with a Gaussian

distribution of transition temperatures of FWHM Γ. The fit shown in Fig. 5.20 was obtained with

TN = 283.4(2) K, ˛ = 0.361(8) and Γ = 2.7(1) K. The value of TN is in good agreement with

that obtained from bulk magnetisation measurements and neutron powder diffraction [240].
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Figure 5.20: (a): Order parameter of
`

1
2 ;

1
2 ; 24

´
magnetic Bragg peak in terms of the reduced temperature

|t| = |T − TN|=TN, as obtained from „–2„ scans. Solid line: Best fit to power law convoluted with a

Gaussian distribution of TN with FWHM 2.7(1) K. Dashed line: Corresponding power law assuming single

value of TN. Inset focusses on region around TN, highlighting the rounding of the transition. Dotted line:

Distribution of TN. (b): Variation of ffl2 (solid line) and ˛ (diamonds) as a function of TN. The minimum of

the ffl2 surface occurs for TN = 283.4(2) K and ˛ = 0.361(8), which is consistent with the theoretical value

for 3D Heisenberg interactions.

˛ � ‚ ” ¸

3D Ising 0.326 0.6312(3) 1.2378(6) 0.039 0.106

3D XY 0.345 0.669(7) 1.316(9) 0.03 -0.01

3D Heisenberg 0.367 0.707(3) 1.388(3) 0.037 -0.121

Table 5.3: Values of critical exponents for 3D systems as given by Collins [154].

The value of ˛ for Sr3Ir2O7 on the other hand differs significantly from previous neutron

scattering [˛ = 0.25 from [240], revised in [186] as ˛ = 0.20(2)] and —SR [241] [˛ = 0.143(3)]

measurements. Discrepancies arise because ˛ was obtained in these studies from power law

fits which included a significant number of data points well away from TN, and hence are some-

what unreliable. The value obtained from critical scattering is representative of 3D magnetic

interactions. Comparing it to the theoretical value (Table 5.3), one finds that the magnetic in-

teractions are consistent with a 3D Heisenberg model close to TN. Given the uniaxial G-type

antiferromagnetic structure and excitations, then this is not particularly surprising. The value of

˛ deduced by this analysis establishes the very different critical properties of the single- and

bi-layer compounds, and hence the relevant magnetic interactions.
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Figure 5.21: Evolution of the
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1
2 ;
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2 ; 24

´
magnetic Bragg peak above TN in the k- and l -directions (left

and right columns respectively). The critical scattering is nearly isotropic. Solid lines are best fit to a

Lorentzian-squared function convoluted with the resolution function.

Scattering above TN

Above TN, there is some residual intensity, partly resulting from critical scattering, and partly from

the rounding of the transition. The magnetic Bragg peak was followed out to 288 K (TN + 5.2 K)

for both the in-plane and out-of-plane directions, with a comparison plotted in Fig. 5.21. Com-

pared to Sr2IrO4, the critical scattering in Sr3Ir2O7 appears isotropic, and decays much more

quickly with temperature. This would be expected for systems where 3D interactions are im-

portant. Remember that the Néel temperature is associated with the onset of long-ranged

three-dimensional antiferromagnetic order. The intensity observed for Sr2IrO4 above TN only

arises as a result of dominant 2D correlations in-plane which have a much larger energy scale

than those out-of-plane. If the dominant magnetic interactions are three-dimensional, then one

would expect both the in-plane and out-of-plane interactions to behave in a similar manner (to

first order). In this sense Sr3Ir2O7 is more ‘conventional’. Consequently the correlation length ‰

and intensity S0 should be expected to follow the simple power laws: ‰ ∼ t−� and S0 ∼ t−‚ .
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directions. Solid line: Fit to Lorentzian scattering function. Dashed line: Fit to Lorentzian squared scattering

function. Results are displayed on a logarithmic scale to highlight differences in the peak tails.
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´
magnetic Bragg peak as a

function of reduced temperature t = T=TN − 1. Solid and dashed purple lines are fits of the out-of-

plane data to the relevant power law for two different temperature regions: �1 = 0.49(4); ‚1 = 1.86(3);

�2 = 1.4(1); ‚2 = 8.2(3). Solid black lines are best fit to a power law convolved with a Gaussian distribu-

tion of TN [FWHM 2.7(1) K]. Inset in (b) is the same as the main panel, only plotted on linear axes.

As stated before, the intrinsic critical fluctuations are expected to have an approximately

Lorentzian functional form. Yet upon fitting the lineshapes of the magnetic Bragg peaks above

TN, one finds that a Lorentzian squared function (convoluted with the resolution function) is con-

sistently more representative of the data than a Lorentzian function (Figs. 5.22, 5.23). However

the discrepancies in the lineshape are almost entirely in the tails of the peak; the fitted values

of the peak width are almost identical for both lineshapes. Furthermore for data collected along

Q‖, the differences between the Lorentzian and Lorentzian squared functional forms are small.

Given that a Lorentzian squared form is a better fit to both the Q⊥ and Q‖ data, this is what has

been used in the subsequent analysis. Nevertheless the results can be easily extended to the

Lorentzian case.18

Critical exponents

The fitted values of the inverse correlation length » and the peak amplitude S0 are plotted in

Figure 5.24 for data collected along Q‖ and Q⊥. The two datasets appear isotropic, with the

18The general formula of a Lorentzian squared function is I = A=

h
1 +
`
x−x0

Γ

´2
i2

. The half width at half maximum

(HWHM) of a Lorentzian squared function with some width parameter ΓL2 is smaller than that of a Lorentzian with the

same ΓL. Consequently » = ‰−1 = ΓL (from the Lorentzian approximation to the Ornstein-Zernike correlation function)

is not correct for a Lorentzian squared lineshape. One must multiply ΓL2 by a conversion factor “ which relates the two:

» = “ΓL2 ≈ 0.645ΓL2. All data presented has been corrected in this way.
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exception of the correlation length for t < 0.005. Some of this discrepancy may be due to the

deviation of the observed lineshape from an ideal Lorentzian. The form of the correlation func-

tion Ĉ(q; 0) is dependent on the critical exponent ”, which is defined at T = TN and becomes

increasingly relevant close to that limit. However for three-dimensional systems, ” ≈ 0 and so

this is likely to be a minor effect. An alternative is that two components may contribute to the

observed scattering close to TN. The second component could, for example, result from defect

mediated scattering, which experimentally [198] has been shown to have a Lorentzian squared

lineshape. However it was not possible to unambiguously resolve more than one component in

the data. As the Q‖ data shows qualitatively more ideal behaviour, quantitative analysis shall be

restricted to this dataset from now on.

The saturation of » and S0 for t < 0.005 suggests that a single power law is insufficient

to fully describe the data. Two distinct temperature regions can be observed in which the data

appears linear on logarithmic axes. However upon performing simple power law fits (» ∼ t� ,

S0 ∼ t−‚) to the data in these regions, one finds that the critical exponents associated with these

fits do not correspond to the theoretical values associated with any conventional universality

class. Recall that the order parameter data showed a rounding of the transition, which was best

described by the convolution of a power law I ∼ −t2˛ with a Gaussian distribution of TN. Yet the

simple power law fits to » and S0 assume a single value of TN. Convolution of a single power law

with a Gaussian distribution of TN (of the same width as that used for the order parameter data)

provides a much better description of the temperature dependence of the correlation length and

amplitude. The values extracted from these fits are � = 0.64(2) and ‚ = 1.36(2).

The critical exponents arising from the order parameter, inverse correlation length, and sus-

ceptibility are all consistent with three-dimensional magnetic interactions (Table 5.3). However

there is some discrepancy in the spin dimensionality that these exponents represent. Whilst the

obtained order parameter exponent ˛ = 0.361(8) and susceptibility exponent ‚ = 1.36(2) agree

well with the theoretical values for the 3D Heisenberg universality class, the correlation length

exponent � = 0.64(2) is more comparable to the 3D Ising or 3D XY universality classes. The

discrepancy may, at least in part, be down to the complication of the lineshape, especially close

to TN. Calculating the expected values of the critical exponents using various scaling relations

(Table 5.4), one generally finds good agreement with the theoretical values for the 3D Heisen-

berg model. However there is a greater discrepancy from theory for critical exponents for which

the relevant scaling relation depends on �. This leads to the conclusion that � may have been

underestimated slightly experimentally.

One point to note is that the theoretical values of the critical exponents were calculated

for an isotropic 3D Heisenberg Hamiltonian. Yet a significant spin wave gap can be observed

for Sr3Ir2O7, which implies a degree of anisotropy. There is however a renormalisation group

argument [243] which follows that even if the effects are relevant perturbations of the Heisenberg

fixed point, the difference in critical exponent is sufficiently small such that it is experimentally

indistinguishable from the isotropic case.
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Scaling relation Expected value Theoretical value Experiment

� = (‚ + 2˛)=d 0.69(1) 0.705(5) 0.64(2)

˛ = 3
2� −

1
2‚ 0.28(5) 0.361(8) 0.362(2)

” = 2− ‚=� -0.1(1) 0.033(4) –

¸ = 2− 2˛ − ‚ -0.08(3) -0.11(2) –

‹ = 1 + ‚=˛ 4.8(1) 4.837(7) –

Table 5.4: Scaling relations. Expected values are calculated from experimental values. Theoretical values

for 3D Heisenberg model are obtained from Holm and Janke [242].

5.7.3 Summary

Magnetic critical scattering highlights the significant differences in the dimensionality of the mag-

netic interactions for Sr2IrO4 and Sr3Ir2O7. For Sr2IrO4, analysis of the order parameter below

the Néel temperature reveals that the magnetic interactions are predominantly two-dimensional,

in agreement with previous results. However the critical exponent was found to be consistent

with the 2D XYh4 universality class, which implies the presence of significant anisotropy. Fur-

thermore the temperature dependence of the correlation length and amplitude could not be

fitted to any previously assumed 2DHAFSQL model, but was consistent with a model includ-

ing some degree of easy-plane anisotropy. The magnitude of this anisotropy was estimated

via the spin gap observed by recent high-resolution RIXS measurements, and found to be in

quantitative agreement with a number of theoretical predictions, including the seminal work by

Jackeli and Khaliullin [25]. This demonstrates that Sr2IrO4 exhibits significant departures from

an ideal 2DHAFSQL, and highlights the effect that spin-orbit coupling plays within the magnetic

Hamiltonian.

On the other hand, Sr3Ir2O7 is a more three-dimensional system, as evidenced by practically

isotropic critical scattering. Despite a rounding of the transition and some complications with the

scattering lineshape, critical exponents could be extracted which are broadly consistent with a

3D Heisenberg model. This is consistent with a picture where significant intra-bilayer interactions

are present.

Summary of contributions

The critical scattering data (Sr2IrO4 and Sr3Ir2O7) were collected with the assistance of Stefano

Boseggia and Zhuo Feng from UCL, Helen Walker from DESY, and Ross Springell from the

University of Bristol. All data analysis was performed by the author. Modelling of the Sr2IrO4

critical scattering data was aided by theoretical discussions with Steve Bramwell from UCL (2D

XYh4), and Henrik Rønnow from EPFL (2DAH). These discussions were limited to the choice of

model, and expected scaling of the thermodynamic parameters with temperature. The Sr2IrO4

RIXS data was extracted from Ref. [192], modelled, and fitted by the author.



Chapter 6

Time-resolved resonant X-ray

scattering measurements on

Sr2IrO4

Transition metal oxides can be driven out of equilibrium using an optical pulse which couples to

a specific degree of freedom of the system. This includes the manipulation of charge and spin

gaps, which evolve on an ultrafast timescale (10−15 – 10−12s). The transient behaviour of the

system can only be measured by a probe which acts on the same timescale. Fortunately state

of the art X-ray free-electron laser (XFEL) facilities provide such capabilities.

Proof-of-principle experiments were performed on Sr2IrO4, in order to determine whether

resonant (in)elastic X-ray scattering on 5d TMOs could be extended to the time-resolved do-

main. Excitation of electrons across the charge gap through photo-doping resulted in the partial

melting of long-ranged magnetic order. This recovered on a timescale proportional to the pump

fluence. Time-resolved RIXS measurements (using custom-built instrumentation) determined

that two-dimensional correlations recovered much more quickly, with some differences between

the behaviour at (ı; ı) and (ı; 0). This is what would be expected for a system where the

magnetic interactions are predominantly two-dimensional. Moreover the relevant timescales are

in quantitative agreement with the various interactions present, and the results can be directly

compared to observations for the bulk electron doped system Sr2-xLaxIrO4.

It is well known that introducing dopant ions or oxygen vacancies into layered copper oxides

leads to a number of exotic electronic and magnetic ground states. The most famous example

is YBa2Cu3O7-x, which exhibits high temperature superconductivity for a narrow range of hole

doping x . Another well characterised example is hole-doped La2-xSrxCuO4, which for small x

is an antiferromagnetic Mott insulator, whereas at higher x the behaviour is rich and diverse

(Figure 6.1).
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Figure 6.1: Phase diagram for the hole-doped cuprates. There are expected to be a number of similarities

between this phase diagram and that for the electron-doped iridates. Crossovers are indicated by dashed

lines. There is a quantum critical point (QCP) situated underneath the superconducting dome.

A number of theoretical predictions and experimental studies find similarities between the

hole-doped cuprates and the electron-doped iridates. These include a metal-insulator transition

as a function of carrier doping, pseudogap phases, Fermi arcs1, and suppression of long-ranged

antiferromagnetic order. The holy grail is superconductivity, which has not been observed at the

time of writing. Chemical doping suffers from a number of problems, including homogeneity

within the sample, phase separation, discrepancies between the surface and bulk doping, and

knowing the precise quantity of dopant ion which has incorporated.

One alternative is photodoping, whereby the normally insulating system is excited by some

optical pulse. An electron in the valence band is excited across the charge (Mott-Hubbard) gap

and populates the conduction band (Fig. 6.2). This excited electron hops to a neighbouring site,

leading to the formation of a doublon-hole pair. After some time fic these doublon-hole pairs

recombine, leading to a recovery of the insulating state.

The formation of doublon-hole pairs perturbs the local magnetic correlations, resulting in the

destruction of long-ranged magnetic order above some critical concentration of doublon-hole

pairs. However the magnetic interactions may have a lower energy than the doublon-hole pair

energy, and consequently take a longer time to recover. The interactions in the transient state

can be directly related to those in the bulk chemically doped state. A pump-probe experiment

can be performed so that the dynamics of these interactions can be measured.

1Note that these were observed in a system which was extrinsically doped on the surface with potassium ions, and

hence may not be representative of the bulk phase.
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h�

Figure 6.2: Formation of doublon-hole pairs upon excitation with some pump pulse. Left panel: An electron

is excited across the charge gap and populates the valence band. Right panel: This excited electron

hops to a neighbouring site, leading to the formation a doublon-hole pair. These doublon-hole pairs then

recombine on some ultrafast timescale (∼ picoseconds) which depends on their energy of formation and

their separation.

Outline of a pump-probe experiment

The principle behind a pump-probe experiment is very simple. An optical pulse (the pump)

shines on the sample and perturbs the system in some way. Depending on the energy of the

pump pulse, a rotational, vibrational, electronic transition or another type of excitation may be

induced. Some time t later, a probe pulse hits the sample and interacts with it in some way, for

example scattering or absorption. The scattered, diffracted or transmitted probe is measured

by a detector and by varying the time delay between the pump and the probe, the temporal

dependence of the transition can be determined. If both the pump and the probe are optical,

then varying the time delay is simply a case of varying their relative path lengths (since they

travel at the speed of light in free space). For example, a time delay of 1 ps would correspond to

a path difference of 0.3 mm. Measurement of shorter timescales involves a significant amount

of precision engineering and/or electronic control of the delay time.

Ultrafast optical techniques have been used to probe reaction dynamics since the 1950s,

with Eiger, Norrish and Porter independently developing the flash photolysis method to look

at radical formation and their kinetics. With the development of the laser, these techniques

have pushed further towards probing samples with atomic resolution and sub-femtosecond

timescales. Using ultrafast lasers to pump magnetic systems and study their dynamics is a

relatively recent progression [244, 245]. In essence one probes the time dependence of the

magnetisation as a function of pump time delay and fluence.

The choice of pump and probe pulse used strongly depends on the specifics of the system

to be measured, in particular the relative energy scales of the magnetic interactions and of any

relevant perturbations. Using an X-ray source (such as a synchrotron) as the probe enables

atomic resolution of the structure and magnetic behaviour both before and after the pump.
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6.1 X-ray free electron lasers (XFELs)

However as mentioned previously (Chapter 2), a synchrotron suffers from the fundamental limi-

tation that the electron bunch length is considerably longer than many electronic and magnetic

timescales. Free electron lasers (FELs) on the other hand have much shorter bunch lengths

on the order of 100 fs. Furthermore the intense coherent radiation generated (peak bright-

ness orders of magnitude greater than at a synchrotron) allows ultrafast imaging of atomic and

molecular states.

A FEL is characterised by two main properties: high transverse coherence of the generated

radiation, and a gain process that is based on stimulated emission. In these regards an FEL

really does behave like a laser. There are some differences however which shall be detailed

below.

Low gain FEL

The first of these is that in a conventional laser (IR or visible), the light is generated by stimulated

emission and reflected within an optical cavity by two mirrors. One of these mirrors allows a

small proportion of the light to be emitted. A free-electron laser in the infrared and optical regime

broadly follows the same principle, and is referred to as a low gain FEL. A low gain FEL consists

of three components. The first of these is a circulating electron beam, produced for example in

a synchrotron. This electron beam passes through an undulator which generates a light pulse.

Thus far the principle is the same for conventional synchrotron radiation. The difference is that

this light is reflected between two mirrors (one is semi-permeable to allow a small amount to

be emitted), and is amplified by a few percent in each turn. Coherent emission of radiation is

achieved by energy transfer between the electron and light wave to obtain the correct phase of

the light wave.

However this technique is very difficult to implement in the UV and X-ray regimes as no

suitable mirrors are available (reflectivity very small). Therefore the FEL gain must be achieved

in a single pass through a very long undulator. This is known as a high gain FEL.

High gain FEL

In a high gain FEL, a large number of electrons have to radiate coherently. The radiation emitted

from a high gain FEL grows quadratically with the number of electrons in the bunch. However

Coulomb repulsion between electrons means that maintaining a single bunch is very difficult.

A high gain FEL is started up by some seed signal which co-propagates with the electron

beam in the undulator. Depending on the relative phase of the electrons compared to the seed

signal, some electrons gain energy from the radiation whilst others lose energy as they pass

through the undulator. As faster electrons begin to catch up with slower electrons, density mod-

ulations occur in the electron bunch (microbunching). If the conditions are favourable, then the

microbunched electron beam emits coherent radiation at the expense of the beam kinetic en-
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Figure 6.3: Power gain P (z) as a function of undulator distance z for a high-gain XFEL. Labelled are

the startup, self-amplified spontaneous emission (SASE) and saturation regions. The SASE region is

characterised by an exponential gain in the FEL power as a function of z . After a critical distance ∼ 18Lg0,

the FEL power saturates as the electron beam begins to take energy away from the generated light wave.

ergy. Thus the electromagnetic wave gains energy and FEL amplification is achieved. This

amplification is characterised by an exponential gain in the FEL power P as a function of undu-

lator distance z (Fig. 6.3).

Solution of the 1D FEL equations (higher dimensions require consideration of many-body

effects) gives:

P (z) = exp (z=Lg0); (6.1)

with the gain length

Lg0 =
–u

4ı
√

3
;

where –u is the undulator period, and  is the Pierce FEL parameter. Typically  ∼ 5× 10−4 in

the hard X-ray regime, however the exact value depends on a number of parameters including

the wavelength, peak current, undulator parameter K and horizontal emittance. Experimentally

this exponential gain region occurs after some initial stabilisation period (approximately 4Lg0,

and the FEL power reaches saturation at ∼ 18Lg0 since if the undulator is longer than this, then

the electron beam starts to take energy away from the light wave.

Usually the seed signal is provided by the spontaneous undulator radiation which arises from

the electron shot noise. This method is called self-amplified spontaneous emission (SASE), and

is used in the majority of XFELs in some form. The SASE FEL exhibits excellent transverse co-

herence as a consequence of a feature called optical guiding, in which a Gaussian fundamental

mode starts to dominate over all other fluctuations after a few Lg0. On the other hand, the lon-

gitudinal coherence is relatively poor, as a consequence of the noisy startup. The fluctuations

of the shot-to-shot pulse energy follows a Gaussian distribution (Fig. 6.4), with the root mean
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Figure 6.4: (a): Comparison of the spectra of a single FEL pulse using a SASE or a seeded mode. (b):

Temporal profile of two FEL pulses (different shades of purple), along with average over 120 pulses (black).

FEL parameters used were obtained from Huang [246].

squared fluctuation given by 1=
√
M. The parameter M in this case characterises the number of

temporal degrees of freedom,2 which for a FEL in the hard X-ray regime is typically ∼103.

In the frequency domain, the full SASE spectral width is approximately 2
√
ıff!, which con-

sists ofM individual modes. This bandwidth is typically tens of eV in the hard X-ray regime when

averaged over a number of pulses, and also follows a Gaussian distribution. Using a monochro-

mator to select a small bandwidth of the pulse (and hence a small number of spectral modes) will

improve the longitudinal coherence, however the pulse power will be subsequently decreased.

An additional problem is that the statistical fluctuations from pulse to pulse will increase as a

consequence of the 1=
√
M dependence. To summarise, the normalised frequency bandwidth

∆!=! ∼  for a SASE FEL, where  is the Pierce FEL parameter. Furthermore the temporal

profile of the radiation generated by the SASE process exhibits considerable fluctuations as a

consequence of the initial noisy startup.

These deficiencies can be ameliorated somewhat by using an external seed signal instead

of electron shot noise to startup the FEL. In the XUV and soft X-ray regimes, it is possible

to use a laser to directly seed the electron beam via high-gain harmonic generation (HGHG).

However this technique does not extend easily to the hard X-ray regime. An alternative is to use

X-rays from one part of the undulator to seed a subsequent part. This is known as self-seeding

[247, 248].

In the hard X-ray regime, the principle is as follows. SASE radiation is generated by a suffi-

ciently long portion of the undulator, such that the exponential gain region is reached. Empirically

the peak power of this radiation should be ∼1 GW to act as an effective seed. As before, this

2The critical quantities are the coherence time tc and the pulse duration T . The coherence time tc is defined as

tc =
√
ı=ff! , where ff! = !1

h
3
√

3
kuz

i1/2
and !1 is the fundamental undulator frequency. For a photon energy of 11 keV,

tc ≈ 300 attoseconds at saturation. If T � tc , then M ∼ T=tc , which for a pulse length of 300 fs implies M ∼ 103.
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SASE radiation has an intrinsic bandwidth of tens of eV. A crystal monochromator then selects

a portion of the SASE radiation, which is then used as a seed for the electron beam for the

second part of the undulator. However the monochromatic X-rays will be delayed with respect to

the initial X-ray beam, in accordance with the dynamical theory of diffraction. Thus the electron

beam must also be delayed in order for it to be seeded effectively. This is done by the addition

of a magnetic chicane. A typical two-bounce monochromator would delay the incoming X-rays

by 5-10 ps, which would require an inordinately long chicane and suppression of the FEL gain.

Utilising a forward Bragg diffraction (FBD) geometry enables a much shorter chicane to be used,

that is one which can be easily fitted in place of one or two short undulator segments3 (a couple

of metres long).

For these reasons a seeded X-ray beam is ideal for measuring time-resolved resonant mag-

netic X-ray scattering. However difficulties in engineering a suitable setup – especially at high

energies where longer chicanes and higher order Bragg reflections are required – mean that it

was not possible to use a seeded beam for the measurements presented here. Nevertheless, it

remains a future opportunity.

6.2 System dynamics

Pump-probe experiments at an XFEL examine the transient dynamics of a material on an ul-

trafast timescale (femtoseconds–picoseconds). How the system behaves upon excitation is

dependent on the strength and type of interactions inherent to that system. In general interac-

tions in a system can be qualitatively described by a single model which contains three separate,

yet mutually interacting reservoirs [245]. These are namely the carriers (electrons/holes), the

lattice, and the atomic spins. Each of these baths can be ascribed an effective temperature,

which is possible if some equilibrium between the baths is assumed. The relative magnitude of

coupling between these baths dictates the relevant timescales in the system.

Upon excitation with some optical pulse, a series of sequential phenomena occur (Fig. 6.5).

Firstly electron-hole pairs are generated on a timescale of ∼1 fs. This extremely fast timescale

results from either interband transitions in metals, or the charge transfer gap in insulators, and

frequently leads to a dramatic increase in the effective electron temperature Te of a few thousand

Kelvin. Such a large increase is a consequence of the electronic heat capacity (∼T=TF) being

significantly smaller than the lattice heat capacity for instance (∼ T 3). The excited electronic

system then equilibrates at some elevated temperature Tel within a time period of 10–500 fs by

electron-electron interactions. Recombination of the electron-hole pairs occurs either by phonon

3Further details are given in the studies by Geloni et al. [249], Lindberg and Shvyd’ko [248, 250], but the basic

principle is as follows. Forward Bragg diffraction smears out the exiting X-rays temporally, giving rise to a monochromatic

tail (wakefield) with a series of Bessel oscillations characteristic to the specifics of the system – including the crystal

thickness. The period of these oscillations is on the order of tens of fs for typical crystal thicknesses and energies. The

monochromatic portion is also separated spatially from the SASE background. By introducing a delay in the electron

beam equal to this period, the same effect of self-seeding occurs.
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Figure 6.5: Schematic time evolution of a system in a pump-probe experiment, with various physical pro-

cesses labelled. The time scale of the various phenomena are dictated by the electronic bandwidth W ,

with the actual time in femtoseconds given as a ballpark figure. Adapted from [251].

cascades due to the electron-phonon interaction, or in insulators, by doublon decay.4 Finally

thermalisation of the system occurs through dissipation of the deposited energy by low-energy

interactions such as phonon-phonon scattering.

Often the altered density of the electron-hole carriers leads to a change in the optical prop-

erties of the material after excitation. For example, the transient change in the reflectivity can

be interpreted as [252]
∆R

R
(t) =

@ lnR

@"1
∆"1(t) +

@ lnR

@"2
∆"2(t); (6.2)

where R is the reflectivity, and ∆"1;∆"2 are the induced changes in the real and imaginary parts

of the dielectric function respectively. These two latter parameters can be directly related to the

optical conductivity and other optical parameters via Kramers-Kronig analysis. A similar effect

can be observed in magnetic systems, where the perturbation of long-ranged magnetic order

from its equilibrium state can be observed through the temporal dependence of the magnetisa-

tion.

6.3 Time-resolved RXMS measurements on Sr2IrO4

Hsieh and colleagues [151] performed pump-probe optical spectroscopy on Sr2IrO4 in order to

determine the effect of magnetic order on the jeff = 1
2 ground state. Upon excitation of the sam-

ple with a 800 nm pump pulse, the electron temperature increased dramatically from the equilib-

rium level within 50 fs. This gave rise to a photo-induced MIT, characterised by a reduction in the

4The relaxation time of doublons in a gapped system scales as fi ∝ W−1 exp [¸(U=W ) ln (U=W )], where

¸ ∼ O(1) is a dimensionless constant [251]. Consequently in the limit U=W = 1, fi ∝ W−1.
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optical reflectivity by around 0.1%. Recombination of the generated electron-hole pairs occurred

on a slower timescale (∼ 500 fs), which was weakly dependent on temperature. The authors

proposed that this behaviour was a signature of coexisting Slater- and Mott-type behaviour for

the photo-induced MIT. Such an experiment showed that it was possible to probe the transient

dynamics of 5d TMOs using pump-probe spectroscopy. If the transient optical properties could

be measured, then presumably the transient magnetic properties could also be explored. To

this end time-resolved XRMS experiments were performed on Sr2IrO4 at the Spring-8 Angstrom

Compact Linear Accelerator (SACLA) XFEL, in collaboration with others from Brookhaven Na-

tional Laboratory, the Paul Scherrer Institute, ICFO Barcelona, and the Centre for Free Electron

Laser Science, Hamburg.

Sections of the remainder of this chapter have been published as M. P. M. Dean et al., Nature

Materials 16, 601 (2016) [253].

6.3.1 Experimental procedure

Sample mount

Time-resolved RXMS measurements were performed on a 200 nm (h; h; l) thin film of Sr2IrO4

epitaxially grown on a substrate of SrTiO3. A thin film was used to maximise the pump-probe

volume (see later for a more detailed explanation). Two additional materials were placed on the

same sample mount (Fig. 6.6): a piece of GaAs and a thin film of Bi, the latter oriented such

that the (1; 1; 1) direction is normal to the sample surface. The reasons are as follows. GaAs is

a semiconductor, and fluoresces both upon excitation by X-rays, and in the mid-IR range. This

enables rough spatial and temporal overlap of the pump and probe pulses. Bismuth acts as

a fine-timing tool, and has a well characterised response in the infra-red region. Bismuth is a

semi-metal; electrons are excited from bonding to antibonding orbitals upon excitation by the

pump. This weakens the interatomic potential, and induces a transient structural distortion. As

a consequence the structure factor of the excited state is smaller than at equilibrium, leading

to a weakening of the Bi (1; 1; 1) structural Bragg peak. It is then possible to define time zero

based on the temporal dependence of the bismuth peak.

Laser

The optical laser system used was based on a commercial Ti:sapphire laser comprising a mode-

locked oscillator and chirped pulse amplifier. This delivers 800 nm pulses at 1 kHz with a pulse

duration of around 100 fs. Frequency conversion of this light is required in order to generate

ultrafast light pulses in the mid-IR range, which can be done through the use of non-linear optics.

In particular, the technique known as optical parametric amplification (OPA) was used. The basic

principle [254] is as follows, with a schematic given in Fig. 6.7. Light from a high intensity and

high frequency laser source is split into two diverging beams with the aid of a partially reflective
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Figure 6.6: (a): Sample mount as used at SACLA. Labelled are the GaAs, Bi (1; 1; 1) single crystals, and

Sr2IrO4 thin film. (b): Experimental setup.

mirror. One of these beams is focussed into a sapphire crystal, which spectrally broadens the

pulse producing a quasi-white light continuum. This is henceforth known as the seed or signal.

It is then combined with the other diverging beam – somewhat confusingly called the pump –

in a suitable non-linear crystal such as barium borate (Ba2B2O4) or KTiOPO4. The choice of

crystal used depends on the eventual desired wavelength. An optical delay line may be required

to ensure that the two pulses arrive at the crystal at the same time. The angle between the

pump and the seed is chosen such that a third beam fulfils the phase and frequency matching

condition for so-called three-wave mixing. In this case the seed pulse is amplified by the pump

pulse, also producing the idler pulse (at the expense of the pump pulse energy) with frequency

!idler and wavevector kidler. The principles of conservation of momentum and conservation of

energy require that !pump = !seed + !idler and kpump = kseed + kidler, with !idler < !seed < !pump.

A number of these amplification stages can be used in series if desired to further amplify the

seed pulse. Finally the pump, seed and idler beams are all separated from each other by the

use of dichroic filters, which have different optical properties depending on the wavelength of

incident light. Remember that the desired infrared source is the seed or idler beam, which is

the pump in a pump-probe experiment. Lenses and mirrors focus the laser spot size down and

guide the infrared beam towards the sample.

In the present experiment, infrared pump pulses of 100 fs duration were generated at a

wavelength of 2 —m (620 meV), and derived from the idler beam of a single stage OPA. This

energy corresponds to an excitation between the lower and upper Hubbard bands, that is, across

the charge gap, and is consistent with previous optical conductivity measurements [32].
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Figure 6.7: Schematic of a single-stage optical parametric amplifier (OPA) as described in the main text.

WL stands for white light generator, DF for dichroic filter. The greyed out or bold type font after the non-

linear crystal represents the attenuation of the pump and amplification of the seed respectively.

XFEL setup

The incident energy of the XFEL pulses was tuned to the Ir L3 resonance at 11.215 keV, with

a repetition rate of 30 Hz. This is 3 eV below the maximum of the obtained white line (Figure

6.8c). A horizontal scattering geometry was adopted. In-plane polarized X-rays hit the sample at

almost grazing incidence (∼1◦), with the pump polarized vertically in the ab-plane of the sample

and incident at 13◦ with respect to the sample surface. This geometry was chosen in order to

match the penetration depths of the incident X-rays (10 —m at 11.215 keV, normal incidence)

and the pump laser (∼0.8 —m, normal incidence). The sample was cooled to around 110 K

by a liquid nitrogen cryojet; this temperature is far below TN ≈ 230 K. The sample was aligned

using the (0; 0; 28) and (−2; −2; 24) structural reflections; Figs 6.8a,b show the rocking curves

obtained with a photodiode.

For the time-resolved measurements, a multi port charge coupled device (MPCCD) detector

was placed at 2„ = 88.7◦, which corresponds to the magnetic (−3; −2; 28) Bragg reflection.

This reflection was chosen in order to optimise the XRMS cross-section, and suppress charge

scattering without the need for a polarization analyser. The detector was read out shot-by-shot,

with the signal from each image thresholded to remove background resulting from fluorescence

and electrical noise. The peak intensity was determined by summing 1000–4000 shots (with

each shot normalized to the pulse energy) and binning the 2D detector data into a 1D spec-

trum. The resultant spectrum was then fitted to a Lorentzian squared lineshape with a constant

background. This functional form was found to consistently give the best fit to the data.
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Figure 6.8: Rocking curves of (0; 0; 28) (a) and (−2; −2; 24) (b) structural Bragg reflections collected at

SACLA. Solid lines are fits to Lorentzian functions. Also plotted is the fluorescence obtained at the Ir L3

edge (c).

6.3.2 Results

The energy of the pump laser per pulse was calibrated prior to the experiment. In practice the

pump energy is varied by placing a diffuser in front of the beam which attenuates some of the

pulse intensity. The pump fluence can be calculated from this by considering the spot size of

the laser, angle of incidence and reflectivity of the sample.

The intensity of the (−3; −2; 28) magnetic Bragg peak is plotted in Fig. 6.9 for two delay

times: −1 ps and 1 ps. For negative delay times there is a well-defined Bragg peak. However

a clear reduction in intensity can be seen after the pump hits the sample; this corresponds to a

melting of three-dimensional magnetic order. At small pump fluences (0.4 mJ cm−2), approxi-

mately 70% of the peak intensity remains. However for larger pump fluences (6.8 mJ cm−2), the

peak is melted away further and only 17% remains.

A detailed dependence of the magnetic peak intensity as a function of delay time and pump

fluence was carried out, with the results plotted in Figure 6.10. The peak intensity has been

normalised to that obtained for negative delay times. For small pump fluences there is a partial

melting of magnetic order, with full recovery to the unperturbed state occurring on a timescale

on the order of 100–1000 ps.

In order to gather a quantitative description of the observed behaviour, the data were fitted

with the following minimal model:

I(t) = I0 { exp (−t=fidecay) + C [1− exp (−t=fir1)]

+ (1− C) [1− exp (−t=fir2)] } (6.3)

In this model, I0 is the initial intensity, fidecay corresponds to the initial decay timescale,

whereas fir1 and fir2 relate to two separate processes which contribute fractions C and (1− C)

to the overall recovery respectively. All of these timescales reflect the time required for the in-

tensity to decay by a factor of 1=e or recover by a factor e. The minimal model was convoluted
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with a Gaussian of width 100 fs to represent the pump pulse width, and fitted to the magnetic

peak intensity in Fig. 6.10. For fits to those scans performed out to 3 ps delay time, fir2 was

constrained by assuming a linear variation in fir2 as a function of pump fluence (as suggested by

the data), and interpolating to sensible values. Extracted parameters from these fits are plotted

in Fig. 6.11.

A number of observations can be made from the fluence dependence of the fitted param-

eters. The first is that fidecay is approximately independent of the pump fluence, with a value

(350 ± 50 fs) which is comparable to the jitter-limited time resolution of the experiment. This

sets an upper limit on the timescale for the melting of long-ranged magnetic order. Note that

the discrepancy for a pump fluence of 0.4 mJ cm−2 is likely due to an uncertainty in the deter-

mination of t0. The second observation is that there is a slow increase in fir1 with increasing

fluence, which appears to abate around ∼10 mJ cm−2. On the other hand, the second recovery

timescale fir2 varies approximately linearly with fluence. At higher fluences this second timescale

dominates the recovery, as demonstrated by the variation of C. The linear dependence of fir2

implies that the recovery of the long-ranged magnetic order relies crucially on the dissipation of

energy in the material.

The energy E and characteristic time scale fi of an excitation are directly related by fi ∼ h=E.

Consequently extrapolating fir1 to zero fluence gives an estimate for the magnon energy at

(ı; ı). Doing this for fir1 = 1.4 ps gives an energy scale of 3 meV, comparable to the antiferro-

magnetic spin-gap determined by Bahr [226] and Bogdanov [227] from electron spin resonance
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measurements, and values estimated in the previous chapter. For higher pump fluences fir1 in-

creases slightly, which implies a reduction of the spin gap. On the other hand, the energy scale

of the process governing fir2 varies from 0.1–10 —eV as a function of fluence. This is consider-

ably weaker than the in-plane exchange, however it is comparable to estimates of the inter-layer

exchange. One can then make the supposition that fir1 is related to the easy-plane anisotropy,

whereas fir2 is related to interlayer correlations.

6.4 Time-resolved RIXS (tr-RIXS)

RIXS is one of the few techniques which enables measurement of both the energy and momen-

tum dependences of the photon scattering cross-section. Furthermore RIXS directly probes

both the temporal and spatial Fourier transforms of the spin-spin correlation function as a func-

tion of time and space. This function contains all of the interactions present in the magnetic

Hamiltonian, enabling magnetic excitations to be measured.

Extending this technique to include time resolution (tr-RIXS) provides an unrivalled method

of probing orbital and magnetic excitations and their dynamics. The inherent link between time

and energy – as demonstrated by the Heisenberg uncertainty principle – means that weak

interactions out of the reach of other probes can be resolved by moving into the time domain

[255].

Sr2IrO4 is an almost ideal system with which to develop the technique of tr-RIXS, given that

the unperturbed system has already been well characterised. Furthermore well defined spin

waves exist up to 200 meV at the zone boundaries, coupled with spin-orbit exciton modes at

0.6 eV. These energy scales are well within reach, even with a medium-resolution RIXS setup.

6.5 tr-RIXS measurements

Time-resolved RIXS measurements were performed on a bulk crystal of Sr2IrO4 at XPP, Linac

Coherent Light Source (LCLS). Infrared pump pulses were generated in the same way as for

the elastic experiment at SACLA.

The incident energy of the X-ray pulses was tuned to the Ir L3 resonance at 11.215 keV,

with a repetition rate of 120 Hz. This photon energy was at the limit of the capabilities of the

LCLS; initial measurements were limited to using the third harmonic. A Si (3; 3; 3) double-

bounce monochromator provided an incident energy bandpass of 50 meV, at the expense of

shot-to-shot intensity fluctuations of a factor of 2 as discussed above.

The sample geometry was such that horizontally polarized X-rays hit the sample at almost

grazing incidence (∼ 1◦), with the pump polarized vertically in the ab-plane of the sample and

incident at 13◦ with respect to the sample surface. This geometry was chosen in order to

match the penetration depths of the incident X-rays (10 —m at 11.215 keV) and the pump laser

(∼0.8 —m).



188

Figure 6.12: Photograph of RIXS spectrometer constructed at the LCLS. The photograph has been anno-

tated with the locations of key components and X-ray beam path. The helium flight path is in fact a dry

cleaning garment bag obtained nearby, with any holes taped up to prevent leakage of gas.

The design of the RIXS spectrometer itself was based on MERIX at the APS. Parts were

made at Brookhaven, then shipped to the LCLS where it was constructed in a few days. The

main difference between the spectrometer used and the design of MERIX is the length of the

spectrometer arm (and corresponding analyser radius), which was only 1 m due to space con-

straints.

Scattered photons from the sample were reflected by a Si (8; 4; 4) diced analyser crystal

with block size 1.5 mm. These photons were collected by a Princeton Instruments LCX CCD

detector with pixel size 20 —m. The main reasons for using this detector were the small pixel

size (which directly affects the energy resolution) and sensitivity to single photons. However

one limitation is that the CCD was not capable of reading out individual shots; for this reason

1800 shots were accumulated before the CCD was read out. RIXS spectra were collected in a

stationary mode without moving the spectrometer because space constraints meant that it was

not possible to fit a counterweight to the spectrometer arm.

6.5.1 Spectrometer calibration

An important part of any RIXS experiment is the initial calibration of the spectrometer. It also

provides a useful estimate for the intrinsic energy resolution. Typically calibration is performed

with an amorphous material which only scatters diffusely; this also allows for focussing of the
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Figure 6.13: Determination of the instrumental resolution. (a): CCD image of elastic line obtained from

scattering off transparent adhesive tape (after thresholding). White box indicates region of interest used

for subsequent plots. (b): CCD image summed over the non-dispersive direction. Solid line is a fit to

a Gaussian with FWHM 8.09(5) px, equivalent to an instrumental resolution of 66.4(4) meV. (c): Peak

position extracted from fits of single cuts through the elastic peak. Neighbouring pixels have been binned

together to ensure a reliable fit. (d): Width of elastic line (symbols), with width extracted from fit shown in

(b) added as a comparison (solid line).

analyser image onto the detector. In this case transparent adhesive tape (Scotch tape) was

used.

The CCD image of the elastic scattering is displayed in Figure 6.13(a). The vertical direction

as shown corresponds to the energy dispersive direction. If one simply sums over the non-

dispersing (horizontal) direction, then one obtains the elastic peak shown in Figure 6.13(b). The

elastic peak is described well by a Gaussian of FWHM 8.09(5) px, which gives the first estimate

of the instrumental energy resolution.

However there is one complication of note. Ideally the elastic line would lie perfectly hori-

zontal on the detector, which leads to a direct pixel-to-energy mapping. Yet in Figure 6.13(a), a

slight curvature can be seen which should be corrected for. The source of this curvature may

arise from a slight misalignment of the detector or analyser. Quantitative results are plotted in

Figure 6.13(c), in which the fitted position of the elastic line drifts by up to 2 pixels from its nomi-

nal value as you move from one side of the detector to the other. Yet the fitted width of the elastic

line remains fairly constant as a function of pixel position (Figure 6.13(d)); and compares well
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with the result obtained simply by summing over the non-dispersive direction (Figure 6.13(b)).

The reason for this is that the intrinsic energy resolution is relatively broad as a consequence

of the optical setup upstream of the sample. This means that the curvature of the image on the

detector is only a minor contribution to the total resolution. Consequently one can neglect it to a

first approximation.

Pixel-to-energy conversion

A RIXS spectrum in pixels is not particularly useful however, since one would ideally convert

it into energy to aid comparison with physical models. Fortunately in a Rowland geometry, the

distance along the detector in the energy dispersive direction is directly proportional to energy.

For given change in photon energy ‹E, the change in position of the elastic peak ‹d is given by

‹d =
2RA cos3 #

sin#

‹E

EH
; (6.4)

where RA is the analyser radius, EH = hc=2dA is the photon energy required to satisfy

2„A = 90◦, and # = 90◦ − 2„A(E). It should be stated at this point that the above equa-

tion and subsequent calculations are appropriate for a static collection scheme. To clarify, this is

a method where no physical motors are scanned, with the energy collection window limited by

the physical size of the analyser (∼1 eV). This contrasts with the collection method performed in

Chapters 3 and 4, where both the analyser theta angle and detector position are moved concur-

rently to keep the elastic line on the same pixel. This allows for collection windows much larger

than those available for the static setup.

Consequently one can calculate the pixel-to-energy conversion for the instrument described

above. For a Si (8; 4; 4) diced spherical analyser with RA = 1 m, EH = 11.186 keV. It follows for

an incident photon energy of 11.215 keV (corresponding to the Ir L3 edge) that # = 4.123◦, and

hence for a change in photon energy ‹E = 1 eV, ‹d = 2.47 mm. Now the Princeton CCD has

pixel dimensions of 20×20 —m, which means that ‹E = 1 eV is equivalent to ‹d = 123.4 px.

This gives the final result of a calibration factor of 8.1 meV/px. This factor shall be used through-

out this chapter.

Image processing

One important reason for using a position sensitive detector is that photons can be collected over

a comparatively large solid angle. This ensures that the majority of the RIXS signal emanating

from the sample can be obtained, minimising collection times and facilitating easy alignment of

the sample/spectrometer. However the required signal is usually only located in a small region

of the CCD – a direct effect of the finite size of analyser used. Furthermore the CCD does

not directly discriminate the energy of the scattered photons; the raw signal obtained contains

contributions from a number of processes, mainly fluorescence and dark current due to shot

noise. Figure 6.14(b) shows a portion of one typical CCD image integrated over 1800×20 shots
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Figure 6.14: (a): Histograms of the entire CCD (purple), and a 310×150 px region of interest (green), each

summed over 1800×20 shots and before thresholding. (b): Raw CCD image (within the aforementioned

region of interest) and lineplot of the sum in the non-dispersive direction resulting from a single run of

1800×20 shots. (c): Same as for (b), but with dark image subtracted and lower threshold of 160 ADUs

applied. In (b) and (c), the extremes of the colorscale reflect the 5% and 95% confidence limits. Additionally

neighbouring pixels have been binned together in the in-plane direction for clarity.

(five minutes accumulation time). The desired RIXS signal is in the bottom portion of the image;

however there is a significant non-linear background present.

Fortunately it is possible to subtract off these extraneous contributions by performing two

steps. The first is to collect a “dark image”, which is a CCD image with no X-ray or pump laser

impingent on the sample. This should be collected for the same amount of time as a normal

run, and characterises the intrinsic noise of the detector. The second involves thresholding off

the fluorescent (and very high energy) contribution. A CCD works by the conversion of photons

to electric charges, and conversion to a voltage. The absorption of an X-ray photon ejects a

free, energetic photoelectron. As this electron moves through the silicon lattice, it generates a

measurable number of electron-hole pairs, each with energy 3.65 eV. After some period of time,

the number of electron-hole pairs collected by each pixel is read out, amplified, measured as a

voltage, and converted into a output digital number (analogue-to-digital units or ADUs, always

an integer). The number of electron-hole pairs required to generate a single ADU is defined as

the gain of the CCD, G. Consequently a number of photons Nph with energy Eph will generate a
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number of ADUs: SADU = NphEph=(3.65G).

A histogram of the entire CCD (1300 × 1340 px) is plotted in Figure 6.14a, integrated over

1800×20 shots. Three clear peaks can be seen. The first sharp peak at 130 ADUs is the Ir

L¸ emission line. The second broader peak at 155 ADUs comprises the set of Ir L˛ emission

lines at ∼10.8 keV, whereas the broad peak at 320 ADUs incorporates all Ir two-photon events.

Consequently all events which correspond to less than 160 ADUs were thresholded off. This

somewhat conservative estimate was used to ensure no photon events contributing to the RIXS

signal were missed; effects such as the quantum efficiency of the CCD mean that the conversion

from ADUs to photon energy is only approximate. An example image and associated lineplot

are displayed in Figure 6.14(c). The signal appears much more like a typical RIXS spectrum,

with good statistics given that the total accumulation time is only five minutes.

6.5.2 Measurements at (ı; ı)

Time-resolved RIXS (tr-RIXS) measurements were first performed at (−4; −3; 23.9), which

corresponds to the magnetic Brillouin zone centre at (ı; ı). A non-integer value of L was used to

ensure that 2„ = 90◦. Remember there are three main features in the previously observed RIXS

spectra as presented in Chapter 5: an elastic line (which also contains quasielastic features

within the instrumental resolution), dispersive and weakly gapped spin wave excitations which

emanate out of the magnetic Bragg peak at (ı; ı), and a “spin-orbit exciton” deriving ultimately

from a transition between the jeff = 3
2 and jeff = 1

2 states.

RIXS spectra were obtained by collecting seven runs together, each comprising 40 accu-

mulations of 1800 shots each. Alternate sets of 1800 shots were obtained with the pump laser

on or off (−50 ps delay) to allow direct comparison between datasets obtained at similar times.

So each spectrum corresponds to a total accumulation time of (7× 20× 1800 shots) =120 Hz

= 35 min.

Time-resolved RIXS (tr-RIXS) spectra at (ı; ı) are plotted in Figure 6.15a,b for various

delays. At first glance, they look similar to those obtained at conventional synchrotron facilities,

with the same well-defined inelastic features. The large elastic line is a consequence of the

magnetic Bragg peak situated at (ı; ı); the 2„ = 90◦ condition cannot be fully satisfied and

some finite elastic contribution makes its way through. A well defined magnetic contribution

can also be observed, albeit with some asymmetry as a consequence of the finite momentum

resolution.5

However when the pump laser is switched on, there is only a weak change in the RIXS

spectra. Well defined magnons can still be seen 2 ps after the pump, albeit with a reduction

in intensity of around 12± 10 % compared to before the pump. This contrasts with the elastic

case where long-ranged Néel order is heavily suppressed for this value of the pump fluence and

optical delay. On the other hand, there is an increase in intensity below the elastic line which

suggests some redistribution of spectral weight around the Fermi level.

5A large proportion of the dispersion surface is sampled – all the way to the zone boundary in the present case.
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Figure 6.15: (a,b) Pump-probe RIXS spectra at (ı; ı) along with difference spectra Ion−Ioff (open symbols)

for different optical delays. (c): Overlay of difference spectra for optical delays of 2 ps and 10 ps. Error

bars have been omitted for clarity. (d): Fitted intensity of magnon peak normalised to intensity with no

pump laser (symbols). Overlaid are models comprising Equation 6.3 with parameters interpolated from the

elastic data for a pump fluence of 6 mJ cm−2 and convoluted with a Gaussian of FWHM 300 fs. The two

models are identical apart from the value of C: C = 1 (solid), C = 0.35 (dashed).

A weak suppression of the spin-orbit exciton can also be observed. At longer delay times

(10 ps), there is a further partial recovery of the magnon and spin-orbit exciton intensities. It

should be noted at this point that the overall intensity of the RIXS spectra for 10 ps/−50 ps runs

are a factor of two lower than that for the 2 ps/−50 ps runs; this is due to an issue with the

alignment of the spectrometer which has been accounted for in the above figures.

Recall from Chapter 5 that for Sr2IrO4, Néel order occurs below TN as a result of out-of-plane

correlations. Consequently the melting of magnetic order seen in the tr-RXMS corresponds to

the destruction of correlations out-of-plane. In this geometry, the RIXS cross-section is domi-

nated by correlations within the ab-plane. Thus the fact that well-defined spin wave excitations

persist for 2 ps delay implies two things. Firstly, long-ranged magnetic correlations are present

in-plane, whereas we already know that the elastic data implies that three-dimensional order

has been all but destroyed for this pump fluence. This is consistent with a scenario of two-

dimensional magnetic order. Additionally these correlations must be of a sufficiently high en-
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ergy to have practically recovered by 2 ps. This makes sense given that the nearest-neighbour

exchange J ≈ 60 meV.

Further evidence for 2D behaviour can be gathered by considering the temporal dependence

of the magnon intensity. The dependence of the RXMS intensity upon optical delay could be

described by Equation 6.3, with the parameter (1 − C) proportional to the degree of melting

of three-dimensional magnetic order. Extrapolating from the calculated values of C presented

in Figure 6.11, one finds C = 0.35 for a pump fluence of 6 mJ cm−2. The corresponding

theoretical delay curve (convoluted with a Gaussian of FWHM 300 fs to take the jitter of the

FEL into account6) is plotted in Figure 6.15d as a dashed line. Contrast this with the scenario of

C = 0, which represents the limit of zero correlations out of plane (solid line). Such a description

fits the RIXS data more convincingly for optical delays of 2 and 10 ps, which thus suggests the

dominance of 2D in-plane correlations.

6.5.3 Measurements at (ı; 0)

The advantage of RIXS over Raman scattering for example lies in the ability to measure non-

zero momentum transfers. What this means is that one can not only measure the excitations at

the Brillouin zone centre, but also at the zone boundary. In Sr2IrO4 the magnons disperse up

to 200 meV at the zone boundary; consequently they are well separated from the elastic line

and any other inelastic features. This means that unlike at (ı; ı), the width and energy of the

magnon peak can be well characterised as a function of optical delay.

To this end pump-probe RIXS spectra were collected at (−3.5; −3.5; 24.1), which corre-

sponds to the (ı; 0) point. Two optical delays were chosen: -50 ps and 2 ps, which enables a

direct comparison with the zone centre data. The resulting spectra are plotted in Figure 6.16,

and are each the sum of four consecutive runs of 1800×20 shots. Just as for the data collected

at (ı; ı), neighbouring pixels in the energy-dispersing direction were binned together for a total

bin-width of 8.2× 2 meV = 16.4 meV.

Upon photo-doping the intensity of both the magnon peak and spin-orbit exciton are weakly

suppressed, just as at the magnetic zone centre (ı,ı). Furthermore the general form of the

RIXS spectra remain comparable. In order to quantify these observations, the RIXS spectra

were fitted with a sum of four Lorentzian squared functions. The results of these fits lead to the

following conclusions.

Firstly the intensity of the magnon peak is suppressed by 10% upon photo-doping; this is

comparable to the observation at (ı; ı). However whilst at (ı; ı) there is a shift of spectral

weight towards the elastic line, at (ı; 0) the peak suppression is more uniform as a function of

energy (Figure 6.16(b). The fact that the magnon peak intensity at (ı; 0) is so similar to that at

(ı; ı) is somewhat surprising, given that one would expect higher energy excitations to decay

more quickly as there are a greater number of lower energy, multi-particle decay pathways.

6Note that this does not assume any long-term drift of time zero; the true jitter is likely to be on the order of 1 ps.
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Figure 6.16: (a): RIXS spectra at (ı; 0) before (purple squares) and after (green diamonds) the pump,

along with their difference Ion − Ioff (open circles). The solid grey line is the difference between the best

fits to the two RIXS spectra. (b): Enlarged view of the difference spectra at (ı; ı) (blue stars, dashed)

and (ı; 0) (green circles, solid), each normalised to the fitted maximum of the magnon peak at E0. (c):

Same as (b), except normalised to fitted maximum of SO-exciton at E0 ∼ 0.6 eV. Again the dashed (solid)

lines in (b,c) reflect the normalised difference between the best fits to the RIXS spectra at (ı; ı) and (ı; 0)

respectively.

However one possible explanation is that the data may simply be temporally resolution-limited

due to a gradual shift of time zero during the measurement time.

The intensity of the spin-orbit exciton mode at ∼0.6 eV decreases by a similar amount

upon photo-doping, again comparable to (ı; ı). Furthermore one finds that the energy of the

magnon peak does not shift appreciably with the onset of the pump [196(5) meV with pump off,

188(5) meV with pump on ]. This indicates the strength of the magnetic correlations – in terms of

J – remains comparable upon photo-doping. The width of the magnon peak on the other hand

does increase slightly with the onset of the pump [156(7) meV pump off, 180(10) meV pump on,

all FWHM ], which implies that there is a weak variation in magnon damping. Deconvolution of

the resolution function leads to magnon linewidths of 134(8) meV and 160(10) meV. However it

should be noted that these values are likely to be overestimates of the true magnon linewidths

due to the finite momentum resolution. To summarise, the apparent effect of the pump at some

given optical delay is to uniformly suppress the magnetic spectral weight across the Brillouin

zone, with some evidence for increased damping at the zone boundary.
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6.5.4 Comparison with chemical doping

However there is a caveat with this conclusion. The present measurements only reflect the

magnon dispersion at (ı; ı) and (ı; 0) in the photo-doped compound. It is instructive to com-

pare these results with RIXS measurements on chemically doped Sr2IrO4.

RIXS measurements have recently been performed by Liu et al. [256] and Gretarsson et

al. [257] on bulk electron-doped (Sr1-xLax)2IrO4. These measurements show strongly anisotropic

behaviour; the magnon energy for x = 0.03 is similar to that for the undoped compound at (ı; ı)

and (ı; 0), whereas there is a pronounced softening at (ı=2; ı=2) of ∼20 meV. Furthermore

the magnons along the nodal direction (0; 0)–(ı; ı) are considerably damped compared to the

undoped case, whereas those along (0; 0)–(ı; 0) are comparable. Thus the conclusion that the

magnons remain relatively robust at (ı; ı) and (ı; 0) upon photo-doping is not that surprising.

One can go further and attempt quantitative comparisons between the two datasets. To

this end RIXS spectra were collected on cleaved single crystals of Sr2-xLaxIrO4 at ID20, ESRF,

for three doping levels: x = 0, 0.01, 0.035. Doping levels were characterised after cleavage

by energy-dispersive X-ray spectroscopy (EDX). All spectra were collected at 20 K and in an

identical configuration (∆E = 22 meV). The data at (ı; 0) are plotted in Figure 6.17a, and

normalised to the d − d excitation intensity at 1 eV to facilitate comparison. However, due

to a transient technical issue, the raw intensity for the undoped compound is a factor of three

weaker than expected. Furthermore only one usable scan could be collected, as opposed to

two for the other doping levels. This explains the increased scatter in the plotted spectra, and

greater uncertainty in extracted fitting parameters for x = 0. Nevertheless the results obtained

compare well with those previously published in Refs. [256] and [257]. Remembering that the

true magnon linewidth is likely narrower than that extracted from the tr-RIXS data, one can

estimate that 2 —m photo-doping with a pump fluence of 6 mJ cm−2 is approximately equivalent

to 2% electron doping with La.

One may think that you can increase the pump fluence indefinitely, and eventually move to a

region of the magnetic phase diagram that has not yet been probed by chemical doping.7 How-

ever by increasing the pump fluence the heat load on the sample also increases. An increased

heat load can give rise to surface reconstruction and eventually to sample damage. Evidence

of localised sample damage could be seen even with the pump fluences used for the measure-

ments presented here, however it is not entirely clear whether this is a result of the pump or the

XFEL probe pulse. It thus seems like there is an ultimate limit to the degree of photo-doping that

can be achieved, which is likely similar to that obtainable with lanthanum doping.

7It proves relatively difficult to introduce dopant cations into Sr2IrO4. Unlike the cuprates, only a maximum of 10%

La can be introduced into the structure, even when a surplus of lanthanum oxide is added into the reaction mixture. The

reasons for this are presently unclear. Additionally there are frequently issues with differences between doping levels in

the bulk and at the surface. All RIXS measurements presented here were performed on cleaved samples to ensure that

the results are representative of the bulk crystal.
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Figure 6.17: (a): RIXS spectra of (Sr1-xLax)2IrO4 at (ı; 0), collected for three doping levels x = 0, 0.01,

0.035. Solid lines are the best fit to a sum of four Lorentzian squared functions. The spectra have been

offset vertically to aid comparison. Right panels reflect the magnon peak position (b), FWHM (c) and

intensity (d) relative to the value for x = 0. Squares: values extracted from fits to data in (a). Triangles:

data extracted from Ref. [256]. The solid(dashed) line on each of the plots represents the fitted value from

the tr-RIXS data with pump laser on(off).

6.5.5 Summary

To summarise, time-resolved resonant magnetic X-ray scattering (tr-RXMS) and time-resolved

resonant inelastic X-ray scattering (tr-RIXS) measurements were performed on Sr2IrO4, in

order to determine the short timescale dynamics of the instantaneously photo-doped state.

Time-resolved XRMS measurements revealed that long-ranged antiferromagnetic order was

suppressed upon excitation across the charge gap, only to recover with two characteristic

timescales. The shortest timescale likely corresponds to the recovery of the magnetic spin

gap, which results from in-plane exchange anisotropy as demonstrated in Chapter 5. The sec-

ond, longer, timescale is heavily dependent on the magnitude of the incident pump fluence and

is associated with the recovery of 3D Néel order. Notably the former timescale is similar to that

observed in optical reflectivity measurements, which suggests that the magnetic and electronic

behaviour are related in some way. This links back to the optical conductivity measurements by

Hsieh et al. [151], which finds evidence of simultaneous Mott and Slater-type characteristics for

the photo=induced metal-insulator transition.

Time-resolved RIXS allows the measurement of the excitations as a function of momentum

transfer. What these measurements show for Sr2IrO4 is that in-plane magnetic excitations per-
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sist at 2 ps delay, even though long-ranged magnetic order is all but destroyed for a pump fluence

of 6 mJ cm−2. Furthermore increased magnon damping can be observed at the zone boundary

after the onset of the pump. This behaviour is consistent with that observed for electron-doped

(Sr1-xLax)2IrO4, and implies some degree of similarity between photo-doping and bulk carrier

doping.

Summary of contributions

As mentioned previously, the time-resolved resonant X-ray scattering experiments were a col-

laborative effort between a large number of people from different groups. The author’s contribu-

tion during the experiments was predominantly limited to assistance with the initial diffractome-

ter/spectrometer setup, software development, data processing and analysis. All data presented

in this thesis was generated with the author’s own data processing and analysis codes written

in MATLAB; this explains some of the minor quantitative differences with the data presented in

Ref. [253].

The RIXS measurements on electron-doped (Sr1-xLax)2IrO4 were performed with the assis-

tance of Christian Donnerer and Davide Pincini from UCL, and Alberto de la Torre from Caltech.

All analysis presented here was performed by the author.



Chapter 7

Conclusions and future

perspectives

In this thesis, the electronic and magnetic correlations within four 5d transition metal oxides

have been studied using resonant X-ray scattering techniques. The advantages of resonant X-

ray scattering mean that it is possible to probe the magnetic and electronic degrees of freedom

simultaneously over a large parameter space. Consequently it has been possible to explore

the role of spin-orbit coupling in determining the electronic and magnetic properties of these

materials.

However, a number of unanswered questions remain. For the osmates, these questions

are predominantly orientated towards experimental observation of the band structure variation

through the MIT, and the robustness of the MIT to applied physical or chemical pressure. For

the iridates, the focus is on the effect of carrier doping (both bulk and photo-doping), with the

eventual long-term aim of perhaps observing unconventional superconductivity. A more detailed

discussion follows.

7.1 Cd2Os2O7

7.1.1 ARPES

A number of experiments are proposed which would shed further light into the nature of the MIT

for Cd2Os2O7. Angle-resolved photoemission (ARPES) measurements would provide definitive

proof of a change of topology at the Fermi surface. ARPES is a complementary technique to

RIXS since it directly probes the occupied valence states as a function of momentum transfer,

whereas RIXS examines excitations from the electronic ground state. Similar measurements

have already been performed on the isostructural Nd2Ir2O7 (TMI = 40 K), where a clear evolution

of the electronic gap can be observed as a function of temperature [258]. However performing

199
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such an experiment would certainly require the use of synchrotron sources, and even so, be

rather challenging for three reasons.

The first is the issue of thermal broadening. At T = 0, the Fermi surface is sharp and

well defined. However at elevated temperatures a number of the electrons can gain energy in

accordance with the Fermi-Dirac distribution. This leads to smearing of the Fermi surface and

hence features close to the Fermi energy become less well-defined. What this means is that

it will likely prove more difficult to gain quantitative estimates of the gap magnitude (and any

related quasiparticles) for Cd2Os2O7 compared to Nd2Ir2O7.

Secondly within the ARPES technique photo-electrons are excited from a material by an

optical probe. This generally requires metallic (or semi-metallic) samples, whereas at low tem-

perature Cd2Os2O7 is certainly within an insulating regime. Thus sample charging occurs when

removing photo-electrons, which cannot be compensated for by addition of a conducting elec-

tronic contact. This is a constraint because if too much sample charging occurs, then it may not

be possible to obtain a satisfactory ARPES signal due to a paucity of available photoelectrons.

Finally ARPES is predominantly a surface-sensitive technique, and samples are typically

cleaved in-situ within an ultra-high vacuum prior to measurement. The three-dimensional nature

of the Cd2Os2O7 crystals means that cleaving is difficult, and even then, may only produce small

homogeneous surfaces. This could be mediated somewhat by the use of soft X-ray ARPES,

which is more bulk-sensitive and has the advantage of better kz resolution. However this comes

at the expense of energy resolution (∆E ∼ 100 meV).

7.1.2 Resistivity under pressure

Another potential study involves resistivity measurements of Cd2Os2O7 under applied external

pressure. Remember that a Lifshitz transition is an example of a QCP at T = 0. Instead of

inducing Lifshitz-like behaviour by varying the temperature, a similar effect could be gained by

varying the pressure. This would be accompanied by a decrease in TMI, eventually reaching

T = 0 at some critical pressure Pc . Mandrus et al. [94] performed preliminary measurements

and found that TMI decreases linearly by around 4 K per GPa increase in pressure. Assuming

the linear pressure dependence in TMI, then one can estimate the QCP will occur at 50–60 GPa.

There is also the intriguing possibility of observing some quantum critical or non-Fermi liquid

behaviour which would be associated with the metallic phase at high pressure. However this

does assume that there is no high-pressure structural distortion such as that undergone by the

isostructural Cd2Re2O7 [259].
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Figure 7.1: Pressure dependence of structural parameters for NaOsO3. (a): Lattice parameters normalised

to the zero pressure values at 300 K (lines) and 450 K (symbols). (b): c/a ratio at 300, 420 and 450 K. (c):

Equation of state at 300, 420 and 450 K show minimal volume change as a function of temperature, with

no obvious anomalies characteristic of a first-order phase transition. (d): Above the MIT an additional peak

appears above 40 GPa which is consistent with a continuous monoclinic distortion.

7.2 NaOsO3

7.2.1 Resistivity/magnetisation measurements as a function of applied

pressure

One possible future experiment is the resistivity and magnetisation of NaOsO3 as a function

of applied external pressure. Remember that the structure of NaOsO3 is pseudo-cubic, with

the orthorhombic distortion arising as a result of a concerted rotation of the OsO6 octahedra

in the a–c plane, coupled with a tilting about the b-axis. The Os–O–Os bond angle decreases

continuously as a function of decreasing temperature in order that the octahedra better align

with the unit cell at low temperature. When sufficiently close, the Os ions interact and form the

magnetically ordered phase. Calder et al. [131] proposed that there may be a magnetostriction

control parameter in which it may be able to control the onset of antiferromagnetic order by

applying external pressure.

Characterisation of the structure of NaOsO3 as a function of applied pressure was per-

formed at ID09, ESRF. A small quantity of powder was placed into a diamond anvil cell (DAC)

and diffraction patterns obtained in a transmission geometry. Preliminary analysis reveals a

continuous phase transition to a monoclinic phase above 40 GPa, which likely results from a

tilting of the OsO6 octahedra. The pressure dependence of the unit cell volume was fitted to a
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Rose-Vinet equation of state:

P = 3B0
1− ”
”2

exp

»
3

2
(B′0 − 1) (1− ”)

–
; (7.1)

where ” = (V =V0)1=3. The parameters V0, B0 and B′0 refer to the unit cell volume at P = 0,

the isothermal bulk modulus, and dB0=dP respectively. V0 was fixed to the values obtained

from neutron powder diffraction at ambient pressure for 300, 420 and 450 K. The parameters

extracted from these fits reveal a weak temperature dependence [300 K: B0 = 149.03(2) GPa,

B′0 = 3.784(2); 450 K: B0 = 147.4(5) GPa, B′0 = 4.38(4)], however the important point is that

the structure is fairly robust as a function of applied pressure.

It is presently unclear whether the observed structural phase transition also drives a metal-

to-insulator transition above TN. If so, this would be the opposite of a typical pressure-driven

insulator-to-metal transition, since usually materials have a tendency to metallic behaviour at

high pressures due to the electronic bands being pushed closer together. Such a MIT may or

may not induce magnetic long-ranged order as well through magnetostriction. Another intriguing

possibility is that the structural phase transition also induces a Lifshitz transition in the metallic

phase and a corresponding change of topology in the Fermi surface. As discussed earlier for

Cd2Os2O7, such a transition may push the system towards a quantum critical point.

7.2.2 Non-resonant magnetic X-ray diffraction (nRXMS)

Recall the discussion in Chapter 3. In most materials, both the spin and orbital components are

important to fully explain the observed behaviour. For d3 systems in the Russell-Saunders limit

(weak spin-orbit coupling), the orbital component is quenched as the t2g manifold is half-filled.

Consequently one would expect a spin-only magnetic moment of 1.5 —B. A reduced magnetic

moment of 1.0(1) —B has been observed for NaOsO3, which has been ascribed to significant

hybridisation between the Os 5d and O 2p states and weak spin-orbit coupling. Such behaviour

has been proposed as direct evidence for Slater insulating behaviour in NaOsO3.

However there is an alternative scenario. Spin-orbit coupling entangles the spin and orbital

components of the magnetisation such that it can no longer be considered as quenched for

5d TMOs. The hypothesis is that in the strong spin-orbit coupling limit, the spin and orbital

components of the magnetisation oppose each other and result in a reduced moment that way.

It has already been shown that spin-orbit coupling is relevant for the magnetic behaviour of

Cd2Os2O7 and NaOsO3, as shown by the significant anisotropies observed in the excitation

spectra. Consequently one would expect a non-zero orbital component to the magnetisation for

NaOsO3, just like that seen for Cd2Os2O7 using XMCD [100].

The magnitude of the orbital component allows quantitative determination of the departure

from the Slater (and Russell-Saunders) limit. Two techniques allow the measurement of this

orbital component: X-ray magnetic circular dichroism (XMCD) and non-resonant magnetic X-

ray diffraction (nRXMS). However only the latter technique is suitable to look at NaOsO3 for the

following reason. XMCD is sensitive to the ferromagnetic component of the magnetisation, yet
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NaOsO3 is a G-type antiferromagnet below TN with an almost zero canting angle (see Chapter

4). Consequently the XMCD signal is likely to be vanishingly small. Whilst the non-resonant

signal is approximately two orders of magnitude weaker than the resonant magnetic signal, it

should still be possible to at least determine the ratio 〈L〉 = 〈S〉 by measuring the azimuthal de-

pendence of a series of related reflections. One can then compare the experimentally obtained

behaviour with DFT calculations [115, 135, 136] to examine whether spin-orbit coupling does

indeed induce a significant orbital component for NaOsO3.

7.2.3 Probing the band structure

The most direct evidence of Slater or Lifshitz like behaviour can be garnered from experimental

measurements of the electronic band structure. Density functional theory (DFT) calculations,

whilst useful for qualitative comparisons, frequently have quantitative disagreements with exper-

iment as a result of the inherent approximations used. Furthermore the results obtained are

highly dependent on the initial starting parameters used, including the choice of pseudopoten-

tials, the magnitude of the electron correlation U, and inclusion of spin-orbit coupling.

Ideally one would perform ARPES measurements on NaOsO3. However the same limita-

tions as those relevant for Cd2Os2O7 apply, only more stringent as a consequence of the higher

TMI. One possibility is to lightly dope NaOsO3 and attempt to suppress TMI (and perhaps TN)

through the introduction of additional charge carriers. Unfortunately this would also likely per-

turb the band structure, the extent of which is presently unclear. DFT calculations are proposed

to study this in more detail.

7.2.4 Itinerant model for magnetic excitations

Thus far the magnetic and electronic excitations have only been examined in terms of a localised

(Heisenberg) model. From the RIXS data we know that this seems to work well at 300 K,

deep within the insulating antiferromagnetic regime. However with increasing temperature the

localised model gives a poorer description of the data, with the spin waves becoming significantly

more damped and less well-defined. Furthermore the valence 5d-orbitals are extended in real

space for NaOsO3, which leads to large hybridisation (as determined from DFT calculations).

Both of these points lead to itinerant behaviour.

Calculation of the excitation spectrum from an itinerant starting point may prove insightful.

To do this one typically uses the random-phase approximation (RPA) to simplify the calculations.

RPA neglects the temporal fluctuations of the local exchange about its mean value. One example

is the concurrent simulation of magnons in Sr2IrO4 by Igarashi [217] from both a localised and

itinerant perspective.
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7.3 Sr2IrO4

7.3.1 Crossover phenomena

Easy-plane anisotropy seems to be important for Sr2IrO4 between TKT and TN. Yet there are

a number of outstanding questions pertaining to the quasi-2D behaviour. The first of these is

whether there is any evidence of a crossover in the magnetization at TKT. From muon spin relax-

ation (—SR) data [194], it does not appear like there is any sort of transition at TKT. However —SR

probes long time-scale dynamics (microsecond); there may be shorter time-scale dynamics that

may be relevant and can be probed by X-rays for instance.

7.3.2 Sample dependence of magnetic properties

A recent study [260] examined how the magnetic properties vary for Sr2IrO4 when the synthesis

conditions are changed. What they found was a significant variation in the magnetic suscep-

tibility, transition temperature, and Raman scattering response for seemingly minor alterations

in the method. Energy dispersive X-ray spectroscopy (EDX) measurements – which should be

noted is not especially sensitive to oxygen – did determine that samples with reduced transition

temperatures suffered from oxygen deficiency. Raman scattering also determined that oxygen

deficient samples exhibited additional peaks characteristic of an in-plane distortion. This would

likely increase the in-plane anisotropy compared to stoichiometric samples. Further examination

of this point would prove insightful, especially using a probe that is more sensitive to the oxygen

content of a material.

7.3.3 Imaging the Griffiths phase

Recent work by Rathi et al. [261] suggests the presence of a Griffiths phase in Sr2IrO4. In

the simplest case [262]: “A dilute ferromagnet is in the Griffiths phase if its temperature T is

between the critical temperature Tc(p) for the onset of magnetic long-range order and the critical

temperature Tc(1) of the pure (i.e., non-dilute) system.” More specifically, the phase comprises

a number of localised ferromagnetic clusters which do not exhibit long-ranged magnetic order,

but do have short-ranged magnetic correlations.

Rathi and colleagues performed bulk magnetisation measurements on a single crystal of

Sr2IrO4. Remember that Sr2IrO4 is a weak ferromagnet due to the magnetic moments locking

to the correlated in-plane rotation of IrO6 octahedra [191]. This leads to a positive Curie-Weiss

temperature „CW ∼ 200 K. The magnetisation below TC = 221.5 K was to be consistent with

the behaviour expected for a second-order phase transition [˛ = 0.19(1)]. This agrees with

the value for ˛ obtained from the critical scattering measurements presented in Chapter 5. The

susceptibility above TC was measured at low field (100 Oe), and was found to exhibit a downturn

above 280 K, a feature that was proposed to be a signature of the Griffiths phase. Further

quantitative analysis determined that the Griffiths phase was extant between TRC = 234.0(7) K
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and TG = 279.0(5) K. This temperature range is comparable to that studied by magnetic critical

scattering. Further studies are proposed to examine the extent/validity of this Griffiths phase

scenario.

7.3.4 Effect of carrier doping

Finally as discussed in Chapter 6, it is possible to chemically dope Sr2IrO4, in an analogous

fashion to the cuprates. Pseudo-gap behaviour, Fermi arcs, and perhaps even superconductivity

have been observed in these materials. Lanthanum doping Sr2IrO4 by as little as 5% suppresses

long-ranged magnetic order, and induces a metallic state. One argument is that doping Sr2IrO4

will push the system closer towards the quantum critical point gc as shown in Fig. 5.1. This

implies that (if the theoretical predictions for a 2DHAFSQL hold) close to gc there would be 1=T

scaling of the correlation length in the paramagnetic metal phase, which would be representative

of the quantum critical regime. This is still an open question however and would be intriguing for

further study.

7.4 Sr3Ir2O7

The critical scattering measurements on Sr3Ir2O7 presented in Chapter 5 were characterised

by a degree of defect mediated behaviour which obscured the true critical behaviour. These

defects may arise either from surface strain, or oxygen vacancies close to the surface. One

proposal is to measure the critical scattering from a cleaved sample, which would likely show

behaviour more representative of the bulk. Consequently a more accurate determination of the

critical exponents – and hence dimensionality of the magnetic interactions – can be made.

A further proposition is the study of photodoped Sr3Ir2O7 by time-resolved resonant X-ray

scattering. The charge gap has a magnitude of around 100 meV; consequently one would need

a pump pulse with wavelength 12 —m to induce the transient metallic state. Such a wavelength

is certainly attainable as shown by the data obtained for Sr2IrO4. The hypothesis is that there

would be a suppression of long-ranged antiferromagnetic order upon photo-doping, albeit with

a much faster recovery timescale compared to Sr2IrO4. This is due to the three-dimensional

nature of the magnetic correlations.

7.5 Summary

To summarise, the metal-insulator transitions in 5d transition metal oxides occur as a conse-

quence of a number of competing energy scales. This has profound effects on the magnetic

interactions, which can be directly probed using resonant X-ray scattering techniques. Whilst

the iridates have narrow electronic bands and undergo MITs with pressure, bulk- or photo-

doping (albeit with a degree of Slater character), the osmates are more itinerant. What has
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been demonstrated in this thesis is that the apparent discrepancy is a direct result of spin-orbit

coupling playing a reduced role for the osmates compared to the iridates. This has important

consequences for the mechanism of the MIT, which show some degree of coupling to the on-

set of magnetic order. However the magnitude of spin-orbit coupling is still sufficient to induce

significant anisotropic gaps in the spin wave dispersion for the osmates.

Furthermore tr-RIXS has been shown to be a viable technique with which to study the mag-

netic and electronic excitations in 5d TMOs. With time and expertise, the proof-of-principle

experiments detailed in this thesis will become more routine and accessible to the general user.

The same progression has occurred at synchrotron sources. Fifteen years ago RIXS was a

niche and under-developed technique; whereas today it is mature, with RIXS spectrometers

well over-subscribed and facilitating the construction of state-of-the-art instrumentation to fulfil

this demand. With the construction of new XFEL facilities around the world (EU-XFEL, Swiss-

FEL, LCLS-II to name but a few), then capabilities and possibilities for tr-RIXS can only increase.

This paves the way for a series of new experiments and novel scientific directions to look forward

to for years to come.
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A Energy resolution of RIXS instruments

There are three main contributions to the energy resolution of RIXS instruments: the monochro-

mator setup, the spot size incident on the sample, and the energy analyser. The Darwin width is

a measure of the intrinsic reflectivity of a crystal, and in particular its angular acceptance. The

Darwin width is given by [71]:

“D =
4
ı

„
d

m

«2
r0 |F |
vc

; (A.1)

where m is the order of diffraction, r0 is the classical electron radius, |F | is the structure factor

of the unit cell, and vc is the volume of the unit cell. As h2 + k2 + l2 increases, d decreases1

and |F | decreases (as a consequence of the Debye-Waller factor), and hence the Darwin width

also decreases.

The energy resolution of a monochromator setup ∆Em is given by:

∆Em = Ei cot „B

q
Ω2 + ∆„2

DW ; (A.2)

where Ei is the incident angle, „B is the Bragg angle of the monochromator, Ω is the source

divergence, and ∆„DW is the angular Darwin width. Thus a better energy resolution can be

achieved by using monochromator crystals with „B closer to 90◦, a smaller Darwin width and a

source with a smaller angular divergence.

The energy resolution of the analyser crystal is comprised of two components. The first of

these comes from the intrinsic Darwin width of the crystal:

∆EA = Ei cot „B ∆„DW : (A.3)

The second contribution arises from the dicing of the crystal. As discussed above, dicing the

analyser crystal reduces spherical distortions, at the expense of adding a geometrical broaden-

ing term to the energy resolution, due to each individual crystal focussing onto a different point

on the detector. It can be derived [263] that the pixel size on the position-sensitive detector is

the limiting factor for the geometrical broadening, with

∆Eg = Ei
∆dD

2RA tan „A
; (A.4)

1In general 1
d2

hkl
= h2a2 + k2b2 + l2c2 + 2kl bc cos¸ + 2hl ac cos˛ + 2hk ab cos ‚, however this expression

simplifies for more symmetrical Bravais lattices.

207



208

where ∆dD is the pixel size of the detector, RA is the analyser radius, and „A is the Bragg angle

of the analyser.

Combining all of these terms in quadrature (including a contribution ∆Es from the finite spot

size of the sample) gives an expression for the total instrumental energy resolution:

∆Etot =
q

∆E2
M + ∆E2

A + ∆E2
g + ∆E2

s : (A.5)

It is instructive to calculate the instrumental resolution at MERIX for the measurements on

Cd2Os2O7 described in Chapter 3. Using the tables in Ref. [264], and assuming the incident en-

ergy Ei = 10.871 keV the energy resolution for a Si (1; 1; 1) primary and Si (4; 4; 4) secondary

monochromator setup ∆EM = 144.57 meV. The intrinsic analyser contribution for a Si (6; 4; 4)

crystal ∆EA = 16.93 meV, and the geometrical contribution Eg = 23.2 meV, assuming a 2 m

analyser radius and pixel size of 50 —m from the micro-strip detector. The vertical spot size is

10 —m, which means that Es ≈ 5 meV. Thus:

∆Etot =
p

144.572 + 16.932 + 23.22 + 52 meV

= 147 meV

This agrees reasonably well with the experimental energy resolution, however the experimen-

tal energy resolution was in fact slightly lower [∆Etot ∼ 130 meV]. One possible explanation

for this is that since the monochromator resolution is dependent on the source divergence,

then a smaller source divergence than calculated would improve the monochromator bandpass.

Clearly the monochromator setup is the dominant contribution to the experimental energy res-

olution here, and future high-resolution experiments would benefit from utilising a higher-order

secondary monochromator.
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B Linear spin wave theory applied to NaOsO3

In this section a detailed derivation of the linear spin wave theory method shall be given and

applied to NaOsO3.

The starting point is the trial Hamiltonian presented earlier for a Heisenberg model with

anisotropic exchange:

H = J1

X
nn

Si · Sj + J2

X
nnn

Si · Sj + Γ
X

nn;nnn

Szi S
z
j +

X
i

Si · D̄ · Si (B.1)

= HNN +HNNN +HA +HSIA; (B.2)

where HNN, HNNN, HA and HSIA stand for the nearest neighbour, next-nearest-neighbour,

anisotropic exchange, and single-ion anisotropy (SIA) contributions to the Hamiltonian respec-

tively. Note that in principle a Dzyaloshinskii-Moriya term should also included within this Hamil-

tonian, however this has been neglected for reasons of simplicity.

One can rewrite these individual contributions in terms of raising and lowering operators

S±j = Sxj ± iS
y
j . The effect of these operators is to increase or decrease the z-component of the

spin angular momentum. Consider some arbitrary state with angular momentum |m〉. If |m〉 is

an eigenstate of Szj and S2
j , then S±j = ~

p
s (s + 1)−m (m ± 1) |m ± 1〉.

Consequently Si ·Sj = Szi S
z
j + 1

2

“
S+
i S
−
j + S−i S

+
j

”
. The ground state of NaOsO3 is a G-type

antiferromagnet. Assume a perfectly ordered Neel state at T = 0. The spins are divided into

two sublattices A and B, which point along the positive and negative z-directions respectively.

This is defined to coincide with the c-axis for NaOsO3.

In the Holstein-Primakoff transformation, the spin raising and lowering operators are rewrit-

ten in terms of boson creation and annihilation operators:

S+
i =

s
2S
„

1− a†
i
a
i

2S

«
ai S+

j = b†j

s
2S
„

1− b†
i
b
i

2S

«
S−i = a†i

s
2S
„

1− a†
i
a
i

2S

«
S−j =

s
2S
„

1− b†
j
b
j

2S

«
bj

Szi = S − a†i ai Szj = −S + b†i bi

In the Holstein-Primakoff approximation, the square root within the spin operators is formally

expanded as a Taylor series into powers of (a†i ai=2S) and (b†i bi=2S). Expanding to zeroth order,

one obtains the linear spin wave theory (LSWT) expression. Interactions between spin waves

are neglected within the LSWT. Furthermore inclusion of the higher order terms results in a

renormalisation of the dispersion compared to the linear spin wave case.

In the LSWT, the spin operators are approximated as:

S+
i '
√

2S ai S+
j '
√

2S b†j

S−i '
√

2S a†i S−j '
√

2S bj

Szi = S − a†i ai Szj = −S + b†j bj
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There are four Os atoms (N = 4) in one unit cell of NaOsO3, located at lattice positions

r = ( 1
2 ; 0; 0), (0; 1

2 ; 0), ( 1
2 ; 0;

1
2 ) and (0; 1

2 ;
1
2 ). Rewriting Si · Sj and Szi S

z
j in terms of the spin

operators, and inserting them into Eqn. B.1, one obtains for HNN:

HNN = J
X
r∈A

`
S − a†rar

´ “
−S + b†r+mbr+m

”
+ S

“
arbr+m + a†rb

†
r+m

”
+
`
S − a†rar

´ “
−S + b†r−mbr−m

”
+ S

“
arbr−m + a†rb

†
r−m

”
+
`
S − a†rar

´ “
−S + b†r+nbr+n

”
+ S

“
arbr+n + a†rb

†
r+n

”
+
`
S − a†rar

´ “
−S + b†r−nbr−n

”
+ S

“
arbr−n + a†rb

†
r−n

”
; (B.3)

where the summation is over all A sublattice sites, and m = ( 1
2 ; 0; 0);n = (0; 0; 1

2 ). Neglecting

terms higher than second order in a(†), b(†):

HNN = −8JS2 + JS
X
r∈A

“
4a†rar + b†r+mbr+m + b†r−mbr−m + b†r+nbr+n + b†r−nbr−n

”
+ arbr+m + a†rb

†
r+m + arbr−m + a†rb

†
r−m

+ arbr+n + a†rb
†
r+n + arbr−n + a†rb

†
r−n; (B.4)

where −8JS2 = −2NJS2 is the classical ground state energy for HNN.

In a similar fashion:

HNNN = −4J2S
2 + J2S

X
r∈A

“
2a†rar + b†r+obr+o + b†r−obr−o

”
+ arbr+o + a†rb

†
r+o + arbr−o + a†rb

†
r−o (B.5)

with o = (0; 1
2 ; 0).

HA = −8Γ1S
2 + Γ1S

X
r∈A

“
4a†rar + b†r+mbr+m + b†r−mbr−m + b†r+nbr+n + b†r−nbr−n

”
−4Γ2S

2 + Γ2S
X
r∈A

“
2a†rar + b†r+obr+o + b†r−obr−o

”
; (B.6)

where the first and second lines refer to summations over nearest and next-nearest neighbours

respectively. In the limit Γ1 ≡ Γ2 this reduces to:

HA = −12ΓS2 + ΓS
X
r∈A

“
6a†rar + b†r+mbr+m + b†r−mbr−m

+ b†r+nbr+n + b†r−nbr−n + b†r+obr+o + b†r−obr−o

”
: (B.7)

Single-ion anisotropy

For NaOsO3, the Os (4b) site only possesses inversion symmetry [265]. Consequently the rhom-

bic zero-field splitting parameter E is in principle non-zero, and two acoustic magnon branches

should be observable. However given that the distortion away from the ideal octahedral case is

small (especially in terms of bond angles), then one can assume that E ≈ 0 as a first approxi-

mation. This implies DXX ≈ DYY.
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One finds:

HSIA = 4DS2 − 2DS
X
r∈A

a†rar + ES
X
r∈A

`
arar + a†ra

†
r

´
− 2DS

X
r∈B

b†r br + ES
X
r∈B

`
brbr + b†r b

†
r

´
(B.8)

Fourier transform into reciprocal space

It is convenient to convert into reciprocal space by Fourier transforming the spin operators:

a†q =

r
2
N

X
r∈A

e iq·ra†r b†q =

r
2
N

X
r∈B

e−iq·rb†r

aq =

r
2
N

X
r∈A

e−iq·rar bq =

r
2
N

X
r∈B

e iq·rbr ; (B.9)

with the inverse transforms given by:

a†r =

r
2
N

X
q

e−iq·ra†q b†r =

r
2
N

X
q

e iq·rb†q

ar =

r
2
N

X
q

e iq·raq br =

r
2
N

X
q

e−iq·rbq (B.10)

The summations over q run over N=2 wavevectors in the first Brillouin zone. We wish to sub-

stitute the Fourier transformed spin operators into Eqn. B.4. A useful relation is the Fourier

transform of the delta function:

‹q+q′;0 =
1
N

NX
j=1

e i(q+q′)·rj =

8><>:1 iff q− q′ = 0

0 iff q− q′ 6= 0
(B.11)

A useful table summarising the relevant Fourier transform identities is given in Peter Babkevich’s

thesis [266]. These identities simplify the equations dramatically, leading to:

HNN = −8J1S
2 + J1S

"
4
X
q

a†qaq + 4
X
q

b†qbq + 2

 X
q

e−iq·maqb−q +
X
q

e iq·ma†qb
†
−q

!

+ 2

 X
q

e−iq·naqb−q +
X
q

e iq·na†qb
†
−q

!#

= 4J1S
X
q

`
a†qaq + b†qbq

´
+ 2J1S

X
q

[cosı(h + l) + cosı(h − l)]
“
aqb−q + a†qb

†
−q

”
(B.12)

assuming that independent operators commute, i. e.
ˆ
a†q; bq

˜
= 0. Similarly for HNNN and the

anisotropic terms HA and HSIA:

HNNN = −4J2S
2 + 2J2S

X
q

`
a†qaq + b†qbq

´
+ 2J2S

X
q

cos (ık)
“
aqb−q + a†qb

†
−q

”
(B.13)

HA = −12ΓS2 + 6ΓS
X
q

`
a†qaq + b†qbq

´
(B.14)
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HSIA = 4DS2 − 2DS
X
q

`
a†qaq + b†qbq

´
+ ES

X
q

“
aqa−q + a†qa

†
−q + bqb−q + b†qb

†
−q

”
;

(B.15)

with the summations in the single-ion contribution divided by two to avoid double counting.

Diagonalisation of Hamiltonian

However this form of the Hamiltonian still cannot be diagonalised for two reasons. The first is that

there are terms which do not conserve the number of bosons (for example a†qa
†
q). The second

is there is a coupling between the q and −q spin waves. Fortunately there are techniques one

can employ to resolve this issue.

The total Hamiltonian H (Eqn. B.1) can be expressed in the following form:

H = H0 +
1
2

X
q

x†qHqxq (B.16)

where

xq =

0BBBBBB@
aq

bq

a†−q

b†−q

1CCCCCCA ; Hq =

0BBBBBB@
Aq Bq Cq Dq

Bq Aq Dq Cq

Cq Dq Aq Bq

Dq Cq Bq Aq

1CCCCCCA (B.17)

The elements in Hq are generated as follows. If one multiplies out x†qHqxq, then the result is a

sum of product of ladder operators and an associated coefficient Xq ∈ Hq:

x†qHqxq =
X

Xq¸
¸
k ˛

¸
k

In the case of NaOsO3, one can rewriteH using Equations B.12–B.15, with the resulting ground

state energy H0 and coefficients Xq given by:

H0 = −8J1S
2 − 4J2S

2 − 12ΓS2 + 4DS2

Aq = 2S (2J1 + J2 + 3Γ−D)

Bq = 0

Cq = 2SE

Dq = 2S [J1 (cosı (h + l) + cosı (h − l)) + J2 cosık] (B.18)

This Hamiltonian can now be diagonalised via a Bogoliubov transformation in the method de-

scribed by White [267], leading to two magnon branches ~!± (which are degenerate in the limit

E → 0), with dispersion relations given by:

~!± =
h
(Aq ± Bq)2 − (Cq ±Dq)2

i1/2
: (B.19)
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