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Abstract

This thesis investigated the role of one important acoustic feature, periodicity, in the

perception of speech. In the context of this thesis, periodicity denotes that a speech

sound is voiced, giving rise to a sonorous sound quality sharply opposed to that

of noisy unvoiced sounds. In a series of behavioural and electroencephalography

(EEG) experiments, it was tested how the presence and absence of periodicity in

both target speech and background noise affects the ability to understand speech,

and its cortical representation. Firstly, in quiet listening conditions, speech with a

natural amount of periodicity and completely aperiodic speech were equally intel-

ligible, while completely periodic speech was much harder to understand. In the

presence of a masker, however, periodicity in the target speech mattered little. In

contrast, listeners substantially benefitted from periodicity in the masker and this so-

called masker-periodicity benefit (MPB) was about twice as large as the fluctuating-

masker benefit (FMB) obtained from masker amplitude modulations. Next, corti-

cal EEG responses to the same three target speech conditions were recorded. In

an attempt to isolate effects of periodicity and intelligibility, the trials were sorted

according to the correctness of the listeners’ spoken responses. More periodicity

rendered the event-related potentials more negative during the first second after sen-

tence onset, while a slow negativity was observed when the sentences were more

intelligible. Additionally, EEG alpha power (7–10 Hz) was markedly increased

before the least intelligible sentences. This finding is taken to indicate that the lis-

teners have not been fully focussed on the task before these trials. The same EEG

data were also analysed in the frequency domain, which revealed a distinct response

pattern, with more theta power (5–6.3 Hz) and a trend for less beta power (11–18

Hz), in the fully periodic condition, but again no differences between the other two
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conditions. This pattern may indicate that the subjects internally rehearsed the sen-

tences in the periodic condition before they verbally responded. Crucially, EEG

power in the delta range (1.7–2.7 Hz) was substantially increased during the second

half of intelligible sentences, when compared to their unintelligible counterparts.

Lastly, effects of periodicity in the perception of speech in noise were examined in

simulations of cochlear implants (CIs). Although both were substantially reduced,

the MPB was still about twice as large as the FMB, highlighting the robustness of

periodicity cues, even with the limited access to spectral information provided by

simulated CIs. On the other hand, the larger absolute reduction of the MBP com-

pared to normal-hearing also suggests that the inability to exploit periodicity cues

may be an even more important factor in explaining the poor performance of CI

users than the inability to benefit from masker fluctuations.
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rianne Cabrera, Axelle Calcus, Gaston Hilkhuysen, Outi Tuomainen, Bronwen

Evans, and Paul Iverson. Finally, I thank the Roehampton football gang for all

the kicking and rushing over the past few years.



Contents

1 General introduction 11

1.1 Periodicity: a disambiguation and introduction . . . . . . . . . . . . 11

1.2 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 The role of periodicity in perceiving speech in quiet and in

background noise 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Experiment 1. Short introduction and rationale . . . . . . . . . . . 23

2.3 Experiment 1. Methods . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Experiment 1. Results and discussion . . . . . . . . . . . . . . . . 27

2.5 Experiment 2. Short introduction and rationale . . . . . . . . . . . 29

2.6 Experiment 2. Methods . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Experiment 2. Results and discussion . . . . . . . . . . . . . . . . 34

2.8 Experiment 3. Short introduction and rationale . . . . . . . . . . . 40

2.9 Experiment 3. Methods . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10 Experiment 3. Results and discussion . . . . . . . . . . . . . . . . 42

2.11 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.12 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . 49

3 Effects of acoustic periodicity, intelligibility, and pre-stimulus

alpha power on the event-related potentials in response to speech 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



Contents 8

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Effects of acoustic periodicity and intelligibility on the neural

oscillations in response to speech 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 The role of periodicity in perceiving speech in background noise

with simulated cochlear implants 92

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 General Discussion 105

6.1 Summary of the main results and their implications . . . . . . . . . 105

6.2 Psychophysical data . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Electrophysiological data . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 References 114



List of Figures

2.1 Experiments 1–3. Target speech conditions . . . . . . . . . . . . . 25

2.2 Experiment 1. Proportion correct scores . . . . . . . . . . . . . . . 29

2.3 Experiments 2 and 3. Background maskers . . . . . . . . . . . . . 33

2.4 Experiments 2 and 3. Speech reception thresholds . . . . . . . . . . 35

2.5 Experiments 2 and 3. Fluctuating-masker benefits . . . . . . . . . . 36

2.6 Experiments 2 and 3. Masker-periodicity benefits . . . . . . . . . . 37

2.7 Experiment 2. Psychometric functions . . . . . . . . . . . . . . . . 39

2.8 Experiment 3. Psychometric functions . . . . . . . . . . . . . . . . 45

3.1 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Behavioural data . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Intelligibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Pre-stimulus alpha power . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Behavioural data . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Periodicity: pairwise comparisons . . . . . . . . . . . . . . . . . . 83

4.5 Periodicity: post-hoc . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Intelligibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Intelligibility: pairwise comparisons . . . . . . . . . . . . . . . . . 86

4.8 Intelligibility: acoustic characteristics . . . . . . . . . . . . . . . . 87

5.1 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



List of Figures 10

5.3 Speech reception thresholds . . . . . . . . . . . . . . . . . . . . . 99

5.4 Fluctuating-masker benefits . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Masker-periodicity benefits . . . . . . . . . . . . . . . . . . . . . . 101

5.6 F0 contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Modulation spectrograms . . . . . . . . . . . . . . . . . . . . . . . 103



Chapter 1

General introduction

1.1 Periodicity: a disambiguation and introduction

Periodicity, the repetition of events at regular intervals, is ubiquitous in both nature

and society. Examples are bodily functions, the seasons of the year, political elec-

tions, sports events, and many more. Even within the field of acoustics, there are

numerous examples for things that can recur periodically, such as waveforms, am-

plitude and frequency modulations, phase angles, etcetera. Consequently, the vague

term periodicity requires clarification: In the context of the current thesis, periodic-

ity solely means that a given sound has a pitch in the range of the human voice. In

other words, periodicity here denotes that speech sounds are voiced as opposed to

unvoiced, that is aperiodic.

The alternation of periodic and aperiodic segments is a crucial acoustic fea-

ture of speech across languages. However, its role in the perception of speech in

quiet and in background noise has not been thoroughly investigated and remains

poorly understood. One reason for this is that the most common way to describe

the temporal properties of speech sounds, which focusses on the signal processing

taking place in the inner ear, only distinguishes between slow envelope modula-

tions and faster modulations, referred to as temporal fine-structure (e.g. Lorenzi

et al., 2006; Moore, 2008). However, a threefold distinction that emphasises the

linguistic aspects of temporal information in speech has also been proposed and ex-

plicitly includes periodicity information as an additional factor (Rosen, 1992). As

laid out in that paper, (quasi-)periodic fluctuations caused by the vibrations of the

vocal folds (at rates between about 50–500 Hz) are critical for transmitting prosodic
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features and phonetic manner information. Furthermore, the obvious acoustic con-

trast between sonorous periodic speech sounds and noisy aperiodic ones (with much

higher fluctuation rates in the range of 5–10 kHz) is highlighted. Importantly,

the most fundamental limitation of current cochlear implants (CIs) is that spectral

cues, and voice pitch information in particular, are hardly available to the listener

(e.g. Shannon et al., 1995; Wilson and Dorman, 2008). This deficit is thought to

be the main reason for the limited speech recognition performance of CI users,

particularly in noisy environments. Several studies have attempted to improve

the transmission of periodicity cues either by changing the devices themselves

(e.g. Green et al., 2004; Green et al., 2005) or by exploiting residual hearing at

low frequencies with combined acoustic and electric hearing (reviewed in Turner et

al., 2008).

As sounds with a pitch tend to be perceived as separate auditory streams (e.g.

Bregman, 1990; Oxenham, 2008), the main hypothesis of this thesis is that period-

icity should aid the segregation of target speech and masker. Secondly, this thesis

is based on the idea that periodicity is such a central feature of human speech that

it should not be overlooked when investigating its neural correlates. In order to test

these two assumptions, synthesised speech and background noises are introduced

that both vary regarding their amount of periodicity.

1.2 Theoretical background

1.2.1 Psychophysical studies

An abundance of behavioural studies investigating the perception of speech in noise

has focussed on how small gaps or amplitude fluctuations of a background noise af-

fect the ability of different groups of listeners to understand speech (see section 2.1

for a selection). The central finding of these studies was that any form of hearing

impairment impedes the ability to benefit from these masker interruptions. One

hypothesis, which has in part motivated the current work, is that the access to tem-

poral fine-structure and periodicity information is crucial in order to benefit from

such masker fluctuations (e.g. Hopkins et al., 2008; Hopkins and Moore, 2009;

Lorenzi et al., 2006; Moore, 2008). However, this claim has been a topic of de-
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bate (Moore, 2012) and one of the few studies (Freyman et al., 2012) explicitly

focussing on the contrast of periodicity and aperiodicity has found no support for it.

In this study, aperiodic whispered speech and unprocessed speech were presented

in steady or modulated speech-shaped noise and the fluctuating-masker benefit did

not substantially differ across the two target speech conditions.

Other previous work that resembles the one presented in the current thesis to

some extent, is the series of studies by de Cheveigné and colleagues (de Cheveigné,

1993, 1998; de Cheveigné et al., 1995; de Cheveigné et al., 1997a; de Cheveigné

et al., 1997b), leading to the formulation of the theory of harmonic cancellation.

Using artificial vowels that were presented concurrently, it was found that it was

easier to correctly perceive the target vowel if the other one was harmonic, that is

periodic. On the other hand, it did not affect performance if the target vowel itself

was harmonic or inharmonic. This effect was also observed when whole sentences

and harmonic or inharmonic complex tone maskers with a constant fundamental

frequency were used (Deroche and Culling, 2011). In contrast to the these studies,

all the materials used in this thesis will be derived from recordings of real speech,

with the exception of the maskers based on white noise, enabling a more realistic

investigation.

Previous work has also shown that periodic maskers are generally less effec-

tive than aperiodic ones, which has been attributed to the fact that they allow the

listeners to spectrally glimpse portions of the target speech in between the lower

masker harmonics that are resolved in the auditory periphery (Deroche et al., 2014a,

2014b). Lastly, recent work by Stone and colleagues (Stone et al., 2011; Stone et

al., 2012) has demonstrated that the random amplitude modulations of aperiodic

maskers, such as speech-shaped noise, are the primary reason for why the mask

a competing speech signal so effectively. This has challenged the traditional view

that a masker either interferes with the target speech because of an overlap of spec-

tral energy or, in the case of a speech masker, its linguistic information (Brungart,

2001). Note that even though the term ‘steady’ noise is thus imprecise, it used in

the current thesis to be consistent with earlier research.
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In summary, the current thesis seeks to add to the established finding that

masker periodicity aids its segregation from a target speech signal, by using more

realistic periodic maskers with a dynamically varying pitch contour derived from

speech. Secondly, it will be tested whether the intelligibility of a target speech sig-

nal embedded in background noise indeed does not depend on whether it is periodic

or aperiodic, particularly when the masker is amplitude modulated.

1.2.2 Neurophysiological studies

Magneto- and electroencephalographic (M/EEG) signals recorded from the human

scalp have traditionally been analysed in the time domain, by comparing the aver-

age waveforms of neural activity across experimental conditions. In the auditory

modality, investigations of these event-related responses have mostly focussed on

the period early after stimulus onset (~0–300 ms; e.g. Picton et al., 1974; Pratt,

2011), where the responses are dominated by the acoustic properties of the stim-

uli. Regarding the effect of periodicity, it has been found that non-speech sounds

that possess a pitch generally lead to greater response amplitudes (e.g. Chait et al.,

2006; Gutschalk et al., 2002; Gutschalk et al., 2004). Importantly, these studies

have shown that this difference is not only present after stimulus onset but can per-

sist for several hundred milliseconds. In line with this, a series of studies by Yrttiaho

and colleagues (Yrttiaho et al., 2008; Yrttiaho et al., 2010; Yrttiaho et al., 2011) has

shown that auditory cortical responses to periodic vowels are stronger and emanate

from a more anterior cortical source, when compared to aperiodic versions of these.

However, effects of periodicity have not been examined over the course of

whole sentences and the same holds true for effects of intelligibility. Regarding the

latter, a particular problem is that the intelligibility of the speech materials is usu-

ally lowered by an acoustic degradation of them, meaning that these two factors are

hard to disentangle (e.g. Becker et al., 2013; Ding et al., 2014; Obleser and Kotz,

2011; Wöstmann et al., 2015b). In the current thesis, it will be attempted to over-

come this limitation by lowering the intelligibility of the stimuli and then sorting

the individual trials according to the correctness of the listeners’ spoken responses.
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It is hypothesised that after controlling for systematic acoustic confounds, slow

negative potentials, which are thought to reflect domain-general cognitive process-

ing such as increased working-memory load and attention (Birbaumer et al., 1990;

He and Raichle, 2009; Wöstmann et al., 2015b), will be larger in response to more

intelligible speech.

In recent years, the focus of neurophysiological investigations of speech per-

ception has increasingly shifted towards more complex time-frequency analyses of

M/EEG data (Giraud and Poeppel, 2012; Lakatos et al., 2016; Weisz and Obleser,

2014; Wöstmann et al., 2016). Depending on whether the single-trial waveforms

are averaged before or after the time-frequency transform, such analyses allow the

separate estimation of evoked neural activity, which is time- and phase-locked to a

given stimulus event and thought to be mainly driven by the stimulus in a bottom-

up fashion, and total neural activity, time- but not necessarily phase-locked and

taken to also reflect cognitive processes emanating from the cortex in a top-down

manner, across frequency (Tallon-Baudry and Bertrand, 1999). In contrast to tradi-

tional waveform analyses, where non-phase-locked activity is mostly cancelled out

during the averaging process, thereby isolating the evoked response, this enables

a more fine-grained analysis of the data. When measured at the scalp, a power

increase in a given neural frequency band indicates that the firing pattern of a large

number of neurons temporarily synchronises, resulting in a periodic fluctuation of

neural excitability, a so-called neural oscillation (e.g. Buzsáki and Draguhn, 2004;

Klimesch, 2012).

Accordingly, two lines of research have emerged, one investigating how tem-

poral stimulus properties affect the evoked neural response, the other focussing

on attention-related processing, dominated by the induced response. Firstly, it

has been shown that low-frequency neural oscillations, particularly in the theta

band (~4–7 Hz), entrain to the broadband amplitude envelope of a speech signal

(for reviews see Giraud and Poeppel, 2012; Peelle and Davis, 2012), which has

the strongest amplitude modulations in this frequency range, and it has even been

claimed that this effect is stronger if the speech is intelligible (Peelle et al., 2013).
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Secondly, several studies have investigated modulations of alpha power (~7–13 Hz)

in speech perception experiments. In demanding tasks, such as listening to speech

in background noise, alpha power has been shown to increase (e.g. Obleser et al.,

2012; Wilsch et al., 2014; Wöstmann et al., 2015a), which has been explained with

the notion that high alpha activity inhibits task-irrelevant brain regions (Klimesch,

2007; Jensen and Mazaheri, 2010; Strauß et al., 2014b). Strong support for this

idea also comes from studies showing that when subjects are asked to attend speech

played to one ear and ignore sounds played to the other, alpha power increases

in the ipsilateral side of the brain, relative to the contralateral side (e.g. Kerlin et

al., 2010; Wöstmann et al., 2016). Importantly, recent evidence has shown that

increased alpha power goes along with decreased envelope entrainment, suggesting

that these two neural mechanisms complement each other (Lakatos et al., 2016;

Wöstmann et al., 2016). On the other hand, alpha power in response to speech

presented in quiet was found to be suppressed, the less degraded and consequently

more intelligible it was (Becker et al., 2013; Obleser and Weisz, 2012). However,

as previously mentioned, these studies are somewhat confounded by the fact that

acoustic characteristics and intelligibility of the stimuli varied together.

Furthermore, low alpha power preceding stimulus presentation has repeatedly

been shown to be a predictor of good performance in visual and somatosensory de-

tection tasks (e.g. Hanslmayr, et al., 2007; Romei et al., 2010; Schubert et al., 2009;

Van Dijk et al., 2008), which is in line with the idea that decreased power in the

lower alpha band (7–10 Hz) is associated with heightened alertness and expectancy

(Klimesch, 1999). However, it has not yet been tested whether the intelligibility of

whole sentences is similarly affected by the amount of pre-stimulus alpha power.

Apart from the alpha band, however, it is to date largely unknown how the

total neural response across frequency is affected by the presentation of speech and

the current thesis seeks to explore this further. In particular, and akin to the time

domain, the time-frequency analyses in this thesis will focus on slow changes of

neural excitability, corresponding to the delta band (1–4 Hz), that are hypothesised

to be larger when the speech is more intelligible. Responses in this frequency band
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have so far not received much attention, in part because their analysis requires rela-

tively long stimuli durations. To date, auditory studies reporting effects in the delta

range have mostly been concerned with how temporal regularities of the stimuli

lead to neural entrainment (Lakatos et al., 2005; Lakatos et al., 2016; Ding et al.,

2014; Ding et al., 2016) or how the relationship of pre-stimulus delta power and

phase affects the subsequent detection of tones (Herrmann et al., 2016). However,

it has not been examined how delta activity changes in response to more or less

intelligible speech, although it has been suggested that increased delta power in the

frontal cortex may be an indicator of concentration and attention (Harmony, 2013).

1.3 Chapter overview

Chapter 2 functions as the base of this thesis and explores how the presence and

absence of periodicity in both target speech and background masker affects speech

perception in normal-hearing listeners. Three behavioural experiments are reported,

the first of which examines how performance in quiet listening conditions changes

as the amount of periodiocity in the stimulus sentences varies. A new channel

vocoder software is introduced that allows to either use white noise as source

excitation (i.e. typical noise-vocoding) or a pulse train that follows the natural F0

contour of the recordings. These two sound sources are then employed to synthesise

speech that is either completely aperiodic, preserves the natural mix of periodicity

and aperiodicity, or is completely periodic. Additionally, the number of channels

in the vocoder is varied over a wide range. In experiments 2 and 3, the same three

types of target speech are presented in the presence of different background maskers

that also vary regarding their periodicity and, additionally, have either steady-state

or 10-Hz modulated envelopes. The results of experiment 1 are used to identify

target speech conditions with equal intelligibility rates in quiet. Speech reception

thresholds (SRTs) are measured for all combinations of targets and maskers to es-

timate effects of periodicity and to test whether the ability to benefit from masker

envelope modulations depends on the presence of periodicity.
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Chapter 3 extends the first experiment in the previous chapter by using the

same stimuli, but recording the continuous electroencephalogram (EEG) along

with the spoken responses. The aim of this experiment is twofold: Firstly, it ex-

amines how the amount of periodicity in the target speech is reflected in cortical

EEG signals analysed in the time domain. Secondly, it attempts to identify effects

of intelligibility in the same evoked EEG signals. In order to achieve this, the in-

dividual trials are sorted according to their intelligibility, allowing to analyse trials

with different amounts of periodicity but similar intelligibility, and vice versa. In

addition, it is tested whether the magnitude of alpha power before sentence onset

affects the ability to correctly repeat it. This analysis builds upon findings in the

visual domain that have associated decreased pre-stimulus alpha power with better

task performance, and the idea that pre-stimulus power in the lower alpha band is

negatively correlated with attention.

Chapter 4 is based on the same data and paradigm as chapter 3, but here the

EEG signals are analysed in the frequency domain. The aim of this approach is

to also consider non-phase locked (i.e. induced) changes in neural activity, which

are lost when EEG signals are averaged in the time domain. As whole sentences

are used as stimulus materials, the individual trials are several seconds long, which

allows to analyse neural frequencies as low as 1 Hz. This distinguishes this study

from earlier ones, but given that the meaning of a sentence unfolds over time, slow

power changes in the delta range (1–4 Hz) are hypothesised to be particularly im-

portant when investigating speech intelligibility.

Chapter 5 investigates the role of periodicity in perceiving speech in noise

after simulated CI signal processing. Current CIs provide the listener with very

limited access to spectral information and this behavioural experiment examines

whether temporal cues are sufficient to benefit from periodicity when attempting to

segregate target speech and masker. The materials used are similar to those intro-

duced in chapter 2, but in addition maskers with envelopes that are the inverse of

a given target sentence envelope are used. The benefit obtained from masker am-

plitude modulations has repeatedly been shown to be very small in CI users and CI



1.3. Chapter overview 19

simulations. By maximising opportunities to glimpse portions of the target speech,

these maskers are intended to show whether this deficit is due to the susceptibility

to energetic masking alone or if other factors need to be considered as well.



Chapter 2

The role of periodicity in perceiving speech in quiet and in

background noise1

2.1 Introduction

The production of any speech sound can be described by the interplay of a sound

source and a vocal tract filter (e.g. Fant, 1960). Normally, either the periodically vi-

brating vocal cords (voiced speech) or aperiodic noise arising from constrictions in

the vocal tract (voiceless speech) serve as source, although the two may occasionally

overlap, such as in voiced fricatives. Clearly, the regular periodic pattern of voiced

sounds stands in sharp acoustic contrast to noisy unvoiced sounds, and this contrast

is also linguistically relevant since only the complex tones of voiced speech pos-

sess a pitch and thus allow the unambiguous signaling of intonation (Rosen, 1992).

The component tones of voiced speech sounds stand in a harmonic relation and are

not perceived individually. ‘All components point to a single source and meaning’

(Rasch and Plomp, 1999, p. 95) and hence harmonicity can be said to add coher-

ence to a sound stream (e.g. Oxenham, 2008). It thus seems reasonable to posit

that periodicity in both target and masker helps to segregate a speech target from a

background noise or an interfering talker.

On the other hand, de Cheveigné and colleagues (de Cheveigné et al., 1995;

de Cheveigné et al., 1997b) found that listeners benefit from harmonicity in the

masker, but not the target speech. In these studies artificial steady-state vowels

were used as both target and masker. Inharmonic vowels were much more effective

1This chapter has been published as: Steinmetzger, K. and Rosen, S. (2015). The role of peri-
odicity in perceiving speech in quiet and in background noise. Journal of the Acoustical Society of
America 138, 3586–3599.
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in masking the target vowel than harmonic ones, while harmonicity of the target

vowel did not significantly affect performance. The results were taken to show that

the auditory system seems to be able to cancel a harmonic masker out of the signal

mixture. This so-called harmonic cancellation was also observed when unprocessed

IEEE sentence materials were used as targets and the harmonicity of complex tone

maskers was either blurred by modulating the masker F0 or further compromised by

additionally reverberating the maskers (Deroche and Culling, 2011). Furthermore,

Deroche and colleagues also provided evidence for spectral glimpsing in between

resolved masker harmonics as an additional mechanism explaining the masking re-

lease found with harmonic complex maskers (Deroche et al., 2014a, 2014b). In

sum, these findings emphasize the importance of periodicity in the masker, but not

the target speech. However, these studies have computationally manipulated the

harmonicity of the materials and so have not investigated the role of periodicity by

contrasting voiced and unvoiced sounds as they occur in natural speech.

Although a lot of research in recent years has been devoted to the study of

speech perception in noise and in particular the ability of listeners to ‘glimpse’

small sections of target speech in the troughs of an amplitude-modulated masker

(Miller and Licklider, 1950), the role of periodicity information in this context has

not been investigated thoroughly. It has been claimed that the ability to perceive the

temporal fine-structure (TFS) in a target speech signal (i.e. any temporal informa-

tion in speech, including periodicity information, apart from the slower envelope

modulations) is essential in order to benefit from the dips of a fluctuating masker

(Gnansia et al., 2009; Hopkins and Moore, 2009; Hopkins et al., 2008; Lorenzi et

al., 2006). However, it is unclear to date whether TFS information plays a special

role in glimpsing or is just as important for steady maskers (Moore, 2012).

Generally, normal-hearing listeners have been found to show rather large

benefits in response to fluctuating maskers such as amplitude-modulated noise

(e.g. Festen and Plomp, 1990; Bacon et al., 1998; Nelson et al., 2003; Fastl and

Zwicker, 2007, p. 352) or interfering talkers (e.g. Festen and Plomp, 1990; Culling-

ton and Zeng, 2008). Studies with hearing-impaired subjects (Festen and Plomp,
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1990; Bacon et al., 1998; Peters et al., 1998) or spectrally degraded stimuli (Peters

et al., 1998; Oxenham and Simonson, 2009) on the other hand, tend to find reduced

fluctuating masker-benefits (FMBs), while studies with cochlear implant (CI) users

and CI simulations find hardly any FMB (Nelson et al., 2003; Fastl and Zwicker,

2007, p. 352; Cullington and Zeng, 2008), or even a worsening of performance

(referred to as ‘modulation interference’; Stickney et al., 2004; Kwon et al., 2012).

However, an important confound that has been pointed out by Bernstein and

Grant (2009) is that the FMB is generally smaller at higher signal-to-noise ratios

(SNRs). Freyman et al. (2012) illustrate this point with the typical shape of the

psychometric functions, which are steeper for steady as compared to fluctuating

maskers but converge at higher SNRs. Since any form of hearing-impairment or

stimulus degradation will lead to increased SNRs generally, the ability to glimpse

in these contexts might have been significantly underestimated in previous experi-

ments.

Few studies to date have explicitly investigated the role of periodicity in the

perception of speech in noise. Freyman et al. (2012) compared unprocessed speech

to naturally produced ‘whispered’ speech and found no substantial differences in

terms of the FMB obtained in steady and fluctuating speech-shaped noise, although

the intelligibility of whispered speech was much lower. The authors concluded

that for normal-hearing listeners, periodicity in the target speech has little effect

on the ability to glimpse. However, due to the acoustic distinctiveness of whis-

pered speech, which includes an altered consonant-vowel intensity ratio, it remains

unclear whether the role of periodicity is similarly limited in normally articulated

speech. Vestergaard and Patterson (2009), using artificially created ‘whispered’

speech, report that only the absence of periodicity cues in both target and masker

(i.e. a combination of whispered targets and maskers) negatively affects perfor-

mance. Thirdly, a study by Rosen et al. (2013) has recently compared speech re-

ception thresholds (SRTs) of unprocessed and noise-vocoded target speech obtained

in the presence of multi-talker babble, noise-vocoded babble, and speech-modulated

noise. The most effective masker was in both cases the one that most closely re-



2.2. Experiment 1. Short introduction and rationale 23

sembled the target speech, which again argues against the hypothesis that periodic-

ity helps to segregate competing speech signals. The present study attempted to go

beyond previous work by systematically investigating the role of periodicity using

normally articulated speech only. Possible confounding factors such as the spectral

resolution and intelligibility of the target speech were controlled for and informa-

tional masking effects were ruled out by using non-speech maskers only.

The amount of periodicity in the target speech was varied using different types

of vocoders. While unvoiced speech can be reproduced adequately using a noise-

vocoder that uses noise as source (Shannon et al., 1995), vocoders with periodic

sources have been used less often in the literature (Faulkner et al., 2000). However,

as originally described by Dudley (1939) and more recently by Loizou (2013, p.

54), voiced speech can be simulated efficiently with a vocoder using a pulse train

carrier whose frequency follows the natural F0 contour of the original speech. The

effects of periodicity in the masker were assessed by comparing aperiodic speech-

shaped noise maskers to harmonic complex maskers with dynamically varying F0-

contours based on real speech.

Experiment 1 tested whether the intelligibility of speech presented in quiet is

affected by the amount of periodicity. In experiments 2 and 3 the amount of period-

icity in both target and masker was varied and SRTs were measured in steady and

fluctuating maskers. Experiments 2 and 3 differed only regarding the intelligibility

of the target speech materials in quiet, so that the results can be presented in the

same figures.

2.2 Experiment 1. Short introduction and rationale

Experiment 1 investigated the role of periodicity in the perception of speech in quiet

testing conditions by parametrically varying the amount of periodicity in the target

speech along with the spectral resolution (i.e. the number of bands in the vocoder).

Aperiodic noise-vocoded speech has been used extensively in simulations of

cochlear implants (e.g. Shannon et al., 1995; Fu and Nogaki, 2005; Whitmal III et

al., 2007) and has become a popular tool for reducing the intelligibility of speech

signals in neuroscience (e.g. Scott et al., 2000; Obleser and Weisz, 2012). How-
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ever, it has never been examined whether the absence of periodicity itself leads to

a decrease in intelligibility. More generally, despite its salience it is unclear to date

whether periodicity information is a beneficial cue in the absence of competing talk-

ers or maskers.

In addition to completely unvoiced noise-vocoded speech and vocoded speech

with a natural mix of voiced and unvoiced sections, the current experiment included

completely voiced vocoded speech. The latter condition sounds very unnatural and

is expected to be less intelligible in quiet. However, since periodicity is assumed to

aid stream segregation, this condition will be of particular interest in the presence of

background noise (experiments 2 and 3). An additional purpose of the current ex-

periment was to identify conditions with similar intelligibility rates across the three

processing conditions.

Experiment 1 consisted of 18 processed speech conditions as well as unpro-

cessed speech as an additional condition. Participants were presented with noise-

vocoded speech (henceforth referred to as the Nx), Dudley-vocoded speech (Dud-

ley, 1939) with a natural mix of periodicity and aperiodicity (FxNx), and completely

periodic F0-vocoded speech (Fx) with an F0 contour interpolated through unvoiced

segments. These three types of stimuli also varied in the number of frequency bands

used in their synthesis (6, 7, 8, 10, 12, or 16), and hence their intelligibility. An ex-

ample sentence with 8 bands for all three processing conditions is shown in Fig. 2.1,

along with the unprocessed version of the same sentence.

2.3 Experiment 1. Methods

2.3.1 Participants

Eleven normal-hearing listeners (six females) were tested. Their ages ranged from

19 to 35 with a mean of 27.3 years. All participants were native speakers of British

English and had audiometric thresholds of less than 20 dB HL at frequencies be-

tween 125 and 8000 Hz.
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Figure 2.1: Target speech conditions. Waveforms, wide-band spectrograms, and F0 con-
tours for one example sentence (Either mud or dust are found at all times.) processed
to have A) an aperiodic (noise-vocoding, Nx), B) mixed (Dudley-vocoding, FxNx), or D)
periodic source excitation (F0-vocoding, Fx). Panel C) shows the unprocessed version of
the same sentence for the purpose of comparison. The three processed sentences were all
vocoded with eight frequency bands.

2.3.2 Stimuli

The targets used in this experiment were recordings of the IEEE sentences

(Rothauser et al., 1969) spoken by an adult male Southern British English talker

with a mean F0 of 121.5 Hz that were normalised to a common root-mean-square

(RMS) level. The IEEE sentence corpus consists of 72 lists with 10 sentences each

and is characterised by similar phonetic content across the lists and overall low

semantic predictability. Every sentence contains five key words.

2.3.3 Signal processing

All stimulus materials were processed prior to the experiment using a channel

vocoder implemented in MATLAB R2012b (Mathworks, Natick, MA). For all three

processing conditions (Nx, FxNx, and Fx) the original recordings of the IEEE sen-
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tences were first band-pass filtered into 6, 7, 8, 10, 12 or 16 bands using zero phase-

shift sixth-order Butterworth filters. The filter spacing was based on equal basilar

membrane distance (Greenwood, 1990) across a frequency range of 0.1 to 11 kHz.

The output of each filter was full-wave rectified and low-pass filtered at 30 Hz (zero

phase-shift fourth-order Butterworth) in order to extract the amplitude envelope.

The low cutoff value was chosen in order to ensure that no temporal periodicity

cues were present. The final waveforms were low-pass filtered at 10 kHz (sixth-

order elliptic).

For the noise-vocoded condition (Nx), the envelope from each band was then

multiplied with a wide-band noise carrier. The resulting signal was again band-pass

filtered using the same sixth-order Butterworth filters as in the first stage of the pro-

cess. Before the signal was summed together, the output of each band was adjusted

to the same RMS level as found in the original bands. For the Dudley-vocoded con-

dition (FxNx), the envelope from each band was multiplied with either a wide-band

noise carrier where the original speech was unvoiced, or a pulse train following the

natural F0 contour when the original speech was voiced.

The F0 contours of each sentence were generated using ProsodyPro version

4.3 (Xu, 2013) implemented in PRAAT (Boersma and Weenink, 2013). The F0 ex-

traction sampling rate was set to 100 Hz. The results were hand-corrected and the

resulting values used to generate the pulse trains for the vocoder software described

above. Based on these pulse files, additional F0 contours were created by interpo-

lation through unvoiced sections and periods of silence in order to synthesise fully

periodic vocoded speech (Fx). The interpolation was done using piecewise cubic

Hermite interpolation in logarithmic frequency. The start and end points of each

contour were anchored to the median frequency of the sentence.

2.3.4 Procedure

Every participant listened to two full IEEE lists (i.e. 20 sentences) per processing

condition and was asked to repeat as many words as possible after every sentence.

The verbal responses were logged by the experimenter before the next sentence was

played (in terms of which of the roots of the 5 key words in each sentence were
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correctly identified, so-called loose key word scoring). No feedback was given fol-

lowing the responses. The presentation and logging of the responses was carried out

using locally developed MATLAB software. The experiment consisted of 19 condi-

tions (3 vocoding conditions x 6 degrees of spectral resolution, and one additional

condition with unprocessed target speech). Hence every participant was presented

with 380 sentences in total. The order of the 19 processing conditions was fully

randomised using a Latin Square design and the order of the IEEE lists was also

randomised. Before being tested the subjects were familiarised with the materials

by listening to 2 example sentences of each of the 18 processed conditions. Here

every sentence was directly followed by its unprocessed counterpart. The total test-

ing time, including hearing screening and familiarization, was about 1 hour and

the subjects were allowed to take breaks whenever they wished to. The experiment

took place in a double-walled sound-attenuating booth, with the computer signal be-

ing fed through the wall onto a separate monitor. The stimuli were converted with

24-bit resolution and a sampling rate of 22.05 kHz using an RME Babyface sound-

card (Haimhausen, Germany) and presented over Sennheiser HD650 headphones

(Wedemark, Germany) at a level of about 80 dB SPL over a frequency range of

75 Hz to 10.0 kHz as measured on an artificial ear (type 4153, Brüel & Kjær Sound

& Vibration Measurement A/S, Nærum, Denmark).

2.4 Experiment 1. Results and discussion

The proportion correct scores obtained are shown in Fig. 2.2. The Dudley-vocoded

condition (FxNx) with a natural mix of periodicity and aperiodicity led to the high-

est percentage of correctly repeated key words but is closely followed by the noise-

vocoded (Nx) condition, irrespective of the number of frequency bands. Fully peri-

odic F0-vocoded speech (Fx) on the other hand was found to result in much lower

intelligibility rates, with only 84% correctly repeated key words even with as much

spectral detail as 16 frequency bands. Unprocessed speech was found to have an

almost perfect intelligibility level with 99.6% correct key words, proving that the

IEEE materials as such do not impose excessive memory demands despite their

complexity.
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The data were analysed using a generalised linear mixed effects model with

a logistic link function that included target periodicity and spectral resolution as

fixed factors and subjects as a random factor. The main effects of target periodicity

[F(2,180) = 114.0, p < 0.001] and spectral resolution [F(5,180) = 113.5, p < 0.001]

were found to be highly significant, but there was no interaction of the two

[F(10,180) = 0.5, p = 0.89]. The fixed coefficients furthermore showed that perfor-

mance with F0-vocoded speech (-1.5, p < 0.001), but not Dudley-vocoded speech

(0.4, p = 0.24), was significantly different from performance with noise-vocoded

speech.

The fact that performance with noise-vocoded speech was not significantly

worse than that with Dudley-vocoded speech suggests that the absence of any pe-

riodicity information, and hence also any prosody cues, is of minor importance in

quiet testing conditions. Although voice pitch information is not essential for un-

derstanding English declarative sentences, it is still surprising that a cue as salient as

periodicity transmits mostly redundant information. However, despite some impor-

tant acoustic differences, noise-vocoded speech to some extent resembles whispered

speech. Hence, listeners are likely to be at least implicitly familiar with this type of

speech. Noise-vocoded speech also enables the listeners to use weaker correlated

cues like intensity to distinguish between voiced and unvoiced consonants. Addi-

tionally, the spectral shape, which is well coded in a vocoder, gives strong cues to

voicing, even in the absence of periodicity. Voiced speech is heavily weighted to-

wards low frequencies, while voiceless excitation is typically weighted to the high

frequencies.

The unnatural periodic energy in the F0-vocoded condition, especially in the

frequency region above 4 kHz, on the other hand, might have substantially inter-

fered with the listener’s ability to correctly identify the individual sounds of the

presented sentences. Since periodicity is such a dominant cue, weaker cues like in-

tensity differences may not have been noticed. Similarly, for unvoiced fricatives like

/s/ and /S/, for example, aperiodic energy at high frequencies is missing as a cue for

identification and replaced by periodic energy in the F0-vocoded condition, mak-
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Figure 2.2: Proportion correct scores in experiment 1 plotted as a function of the number of
frequency bands for the three different vocoding conditions: Noise-vocoding (Nx, aperiodic
source), Dudley-vocoding (FxNx, mixed source), and F0-vocoding (Fx, periodic source).
The score for unprocessed speech is included for the purpose of comparison. The error bars
show the standard error of the mean.

ing the information transmitted contradictory. In addition, listeners are confronted

with ‘false’ intonation contours due to the interpolation of the natural F0-contours,

which is likely to have lowered intelligibility rates even further.

Taken together, the results of experiment 1 show that in quiet testing condi-

tions listeners did not benefit from natural periodicity information, while additional

unnatural periodicity cues lead to substantially poorer speech intelligibility rates.

2.5 Experiment 2. Short introduction and rationale

Experiment 2 presented the three classes of target speech described in experiment 1

in a variety of background noises. The maskers used were either aperiodic speech-

shaped noises or fully periodic harmonic complexes with a dynamically varying F0

contour (similar to those used in Green and Rosen, 2013). Both types of maskers

were presented in a steady or 10 Hz sinusoidally amplitude-modulated version. This

design allowed for a systematic variation of periodicity in both target and masker,

and also allowed the examination of the role of amplitude fluctuations in the masker.
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Performance was assessed via an estimation of the speech reception threshold

(SRT, Plomp and Mimpen, 1979). Importantly, recent studies have emphasised that

the difference in SRTs between conditions with steady and amplitude-modulated

maskers (i.e. the fluctuating-masker benefit, FMB) is highly dependent on the signal

to noise ratios (SNRs) at which they are measured. As Bernstein and Grant (2009)

show, there is a strong negative relationship between the SNR found in a steady

noise background and the FMB, both for normal-hearing and hearing-impaired

listeners. To control for this confound, Bernstein and Brungart (2011) introduced a

technique that adjusts the word-set size in each experimental condition in order to

equate the performance levels in steady noise. However, an equalization procedure

that is based on similar performance levels in steady noise would itself be biased

by a possible effect of periodicity in the target speech. Since it appears likely that,

for instance, the absence of any periodicity cues makes it particularly difficult to

segregate noise-vocoded speech from a steady noise masker, we took a different

approach and used the results obtained in experiment 1 to adjust for the different

performance levels in quiet.

This approach is based on the assumption that varying the spectral resolution

of the target speech in the presence of a masker has no other effect than to deter-

mine its intelligibility. While a degraded spectrum is likely to interfere with the

segregation of target and masker when both signals are processed together, as is

the case in CI simulations, the spectrum of the maskers in experiments 2 and 3

was always intact. As demonstrated by Apoux et al. (2015), it is differences in

TFS per se that appear to be crucial for segregating target and masker. Thus, the

critical point in the current experiments is that two separate carriers were present

throughout. Nevertheless, it should be noted that degrading the spectrum of the

target speech with a vocoder also introduces changes to the modulation spectrum,

such as a greater similarity of the individual channel envelopes with fewer channels

in the vocoder.

Conditions which were found to have very similar intelligibility rates in quiet

were: Nx7, FxNx7, and Fx12, as well as Nx12, FxNx10, and Fx24 (see Table 2.1).
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Table 2.1: Target speech conditions in experiment 2. Two sets of three processing con-
ditions with similar percentage correct scores were chosen. The numbers following the
abbreviation of the processing conditions indicate the number of frequency bands.

Processing condition Nx7 FxNx7 Fx12 Nx12 FxNx10 Fx24

Percentage correct score 75.0 78.4 76.1 93.5 92.5 91.2

These 6 target conditions were combined with the 4 different maskers, adding up

to 24 conditions. Note that the Fx24 condition was not part of experiment 1, but

included in the current one. For convenience, results are presented together with

those of experiment 3 that had a similar design but in which the intelligibility of the

target speech in quiet was at ceiling.

2.6 Experiment 2. Methods

2.6.1 Participants

Twelve normal-hearing listeners (five females) were tested. Their ages ranged from

18 to 45 years with a mean age of 25.9. All participants were native speakers of

British English, had audiometric thresholds of less than 20 dB HL at frequencies

between 125 and 8000 Hz, and did not participate in experiment 1.

2.6.2 Stimuli

The target materials used in experiment 2 were the same recordings of the IEEE

sentence corpus as in experiment 1. The harmonic complex maskers were based on

F0 contours extracted from recordings in the EUROM database of English speech

in which different speakers read five- to six-sentence passages (Chan et al., 1995).

Sixteen different male talkers with Southern British English accents, and a similar

speaking rate and voice quality to that of the target talker were chosen. The median

F0 frequency of these 16 passages was 122.9 Hz and the first and third quartiles

ranged from 107.0 Hz to 144.1 Hz. The median F0 of the IEEE target sentences

was 117.2 Hz with the first and third quartiles ranging from 103.4 Hz to 136.1 Hz.

Thus, the median F0 frequency of the target sentences was about 6% lower, but due

to the large interquartile range of the F0 contours of both masker complexes and

target speech, frequent F0 contour crossings are guaranteed.



2.6. Experiment 2. Methods 32

Both the noise and harmonic complex maskers were presented either in a

steady-state version or were sinusoidally amplitude-modulated at a rate of 10 Hz

with a modulation depth of 100%. For each trial of the experiment, a random por-

tion of the noise or complex maskers was picked and presented along with the target

sentence. For the harmonic complex maskers, the order of the talkers on which the

contour was based was also randomised so that all 16 were used before any of them

was repeated. The onset of all the maskers was 600 ms before that of the targets and

they continued for another 100 ms after the end of the target sentence. An onset and

offset ramp of 100 ms was applied to the mixture of target and masker. Waveforms,

wide-band spectrograms, and F0 contours of an example of all four maskers are

shown in Fig. 2.3.

2.6.3 Signal processing

All target stimulus materials were again processed prior to the experiment. The

same channel vocoder software as described in the first experiment was used to cre-

ate the six target speech conditions. The noise maskers were based on a 24-second

passage of white noise that was filtered (FIR filter, Greenwood filter spacing,

1-octave smoothing, filter order 1024, fft window size of 512 samples) to have

the same long-term average speech spectrum (LTASS) as the target speech. The

LTASS of the unprocessed target speech was determined by computing the power

spectral density of the concatenated waveforms using Welch’s method (window

size 512 samples, 50% overlap, dft length 512 samples). The resulting spectrum

was smoothed by 1 octave. F0 contours for the harmonic complex maskers were

created by interpolating through unvoiced and silent periods using a piecewise cubic

Hermite interpolation in logarithmic frequency. The waveforms were synthesised

on a period-by-period basis using the Liljencrants-Fant model (Fant et al., 1985),

which closely approximates a typical adult male glottal pulse [see Green and Rosen

(2013) for details], and matched in spectrum to the long-term average of the target

using the same filtering procedure as for the noise maskers.
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Figure 2.3: Waveforms, wide-band spectrograms, and F0 contours of examples of the four
maskers used in experiments 2 and 3. A) an aperiodic steady-state speech-shaped noise,
B) an aperiodic speech-shaped noise with a 10 Hz sinusoidal amplitude modulation, C) a
periodic steady-state harmonic complex with a dynamically varying F0 contour, and D) a
periodic harmonic complex with a dynamically varying F0 contour and a 10 Hz sinusoidal
amplitude modulation.

2.6.4 Procedure

The experimental setting and general procedure were the same as in experiment 1.

The current experiment consisted of 24 processing conditions presented in back-

ground noise (3 vocoding conditions x 2 degrees of spectral resolution x 4 maskers)

and 1 additional condition presented in quiet (F0-vocoded speech with 24 bands,

Fx24). Each condition consisted of 20 sentences, adding up to 500 trials in total.

Participants were familiarised with the materials by listening to five sentences of

each of the six target speech conditions and two additional example sentences in

each of the four background noises.

The SRT for every processing condition was computed by tracking the SNR

necessary in order to repeat 50% of the key words in a sentence correctly. The initial
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SNR was set to +10 dB and adjusted up or down by 11 dB before the first reversal,

7 dB before the second reversal, and 3 dB after that. If the subject got less than half

of the key words correct in the first sentence, the SNR was set to +24 dB and the

procedure started over again. The SRT was calculated by taking the mean of the

largest even number of reversals with 3-dB step size. Throughout the experiment

the level of the target and masker together was fixed at about 80 dB SPL over a

frequency range of 75 Hz to 10 kHz as measured on an artificial ear (type 4153,

Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark).

Psychometric functions were obtained by fitting a single logistic function to

the averaged responses of all listeners for each combination of target and masker

following the procedure described by Wichmann and Hill (2001). While intercept

and slope were estimated without any restrictions, the lapse rate (which sets an

upper limit to the performance) was estimated with the constraint to be the same

within the set of target speech conditions with a lower intelligibility (Nx7, FxNx7,

and Fx12), as well as that with a higher intelligibility (Nx12, FxNx10, and Fx24).

The guessing rate was set to zero throughout, since the low semantic predictability

and high complexity of the open-set IEEE sentences precludes successful guessing.

2.7 Experiment 2. Results and discussion

Figure 2.4 shows the SRTs obtained in experiment 2, together with those of ex-

periment 3. For the three target speech conditions with lower intelligibility (Nx7,

FxNx7, and Fx12) SRTs on a group level were positive throughout. The targets with

higher intelligibility (Nx12, FxNx10, and Fx24) led to substantially lower SRTs and

there was a trend for lower SRTs with more periodicity in the targets.

The data were analysed using a mixed effects model with target intelligibil-

ity, target periodicity, masker fluctuations, and masker periodicity as fixed fac-

tors, and subjects as a random factor. The main effects of target intelligibility

[F(1,266) = 275.2, p < 0.001] and masker periodicity [F(1,266) = 110.4, p <

0.001] were highly significant. The main effect of target periodicity [F(2,264) = 3.1,

p = 0.047] was just significant, but there was no significant main effect of masker

fluctuations [F(1,264) = 3.0, p = 0.09]. Furthermore, the interactions of target intel-
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Figure 2.4: Boxplots of the speech reception thresholds (SRTs) obtained in experiments
2 and 3. Each of the twelve target speech conditions on the x-axis was tested in combi-
nation with the four different maskers shown in the legend. Nx stands for noise-vocoding,
FxNx for Dudley-vocoding, and Fx for F0-vocoding. The numbers affixed to the process-
ing conditions indicate the number of frequency bands in the vocoder. Conditions with
the appendix ‘TS’ were produced using TANDEM-STRAIGHT and ‘Speech’ stands for
unprocessed speech. The black horizontal lines in the boxplots indicate the median value.

ligibility and masker fluctuations [F(1,266) = 11.1, p = 0.001], target intelligibility

and masker periodicity [F(2,266) = 8.2, p < 0.01], and target periodicity and masker

periodicity [F(2,266) = 6.0, p < 0.01] were significant.

As can be seen in Fig. 2.4, the SRTs for the four maskers in the FxNx7 con-

dition are closer together than in the other target speech conditions. Post hoc pair-

wise comparisons using Bonferroni-corrected t-tests confirmed this observation and

showed no significant differences between these four conditions, indicating that nei-

ther masker fluctuations nor masker periodicity substantially affected the SRTs in

this condition. This result is likely to be one of the main reasons for the significant

interactions of target intelligibility and masker periodicity as well as target period-

icity and masker periodicity.

In order to enable a more fine-grained examination of the effects of amplitude

fluctuations in the masker, Fig. 2.5 plots the FMB, which is the difference in SRT
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Figure 2.5: Boxplots of the fluctuating-masker benefits (FMBs) obtained in experiments 2
and 3. For each of the twelve target speech conditions on the x-axis, the difference between
the steady and amplitude-modulated version of the noise and harmonic complex maskers is
plotted. Positive numbers on the y-axis indicate a benefit. Target speech conditions are the
same as in Fig. 2.4. The black horizontal lines in the boxplots indicate the median value.

of a steady compared to a fluctuating masker for each target and masker type. The

FMBs of experiment 2 are again plotted together with those of experiment 3. Posi-

tive FMBs indicate that listeners were able to benefit from masker fluctuations. Post

hoc t-tests showed that there were no significant differences between the steady and

amplitude-modulated versions of the noise and complex maskers in any of the six

target speech conditions. It can, however, be seen in Fig. 2.5 that there is a trend

for more FMB with the more intelligible targets. While we observed a small but

consistent fluctuating-masker interference of up to 3 dB for the targets with lower

intelligibility (Nx7, FxNx7, and Fx12), this effect disappears when the intelligi-

bility of the targets is higher (Nx12, FxNx10, and Fx24), which also explains the

significant interaction of target intelligibility and masker fluctuations.

Figure 2.6 plots the difference between aperiodic and periodic maskers, termed

the masker-periodicity benefit (MPB), in experiments 2 and 3. In stark contrast to

the FMB, subjects did benefit from periodicity in the masker across all target speech
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Figure 2.6: Boxplots of the masker-periodicity benefits (MPBs) obtained in experiments 2
and 3. For each of the twelve target speech conditions on the x-axis, the difference between
the noise and harmonic complex version of the steady and amplitude-modulated maskers is
plotted. Positive numbers on the y-axis indicate a benefit. Target speech conditions are the
same as in Fig. 2.4. The black horizontal lines in the boxplots indicate the median value.

conditions, with effects of up to about 7 dB. As for the FMB, the MPB increased

with the intelligibility of the targets, explaining the significant interaction of target

intelligibility and masker periodicity.

As the SRT results show, performance with the FxNx targets was least affected

by the differences between the four maskers. This observation is also evident in the

pattern of the MPB results, where the smallest benefits were found with the FxNx

targets. Post hoc t-tests comparing the periodic and aperiodic maskers in all 6 target

speech conditions showed that only in the FxNx7 condition was there no significant

difference between these, no matter if they were steady [t(11) = 0.16, p = 0.88] or

fluctuating [t(11) = 0.60, p = 0.56].

The FMB is known to be strongly influenced by the SNR at which a test is

carried out (Freyman et al., 2012; Smits and Festen, 2013). Our results suggest

that the same is true for the MPB, but the exact relation of the factors involved is

difficult to grasp from the snapshot-like SRT data. In order to obtain a broader
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picture of the results we fitted psychometric functions (PFs) to the pooled data

of each of the 24 target-masker combinations (Fig. 2.7). On average, the mea-

sured SRTs and the estimated 50%-correct values extracted from the PFs were

about 0.9 dB apart, indicating a reasonably good fit. As reported previously (Frey-

man et al., 2012; Smits and Festen, 2013) we found that steady maskers gener-

ally led to steeper slopes, as indicated by a significant t-test comparing the slopes

of all conditions with steady maskers to all conditions with modulated maskers

[t(11) = 4.8, p < 0.001]. A significant t-test also showed that slopes were steeper

for noise maskers when compared to harmonic complex maskers [t(11) = 3.3, p <

0.01].

These data are also consistent with the idea that the size of the FMB depends

on the SNR, with glimpsing observed almost exclusively at negative SNRs. This ef-

fect is particularly strong for the two Fx conditions where the slopes of the functions

for steady and fluctuating maskers differ a lot, resulting in large fluctuating-masker

interference at positive SNRs and similarly large FMBs at negative SNRs. Increas-

ing the intelligibility of the target speech independently enhanced the likelihood of

glimpsing, but only the combination with a negative SNR proved to be both neces-

sary and sufficient to enable some degree of FMB.

Importantly, PFs were found to show three distinct patterns depending on the

amount of periodicity in the target speech. These patterns are observable for the

targets with lower as well as those with higher intelligibility, pointing to common

underlying mechanisms involving aspects of periodicity. In both the Nx7 and Nx12

conditions, for example, the functions for steady and modulated maskers are aligned

fairly closely, while the distance between the noise and harmonic complex maskers

is much larger, confirming the finding that the MPB is greater than the FMB. Sim-

ilarly the close alignment of the boxplots in the FxNx conditions is reflected in

the shapes of the respective PFs, which remain relatively close together across the

whole range of SNRs. Finally, in the Fx conditions, as already mentioned, the effect

of masker fluctuations, but not masker periodicity, depended heavily on the SNR.
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Figure 2.7: Psychometric functions fitted to the aggregated results of each of the 24 pro-
cessing conditions (6 targets x 4 maskers) in experiment 2. The target speech condition is
indicated above each of the six panels, and labels are the same as in Fig. 2.4. The horizontal
line in each panel indicates the 50%-level that was tracked in the adaptive SRT procedure.
The size of the points corresponds to the number of trials at a particular SNR.
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Another observation worth mentioning is that the upper performance limits

(i.e. the lapse rates) of the targets with lower intelligibility (Nx7, FxNx7, and Fx12)

differ considerably, with the FxNx7 condition leading to much better performance

rates at higher SNRs. As masker levels were very low at these SNRs, the unnatu-

ral acoustic properties of the Nx7 and Fx12 targets would have been quite evident.

Since the listeners were only presented with a few example sentences before the

main experiment, their unfamiliarity with these materials may have affected perfor-

mance.

2.8 Experiment 3. Short introduction and rationale

A key finding of experiment 2 was that, on average, listeners always benefitted from

periodicity in the masker, but not from masker fluctuations, even when the intelli-

gibility of the target speech was as high as about 90% in quiet. Additionally, there

was a clear trend for more MPB and FMB (or less fluctuating-masker interference)

when the intelligibility of the targets was higher and the resulting SRTs lower. In

order to further investigate this relation, we kept the general design of experiment

2, but used target speech with intelligibility rates approaching ceiling level in order

to enable testing at lower SRTs.

An initial obstacle of experiment 3 was that the band-vocoder software used

in experiments 1 and 2 cannot be employed to produce noise-vocoded stimuli with

a very high number of bands. With more than 24 bands the individual harmonics

begin to be resolved, which leads to a clear percept of the F0 and an overall less

noise-like sound quality, thereby undermining the idea central to noise-vocoding.

An alternative vocoder that does not filter the input speech into separate fre-

quency bands but instead separates the periodic and aperiodic components of the

source from the spectral filter is TANDEM-STRAIGHT (Kawahara et al., 2008).

By default TANDEM-STRAIGHT produces very natural-sounding speech with a

mixed source excitation, but the source estimation procedure can be adapted to pro-

duce fully aperiodic or fully periodic speech as well.

Apart from 24-band noise- and F0-vocoded speech (Nx24, Fx24), experiment

3 thus also included noise-vocoded, Dudley-vocoded, and F0-vocoded speech pro-
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duced with TANDEM-STRAIGHT (henceforth referred to as NxTS, FxNxTS, and

FxTS). Extending the idea of maximizing the spectral detail in the targets, we also

used unprocessed speech (referred to as ‘Speech’). All six target speech conditions

in experiment 3 should lead to near perfect intelligibility in quiet. As the results of

experiment 1 show (see Fig. 2.2), the Nx16 and FxNx16 conditions already led to

over 95% of correctly repeated key words. Adding another eight frequency bands

was therefore hypothesised to raise the performance levels in quiet to those of un-

processed speech. The even higher spectral resolution of the stimuli produced with

TANDEM-STRAIGHT is assumed to result in similarly high scores.

2.9 Experiment 3. Methods

2.9.1 Participants

Twelve normal-hearing listeners (seven females) were tested. Their ages ranged

from 18 to 30 years with a mean of 22.3 years. All participants were native speakers

of British English, had audiometric thresholds of less than 20 dB HL at frequencies

between 125 and 8000 Hz, and did not participate in experiments 1 or 2.

2.9.2 Stimuli

The target materials were the same recordings of the IEEE sentence corpus as in

experiments 1 and 2, and the maskers were the same as in experiment 2.

2.9.3 Signal processing

For the Nx24 and FxNx24 conditions the same channel vocoder software as in

experiments 1 and 2 was used. TANDEM-STRAIGHT was used to produce

noise-vocoded speech (NxTS) by keeping the default settings, but fixing the F0 to

0 Hz throughout. In order to synthesise Dudley-vocoded speech with TANDEM-

STRAIGHT (FxNxTS), the default settings were used, but the values of the sig-

moid parameter in the source estimation routine were fixed to 1 and -40, in or-

der to minimise the level of the aperiodic component. This avoids the possibility

that higher harmonics are noisier than lower ones, as is the case in natural speech,

and ensures comparability with the Dudley-vocoded speech produced with a chan-

nel vocoder. The same technique was used to produce F0-vocoded speech with
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TANDEM-STRAIGHT (FxTS), but here the same interpolated F0 contours as for

the channel vocoder were used as input for the source extraction routine. Addition-

ally, the unprocessed IEEE recordings were used as a sixth target speech condition

(Speech).

2.9.4 Procedure

The experimental setting and procedure was generally the same as in experiment 2.

Before being tested, the participants were familiarised with the materials by listen-

ing to five example sentences of each of the three target conditions with an unnatu-

ral source (Nx24, NxTS, and FxTS) in quiet, followed by two unprocessed example

sentences combined with each of the four maskers at an SNR of 0 dB. For the anal-

yses of the PFs, the lapse rate was set to 0.

2.10 Experiment 3. Results and discussion

The SRTs are shown in Fig. 2.4, along with the SRTs of experiment 2. As expected,

unprocessed speech led to the lowest SRTs with all four maskers. Most importantly,

the SRTs in experiment 3 show a stepwise descending pattern for each of the six

target speech conditions, indicating that listeners benefitted from amplitude fluctu-

ations in the masker, but even more so from periodicity in the masker.

The data were analysed using a mixed effects model with the fixed effects tar-

get condition, masker periodicity, and masker fluctuations, and subjects as a random

factor. The main effects of target condition [F(5,264) = 26.6, p < 0.001], masker

periodicity [F(1,264) = 978.4, p < 0.001], and masker fluctuations [F(1,264) =

144.4, p < 0.001] were all highly significant. There were also significant interac-

tions of target condition and masker periodicity [F(5,264) = 2.6, p < 0.05], target

condition and masker fluctuations [F(5,264) = 3.6, p < 0.01], and masker periodic-

ity and masker fluctuations [F(1,264) = 16.4, p < 0.001].

The SRTs of the three conditions produced with TANDEM-STRAIGHT were

almost as low as those of unprocessed speech as indicated by non-significant fixed

coefficients [NxTS (1.1, p = 0.23), FxNxTS (0.9, p = 0.34), and FxTS (1.3, p

= 0.16)]. The fixed coefficients of the 24-channel vocoded targets, on the other
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hand, indicate that they led to significantly higher SRTs than unprocessed speech

[Nx24 (3.7, p < 0.001) and FxNx24 (2.4, p < 0.01)]. Furthermore, a separate

mixed model that was similar to the previous one but included only the three

TANDEM-STRAIGHT conditions showed no significant main effect of target

condition [F(2,132) = 0.48, p = 0.62], indicating that target periodicity in these

conditions did not affect the SRTs.

The FMBs of experiment 3 (Fig. 2.5) show that the largest benefits were ob-

tained for target speech conditions with a natural mixed source (FxNx24, FxNxTS,

and Speech). Additionally, the FMB was consistently found to be lower for har-

monic complex maskers. These two findings are likely to have caused the significant

interactions of target condition and masker periodicity as well as masker periodicity

and masker fluctuations, respectively. Furthermore, post hoc Bonferroni-corrected

t-tests showed that for the completely voiced or unvoiced target speech (Nx24,

NxTS, and FxTS), the FMB for complex maskers was not significantly different

from zero. Thus, only target speech with a natural mixed source seems to enable

substantial glimpsing in the presence of harmonic complex maskers.

Figure 2.6 shows the masker-periodicity benefits (MPBs) obtained in ex-

periment 3, added to those of experiment 2. Listeners again strongly benefit-

ted from periodicity in the masker across all six target speech conditions. Im-

portantly, with a maximum of about 11 dB in the Nx24 condition, the MPB

was almost twice as large as the maximum FMB (about 6 dB, see Fig. 2.5).

The MPB was also consistently larger for steady maskers, which is another

reason for the significant interaction of masker periodicity and masker fluc-

tuations. Additionally, post hoc t-tests showed that for steady maskers, the

FxNx24 condition showed significantly less MPB than the Nx24 condition

[t(11) = 5.1, p < 0.001], and that the same was true for the FxNxTS condi-

tion when compared to NxTS [t(11) = 3.1, p < 0.05] and FxTS [t(11) = 2.6,

p < 0.05]. When the masker was steady, targets with a natural mixed source thus

led to smaller MPBs than aperiodic or periodic target speech. This result also ex-

plains the significant interaction of target condition and masker periodicity.
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As in experiment 2, we again fitted psychometric functions to the pooled data

of each of the 24 target-masker combinations (see Fig. 2.8). The measured SRTs

and the estimated 50%-correct values extracted from the PFs were this time about

0.25 dB apart, indicating a good fit. T-tests again showed that steady maskers

had steeper slopes than modulated maskers [t(11) = 3.5, p < 0.01] and that noise

maskers had steeper slopes than harmonic complex maskers [t(11) = 5.0, p <

0.001]. The PFs in the current experiment are mostly located in the negative SNR

region, but it is again evident that FMB and MPB diminish, or in the case of the

FMB even turn into an interference effect, once they approach positive SNRs. Ad-

ditionally, the three target conditions with a mixed source (FxNx24, FxNxTS, and

Speech) all show a more even spacing of the PFs across the four maskers. The latter

observation corresponds well with the FMBs of experiment 3 (Fig. 2.5), which

show that only targets with a mixed source enabled the listeners to substantially

benefit from fluctuations in both the noise and the harmonic complex maskers.

2.11 General discussion

2.11.1 Target periodicity in background noise

Generally speaking, the amount of periodicity in the target speech affected the SRTs

in experiments 2 and 3 relatively little. The main effect of target periodicity was just

significant in experiment 2, but the direct comparison of three conditions produced

with TANDEM-STRAIGHT in experiment 3 revealed no effect of target periodicity.

This is somewhat surprising, since one might expect that, for instance, the combina-

tion of an aperiodic target with an aperiodic masker would be particularly difficult

due to a lack of cues that aid stream segregation. Yet, as the SRTs in Fig. 2.4 show,

performance with the fully voiced Fx targets was in no case more than about 2 dB

better than with the aperiodic Nx targets for the two aperiodic noise maskers. The

patterns of the psychometric functions for the Nx and Fx targets in experiment 2

(see Fig. 2.7) in particular, however, reveal that while at the 50%-correct level dif-

ferences between these target conditions are relatively small, the performance with

the Nx targets at lower SNRs is indeed much poorer when the masker is aperiodic.
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Figure 2.8: Psychometric functions fitted to the aggregated results of each of the 24 pro-
cessing conditions (6 targets x 4 maskers) in experiment 3. The target speech condition
is indicated above each of the six panels, and the labels are the same as in Fig. 2.4. The
horizontal line in each panel indicates the 50%-level that was tracked in the adaptive SRT
procedure. The size of the points corresponds to the number of trials at a particular SNR.
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The shapes of the psychometric functions thus confirm that periodicity is important

in segregating competing auditory streams, making it clear that SRTs alone are not

sufficient in obtaining a complete picture of the patterns in the data. In contrast, this

issue does not arise when evaluating the performance in the FxNx conditions. Here

the results vary much less between the different maskers across SNRs, suggesting

that speech with a natural mix of periodicity and aperiodicity leads to a much more

robust percept.

2.11.2 Masker fluctuations

The effect of masker fluctuations was found to strongly depend on the intelligibility

of the target speech, with interference effects of about 2 dB observed in experi-

ment 2 and maximum benefit of almost 6 dB in experiment 3. This trend is in line

with previous studies reporting a strongly reduced ability to glimpse for hearing-

impaired listeners and CI users. A recent attempt to model SRTs in fluctuating

noise by Smits and Festen (2013) also supports these results by predicting reduced

or even negative FMBs at very high SNRs.

Based on the findings of Stone and colleagues (Stone et al., 2011; Stone et al.,

2012) this trend could also be explained with reference to the concept of modula-

tion masking. While the 10 Hz sinusoidal amplitude-modulations of the maskers

potentially enabled the glimpsing of sections of target speech, they also introduced

additional amplitude modulations to the masker envelope that could interfere with

informative modulations in the targets. The benefits of glimpsing seem to outweigh

the modulation masking at lower SNRs, but not at higher SNRs, where the target

speech is already audible when the masker is steady.

The psychometric functions of experiment 2, however, again show that exam-

ining the results only through SRTs can be deceptive. While the small effects of

masker fluctuations in the Nx and especially the FxNx conditions are fairly stable

across different SNRs, much larger and more variable effects were found in the Fx

condition. Here masker fluctuations led to considerable benefits at low SNRs, but

also particularly large interference effects at high SNRs.
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A less well-established result of the current study is that, apart from the targets

with lower intelligibility in experiment 2, there appears to be more glimpsing when

the masker is aperiodic. This difference is particularly pronounced for the Nx and

Fx targets, and might be due to the fact that complex maskers are inherently more

coherent and thus easier to segregate from the target speech, no matter if steady or

fluctuating.

The largest FMBs of about 6 dB have been found for target speech with a

mixed source and a high intelligibility (FxNx24, FxNxTS, and Speech). In con-

junction with the small differences in FMB between the noise and complex maskers

for these targets, this suggests that a natural mix of periodicity and aperiodicity in

the target speech aids glimpsing. Although the maximum FMBs obtained with the

Nx targets are only about 2 dB smaller, this finding hence does support the notion

that TFS information in the target speech is important in order to benefit from

masker fluctuations (Gnansia et al., 2009; Lorenzi et al., 2006).

2.11.3 Masker periodicity

The large and consistent masker-periodicity benefits of up to about 11 dB (see

Fig. 2.6) suggest that periodicity in the masker is even more important than masker

fluctuations in attempting to segregate target speech from background noise. This

finding is in close agreement with the harmonic cancellation theory (de Cheveigné

et al., 1995; de Cheveigné et al., 1997b) which states that harmonicity in the masker

enables the auditory system to effectively subtract the masking sound from the

signal mixture.

There is, however, an additional explanation of the masker-periodicity benefit

that does not rely on harmonicity but instead the glimpsing opportunities that arise

in between the individual harmonics of the complex maskers. A recent study by De-

roche et al. (2014b) refers to this mechanism as ‘spectral glimpsing’ and provides

evidence that spectral glimpsing and harmonic cancellation contribute indepen-

dently in explaining the masker-periodicity benefit. First, they showed that due to

the increasing size of spectral dips, both harmonic and inharmonic complexes were

less effective in masking the target speech as their F0 frequencies increased. In
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addition, they report that even after controlling for the generally greater spectral

glimpsing opportunities in inharmonic maskers, the harmonic complexes still led to

consistently lower SRTs and that this effect is independent of the F0 frequencies of

the complexes.

Another factor explaining the reduced effectiveness of periodic maskers is that,

apart from fluctuations at the rate of the F0, the envelopes of harmonic complexes

with a stationary F0 hardly fluctuate, particularly not at the low modulation rates

essential for speech intelligibility (Deroche et al., 2014b). As Stone and colleagues

(Stone et al., 2011; Stone et al., 2012) have shown, envelope fluctuations, rather

than envelope energy, are the primary reason for the effectiveness of aperiodic noise

maskers. Contrary to the maskers used by Deroche et al. (2014b), the harmonic

complexes in the current study had varying F0-contours in order to make them

more speech-like and thus more ecologically valid. These changes in F0, however,

also introduce additional slow modulations to the envelopes of the lower auditory

filters and it remains to be determined whether this has a substantial effect on per-

formance.

The pattern in the SRTs as well as the psychometric functions show that the

MPB is smallest for targets with a mixed source (FxNx). One possible explanation

for this could be that the gaps in the F0 contours of these targets made it slightly

more difficult to form two separate auditory streams. For the aperiodic and periodic

targets in contrast this is likely to be easier since in the former case the harmonic

background can be cancelled out (de Cheveigné, 1998), while in the latter case,

two F0 contours are present throughout. Furthermore, the MPB tended to be larger

for steady than for fluctuating maskers, which seems intuitive given the fact that

in fluctuating maskers there are sections with little or no masker energy, while for

steady maskers energy is present throughout.

Crucially, the harmonic complex maskers used in the current study were not

only meant to provide a periodic counterpart to the more commonly used aperiodic

noise maskers, but also designed in an attempt to better match the acoustic charac-

teristics of speech. Connected stress-timed speech, such as English, is voiced about
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50% of the time, while unvoiced sections and pauses only amount to about 25%

each (Dellwo et al., 2007; Fourcin, 2010). A harmonic complex masker is thus per

se more speech-like than an aperiodic noise masker.

As mentioned before, the F0s of the IEEE targets and complex maskers dif-

fered by about a semitone. It has been shown that even F0 differences of this order

can help to tell apart signal and noise, but these findings are restricted to artificial

stationary vowels (Culling and Darwin, 1993; de Cheveigné et al., 1997a). As

described by Darwin (2008), natural speech is too variable for such small differ-

ences in F0 to matter much. The mechanism for segregating stationary vowels with

similar F0 frequencies relies on beats caused by the close spacing of the harmonics,

which oscillate at relatively slow rates. Studies using real speech as targets have

consequently reported hardly any benefit for F0 differences of about one semitone

and gradual changes as the difference was increased (Bird and Darwin, 1998; Brokx

and Nooteboom, 1982).

2.12 Summary and conclusion

The present study found that in quiet testing conditions, aperiodic noise-vocoded

speech and vocoded speech with a natural amount of source periodicity were

equally intelligible, while fully periodic vocoded speech with an interpolated F0

contour is much harder to understand. In the presence of a masker, periodicity in

the target speech had a surprisingly small effect. Performance was slightly better

with more target periodicity, but only when SRTs were relatively high. Periodicity

in the masker, on the other hand, was found to strongly aid speech intelligibility,

and this effect was much larger than the FMBs observed. Generally, the higher the

intelligibility of the target speech in quiet, the larger were the observed MPBs and

FMBs, and a substantial FMB, in particular, required the target speech intelligibility

in quiet to be close to ceiling.

In summary, our results show that periodicity in the masker, but surprisingly

not the target speech, is an important factor in tracking a speech signal through a

background noise. Factors that are thought to underlie the masker-periodicity bene-
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fit include the presence of discrete spectral components, the relatively sparse mod-

ulation spectrum, and the harmonic relation of the individual components. Further

research is needed to identify the respective contributions of these factors.



Chapter 3

Effects of acoustic periodicity, intelligibility, and pre-stimulus al-

pha power on the event-related potentials in response to speech1

3.1 Introduction

Acoustically degraded noise-vocoded speech has been used extensively to investi-

gate the neural correlates of speech intelligibility in both magneto- and electroen-

cephalographic (M/EEG) studies (e.g. Becker et al., 2013; Ding, et al., 2014;

Obleser and Weisz, 2012; Peelle et al., 2013) and imaging work (e.g. Davis and

Johnsrude, 2003; Evans et al., 2014; Scott et al., 2000). Noise-vocoding has proven

a very useful tool because it allows the parametric reduction of the intelligibility of

speech signals by reducing the number of channels in the analysis/synthesis pro-

cess. However, this signal manipulation alters the acoustic properties of the stimuli

as well as their intelligibility, and these two factors have so far not been considered

independently.

Furthermore, while the reduction in intelligibility can mainly be attributed to

the lowered spectral resolution of the vocoded speech signals, other acoustic prop-

erties are affected by the signal processing as well. Most notably, due to the use

of a broadband noise as sound source, noise-vocoded speech is completely ape-

riodic (i.e. unvoiced), making it sound like an intense version of a whisper. In

natural speech, on the other hand, voiced and unvoiced segments alternate. Impor-

tantly, only voiced speech possesses a pitch. Previous studies that have investigated

pitch perception reliably found increased neural responses for stimuli that possess

1This chapter has been published as: Steinmetzger, K. and Rosen, S. (2017). Effects of acoustic
periodicity, intelligibility, and pre-stimulus alpha power on the event-related potentials in response
to speech. Brain and Language 164, 1–8.
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a pitch, when compared to a spectrally matched control condition (e.g. Griffiths et

al., 2010; Norman-Haignere et al., 2013) or a broadband noise (Chait et al., 2006).

In particular, studies analysing MEG signals in the time domain (Chait et al., 2006;

Gutschalk et al., 2004) have shown that following a transient pitch onset response

peaking after around 150 ms, a sustained neural response can be observed for sev-

eral hundred milliseconds. Thus, it appears likely that the neural response elicited

by noise-vocoded speech is per se attenuated due to the absence of voicing.

In order to address these issues, we have used a vocoding technique that allows

the choice between a periodic (voiced) or an aperiodic (unvoiced) source excitation.

This technique was used to synthesise speech that is either completely unvoiced

(i.e. noise-vocoded, henceforth referred to as the aperiodic condition), preserves

the natural mix of voiced and voicelessness (henceforth the mixed condition; Dud-

ley, 1939), or is completely voiced (henceforth the periodic condition). Previous

behavioural work (Steinmetzger and Rosen, 2015; i.e. chapter 2) has shown that

the intelligibility of the aperiodic and mixed conditions is very similar, while the

unnatural-sounding fully periodic condition was found to be considerably less in-

telligible. In order to analyse effects of acoustic periodicity while controlling for

differences in intelligibility, the individual trials in the current study were sorted ac-

cording to the listeners’ spoken responses (i.e. the number of correctly repeated key

words) obtained after every sentence, and only fully intelligible trials were consid-

ered. In summary, the first hypothesis was that speech with more periodicity would

lead to more negative event-related potentials (ERPs), reflecting the increased neu-

ral sensitivity to auditory input that possess a pitch. This effect was expected to

be observed during an early time window following sentence onset, including the

auditory evoked potentials (AEPs) and the acoustic change complex (ACC; Pratt,

2011).

Sorting the individual trials according to the behavioural responses was also

intended to enable the separate analysis of more or less intelligible trials in the

periodic condition. This second analysis additionally included spectrally-rotated

speech, a completely unintelligible non-speech analogue that has been used in a
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number of the previously mentioned studies (Becker et al., 2013; Peelle et al., 2013;

Scott et al., 2000), as a baseline condition (henceforth the rotated condition). In

contrast to several recent M/EEG studies that have investigated the perception of

noise-vocoded (Becker et al., 2013; Obleser and Weisz, 2012; Obleser et al., 2012)

and unprocessed speech (e.g. Kerlin et al., 2010; Müller and Weisz, 2012; Wilsch

et al., 2015) by analysing neural activity in the frequency domain, the current study

focusses on time-domain responses. Few studies to date have investigated ERPs in

response to degraded speech (for exceptions see Becker et al., 2013; Obleser and

Kotz, 2011; Wöstmann et al., 2015b) and it is hence not well understood how they

are affected by both the acoustic characteristics and the intelligibility of the speech

signals, particularly over the course of whole sentences.

Based on the notion that slow cortical potentials reflect the degree of cortical

excitability (Birbaumer et al., 1990; He and Raichle, 2009), it was hypothesised

that ERP amplitudes over the course of the sentences would be larger in response

to more intelligible speech. More specifically, slow negative potentials with an an-

terior scalp distribution have been associated with both working memory load (e.g.

Guimond et al., 2011; Lefebvre et al., 2013) and increased attention (e.g. Teder-

Sälejärvi et al., 1999; Woods et al., 1994) in auditory tasks. A typical slow negative

potential is the contingent negative variation (CNV), which emerges in between a

warning stimulus and a task-relevant second stimulus, and is larger when subjects

expect and prepare to respond to the latter stimulus (McCallum and Walter, 1968;

Tecce and Scheff, 1969). Importantly, the second stimulus may also be a response

to the first stimulus (Birbaumer et al., 1990; Kononowicz and Penney, 2016), and

hence the design of the current experiment, in which subjects are supposed to ver-

bally repeat the stimulus sentence, fits into the CNV framework too.

In order to further investigate differences between intelligible and unintelligi-

ble trials, we additionally analysed the amount of alpha power in the silent base-

line interval preceding the stimulus sentences. Decreased alpha power in the pre-

stimulus window has been shown to be a predictor of successful target identification

in studies using low-level visual and somatosensory stimuli (e.g. Hanslmayr, et al.,



3.2. Methods 54

2007; Romei et al., 2010; Schubert et al., 2009; Van Dijk et al., 2008). Strauß

et al. (2015) have recently also reported alpha phase differences before correctly

and incorrectly perceived words in a lexical decision task, but no study to date has

reported alpha power differences in the baseline window using speech materials

presented auditorily. As reviewed by Klimesch (1999, see also Klimesch et al.,

1998), slower alpha frequencies (~7–10 Hz) in particular have been associated with

alertness and expectancy, and may thus serve as a measure of the attentional state

in the period before sentence onset. We thus additionally hypothesised to observe

enhanced slow alpha power, indicating that subjects have not been fully focussed

on the upcoming task, before sentences that would turn out to be unintelligible to

them.

3.2 Methods

3.2.1 Participants

Eighteen normal-hearing right-handed subjects (8 females, mean age = 21.6 years,

SD = 2.3 years) took part in the study. All participants were native speakers of

British English and had audiometric thresholds of less than 20 dB Hearing Level at

octave frequencies from 125 and 8000 Hz. All subjects gave written consent and

the study was approved by the UCL ethics committee.

3.2.2 Stimuli

The stimulus materials used in this experiment were recordings of the IEEE sen-

tences (Rothauser et al., 1969) spoken by an adult male Southern British English

talker with a mean F0 of 121.5 Hz that were cut at zero-crossings right before sen-

tence onset and normalised to a common root-mean-square (RMS) level. The IEEE

sentence corpus consists of 72 lists with 10 sentences each and is characterized by

similar phonetic content and difficulty across lists, as well as an overall low seman-

tic predictability (e.g. Say it slowly but make it ring clear.). The individual lists are

thus supposed to be equally intelligible. Every sentence contains five key words.

All stimulus materials were processed prior to the experiment using a channel

vocoder implemented in MATLAB (Mathworks, Natick, MA). For all three vocod-
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ing conditions (aperiodic, mixed, and periodic) the original recordings of the IEEE

sentences were first band-pass filtered into eight bands using zero phase-shift sixth-

order Butterworth filters. The filter spacing was based on equal basilar membrane

distance (Greenwood, 1990) across a frequency range of 0.1 to 8 kHz (upper filter

cut-offs in Hz: 242, 460, 794, 1307, 2094, 3302, 5155, 8000; filter centre frequen-

cies in Hz: 163, 339, 609, 1023, 1658, 2633, 4130, 6426). The output of each filter

was full-wave rectified and low-pass filtered at 30 Hz (zero phase-shift fourth-order

Butterworth) to extract the amplitude envelope. The low cut-off value was chosen

in order to ensure that no temporal periodicity cues were present in the aperiodic

condition.

In order to synthesise aperiodic speech, the envelope of each individual band

was multiplied with a broadband noise carrier. In the mixed condition, the envelope

of each band was also multiplied with a broadband noise source, but only in time

windows where the original speech was unvoiced. Sections that were voiced in the

original recordings were synthesised by multiplying the envelopes with a pulse train

following the natural F0 contour. The individual pulses had a duration of one sample

point, i.e. about 23 µs at a sampling rate of 44.1 kHz. The F0 contours of the origi-

nal sentences were extracted using ProsodyPro version 4.3 (Xu, 2013) implemented

in PRAAT (Boersma and Weenink, 2013), with the F0 extraction sampling rate set

to 100 Hz. The resulting F0 contours were corrected manually where necessary and

then used to determine the distance between the individual pulses of the pulse train

sources. Based on the original intermittent F0 contours, we also produced artificial

continuous F0 contours by interpolation through unvoiced sections and periods of

silence. These continuous F0 contours were used to produce the pulse train sources

for the periodic condition.

Finally, in all three vocoding conditions, the eight sub-band signals were again

band-pass filtered using the same filters as in the analysis stage of the process. Be-

fore the individual bands were summed together, the output of each band was ad-

justed to the same RMS level as found in the original recordings.
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Say        it  slowly                 but  make it     ring       clear.

6 kHz
3 kHz

200 Hz
100 Hz 0.5 s 1 s 1.5 s

A) Unprocessed speech

B) Aperiodic

C) Mixed

D) Periodic

E) Rotated

Figure 3.1: Stimuli. Waveforms, wide-band spectrograms, and F0 contours for one ex-
ample sentence (Say it slowly but make it ring clear.). A) The unprocessed version of the
sentence. B) The same sentence processed to have an aperiodic source, C) a mixed source,
D) a periodic source, or E) a mixed source and spectrally rotated. The four processed con-
ditions (B–E) were all vocoded with eight frequency bands. The unprocessed version of the
sentence in panel A) is shown for the purpose of comparison only.

Spectrally-rotated speech was produced using a technique introduced by Blesser

(1972) and implemented in MATLAB. Here, the waveforms of the mixed condition

described above were first multiplied with an 8 kHz sinusoid, resulting in a spectral

rotation around the midpoint frequency of 4 kHz. Note, that this procedure also

renders the rotated speech inharmonic, since the frequencies of the component tones

will not be multiples of a particular F0 anymore. The rotated waveforms were

then filtered (FFT-based FIR filter, order 256) to have the average long-term speech

spectrum (Byrne et al., 1994) and, finally, scaled to the same RMS level as the

original waveforms in the mixed condition.

Fig. 3.1 shows an unprocessed example sentence along with the same sentence

processed in the four ways described.
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3.2.3 Procedure

Each participant listened to 80 aperiodic, 80 mixed, 160 periodic, and 80 rotated

sentences. There were twice as many trials in the periodic condition because we

wanted to ensure a sufficient number of unintelligible trials. All 4 conditions were

presented in blocks of 10 sentences (i.e. 1 complete IEEE sentence list) and the

order of the conditions and IEEE lists was randomised. Only the first 40 IEEE lists

were used in the main experiment and none of the sentences was presented more

than once. Participants were asked to repeat as many words as possible after ev-

ery sentence. The verbal responses were logged by the experimenter before the

next sentence was played and no feedback was given following the responses. The

presentation of the stimuli and the logging of the responses was carried out using

Presentation version 17.0 (Neurobehavioral Systems, Berkeley, USA). Throughout

this study, the term intelligibility will be defined simply as the average number of

correctly repeated key words per condition.

Single trials consisted of a silent pre-stimulus interval with random duration

(1.5–2.5 s), a stimulus sentence (average duration = 2.04 s, SD = 0.24 s) followed

by a silent interval of 0.25 s, a short beep sound signalling the participants to start

responding, the spoken responses, and the subsequent logging of the responses by

the experimenter.

Before being tested, the subjects were familiarised with the materials by lis-

tening to 10 aperiodic, mixed, and periodic examples sentences each (IEEE lists

41–43). During the familiarisation phase, every sentence was directly followed by

its unprocessed counterpart, and again followed by the processed sentence.

The main part of the experiment took about 70 minutes to complete and sub-

jects were allowed to take breaks whenever they wished to. The experiment took

place in a double-walled sound-attenuating and electrically shielded booth, with the

computer signal being fed through the wall onto a separate monitor. Participants

sat in a comfortable reclining chair during EEG acquisition and told to not move

their eyes during sentence presentation. The stimuli were converted with 16-bit

resolution and a sampling rate of 22.05 kHz using a Creative Sound Blaster SB



3.2. Methods 58

X-Fi sound card (Dublin, Ireland) and presented over Sennheiser HD650 head-

phones (Wedemark, Germany). The presentation level was about 71 dB SPL over a

frequency range of 0.1 to 8 kHz as measured on an artificial ear (type 4153, Brüel

& Kjær Sound & Vibration Measurement A/S, Nærum, Denmark).

3.2.4 EEG recording and analysis

The continuous EEG was recorded using a Biosemi ActiveTwo system (Amster-

dam, Netherlands) with 61 Ag-AgCl scalp electrodes mounted on a cap according

to the extended international 10-20 system. Four additional external electrodes

were used to record the vertical and horizontal eletrooculogram (EOG) by placing

them on the outer canthus of each eye as well as above and below the left eye. Two

more external electrodes were used to record the reference signal from the left and

right mastoids. EEG signals were recorded with a sampling rate of 512 Hz and an

analogue anti-aliasing low-pass filter with a cut-off frequency of 200 Hz.

EEG data were processed offline using EEGLAB 12.0.2.5b (Delorme and

Makeig, 2004). The continuous waveforms were first down-sampled to 256 Hz,

re-referenced to the mean of the two mastoids, and then filtered using zero-phase

shift Hamming-windowed sinc FIR filters (EEGLAB firfilt plugin version 1.5.3.;

high-pass cut-off 0.01 Hz, transition bandwidth 0.1 Hz; low-pass cut-off 20 Hz,

transition bandwidth 0.5 Hz). An independent component analysis (ICA) was used

to remove eye artefacts. Epochs ranging from -1000 to 2500 ms were extracted

and rejected if amplitudes ±200 µV, if linear trends exceeded 200 µV in a 1000

ms gliding window, or if the trial was lying outside a ±6 SD range (for single

channels) and ±3 SD (for all channels) of the mean voltage probability distribution

or the mean distribution of kurtosis values. On average 81% (324/400, SD = 48.3)

of the total number of trials passed the rejection procedure.

EEG power spectra were computed by estimating the power spectral density

(PSD) using Welch’s method. The PSD was calculated with a 256-point Hamming

window, an oversampling factor of 40, and a window overlap of 50%, resulting in

a frequency resolution of 0.025 Hz. The EEG power spectra were computed for the
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single trials and averaged afterwards in order to estimate the total spectral power

(i.e. time- but not necessarily phase-locked).

The processed EEG data were sorted according to the spoken behavioural re-

sponses. For the analysis of periodicity, only trials with all five key words correct

were considered, in order to control for the effect of intelligibility. This resulted

in an average of 44.2 trials (SD = 8.2) in the aperiodic condition, 44.2 trials (SD =

9.7) in the mixed condition, and 57.9 trials (SD = 17.7) in the periodic condition.

For the analysis of intelligibility, trials in the periodic condition with different

numbers of correctly repeated key words and the completely unintelligible rotated

condition were separately compared. This resulted in the following average num-

bers of trials per condition: 8.4 (SD = 4.3) for 0 or 1 key words correct, 12.5

(SD = 5.5) for 2 key words correct, 21.4 (SD = 5.1) for 3 key words correct, 28.9

(SD = 5.9) for 4 key words correct, 57.9 (SD = 17.7) for 5 key words correct, and

67.1 (SD = 10.5) for the rotated condition. In order to obtain the final ERPs, the

averaged epochs of each subject were baseline corrected by subtracting the mean

amplitude in the -50 to 0 ms window before averaging across subjects.

Statistical differences between conditions were examined using non-

parametric cluster-based permutation tests (Maris and Oostenveld, 2007). Firstly,

it was tested whether there was a linear relationship between the amount of pe-

riodicity in the stimuli and the ERP amplitude by computing separate two-sided

regression t-tests for dependent samples with linearly spaced regressors (1–3) at

each electrode and for each sample point from 0 to 1000 ms after sentence onset.

The same procedure was applied to test whether there was a linear relationship

between the intelligibility of the sentences and the ERP amplitude, but this time

all sample points in the stimulus window (0–2500 ms) were examined and the

regressors were set to values ranging from 1 to 6. Secondly, the individual sam-

ple points were merged into clusters if the t-values of their regression coefficients

were significantly different from 0 at an alpha level of 0.05, and if the same was

true for temporally adjacent sample points and at least 3 neighbouring channels.

This procedure provides a weak control for false positive findings due to multiple
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Figure 3.2: Behavioural data. Boxplots showing the average proportion of correctly re-
peated key words in each of the four speech conditions. The black horizontal lines in the
boxplots represent the median value. *** indicates a p-value < 0.001, n.s. stands for not
significant.

comparisons by only allowing effects that are coherent in time and space. Next,

the t-values within a given cluster were summed to obtain the cluster-level statis-

tic. The significance probability of a cluster was then assessed by comparing this

cluster-level statistic to the one obtained after randomly re-allocating the individual

trials to the conditions. This step was repeated 1000 times and the proportion of

these Monte-Carlo iterations in which the cluster-level statistic was exceeded then

determined the final cluster p-value.

The same statistical technique was applied to test whether there was a linear

relationship between pre-stimulus alpha power and sentence intelligibility in the

periodic condition, but in this case the EEG power spectrum in the pre-stimulus pe-

riod (-1000–0 ms) was first averaged over a frequency window from 7 to 10 Hz in

each condition. Here, the regressors were set to values from 1 to 5, corresponding to

the number of correct key words. Consequently, only a single regression coefficient

was computed per electrode, and these were subsequently clustered according to

their p-values and spatial adjacency.

3.3 Results

3.3.1 Behavioural data

The averaged spoken behavioural responses obtained after each trial (Fig. 3.2) show

that the aperiodic and mixed conditions are equally intelligible (88.8% and 90.0%



3.3. Results 61

correct key words on average; t(17) = -1.60, p = 0.13), while the rotated condition

is completely unintelligible (0%), and periodic speech is slightly less intelligible

(77.4%) than aperiodic (t(17) = -8.42, p < 0.001) and mixed speech (t(17) = -11.60,

p < 0.001). Furthermore, we compared the responses to the first and the second half

of the trials in the periodic condition and found no significant differences (77.8%

and 77.0%; t(17) = 0.70, p = 0.49), indicating that there were no learning effects

over the course of the 160 trials.

3.3.2 Periodicity

As shown by the ERP traces recorded at electrode FC2 in Fig. 3.3A, the three con-

ditions varying in acoustic periodicity (aperiodic, mixed, and periodic speech) all

elicited an auditory-evoked P1-N1-P2 complex after sentence onset, followed by

an acoustic change complex (ACC, consisting of CP1, CN1, and CP2 components)

from about 300 to 500 ms in response to the onset of the second syllable (Pratt,

2011). Furthermore, all three conditions showed a sustained negativity from about

300 to 2500 ms past sentence onset.

Crucially, after the initial P1 component, peaking at around 50 ms after sound

onset, the ERPs in the three conditions were found to diverge, showing greater neg-

ative amplitudes with more periodicity. This parametric effect is observable until

about one second after sound onset and thus considerably overlaps with the slow

negativity. A cluster-corrected linear regression t-test including all three conditions

confirmed that there was a significant linear negative relationship during this time

window by returning three separate significant clusters in the right fronto-central

scalp region: the first one was found during the period of the N1 and P2 components

between about 90 to 230 ms (p = 0.034), the second cluster ranging from about 300

to 440 ms (p = 0.028) coincided with the ACC, and the third cluster was observed

between about 715 to 840 ms (p = 0.03) after sound onset. The average voltage

distributions of each condition during the three clusters along with t-value maps

depicting the scalp distributions of statistical differences for each cluster are shown

in Fig. 3.3B.
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Figure 3.3: Periodicity. A) Grand average ERPs recorded at electrode FC2 for fully in-
telligible trials (all 5 key words correctly repeated) in the aperiodic, mixed, and periodic
conditions. The three thick black lines below the ERP traces indicate time windows during
which there was a significant linear negative relationship between the amount of periodicity
in the stimuli and the ERP amplitude (p < 0.05). ERP waveforms were low-pass filtered
at 10 Hz for illustration purposes. B) Voltage maps showing the mean activity during the
three significant time windows for each condition. In the three t-value maps on the far right,
black dots indicate electrodes whose p-values were < 0.05 at each sample point during the
respective time window.

3.3.3 Intelligibility

In order to analyse how the ERPs were affected by the intelligibility of the stimulus

sentences, trials in the periodic condition were sorted into five categories, according

to the spoken responses of the participants (zero or one, two, three, four, and five

key words correct). Additionally, spectrally-rotated speech was included as a com-

pletely unintelligible control condition.

As illustrated in Fig. 3.4A, which shows the ERPs recorded at electrode FC2,

all six conditions elicited a slow negativity from about 300 to 2500 ms after the be-

ginning of the sentences. This slow negativity, taken to be a CNV, had the smallest

amplitude in the rotated condition, followed by slightly larger amplitudes for trials

in the periodic condition with zero or one and two correct key words, and substan-

tially larger amplitudes for trials in the periodic condition with three, four and five
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key words correct. A cluster-corrected regression t-test including all six conditions

returned one large significant cluster (p = 0.004) from about 470 to 2250 ms, con-

firming that there was a linear negative relation between the intelligibility of the

sentences and the amplitude of the CNV. The corresponding t-map shows that this

cluster included a large number of electrodes in the central and right fronto-temporal

scalp region (see map at far right in Fig. 3.4B). The voltage maps showing the ERP

amplitudes averaged over the duration of the whole cluster in each condition con-

firm that the activity was strongest in the fronto-central scalp region and slightly

lateralised to the right, particularly for the more intelligible conditions (three or

more correct key words, Fig. 3.4B).

In order to test whether the smaller CNV in the conditions with two or less

correct key words were due to the low trial numbers, we computed the Spearman

rank correlation coefficients between the number of trials per subject and their CNV

amplitudes (averaged over all 61 scalp electrodes and the whole stimulus window).

These correlations were in both cases not significant (0/1 words: r = -.24, p = 0.34;

2 words: r = 0.24, p = 0.33), indicating that the observed effect was not driven by

the subjects with the fewest trials within each condition.

In addition to the finding that CNV amplitudes were larger when the sentences

were more intelligible to the subjects, the data in Fig. 3.4 also show that the six

conditions appeared to group into three distinct categories (rotated, maximally two

key words, and minimally three key words). In order to follow up this observation,

we tested if there were any significant differences within these categories. Firstly,

trials with zero or one correct key words were compared to trials with two correct

key words using a cluster-based t-test. Secondly, trials with three, four, and five cor-

rect key words were compared using a cluster-based ANOVA. Both tests revealed

no significant differences at any point during the stimulus window (0–2500 ms).

Based on this finding, trials in the periodic condition were pooled into a more and

less intelligible category (maximally two versus minimally three correct key words,

respectively) and separately compared, leaving out the rotated condition to ensure

a test that is free of any acoustic confounds. For this post-hoc analysis, a cluster-
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Figure 3.4: Intelligibility. A) Grand average ERPs recorded at electrode FC2 for the com-
pletely unintelligible rotated condition and trials in the periodic condition with 0/1, 2, 3,
4, or 5 correctly repeated key words. The thick black line below the ERP traces indicates
the time window during which there was a significant linear negative relationship between
the intelligibility of the stimuli and the ERP amplitude (p < 0.01). ERP waveforms were
low-pass filtered at 10 Hz for illustration purposes. B) Voltage maps showing the mean
activity during the significant time window for each condition. In the t-value map on the
far right, black dots indicate electrodes whose p-values were < 0.01 at each sample point
during the respective time window. C) Voltage distributions and t-map showing the mean
activity during the time window in which the ERP amplitudes of the pooled less (maximally
2 key words) and more (minimally 3 key words) intelligible trials in the periodic condition
differed significantly (p < 0.05).

corrected regression t-test including all sample points in the significant time window

(470–2250 ms) revealed one cluster with a p-value of 0.036 from about 780 to 1640

ms. The voltage maps averaged over this significant time window show that the

activity is lateralised to the right in the more intelligible condition, which is con-

firmed by the location of the significant cluster of electrodes in the right temporal

scalp region (Fig. 3.4C).

3.3.4 Pre-stimulus alpha power

In a final analysis, we tested whether the amount of alpha power in the silent pre-

stimulus period before sentence onset stands in relation to the intelligibility of the
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stimulus sentences in the periodic condition. As shown by the line plot in Fig. 3.5A,

depicting the average EEG power spectra in the pre-stimulus window (-1000–0 ms)

recorded at electrode FC2, slow alpha power (7–10 Hz) was markedly increased

before the least intelligible trials, with maximally one out of five correctly repeated

key words. Furthermore, it can be seen that the differences between the five condi-

tions were indeed confined to the slow alpha range. The scalp distributions of the

average spectral power in this frequency window show peaks of activity over the

occipital scalp region in all five conditions, along with a widespread power increase

extending into the anterior scalp region for the least intelligible trials (Fig. 3.5B).

A cluster-based regression t-test comparing the averaged pre-stimulus slow alpha

power (7–10 Hz/-1000–0 ms) in all five conditions at each electrode revealed a

large cluster comprising 18 significant electrodes in the right frontal scalp region

(p = 0.016, see t-map at far right of Fig. 3.5B).

Same as for the ERPs, the Spearman rank correlation coefficients between the

number of trials per subject and the amount of slow alpha power (averaged over all

61 scalp electrodes, and the whole pre-stimulus window) was not significant for the

conditions with the fewest trials (0/1 words: r = 0.07, p = 0.78; 2 words: r = 0.06,

p = 0.83), showing that the results within these conditions were not biased by the

subjects with the lowest numbers of trials.

As the relation between slow alpha power in the pre-stimulus window and

intelligibility was not strictly linear, further tests were performed. Firstly, the four

conditions with two or more correct key words, which appeared not to differ regard-

ing the amount of slow alpha power, were separately compared using a cluster-based

ANOVA. This test did not reveal any significant differences between the four con-

ditions. However, when all trials with two or more correct key words were pooled

into a single condition and compared to the least intelligible trials using a one-

tailed cluster-corrected t-test, the same significant cluster of electrodes as shown in

Fig. 3.5B was obtained, which confirms that slow alpha power was increased for

the least intelligible trials only.
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Figure 3.5: Pre-stimulus alpha power. A) Line plot showing the averaged EEG power
spectra in the silent pre-stimulus window (-1000–0 ms), recorded at electrode FC2, for
trials in the periodic condition with 0/1, 2, 3, 4, or 5 correctly repeated key words. B) Scalp
maps of the mean alpha power in the 7 to 10 Hz frequency window for each of the five
conditions. In the t-map on the far right, black dots indicate electrodes with p-values <
0.05.

3.4 Discussion

The purpose of the present study was to tease apart effects of acoustics and intelli-

gibility on the ERPs in response to speech. It was found, firstly, that more acoustic

periodicity in the speech signals parametrically rendered the ERP waveforms dur-

ing the first second after sentence onset more negative. Periodicity thus appears

to amplify the evoked cortical response in the early period after sound onset. Sec-

ondly, we observed a CNV that was larger when the speech signals were more

intelligible to the participants. However, this relationship was not strictly linear, as

the amplitude of the negativity differed significantly between trials with less and

more than half of the key words correctly repeated, but not within these categories.

Additionally, slow alpha power (7–10 Hz) in the silent baseline interval preceding

the sentences that turned out to be least intelligible to the participants was found to

be markedly increased, while there was no difference between the rest of the trials.
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3.4.1 Periodicity

The finding that more periodicity leads to larger negative ERP amplitudes is in line

with pitch perception studies reporting greater neural responses to sound input that

possesses a pitch (e.g. Chait et al., 2006; Griffiths et al., 2010; Norman-Haignere et

al., 2013). As we have controlled for differences in intelligibility across conditions

by only including trials with all five key words correctly repeated, and sentence

materials as well as the behavioural task were the same throughout the experiment,

it seems unlikely that any cognitive process can explain this effect. Furthermore, the

effect was significant from as early as 90 ms after acoustic onset, a latency which

is generally thought to be dominated by responses to the acoustic properties of a

stimulus (Picton et al., 1974; Pratt, 2011). However, the effect was not confined to

the time window of AEPs and ACC, i.e. until about 500 ms post-onset, but present

until almost one second after sound onset, classifying as a sustained pitch response

(Gutschalk et al., 2004). The current results thus stress the importance of taking the

acoustic properties of the stimuli into account when investigating speech perception,

particularly when the duration of the stimuli is relatively short (e.g. single words).

3.4.2 Intelligibility

As outlined in the introduction, slow cortical potentials may reflect working mem-

ory operations, the level of attention spent on a task, and how prepared to respond a

subject is. Regarding the task to verbally repeat relatively long auditorily presented

sentences, it appears likely that all three factors play a role. Firstly, larger amounts

of verbal material have to be retained in working memory when the sentences are

more intelligible. Secondly, when the stimulus sentences were less intelligible to

them, subjects were presumably paying less attention to a task they realised they

could not accomplish. Similarly, the inability to understand the materials is nec-

essarily going along with failing to prepare for the subsequent verbal response. In

line with this interpretation, significant differences in CNV amplitude were not ob-

served right after sentence onset, but started to emerge a few hundred milliseconds

after, suggesting that the subjects first had to process the initial part of the sentences

before these cognitive processes were triggered.
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Although the task used in this study was not typical for eliciting a CNV, the

fact that the amplitude of the slow negativity did not increase further when three or

more key words per sentence were correctly repeated provides further evidence for

this interpretation. CNV amplitudes have often been reported to be limited, or even

to have an inverted u-shaped relationship with task demand (Birbaumer et al., 1990;

Kononowicz and Penney, 2016). In turn, however, the monotonic but not strictly

linear relation of speech intelligibility and CNV amplitude observed in the current

study also suggests that the CNV cannot be used as an accurate predictor of speech

intelligibility scores.

In a recent study that resembles the current one to some extent, Wöstmann et

al. (2015b) have reported a slow negativity, which was also taken to be a CNV, in an

auditory number comparison task. In their study, subjects had to remember numbers

in the presence of a competing talker in the background, and the signal mixture was

furthermore acoustically degraded. Crucially, more severe degradations resulted

in larger CNV amplitudes, although the intelligibility of the numbers and the task

performance decreased somewhat. Wöstmann et al. thus concluded that the CNV

amplitude serves as a measure of expected task difficulty and listening effort. Al-

though it remains to be investigated how the CNV in response to speech presented

in background noise varies when the intelligibility fluctuates over a wider range,

this suggests that slow cortical potentials may reflect different cognitive processes

for speech presented in quiet and in noise. Importantly, in the present study subjects

could not know whether they would be able to understand a particular sentence in

the periodic condition before it was played to them. Hence, the differences in CNV

amplitude for the more or less intelligible trials cannot be explained by the expected

task difficulty, which was assumed to be constant.

3.4.3 Pre-stimulus alpha power

The slow alpha power before the least intelligible trials was found to have a broad

scalp distribution extending into the anterior scalp region. As summarised by

Klimesch (1999), slower alpha frequencies generally have a more anterior scalp

distribution than faster ones and the distribution found in the current study also cor-
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responds well with the example scalp map provided in this review paper. As shown

by Laufs et al. (2006), there appear to be two distinguishable alpha networks, one

that comprises occipital vision areas and a second one in fronto-parietal areas as-

sociated with attention. The scalp location of the cluster of significant electrodes

found in the current study corresponds well with that of the right-lateralised ventral

fronto-parietal attention network, which is deactivated when subjects focus on a task

(Corbetta et al., 2008; Corbetta and Shulman, 2002). Deactivation of this network

has been associated with the prevention of irrelevant task switching (Shulman et al.,

2007) and our data suggest that this deactivation may coincide with a decrease in

alpha power. The location of this effect is also well in line with the results of Strauß

et al. (2015), who have observed the strongest differences in alpha phase before

correct and incorrect trials in a lexical decision task in this region.

As described by Mazaheri and Jensen (2008, 2010), slow ERP deflections may

be caused by amplitude fluctuations of induced alpha power because the peaks of

alpha oscillations appear to be more strongly modulated than the troughs. However,

this explanation does not seem to apply to the current results, since the amplitude

of the slow negativity varies independently of the pre-stimulus alpha power. That

is, the slow alpha power was only increased before the least intelligible trials (zeros

or one correct key words), but the CNV had a similar amplitude for these trials and

those with two correct key words. Hence, same as for the CNV, the non-linear rela-

tionship of pre-stimulus alpha power and intelligibility does not allow the accurate

prediction of speech intelligibility rates.

3.5 Conclusion

The current study investigated cortical EEG responses to auditorily presented sen-

tences with a focus on the differential contributions of acoustics and intelligibility.

Firstly, more acoustic periodicity in the stimuli was found to render the ERPs dur-

ing the first second after speech onset more negative. This demonstrates that acous-

tic factors should not be disregarded in neuroscientific studies investigating speech

perception, even when focussing on cognitive processes. Secondly, we observed a

CNV from about half a second after sentence onset, the amplitude of which was
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larger when the sentences were more intelligible to the participants. Additionally,

slow alpha power before the least intelligible sentences was significantly higher

than before the rest of the trials. However, as the latter two measures did not vary

precisely as a function of the number of correctly repeated key words and did not

appear to co-vary, neither appears to be an accurate predictor of speech intelligibil-

ity.



Chapter 4

Effects of acoustic periodicity and intelligibility on the neural

oscillations in response to speech1

4.1 Introduction

In order to shed light on the underlying neural mechanisms and cognitive pro-

cesses involved when attempting to understand spoken speech, a growing number

of magneto- and electroencephalographic (M/EEG) studies focus on the time-

frequency properties of the neural signals rather than traditional waveform analyses

(for reviews see Giraud and Poeppel, 2012; Weisz and Obleser, 2014). The current

experiment adds to existing knowledge by investigating effects of acoustics and

intelligibility separately, two factors that usually vary together when speech signals

are acoustically manipulated. Specifically, we manipulated the amount of acoustic

periodicity, while controlling for differences in intelligibility, and vice versa. In the

context of speech, periodicity denotes that a sound is produced by the periodic vi-

brations of the vocal folds, resulting in voiced speech with a pitch corresponding to

the vibration rate. Unvoiced speech sounds, in contrast, emanate from constrictions

in the vocal tract and have aperiodic fluctuations in energy, leading to a noisy sound

quality and the absence of a pitch.

A popular speech processing technique that has been used in the neurosciences

(e.g. Davis and Johnsrude, 2003; Obleser and Weisz, 2012; Peelle et al., 2013; Scott

et al., 2000) as well as in psychoacoustic studies concerned with the simulation of

1This chapter is based on the same EEG data as chapter 3, which is why they bear some re-
semblance, and has been published as: Steinmetzger, K. and Rosen, S. (2017). Effects of acoustic
periodicity and intelligibility on the neural oscillations in response to speech. Neuropsychologia 95,
173–181.
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cochlear implants (e.g. Qin and Oxenham, 2003; Schoof et al., 2013; Shannon et

al., 1995), is noise-vocoding (henceforth referred to as the aperiodic condition). By

filtering the unprocessed input speech into a specified number of frequency bands,

it allows the spectral resolution of the synthesised output speech to be varied in

a controlled manner, a feature that is closely related to speech intelligibility. At

the same time, using noise as source results in a loss of the natural mix of voiced

and voicelessness, and consequently also any voice pitch information, making it

resemble whispered speech.

Nevertheless, our previous behavioural work (Steinmetzger and Rosen, 2015;

i.e. chapter 2) has shown that preserving periodicity information in a vocoder

(henceforth the mixed condition) does not lead to improved intelligibility rates.

This suggests that periodicity information, despite its salience, is a redundant cue,

at least in non-tonal languages and quiet listening conditions. The first question

the current study addresses, is thus whether EEG time-frequency responses are

similarly unaffected by the absence of periodicity.

To enable a more comprehensive investigation of the effects of periodicity,

we included a third processing condition in which the same speech materials were

synthesised with a completely periodic source (henceforth the periodic condition).

Acoustically this condition is in fact closer to natural speech (which is voiced

about 50% of the time – Dellwo et al., 2007; Fourcin, 2010), than aperiodic noise-

vocoded speech. However, because natural speech does not contain periodic sounds

with much energy in the frequency region above 4 kHz, it sounds very unnatural.

Additionally, periodicity is such a salient cue that it obscures weaker cues such as

intensity differences, thereby making the information transmitted contradictory. For

unvoiced fricatives like /s/ and /S/, for example, aperiodic high-frequency energy is

missing and replaced by periodic energy, which makes it difficult to identify these

sounds. Consequently, periodic speech has substantially lower intelligibility rates

than the other two conditions (Ardoint et al., 2014; Steinmetzger and Rosen, 2015;

i.e. chapter 2).
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In order to control for this expected difference in intelligibility, the single trials

were sorted according to the spoken responses of the participants. This approach

was also chosen to enable a direct comparison of intelligible and unintelligible

trials in the periodic condition. Consequently, the current study also provides the

opportunity to investigate how the EEG time-frequency responses are affected by

the intelligibility of the speech materials after controlling for systematic acoustic

differences. This approach is akin to studies generating a pop-out effect by pre-

senting the same stimulus materials twice, first without any additional information

and then again after providing a written transcript (Sohoglu et al., 2012) or the

unprocessed recording (Millman et al., 2015), but avoids any predictive top-down

processing.

In addition to the acoustically similar unintelligible trials, the current study

included completely unintelligible spectrally-rotated speech as a second control

condition (henceforth the rotated condition). Rotated speech has a similar spectro-

temporal complexity as unrotated speech and has been used in several of the studies

mentioned above (Becker et al., 2013; Peelle et al., 2013; Scott et al., 2000). Yet,

apart from not being a precise acoustic match, the obvious meaninglessness casts

doubts on whether it is indeed an adequate control condition. The design of the

current experiment thus also serves to directly compare these two control condition

types.

Importantly, in contrast to the event-related potentials (ERPs), the EEG time-

frequency analyses in the current paper were not assumed to be affected by the

perception of a voice pitch. Direct cortical recordings and MEG experiments have

shown that the presence of a pitch coincides with increased high gamma power

(>80 Hz; e.g. Griffiths et al., 2010; Sedley et al., 2012). However, due to potential

muscle artefacts and the low signal strength when recorded with cortical EEG, we

did not include these frequencies in the current analysis. Moreover, functional mag-

netic resonance imaging (fMRI) signals, which fluctuate at rates of less than 0.5 Hz

(He and Raichle, 2009), have been shown to be larger for signals with a pitch (e.g.

Norman-Haignere et al., 2013; Patterson et al., 2002). Yet, frequencies below 0.5
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Hz similarly lie outside the possible frequency range of EEG time-frequency anal-

yses, because they would require excessively long baseline and stimulus windows.

Based on the results of Strauß and colleagues (2014a), who have recently re-

ported increased theta activity (here 3–7 Hz) in a left-lateralised fronto-temporal

network for so-called ambiguous pseudo-words in an auditory word recognition

task, we expected increased theta power in the periodic condition. The pseudo-

words used by Strauß et al. (2014a) were characterised by a wrong core vowel,

making them resemble the periodic condition in the current study to some extent.

Theta oscillations have also been associated with the storage of sequentially pre-

sented verbal information in working memory and the phonological loop (Roux and

Uhlhaas, 2014). Based on this idea, Strauß et al. (2014a) suggested that subjects

may have internally rehearsed the unusual pseudo-words in order to classify them

as words or non-words. More generally, this effect was taken to indicate an infor-

mation processing conflict (Botvinick et al., 2001, Botvinick et al., 2004), although

studies eliciting response conflicts in non-speech tasks, for example by using the

Stroop paradigm, have usually reported mid-frontal theta power increases (Cohen

and Donner, 2013; Hanslmayr et al., 2008).

A recent theoretical approach has linked increased alpha power (~7–13 Hz)

to the selective inhibition of brain areas that are not currently task relevant (Jensen

and Mazaheri, 2010). Applied to speech perception, it has been proposed that alpha

oscillations might be actively enhanced in order to cope with a demanding task,

particularly listening to speech in the presence of background noise (e.g. Strauß et

al., 2014b; Wöstmann et al., 2015a). For words presented in quiet listening con-

ditions, on the other hand, alpha activity was found to be increasingly suppressed

with higher intelligibility levels (Becker et al., 2013; Obleser and Weisz, 2012).

However, in these studies the intelligibility of the mostly noise-vocoded stimuli

varied along with their acoustic properties (i.e. the number of frequency bands

in the vocoder) and hence also the subjective listening effort, which is similarly

thought to depend on the degree of acoustic degradation (Obleser and Weisz, 2012;

Wöstmann et al., 2015a). Sorting the trials in the periodic condition according to
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Say        it  slowly                 but  make it     ring       clear.

6 kHz
3 kHz

200 Hz
100 Hz 0.5 s 1 s 1.5 s

A) Unprocessed speech

B) Aperiodic

C) Mixed

D) Periodic

E) Rotated

Figure 4.1: Stimuli. Waveforms, wide-band spectrograms, and F0 contours for one ex-
ample sentence (Say it slowly but make it ring clear.). A) The unprocessed version of
the sentence and the same sentence processed to have B) an aperiodic source, C) a mixed
source, D) a periodic source, or E) a mixed source and spectrally rotated. The four pro-
cessed conditions (B–E) all have eight frequency bands, i.e. the same spectral resolution.
The unprocessed version of the sentence in panel A) is shown for the purpose of comparison
only.

the spoken behavioural responses provided the opportunity to test whether there is

indeed a direct relation between alpha suppression and speech intelligibility.

4.2 Methods

4.2.1 Participants

Eighteen normal-hearing right-handed subjects (8 females, mean age = 21.6 years,

SD = 2.3 years) took part in the study. All participants were native speakers of

British English and had audiometric thresholds of less than 20 dB HL at frequen-

cies between 125 and 8000 Hz. All subjects gave written consent and the study was

approved by the UCL research ethics committee.



4.2. Methods 76

4.2.2 Stimuli

The stimulus materials used in this experiment were recordings of the IEEE sen-

tences (Rothauser et al., 1969) spoken by an adult male Southern British English

talker with a mean F0 of 121.5 Hz that were cut at zero-crossings right before sen-

tence onset and normalised to a common root-mean-square (RMS) level. The IEEE

sentence corpus consists of 72 lists with 10 sentences each and is characterized by

similar phonetic content and difficulty across the lists, as well as an overall low

semantic predictability. Every sentence contains five key words (nouns, verbs, or

adjectives; e.g. Say it slowly but make it ring clear.).

All stimulus materials were processed prior to the experiment using a channel

vocoder implemented in MATLAB (Mathworks, Natick, MA). For all three vocod-

ing conditions (aperiodic, mixed, and periodic) the original recordings of the IEEE

sentences were first band-pass filtered into eight bands using zero-phase-shift sixth-

order Butterworth filters. The filter spacing was based on equal basilar membrane

distance (Greenwood, 1990) across a frequency range of 0.1 to 8 kHz (upper filter

cut-offs in Hz: 242, 460, 794, 1307, 2094, 3302, 5155, 8000; filter centre frequen-

cies in Hz: 163, 339, 609, 1023, 1658, 2633, 4130, 6426). The output of each filter

was full-wave rectified and low-pass filtered at 30 Hz (zero-phase-shift fourth-order

Butterworth) to extract the amplitude envelope. The low cut-off value was chosen

in order to ensure that no temporal periodicity cues were present in the aperiodic

condition.

In order to synthesise aperiodic speech, the envelope of each individual band

was multiplied with a broadband white noise carrier. In the mixed condition, the en-

velope of each band was also multiplied with a broadband white noise, but only in

time windows where the original speech was unvoiced. Sections that were voiced in

the original recordings were synthesised by multiplying the envelopes with a pulse

train following the natural F0 contour. The individual pulses had a duration of one

sample point, i.e. about 23 µs at a sampling rate of 44.1 kHz. The F0 contours

of the original sentences were extracted using ProsodyPro version 4.3 (Xu, 2013)

implemented in PRAAT (Boersma and Weenink, 2013), with the F0 extraction sam-
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pling rate set to 100 Hz. The resulting F0 contours were corrected manually where

necessary and then used to determine the distance between the individual pulses

of the pulse train sources. Based on the original intermittent F0 contours, we also

produced artificial continuous F0 contours by interpolation through unvoiced sec-

tions and periods of silence. These continuous F0 contours were used to produce

the pulse train sources for the periodic condition.

Finally, in all three vocoding conditions, the eight sub-band signals were again

band-pass filtered using the same filters as in the analysis stage of the process. Be-

fore the individual bands were summed together, the output of each band was ad-

justed to the same RMS level as found in the original recordings.

Spectrally-rotated speech was produced using a technique introduced by

Blesser (1972) and implemented in MATLAB. Here, the waveforms of the mixed

condition described above were first multiplied with an 8 kHz sinusoid, resulting in

a spectral rotation around the midpoint frequency of 4 kHz. Note that this procedure

also renders the rotated speech inharmonic, since the frequencies of the component

tones will not be multiples of a particular F0 anymore. The rotated waveforms were

then filtered (FFT-based FIR filter, order 256) to have the average long-term speech

spectrum (Byrne et al., 1994) and, finally, scaled to the same RMS level as the orig-

inal waveforms in the mixed condition.

Fig. 4.1 shows an unprocessed example sentence along with the same sentence

processed in the four ways described.

4.2.3 Procedure

Each participant listened to 80 aperiodic, 80 mixed, 160 periodic, and 80 rotated

sentences. There were twice as many trials in the periodic condition because we

wanted to ensure a sufficient number of unintelligible trials. All 4 conditions were

presented in blocks of 10 sentences (i.e. 1 complete IEEE sentence list) and the

order of the conditions and IEEE lists was randomised. Only the first 40 IEEE lists

were used in the main experiment and none of the sentences was presented more

than once. Participants were asked to repeat as many words as possible after ev-

ery sentence. The verbal responses were logged by the experimenter before the
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next sentence was played and no feedback was given following the responses. The

presentation of the stimuli and the logging of the responses was carried out using

Presentation version 17.0 (Neurobehavioral Systems, Berkeley, USA).

Single trials consisted of a silent pre-stimulus interval with random duration

(1.5–2.5 s), a stimulus sentence (average duration = 2.04 s, SD = 0.24 s) followed

by a silent interval of 0.25 s, a short beep signalling the participants to start re-

sponding, the spoken responses, and the subsequent logging of the responses by the

experimenter.

Before being tested, the subjects were familiarised with the materials by listen-

ing to 10 aperiodic, mixed, and periodic example sentences each (IEEE lists 41–43).

During the familiarisation phase every sentence was directly followed by its unpro-

cessed counterpart, and again followed by the processed sentence.

The main part of the experiment took about 70 minutes to complete and sub-

jects were allowed to take breaks whenever they wished to. The experiment took

place in a double-walled sound-attenuating and electrically-shielded booth, with the

computer signal being fed through the wall onto a separate monitor. Participants sat

in a comfortable reclining chair during EEG acquisition and told to not move their

eyes during sentence presentation. The stimuli were converted with 16-bit reso-

lution and a sampling rate of 22.05 kHz using a Creative Sound Blaster SB X-Fi

sound card (Dublin, Ireland) and presented over Sennheiser HD650 headphones

(Wedemark, Germany). The presentation level was about 71 dB SPL over a fre-

quency range of 0.1 to 8 kHz as measured on an artificial ear (type 4153, Brüel &

Kjær Sound & Vibration Measurement A/S, Nærum, Denmark).

4.2.4 EEG recording and pre-processing

The continuous EEG was recorded using a Biosemi ActiveTwo system (Amster-

dam, Netherlands) with 61 Ag-AgCl scalp electrodes mounted on a cap according

to the extended international 10-20 system. Four additional external electrodes were

used to record the vertical and horizontal eletrooculogram (EOG) by placing them

on the outer canthus of each eye as well as above and below the left eye. Two more

external electrodes were used to record the signal from the left and right mastoids.
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EEG signals were recorded with a sampling rate of 1024 Hz and an analogue anti-

aliasing low-pass filter with a cut-off frequency of 200 Hz.

The EEG data were processed offline using EEGLAB 13.5.4b (Delorme and

Makeig, 2004). The waveforms were first down-sampled to 512 Hz, re-referenced

to the mean of the two mastoids, and then filtered (zero-phase shift Hamming-

windowed sinc FIR filter, order 3380, using the firfilt plugin version 1.5.3.) with

a 0.1 Hz high-pass filter and a 100 Hz low-pass filter. An independent component

analysis (ICA) was used to remove artefacts caused by eye blinks, eye movements,

and muscular activity. Epochs ranging from -1000 to 3000 ms around sentence on-

set were extracted and rejected if amplitudes exceeded ±120 µV, if linear trends

exceeded 120 µV in a 500 ms gliding window, or if the trial was lying outside a

±6 SD range (for single channels) and ±3 SD (for all channels) of the mean volt-

age probability distribution or the mean distribution of kurtosis values. On average

73.5% (294/400, SD = 13%, range = 57–95%) of the total number of trials passed

the rejection procedure.

4.2.5 EEG time-frequency analysis

In order to ensure the same signal-to-noise ratio in each condition, all analyses in

the present paper are based on matched trial numbers across conditions. For each

individual participant, the number of trials was determined by the condition with

the fewest trials, with excess trials in the other conditions omitted randomly.

The pre-processed EEG data were first sorted according to the spoken re-

sponses. For the analysis of periodicity, only trials with all five key words correct

were considered in order to control for differences in intelligibility. This resulted

in an average of 35.7 trials in each of the 4 processing conditions (SD = 9.7, range

= 23–56). For the analysis of intelligibility, trials in the periodic condition with

all five key words correct were compared to trials with maximally two correct key

words (i.e. less than half of the sentence correctly repeated). Three participants

with less than 10 unintelligible trials were excluded due to the low signal-to-noise

ratio of the data. The remaining 15 participants (8 females) had an average number

of 21.7 trials per condition (SD = 7.3, range = 14–35).
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The time-frequency decomposition of the pre-processed and sorted data

was conducted by computing the event-related spectral perturbation (ERSP)

as implemented in EEGLAB. The ERSP is a measure of the relative change

in power from baseline to stimulus period (Makeig, 1993). For each time-

frequency point in the stimulus window, the spectral power is divided by

the average power of the respective frequency bin in the baseline window

and transformed into a dB value. The data were analysed from 1 to 30 Hz

in 200 log-spaced frequency steps by convolving them with a set of Morlet

wavelets, whose widths increased linearly with frequency from 1 to 15 cy-

cles. This resulted in an analysis window ranging from -442.4 to 2442.4 ms

around sentence onset. For the sake of simplicity, the rounded values -500 to

2500 ms will be used henceforth. Within this window, the ERSP for each of the

200 frequency bins was calculated 100 times, resulting in a decomposition step

size of about 29 ms. In order to limit the overlap between pre- and post-stimulus

activity due to the windowing of the time-frequency analysis, the baseline window

lasted from -1000 to -100 ms (Shahin et al., 2009, Shahin et al., 2008). All analyses

in the current study are based on estimates of the total EEG power. In order to

obtain the total (i.e. time- but not necessarily phase-locked) EEG power, the ERSP

was computed for the single trial data and averaged afterwards (Tallon-Baudry and

Bertrand, 1999).

Statistical differences between conditions were examined using non-

parametric cluster-based permutation tests (Maris and Oostenveld, 2007). Firstly, it

was tested whether there was a linear relationship between the amount of period-

icity (aperiodic vs. mixed vs. periodic) or intelligibility (rotated vs. unintelligible

periodic vs. intelligible periodic) and the total EEG power by computing separate

two-sided regression t-tests for dependent samples at each electrode. In both cases,

the whole stimulus window (0-2500 ms) and the complete array of analysed neural

frequencies (1–30 Hz) was included in the test. Individual time-frequency sample

points were considered to belong to a cluster if their F-values fell below the alpha

level of 0.05, if the same was true for at least 3 neighbouring channels, and if they
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Figure 4.2: Behavioural data. Boxplots showing the average proportion of correctly re-
peated key words in each of the four processing conditions. The black horizontal lines in
the boxplots indicate the median value. *** indicates a p-value < 0.001, n.s. stands for
non-significant.

were connected to other significant sample points surrounding them. This proce-

dure provides a weak control for false positive findings due to multiple comparisons

by only allowing effects that are coherent in time, frequency, and space. Next, the

individual F-values within a given cluster were summed to obtain the cluster-level

statistic. The significance probability of a cluster was then assessed by compar-

ing this cluster-level statistic to the one obtained after randomly re-allocating the

individual trials to the conditions. This step was repeated 1000 times and the fi-

nal cluster p-value was then determined by the proportion of these Monte Carlo

iterations in which the cluster-level statistic was exceeded. The same statistical

technique was also applied when two conditions were compared, but in this case

two-sided t-tests were used in order to determine the p-values of the individual

time-frequency sample points. In all statistical tests reported in this paper, an effect

was considered to be significant if the cluster p-value was smaller than 0.05.

4.3 Results

4.3.1 Behavioural data

The averaged spoken behavioural responses obtained after each trial (Fig. 4.2) show

that the aperiodic and mixed conditions are equally intelligible (88.8% and 90.0%

correct key words on average; t(17) = -1.60, p = 0.13), while the rotated condition

is completely unintelligible (0%), and periodic speech is slightly less intelligible
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Figure 4.3: Periodicity. Total EEG power changes relative to baseline for the fully intelligi-
ble trials in the aperiodic, mixed, and periodic conditions. The upper part of the figure shows
spectrograms of EEG activity recorded at electrode F7. In the panel on the far right, time-
frequency sample points with p-values < 0.05 are shown in red. The scalp distributions of
the significant time-frequency window indicated by the black boxes (~5–6.3 Hz/845–1320
ms) are plotted in the lower part of the figure. Electrodes that are part of the significant clus-
ter are shown as black dots and electrode F7, which showed the strongest effect, is indicated
by a grey dot.

(77.4%) than aperiodic (t(17) = -8.42, p < 0.001) and mixed speech (t(17) = -11.60,

p < 0.001). Furthermore, we compared the responses to the first and the second half

of the trials in the periodic condition and found no significant differences (77.8%

and 77.0%; t(17) = 0.70, p = 0.49), indicating that there were no learning effects

over the course of the 160 trials.

4.3.2 Periodicity

The total EEG power changes in response to the fully intelligible trials (all five

key words correctly repeated) in the aperiodic, mixed, and periodic conditions are

shown in Fig. 4.3. The periodic condition was found to substantially deviate from

the other two conditions, which had a very similar response pattern.

Firstly, as shown by the spectrograms in the upper part of Fig. 4.3, there was

a power increase in the upper delta and theta region during the middle part of the

stimulus window in the periodic condition. A cluster-based regression t-test includ-

ing all three conditions confirmed that there was a linear positive relation between

the amount of periodicity in the stimuli and the EEG power in this time-frequency
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Figure 4.4: Periodicity: pairwise comparisons. Pairwise statistical comparisons of the fully
intelligible trials in the aperiodic, mixed, and periodic conditions. Time-frequency sample
points with p-values < 0.05 are shown in red. The scalp distributions of the significant
time-frequency window indicated by the black box (~5.3–6 Hz/765–1350 ms) is plotted in
the lower part of the figure. Electrodes that are part of the significant clusters are shown as
black dots and electrode F7, which showed the strongest effect, is indicated by a grey dot.

region. This effect was most pronounced at electrode F7, but included 4 more elec-

trodes in the left temporal scalp region (FT7, FC5, T7, and C5). These 5 electrodes

all showed a consistent significant effect in time-frequency-electrode space from

about 5 to 6.3 Hz and 845 to 1320 ms (p = 0.045). This time-frequency window is

indicated by the black boxes in the spectrogram plots and the corresponding scalp

distributions are shown in the lower part of Fig. 4.3. Subsequent pairwise compar-

isons (Fig. 4.4) revealed a significant difference between the aperiodic and periodic

conditions in the same time-frequency-electrode region (p = 0.047), but no addi-

tional effects.

Secondly, there was a trend for less low beta power (11–18 Hz; see Fig. 4.5)

in the periodic condition throughout the stimulus window. This observation was

confirmed by a post-hoc analysis in which the whole stimulus window was statisti-

cally examined, but the frequencies range was reduced to 10 to 20 Hz. As indicated

by the uncorrected p-values, this trend was strongest over the central scalp region,

particularly at electrode Cz, and present throughout the stimulus window. As can be

told from both the spectrograms at electrode Cz and the corresponding scalp maps,

there was again hardly any difference between the aperiodic and mixed conditions.
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Figure 4.5: Periodicity: post-hoc. Total EEG power changes relative to baseline for the
fully intelligible trials in the aperiodic, mixed, and periodic conditions. The upper part of
the figure shows spectrograms of EEG activity recorded at electrode Cz. In the panel on the
far right, time-frequency sample points with uncorrected p-values < 0.05 are shown in red.
The scalp distributions of the time-frequency window in which significant differences were
observed (11–18 Hz/0–2500 ms) are plotted in the lower part of the figure. Electrode Cz,
which showed the strongest effect, is indicated by a grey dot.

4.3.3 Intelligibility

The total EEG power changes for completely unintelligible rotated speech, largely

unintelligible periodic speech (trials with maximally two out of five key words cor-

rect, henceforth referred to as the unintelligible periodic condition), and fully intel-

ligible periodic speech (all five key words correct, henceforth the intelligible peri-

odic condition) are shown in Fig. 4.6. There was a general trend for greater power

changes when the speech was more intelligible. In particular, the neural response in

the rotated condition was very small, apart from an initial burst of activity following

the acoustic onset of the sentences. Unintelligible and intelligible periodic speech,

in contrast, showed sustained activity in the theta band (~4–7 Hz) throughout the

stimulus window. Crucially, intelligible periodic speech also led to a substantial

increase in delta power (1–4 Hz) during the second half of the stimulus window,

which was absent in both the rotated and unintelligible periodic conditions.

A cluster-based regression t-test including all three conditions confirmed that

there was a linear positive relation between the intelligibility of the stimuli and

the EEG power in the delta and theta region during the second half of the stimulus

window. This effect was most pronounced at electrode Fz, but included 7 more elec-

trodes in the frontal scalp region (Fpz, Fp2, AF3, AFz, AF4, F3, and F1). These 8
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Figure 4.6: Intelligibility. Total EEG power changes relative to baseline for the completely
unintelligible rotated condition, largely unintelligible trials in the periodic condition (max-
imally two out of five correctly repeated key words), and intelligible trials in the periodic
condition (all five key words correctly repeated). The upper part of the figure shows spectro-
grams of EEG activity recorded at electrode Fz. In the panel on the far right, time-frequency
sample points with p-values < 0.05 are shown in red. The scalp distributions of the signif-
icant time-frequency window indicated by the black boxes (~2.4–5 Hz/1400–2500 ms) are
plotted in the lower part of the figure. Electrodes that are part of the significant cluster are
shown as black dots and electrode Fz, which showed the strongest effect, is indicated by a
grey dot.

electrodes all showed a more or less consistent significant effect in time-frequency-

electrode space from about 2.4 to 5 Hz and 1400 to 2500 ms (p = 0.01). This

time-frequency window is indicated by the black boxes in the spectrograms and the

corresponding scalp distributions are shown in the lower part of Fig. 4.6.

Subsequent pairwise comparisons showed that this cluster consisted of two

overlapping smaller clusters (Fig. 4.7). Firstly, the direct comparison of the rotated

and intelligible periodic conditions returned a cluster from about 3 to 4.9 Hz and

1100 to 2500 ms with a slightly left-lateralised frontal location (p = 0.01). This

effect was strongest at electrode F3 and in total included 11 electrodes showing

a more or less consistent significant difference in time-frequency-electrode space

(Fp1, Fpz, Fp2, AF3, AFz, AF4, F3, F1, Fz, FC1, and FCz). Secondly, when com-

paring the unintelligible and intelligible periodic conditions directly, another cluster

with a slightly right-lateralised frontal distribution was obtained. This cluster had a

similar temporal extension, but did not overlap in frequency with the previous one
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Figure 4.7: Intelligibility: pairwise comparisons. Pairwise statistical comparisons of the
completely unintelligible rotated condition, largely unintelligible trials in the periodic con-
dition (maximally two out of five correctly repeated key words), and intelligible trials in the
periodic condition (all five key words correctly repeated). Time-frequency sample points
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Hz/1200–2300 ms) are plotted in the lower part of the figure. Electrodes that are part of
the significant clusters are shown as black dots and electrodes F3 and F6, which showed the
strongest effects, are indicated by grey dots.

(~1.7–2.7 Hz/1200–2300 ms; p = 0.019). Here, the strongest effect was observed

at electrode F6 and in total 7 electrodes showed a consistent significant difference

(Fpz, Fp2, AF4, Fz, F2, F4, and F6).

4.3.4 Acoustic comparison of the unintelligible and intelligible periodic con-

ditions

In order to test whether there were any substantial acoustic differences between the

unintelligible and intelligible periodic conditions, we ran a number of additional

acoustic analyses. Firstly, both the average duration of the sentences (means =

2.05/2.04 s, SDs = 0.22/0.26, medians = 2.04/2.01, t(173) = 0.34, p = 0.73) and the

average F0 frequencies of the concatenated sentences in the two conditions (means

= 119.33/119.01 Hz, SDs = 25.42/24.20, medians = 115.46/116.18, t(173) = -0.42,

p = 0.68) were found to show little difference. The F0 frequencies were initially

extracted with a sampling rate of 100 Hz, but down-sampled to 0.56 Hz for statisti-
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Figure 4.8: Acoustic characteristics of the largely unintelligible (maximally two out of five
correctly repeated key words) and intelligible (all five key words correctly repeated) trials
in the periodic condition. The left panel shows the average power spectra, i.e. the stimulus
power plotted as a function of audio frequency, and the right panel the average envelope
modulation spectra, i.e. the stimulus power plotted as a function of envelope modulation
frequency.

cal testing to obtain the same degrees of freedom as for the comparison of sentence

duration. Secondly, we compared the power spectra of the two concatenated sets

of sentences (computed using Welch’s method, FFT size = 1024 samples, sampling

rate = 22.05 kHz). The left panel of Fig. 4.8 shows that the spectra are virtually

identical, which is underlined by a very high Pearson’s correlation coefficient of

the frequency bins closest to the centre frequencies of the eight vocoder bands (r =

0.99, p < 0.001). Lastly, we computed the average modulation spectra of the am-

plitude envelopes of all the sentence in the two conditions using the front end of the

mr-sEPSM speech intelligibility model (Jørgensen et al., 2013). The modulation

spectra were averaged over all 22 gammatone audio filters of the model, resulting

in the simple line plot shown in the right panel of Fig. 4.8. The high correlation

coefficient of the nine modulation filter centre frequencies across conditions (r =

0.99, p < 0.001) again confirms that there is little acoustic difference between the

two conditions.

4.4 Discussion

The present study sought to identify effects of acoustic periodicity and intelligibil-

ity in the EEG time-frequency responses to acoustically presented sentences. We

thereby attempted to overcome the limitation that acoustic factors and intelligibility

have not been examined independently in previous studies. Firstly, it was found
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that despite considerable acoustic differences, the total responses in the aperiodic

and mixed conditions were almost identical. In contrast, the total EEG power in the

periodic condition differed substantially from the other two conditions, even after

controlling for the lower intelligibility. Differences were observed in the theta and

low beta bands. Secondly, completely unintelligible rotated speech and largely un-

intelligible as well as intelligible periodic speech we compared. Here, we observed

hardly any power changes in the rotated condition, apart from the acoustic onset

response, but a substantial increase in delta power during the second half of the

intelligible periodic sentences, when compared to their acoustically similar unintel-

ligible counterparts.

4.4.1 Periodicity

The increase in theta power in the periodic condition agrees well with the results of

Strauß et al. (2014a), who found significantly more theta activity in a left-lateralised

fronto-temporal network for ambiguous pseudo-words. Our results thus corroborate

the idea that increased theta activity in this region is an indicator of response con-

flicts in auditory speech tasks. As suggested by Roux and Uhlhaas (2014), enhanced

theta power in the context of speech tasks may indicate that verbal information is

kept in the phonological loop, where the materials are sub-vocally rehearsed. In line

with this idea, the power decrease in the low beta range in the periodic condition

seems to be a mu rhythm de-synchronisation, often observed before imagined or real

movements (e.g. Cohen and Donner, 2013; Pfurtscheller et al., 1997; Wisniewski et

al., 2015). It thus appears that both effects that distinguish the periodic speech from

the other two conditions stand in relation to each other. Importantly, the participants

correctly repeated every stimulus sentence in each of the three conditions included

in the current analysis. Hence, the effect cannot be a result of motor preparation per

se, but must be due to specific processes associated with the periodic condition.

Previous studies have reported that more intelligible words lead to a greater

suppression of alpha activity (Becker et al., 2013; Obleser and Weisz, 2012). In line

with these findings, we have observed no differences in the alpha range between

the aperiodic, mixed, and periodic conditions after controlling for differences in
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intelligibility. On the other hand, we did also not observe a suppression of alpha

activity. The absence of this effect is in fact the only notable difference between the

EEG spectrogram of the 8-channel aperiodic (i.e. noise-vocoded) condition in the

study of Obleser and Weisz (2012) and the one in the current study. This might be

due to the fact that we have used the relatively long and difficult IEEE sentences,

and not single words. Although the alpha power level did not appear to decrease

towards the onset of the sentences (see Fig. 4.3), it may have been lowered through-

out the pre-stimulus window, indicating a state of ‘anticipatory attention’ preceding

a demanding task (Klimesch, 2012). However, since we presented the conditions in

blocks of ten sentences (i.e. whole IEEE sentence lists), subjects could also form

expectancies regarding the upcoming stimulus, which may have caused the alpha

power level to remain relatively stable between the baseline and stimulus windows.

In summary, the very similar EEG responses in the aperiodic and mixed condi-

tions suggests the existence of a default response pattern to speech signals that are

relatively easy to understand. A deviation from this pattern, as in the case of the

periodic condition, in turn may indicate that a speech signal sounds unnatural and

interferes with normal processing.

4.4.2 Intelligibility

Spectrally rotated speech was introduced to neuroscience in an attempt to provide

an adequate non-speech analogue for intelligible speech (Rosen and Iverson, 2007;

Scott et al., 2000). However, despite the speech-like acoustic properties, we did not

observe any substantial neural activity in the rotated condition, apart from the initial

acoustic onset response. The largest part of the signal thus resembled a recording of

silence. This suggests that the attempt to mimic the acoustic properties of speech in

an unintelligible control condition may in fact be needless, at least in M/EEG stud-

ies. In contrast, the neural response in the unintelligible periodic condition, which

included trials with up to two correctly repeated key words out of five, resembled

its intelligible counterpart much more and additionally provides the benefit of being

acoustically more similar. In particular, only the two periodic conditions showed

activity in the theta band throughout the stimulus window.
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The main finding when comparing the total EEG power in the three conditions

was the pronounced increase in delta power in the intelligible periodic condition.

Given that there is no acoustic event that could have triggered this effect, it shows

a surprisingly sharp onset at around 1000 ms after sentence onset and was present

throughout the remainder of the stimulus window. As the average duration of the

sentences was 2.04 s, the onset of this effect coincides with the beginning of the

second half of the sentences. In line with the rule that the lower the frequency of a

neural oscillation, the wider its distribution (e.g. Buzsáki and Draguhn, 2004), this

effect was observed at the vast majority of electrodes, but only reached statistical

significance in the frontal scalp region. Although the phase of delta oscillations has

been shown to entrain to tone sequences (Lakatos et al., 2005), and the detection

of small loudness differences of tones has been reported to depend on delta power

(Herrmann et al., 2016), the power of delta oscillations has so far not been associ-

ated with speech intelligibility. Importantly, delta power increases towards the end

of the stimulus window were also observed in all three conditions in the analysis

of periodicity (see Fig. 4.3), which demonstrates that this effect is not confined to

the unnatural sounding periodic condition. Clearly, further research is needed to

explore the exact relation between delta oscillations and speech intelligibility, par-

ticularly its time course. It is noteworthy that the average word duration of clearly

articulated English is about 400 ms (i.e. 2.5 Hz; Hazan and Baker, 2011), and thus

falls right into the middle of the delta band. However, since the increase in delta

power was only observed during the second half of the intelligible sentences, it does

not appear to be associated with the intelligibility of the individual words. Instead,

one may speculate that this effect reflects the understanding of the meaning of the

sentences as a whole.

Finally, we did again not observe any significant differences in the alpha band,

although Fig. 4.5 shows that alpha power after sentence onset is slightly increased

in the unintelligible periodic condition. This trend resembles the finding that alpha

power is enhanced when speech signals are embedded in background noise, which

was suggested to reflect the attempt to cope with demanding listening conditions
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(e.g. Strauß et al., 2014b; Wilsch et al., 2015). However, it appears that the target

speech needs to be both difficult to understand, as is the case for the unintelligi-

ble periodic condition, and be presented in noise in order to lead to pronounced

alpha power changes. Our data hence suggest that for speech presented in quiet,

there is no strong association between alpha power and speech intelligibility, after

controlling for acoustic differences.

4.5 Conclusion

By manipulating the amount of source periodicity in the materials, the present study

has shown that total EEG power changes in response to speech do not reflect acous-

tic stimulus properties as such, but the perceptual effects of these properties. Even

after controlling for differences in intelligibility, responses to fully periodic speech,

an artificial condition that makes it difficult to identify the individual speech sounds,

deviated markedly from the two other conditions with an entirely aperiodic or mixed

source excitation. The neural responses in the latter two conditions, on the other

hand, were very similar, despite their acoustic differences. In a second analysis,

EEG power changes to unintelligible and intelligible speech were compared. Firstly,

the very sparse neural response to spectrally-rotated speech casts strong doubts on

whether it is a suitable unintelligible control condition in M/EEG studies. Secondly,

the direct comparison of the unintelligible and intelligible trials in the periodic con-

dition revealed an increase in delta power during the second half of the sentences.

The current results thus suggest that delta oscillations are a possible neural correlate

of successful speech understanding.



Chapter 5

The role of periodicity in perceiving speech in background noise

with simulated cochlear implants

5.1 Introduction

Previously we (Steinmetzger and Rosen, 2015; i.e. chapter 2) have investigated the

ability of normal-hearing (NH) listeners to perceive sentences in a variety of con-

ditions involving the presence and absence of periodicity in both target speech and

masker. Listeners were found to substantially benefit from periodicity in the masker,

while there was little effect of periodicity in the target speech. The periodic maskers

used were harmonic complexes with dynamically varying F0-contours derived from

real speech. Moreover, the benefit from masker periodicity was substantially larger

than the fluctuating-masker benefit (FMB) obtained from sinusoidal 10 Hz modula-

tions of the masker amplitude envelope. Here, we used a similar design and tested

to what extent masker-periodicity benefit (MPB) and FMB were maintained in sim-

ulations of cochlear implants (CIs).

Factors that are thought to explain the MPB include the ability to use F0 cues

to cancel out harmonic maskers from the signal mixture (de Cheveigné et al., 1995;

de Cheveigné et al., 1997b), the possibility to glimpse sections of the target speech

in between the individual masker harmonics (Deroche et al., 2014a, 2014b), the

absence of random envelope modulations in periodic sounds (Stone et al., 2011;

Stone et al., 2012), and the fact that the modulations arising in steady-state periodic

sounds in the voice F0 range are not in the low-frequency range crucial for speech

intelligibility (Elliott and Theunissen, 2009). However, the exact contribution of

each of these factors remains to be specified.
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As the access to spectral information and F0 cues is known to be severely re-

stricted with current CIs (e.g. Fu and Nogaki, 2005; Green et al., 2002; Wilson and

Dorman, 2008), listeners were not assumed to be able to cancel out the periodic

maskers from the signal mixture based on their harmonicity. Similarly, they were

not expected to spectrally glimpse portions of the target speech signal in between

the individual masker harmonics. Although the F0-related envelope modulations of

periodic maskers will to some extent be preserved after CI simulation processing,

they are most prominent in higher auditory filters where the harmonics are not re-

solved. On the other hand, these preserved F0-related modulations will still lead to

a greater temporal regularity of the periodic maskers, which may help to fuse them

together into a single auditory stream, thereby making it easier to segregate them

from the target speech.

CI users have consistently been found to show hardly any benefit from masker

envelope fluctuations (Cullington and Zeng, 2008; P. B. Nelson and Jin, 2004), or

even a decline in performance (P. B. Nelson et al., 2003; Stickney et al., 2004),

while there tends to be a small FMB in CI simulation studies (Cullington and Zeng,

2008; P. B. Nelson and Jin, 2004; Qin and Oxenham, 2003). The absence of an

FMB for CI users has been attributed to several factors, including reduced spectral

cues (Fu et al., 1998), increased forward masking (D. A. Nelson and Donaldson,

2001), and the limited access to F0 information (Stickney et al., 2007; Stickney et

al., 2004). At least in part, it can also be explained by the elevated speech recep-

tion thresholds (SRTs) compared to NH listeners (Bernstein and Grant, 2009), as

the FMB is generally larger at lower signal-to-noise ratios (SNRs; Freyman et al.,

2012). Importantly, the same pattern has also been found for the MPB (see Fig. 2.6).

In all previously mentioned studies concerned with FMBs, target and masker

envelope varied independently of each other. Kwon and colleagues (2012), in con-

trast, introduced a set of maskers that maximise (+MR) or minimise (-MR) oppor-

tunities to glimpse portions of the target speech by altering the temporal overlap of

signal and masker. Masker envelopes were either the inverse (+MR) of the speech

envelope or the same (-MR), adjusted in 50 ms steps. The current study included
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the +MR maskers in addition to the previously used steady and 10-Hz modulated

maskers, with the intention to parametrically vary the amount of energetic mask-

ing (steady > 10-Hz modulated > +MR). Contrary to what would be expected in

the absence of energetic masking, only the few CI users in Kwon et al. (2012)

whose sentence intelligibility in quiet was above 90% showed substantial FMBs

when tested with the +MR maskers. The authors concluded that CI users may find

it particularly difficult to identify the segmental boundaries between speech and

noise. The current experiment aimed to test whether this finding similarly applies

to CI simulations and maskers that are not based on speech-shaped noise.

5.2 Methods

5.2.1 Participants

Eleven normal-hearing listeners (6 females) were tested. Their ages ranged from

18–21 years, with a mean of 19.5. All participants were native speakers of British

English and had audiometric thresholds of less than 20 dB hearing level (HL) at

frequencies between 125 and 8000 Hz. All subjects gave written consent and the

study was approved by the UCL ethics committee.

5.2.2 Stimuli

The target speech materials used in this experiment were recordings of the Basic

English Lexicon sentences (BEL; Calandruccio and Smiljanic, 2012) spoken by an

adult male Southern British English talker that were normalised to a common root-

mean-square (RMS) level. The sentences were slightly modified for appropriate

British vocabulary and usage. The BEL sentence corpus consists of 20 lists with

25 sentences each and is characterised by a simple syntactic sentence structure and

the use of basic non-native English vocabulary. Every sentence contains four key

words.

The masker materials were the same as the ones used in Steinmetzger and

Rosen (2015). Harmonic complex maskers were based on F0 contours extracted

from recordings in the EUROM database of English speech in which different

speakers read 5- to 6-sentence passages (Chan et al., 1995). Sixteen different male
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talkers with Southern British English accents, and a similar speaking rate and voice

quality to that of the target talker were chosen. The noise maskers were based on a

24-second passage of white noise.

5.2.3 Signal processing

Three target speech conditions with different amounts of source periodicity were

produced prior to the experiment using TANDEM-STRAIGHT (Kawahara et

al., 2008) implemented in MATLAB (Mathworks, Natick, MA). TANDEM-

STRAIGHT is a type of vocoder that, unlike a channel vocoder, does not filter

the input speech into separate frequency bands but separates the periodic and

aperiodic components of the source from the spectral filter. By default, TANDEM-

STRAIGHT produces speech with a mixed source excitation that sounds very

natural, but the source estimation procedure can be adapted to produce fully aperi-

odic or fully periodic speech as well.

Aperiodic speech was synthesised by keeping the default settings of

TANDEM-STRAIGHT, but setting the F0 to 0 Hz throughout. In order to synthe-

sise speech with a natural mix of periodicity and aperiodicity, the default settings

were kept, but the values of the sigmoid parameter in the source estimation routine

were fixed to 1 and -40, in order to minimise the level of the aperiodic component

in voiced speech segments. This avoids higher harmonics being noisier than lower

ones, as is the case in natural speech, and hence emphasises the contrast of voiced

and unvoiced speech. The same technique was used to produce fully periodic

speech, but here interpolated F0 contours were used as input for the source extrac-

tion routine. These interpolated F0 contours were produced by first extracting the

original F0 contours using ProsodyPro (Xu, 2013) implemented in Praat (Boersma

and Weenink, 2013). The F0 extraction sampling rate was set to 100 Hz. Secondly,

F0 contours were interpolated through unvoiced sections and periods of silence, us-

ing a piecewise cubic Hermite interpolation in logarithmic frequency. The start and

end points of each contour were anchored to the median frequency of the sentence.

The same interpolation procedure was used to obtain the F0 contours for the

harmonic complex maskers. The waveforms for these maskers were synthesised
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Figure 5.1: Schematic depiction of the signal processing. Unprocessed target speech was
first processed to have an aperiodic, mixed, or periodic source excitation using TANDEM-
STRAIGHT. Next, a masker was added to the processed target speech signal at a given
signal-to-noise ratio and the signal mixture was then additionally noise-vocoded to yield
the final stimulus.

on a period-by-period basis using the Liljencrants-Fant model (Fant et al., 1985),

which closely approximates a typical adult male glottal pulse [see Green and Rosen

(2013) for details]. Both the harmonic complexes and the noise maskers were

matched in spectrum to the long-term average of the targets (LTASS) with finite

impulse response filter [Greenwood filter spacing, 1-octave smoothing, filter order

1024, fast Fourier transform (fft) with a window size of 512 samples]. The LTASS

of the unprocessed target speech was determined by computing the power spectral

density of the concatenated waveforms using Welch’s method (window size 512

samples, 50% overlap, fft length 512 samples). The resulting spectrum was then

smoothed over one octave.

Masker envelopes were either steady, sinusoidally amplitude-modulated at a

rate of 10 Hz with a modulation depth of 100%, or adjusted to be the inverse of

the target sentence envelope in 50 ms steps (+MR; Kwon et al., 2012). As in the

paper by Kwon and colleagues (2012), the level of the +MR masker envelope was

restricted to vary between -50 and -10 dB relative full scale to generate a noise floor

and to avoid clipping, respectively. The stimulus sentences were tightly cut, so that

the inverse envelopes were only constructed during the actual sentences and not the

silent periods before and after. For the additional portions of the masker inserted

before and after the stimulus sentences, the resulting inverse envelopes were then

simply extended at the RMS levels where they started and stopped.
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Next, target speech and masker were added together. The masker level was

kept constant and the speech level was adjusted to achieve a particular SNR. In

order to simulate CI processing, the signal mixture was then additionally noise-

vocoded on the fly before each trial, using a channel vocoder implemented in MAT-

LAB. The mixture of target sentence plus masker was first band-pass filtered into

eight bands using third-order Butterworth filters. The filter spacing was based on

equal basilar membrane distance (Greenwood, 1990) across a frequency range of

70 Hz to 4 kHz. The output of each filter was full-wave rectified and low-pass

filtered at 400 Hz (second-order Butterworth) in order to extract the amplitude en-

velope. The high cut-off value was chosen in order to ensure that temporal period-

icity cues were preserved. The envelope from each band was then multiplied with a

wide-band noise carrier and the resulting signals were again band-pass filtered using

the same third-order Butterworth filters as in the first stage of the process. Finally,

before summing the individual bands together, the output of each band was adjusted

to the same RMS level as found in the original recording. A schematic depiction

of the complete signal processing pipeline is shown in Fig. 5.1 and examples of the

resulting stimuli after CI simulation processing are shown in Fig. 5.2.

5.2.4 Procedure

Participants were presented with 1 BEL sentence list in each of the 18 conditions

(3 targets x 6 maskers). The SRT for every processing condition was determined by

tracking the SNR necessary in order to repeat 50% of the key words in a sentence

correctly. The initial SNR was set to +10 dB and adjusted up or down by 11 dB

before the first reversal, 7 dB before the second reversal, and 3 dB after that. If the

subject got less than half of the key words correct in the first trial, the SNR was set

to +24 dB and the procedure started over again. The SRT was calculated by taking

the mean of the largest even number of reversals with 3-dB step size.

The verbal responses were logged by the experimenter before the next sen-

tence was played. A so-called loose key words scoring technique was applied, in

which the roots of the four key words had to be correctly identified. No feedback

was given following the responses. The presentation and logging of the responses
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Figure 5.2: Stimuli. The left panel shows narrow-band spectrograms for one example
sentence (The annoying student asks too many questions.) processed to have an aperiodic,
mixed, or periodic source excitation. The right panel shows narrow-band spectrograms of
the six different maskers. Maskers sources were either aperiodic or periodic and masker
envelopes were either steady, 10-Hz modulated, or the inverse of the target speech (+MR).
The +MR masker example is tailored to the example sentence shown on the left. All stimuli
are shown after cochlear implant simulation processing (by noise vocoding).

was carried out using locally developed MATLAB software. The order of the 18

processing conditions was fully randomised using a Latin Square design and the

order of the BEL lists was also randomised.

For each trial of the experiment, a random portion of the maskers was picked

and presented along with the target sentence. For the harmonic complexes, the or-

der of the talkers was also randomised, ensuring that all 16 of them were picked

before any of them was repeated. The onset of all the maskers was 600 ms before

that of the targets and they continued for another 100 ms after the end of the target

sentence. An onset and offset ramp of 100 ms was applied to the mixture of target

and masker.

Before being tested, the subjects were familiarised with the materials by lis-

tening to 4 example sentences of each of the three target speech conditions in quiet

and one example sentence of each of the 18 conditions to be used in the main ex-

periment at an SNR of +10 dB. The first BEL sentence list was reserved for the
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Figure 5.3: Boxplots of the speech reception thresholds. Each of the three target speech
conditions on the x-axis was tested in combination with the six different maskers shown in
the legend. The black horizontal lines in the boxplots indicate the median value.

familiarisation procedure and not used in the main experiment. The total duration

of the experiment, including hearing screening and familiarisation procedure, was

about 45 minutes and subjects were allowed to take breaks whenever they wished

to. The experiment took place in a double-walled sound-attenuating booth, with the

computer signal being fed through the wall onto a separate monitor. The stimuli

were converted with 24-bit resolution and a sampling rate of 22.05 kHz using an

RME Babyface soundcard (Haimhausen, Germany) and presented over Sennheiser

HD650 headphones (Wedemark, Germany). The level of the target and masker

mixture was set to about 70 dB SPL over a frequency range of 70 Hz to 4 kHz, as

measured on an artificial ear (type 4153, Brüel & Kjær Sound & Vibration Mea-

surement A/S, Nærum, Denmark).

5.3 Results

Fig. 5.3 shows the SRTs obtained in each of the 18 processing conditions, which

were positive throughout. Overall, listeners benefitted substantially from masker

periodicity and to a lesser extent also from sinusoidal masker modulations. Perfor-

mance with the +MR maskers, however, was similar to that with steady maskers.

The data were analysed using a mixed effects model with target period-

icity (aperiodic, mixed, periodic), masker periodicity (aperiodic, periodic), and

masker envelope (steady, 10-Hz modulated, +MR) as fixed factors, and subjects

and sentence lists as random factors. The main effects of masker periodicity
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[F(1,180) = 128.1, p < 0.001] and masker envelope [F(2,180) = 19.5, p < 0.001]

were both highly significant, but neither the main effect of target periodicity

[F(2,180) = 0.76, p = 0.47], nor any of the interactions reached significance (F

≤ 0.74, p ≥ 0.48).

In Fig. 5.4, the same data are re-plotted as FMBs, i.e. the difference in SRT

of a steady compared to a fluctuating masker. Positive FMBs indicate that listeners

were on average able to benefit from masker envelope fluctuations. Overall, FMBs

were rather small, with the largest effects of about 2 dB observed for the 10-Hz

modulated noise maskers. Same as for normal-hearing listeners (see chapter 2),

the FMB was smaller for harmonic complex maskers across conditions. The +MR

maskers did not enable any FMB across all six combinations of target speech and

masker.

In Fig. 5.5 the same data are again re-plotted as MPBs, i.e. the difference in

SRT between noise and harmonic complex maskers. The MPB was generally larger

than the FMB, with the largest effect of about 5 dB observed for the combination

of periodic targets and periodic +MR masker. In addition, for the steady and +MR

maskers, there was a trend for larger MPBs with more periodicity in the targets.

However, when analysing the SRT data, this threefold interaction of target period-

icity, masker periodicity, and masker envelopes was far from significant [F(4,180)

= 0.18, p = 0.95].
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In summary, there was no effect of target periodicity, while FMB and MPB were

reduced to about half their size with simulated CIs, compared to normal hearing (on

average from about 4 to 2 dB and 9 to 4 dB, respectively; see chapter 2). However,

even in the absence of salient pitch cues, the MPB was still twice as large as the

FMB. In addition, although they did not energetically mask the targets, the +MR

maskers with their speech-like envelopes led to similar SRTs as steady interferers.

5.4 Discussion

5.4.1 Periodicity

As for normal hearing (Steinmetzger and Rosen, 2015; i.e. chapter 2), the amount

of target periodicity had little effect on speech recognition performance. On the

other hand, in line with our hypothesis, the MPB was to some extent preserved

after CI simulation processing. Due to the spectral smearing introduced by noise-

vocoding the signal mixture with eight channels, access to F0 cues was very limited,

which precludes an explanation based on harmonic cancellation (de Cheveigné et

al., 1995; de Cheveigné et al., 1997b). In order to demonstrate this, F0 contours of

examples of steady aperiodic and periodic maskers were computed using YIN (de

Cheveigné and Kawahara, 2002; default settings, but F0 sampling rate set to 30 Hz

and F0 search range restricted to 30–400 Hz). Fig. 5.6 shows that the F0 contours

of both maskers fluctuate randomly. In contrast, before CI simulation processing,
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Figure 5.6: F0 contours of aperiodic and periodic maskers. The steady aperiodic and peri-
odic maskers shown after cochlear implant (CI) simulation in Fig. 5.2 were used as exam-
ples. For the purpose of comparison, the same steady periodic masker is also shown before
CI simulation processing. The F0 contour was computed using YIN.

the same periodic masker has a well-defined F0 contour, which does not resemble

the one of the periodic masker after CI simulation.

As demonstrated by Stone and colleagues (2011; 2012), the primary reason for

the effectiveness of noise maskers arises from random envelope fluctuations, rather

than pure energetic masking of the speech signal. In order to estimate the amount of

modulation masking, the modulation spectrograms of the maskers used in Fig. 5.6

were computed using the front end of the mr-sEPSM speech intelligibility model

(Jørgensen et al., 2013). Fig. 5.7 shows that after CI simulation the modulation

pattern is diffuse for both the aperiodic and periodic maskers, as is typical for noise

maskers. Before CI simulation, in contrast, the modulations of the periodic masker

are confined to the highest and lowest modulation frequencies, corresponding to the

F0-related envelope fluctuations and the variations of F0, respectively.

Crucially, after CI simulation a substantial portion of the F0-related high

frequency modulations of the periodic masker is still present. These additional

modulations are hypothesised to have helped the listeners to perceive the periodic

maskers as a single auditory stream and thereby distinguish them from the target

speech. However, as mentioned in the introduction, the preserved F0-related mod-

ulations are confined to higher auditory filters, in which the individual harmonics

are not resolved. The better performance with periodic maskers hence cannot be

explained by the possibility to spectrally glimpse sections of the speech signal in

between the individual masker harmonics (Deroche et al., 2014a, 2014b).
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5.4.2 Masker fluctuations

In line with the CI data of Kwon and colleagues (2012), listeners in the current

study did on average not shown an FMB with the +MR maskers. As energetic

masking is presumed to be minimal with these maskers, CI simulation processing

appears to make it particularly difficult to distinguish segments of target speech and

masker. This may in large part be because spectral cues that aid stream segregation

are mostly unavailable. However, it has also been shown that in CI simulations lis-

teners have problems fusing auditory information across temporal gaps, even in the

absence of background noise (P. B. Nelson and Jin, 2004). In this study, subjects

were presented with sentences interrupted by periods of silence and recognition

performance was severely impaired across gating frequencies, which ranged from

1 to 32 Hz. Similar results have also been obtained by Ardoint et al. (2014), who

have shown that 5-Hz interruptions affect the intelligibility of vocoded speech much

more than that of unprocessed speech. Additionally, whereas the envelopes of the

10-Hz sinusoidally modulated maskers fluctuate periodically, the envelope modu-

lations of the +MR maskers are aperiodic, which may make it harder to identify

them as a non-speech signal. More specifically, the listener is confronted with an

inverted copy of the target speech envelope itself, and both signals together will

then combine to form a continuous speech-like envelope.



5.5. Conclusion 104

5.5 Conclusion

In line with the results obtained from normal-hearing listeners, the amount of peri-

odicity in the target speech signal hardly affected speech recognition performance.

However, although the perception of spectral information is severely restricted by

CI simulation signal processing, masker periodicity was found to aid speech percep-

tion to a greater extent than superimposed sinusoidal masker envelope fluctuations

at a rate of 10 Hz. On the other hand, the attempt to improve FMBs by tailoring

masker envelopes to be the inverse of the target speech envelopes resulted in perfor-

mance rates as poor as with steady interferers. This suggests that in addition to the

greater susceptibility for energetic masking, CI simulation processing also makes it

harder to perceive the segmental boundaries between competing signals.



Chapter 6

General Discussion

6.1 Summary of the main results and their implications

The aim of this thesis was to investigate the role of periodicity (i.e. voicing) in the

perception of speech, a crucial acoustic feature of speech sounds across languages,

whose role has not been systematically examined yet. In a series of experiments,

behavioural and electrophysiological data were obtained to test how the presence or

absence of periodicity affects the perception of speech in quiet, whether periodicity

aids the perceptual segregation of target speech and background noise, and how pe-

riodicity is represented in cortical electroencephalography (EEG) signals recorded

in response to speech. With the exception of the maskers based on white noise, all

the materials in the present thesis were derived from recordings of real speech in an

attempt to make them as realistic as possible, which distinguishes the current body

of work from earlier attempts to investigate the issues in question. Additionally, the

speech signals introduced in the first part of this thesis were employed to further

investigate the neural correlates of speech intelligibility. Here, the objective was

to ensure a comparison of intelligible and unintelligible speech that is free of any

acoustic confounds.

In chapter 2, the ability of normal-hearing listeners to perceive sentences in

quiet and in background noise was investigated in a variety of conditions mix-

ing presence and absence of periodicity in both target and masker. Experiment 1

showed that in quiet, aperiodic noise-vocoded speech and speech with a natural

amount of periodicity were equally intelligible, while fully periodic speech was

much harder to understand. In experiments 2 and 3, speech reception thresholds
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for these targets were measured in the presence of four different maskers: speech-

shaped noise, harmonic complexes with a dynamically varying F0 contour, and 10

Hz amplitude-modulated versions of both. For experiment 2, results of experiment

1 were used to identify conditions with equal intelligibility in quiet, while in exper-

iment 3 target intelligibility in quiet was near ceiling. In the presence of a masker,

periodicity in the target speech mattered little, but listeners strongly benefitted from

periodicity in the masker. Substantial fluctuating-masker benefits required the tar-

get speech to be almost perfectly intelligible in quiet. In summary, these results

suggest that the ability to exploit periodicity cues may be an even more important

factor when attempting to understand speech embedded in noise than the ability to

benefit from masker fluctuations.

Chapter 3 investigated EEG signals in response to acoustically degraded

speech with more or less periodicity. Here, unambiguously interpreting the re-

sults is complicated by the fact that speech signal manipulations affect acoustic and

intelligibility alike. In the current study, the acoustic properties of the stimuli were

thus altered and the trials were sorted according to the correctness of the listen-

ers’ spoken responses to separate out these two factors. Firstly, more periodicity

rendered the event-related potentials (ERPs) more negative during the first second

after sentence onset, indicating a greater cortical sensitivity to auditory input with

a pitch. Secondly, a larger contingent negative variation (CNV) was observed in

the ERP during sentence presentation when the subjects could subsequently repeat

more words correctly. Additionally, slow alpha power (7–10 Hz) before sentences

with the least correctly repeated words was increased, which may indicate that

subjects have not been focussed on the upcoming task. These results suggest that

acoustic periodicity is a factor that should not be overlooked when investigating

the neural correlates of speech perception and the cognitive processes involved.

In particular, it appears that aperiodic noise-vocoded speech leads to diminished

evoked cortical responses, suggesting that speech materials preserving the natural

mix periodic and aperiodic segments are the better choice.
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In chapter 4, the same EEG data were analysed in the frequency domain.

Although several studies have investigated neural oscillations in response to acous-

tically degraded speech, it is still a matter of debate which neural frequencies reflect

speech intelligibility. It was found, firstly, that the total EEG power changes in re-

sponse to completely aperiodic (noise-vocoded) speech and speech with a natural

mix of periodicity and aperiodicity were almost identical, while an increase in theta

power (5–6.3 Hz) and a trend for less beta power (11–18 Hz) were observed in

response to completely periodic speech. These two effects are taken to indicate an

information processing conflict caused by the unnatural acoustic properties of the

stimuli, and that the subjects may have internally rehearsed the sentences as a result

of this. Secondly, we separately investigated effects of intelligibility by sorting

the trials in the periodic condition according to the listeners’ spoken responses.

The comparison of intelligible and largely unintelligible trials revealed that the

total EEG power in the delta band (1.7–2.7 Hz) was markedly increased during the

second half of the intelligible trials, which suggests that delta oscillations are an

indicator of successful speech understanding. Although increased delta power in

the frontal cortex has been associated with a state of concentration, no similar effect

has so far been reported in the speech perception literature.

Chapter 5 investigated the role of periodicity in perceiving speech in noise after

simulated cochlear implant (CI) signal processing. The materials used were similar

to those introduced in chapter 2, but the mixture of speech and noise was in addition

acoustically degraded to mimic the signals transmitted by a typical CI. As current

CIs provide very restricted access to spectral information, this study tested whether

temporal cues are sufficient to benefit from periodicity when listening to speech em-

bedded in background noise. Furthermore, this experiment included maskers that

promoted glimpsing by minimising the energetic overlap with the target speech, in

order to test if it is at all possible to benefit from masker envelope fluctuations in

CI-like listening conditions. Same as in chapter 2, it was found that listeners did

not benefit from more periodicity in the target speech and that, compared to nor-

mal hearing, the benefits obtained from masker amplitude modulations and masker
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periodicity were reduced to about half their size. However, although the ability

to perceive periodicity information was severely restricted, the masker periodicity

benefit was still twice as large as the benefit obtained from masker fluctuations,

highlighting the importance and robustness of periodicity cues in the perception of

speech in noise. Performance with the glimpsing-promoting maskers, on the other

hand, was similar to those with steady maskers, suggesting that other factors, such

as difficulties in perceiving segmental boundaries, need to be considered in addition

to the susceptibility to energetic masking when explaining the poor performance

with fluctuating interferers.

6.2 Psychophysical data

Although the finding is not new (see e.g. de Cheveigné et al., 1995; de Cheveigné

et al., 1997b), it is still a puzzling result that the amount of periodicity in the tar-

get speech had little effect on speech recognition performance in the presence of a

masker. One plausible reason for this, also proposed by de Cheveigné (1993; de

Cheveigné et al., 1997a), is that the harmonic structure of the target speech is dif-

ficult to extract for the auditory system at low signal-to-noise ratios (SNRs). The

data in chapter 2 are very much in line with this idea, as there was a small benefit

from target periodicity in experiment 2, where the SNRs were mostly positive, but

no such effect at the negative SNRs in experiment 3. In contrast, this finding does

not seem to be due to the fact that non-speech maskers were used that could easily

be identified as the masker signal, since the studies by de Cheveigné and colleagues

referred to above, were all based on concurrent artificial vowels. This rules out an

explanation based on cognitive factors, such as attention.

It has been pointed out in several previous studies (Bernstein and Grant, 2009;

Freyman et al., 2012; Smits and Festen, 2013) that the fluctuating-masker benefit

(FMB) becomes larger when a test is carried out at a lower SNR, and that this is one

important reason for the reduced benefit of hearing-impaired listeners and CI users.

This finding was replicated in the current thesis (see Fig. 2.5) but, moreover, a simi-

lar pattern was also observed for the masker-periodicity benefit (MPB; see Fig. 2.6).

Hence, it appears to be a general rule that the size of the benefit obtained from some
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particular acoustic feature depends on the SNR, which is largely determined by the

intelligibility of the target speech in quiet listening conditions.

The results of the CI simulation experiment (chapter 5) have shown that the

MPB is surprisingly robust, even when periodicity information is transmitted pri-

marily by temporal cues. Compared to the target speech conditions in chapter 2,

that led to similar SRTs (i.e. the ones with the lowest intelligibility in quiet; Nx7,

FxNx7, and Fx12), the MPB was in fact hardly reduced at all. However, the abso-

lute decrease of the MPB compared to normal-hearing was also larger than that of

the FMB (about 6 dB compared to about 2 dB). This once more suggests that the

reduced ability to exploit periodicity information may be an even more important

factor in explaining the poor performance of CI users in the perception of speech in

noise than the inability to benefit from masker fluctuations.

6.3 Electrophysiological data

The time-domain analyses of evoked neural activity presented in chapter 3 and the

changes in total EEG power in the frequency domain analysed in chapter 4 have in

common that effects of intelligibility were more pronounced than effects of period-

icity. Differences in intelligibility were found to lead to effects with a greater tempo-

ral extension and, at least when including the completely unintelligible spectrally-

rotated condition, also to smaller p-values. Apart from that, however, there are

surprisingly few similarities, given that both chapters are based on the same raw

data and that the evoked EEG activity is necessarily also part of the total activity.

In particular, the only measure that parametrically varied with the amount of

periodicity in the stimuli was the amplitude of the event-related potentials during

the first second after sentence onset, which became more negative. Furthermore, al-

though the intelligibility of the sentences was reflected in both evoked and total EEG

activity, the respective time courses varied considerably. The effect was observed

from early after sentence onset until shortly after offset in the former case, but first

emerged during the second half of the sentences in the latter analysis. It also ap-

pears that the delta power increase in response to intelligible speech persists beyond

the analysis window ending 2500 ms after sentence onset. This, in turn, raises the
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question whether this effect might be driven by the ensuing spoken response, par-

ticularly as the time-frequency decomposition algorithm uses future sample points

to compute present values. As described in section 4.2.5, the length of the analysis

window linearly decreased from 1 to 0.5 s as the frequencies increased from 1 to 30

Hz. Thus, for the 1 Hz frequency bin, sample points of up to 0.5 s ahead of a given

data point determined its value. Fig. 4.6, however, shows that the increase in delta

power is visible from as early as about 1 s after sentence onset. Given that the mean

duration of the stimulus sentences was just over 2 s (2.04 s, SD = 0.24 s), followed

by another 0.25 s of silence, it thus cannot be that the verbal response itself elicited

the delta power increase. Similarly, the data in Fig. 4.6 show that this effect is not

confounded by the beep that signalled the participants to respond after the silent

gap, since there are no substantial deviations from baseline in the unintelligible ro-

tated condition towards the end of the stimulus window. Nevertheless, it could be

argued that the effect reflects the preparation to respond rather than the intelligibil-

ity of the sentences, or a mixture of the two processes. If the stimulus materials

are more intelligible to the participants, this would necessarily also require a longer

spoken response, which could also explain the greater increase in delta power. In

order to tease apart these two explanations, future studies could use a longer interval

between sentence and response to reduce the temporal overlap, or even collect no

response at all.

Furthermore, although no significant differences between the fully intelligible

trials in the aperiodic, mixed, and periodic conditions were observed apart from the

increase in theta power in the latter condition (see Fig. 4.3), it should be empha-

sised that only this condition was considered in the analysis of intelligibility. As the

periodic condition is also the one that sounds least natural, which led to a sufficient

number of unintelligible trials in the first place, future research is needed to see if

similar increases in delta power are also elicited by other sets of stimuli.

6.4 Perspectives

One of the central findings of this thesis was the large benefit obtained from pe-

riodicity in the masker. As discussed in chapters 2 and 5, this effect is attributed
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to a combination of harmonic cancellation, spectral glimpsing, the absence of ran-

dom envelope modulations, and the lack of low-frequency envelope modulations

crucial for speech intelligibility. Future studies should attempt to disentangle these

factors and quantify their respective contributions. Chapter 5 already constitutes a

step in that direction, as the CI simulation processing eliminated the components

of the masker-periodicity benefit that are based on the accurate perception of spec-

tral information, i.e. harmonic cancellation and spectral glimpsing. However, the

noise-excited CI simulation used in this experiment also introduced random enve-

lope fluctuations, which considerably changed the modulation spectrum of the pe-

riodic maskers (see Fig. 5.7), which makes it difficult to draw conclusions that also

apply to normal hearing. Still, the results have shown that the temporal regularity in-

troduced by the F0-related modulations of these maskers by itself substantially aids

their segregation from the target speech. The individual contribution of harmonic

cancellation, for instance, could be examined by shifting the individual harmonics

of the maskers up or down. This would render the periodic maskers inharmonic and

hence also aperiodic, but would neither affect the ability to glimpse in between the

lower masker harmonics nor would it significantly change the modulation spectrum.

Such a study is currently under way.

Furthermore, the results presented in chapter 5 should obviously be comple-

mented with data obtained from genuine CI users, as CI simulations only provide

an approximation of the acoustic information transmitted via a typical CI. In partic-

ular, CI simulations tend to somewhat overestimate performance (e.g. Cullington

and Zeng, 2008), as they ignore individual differences and assume that the devices

work ideally in all participants.

In order to gain a better understanding of the complex behavioural data de-

scribed in chapter 2, comparing the speech intelligibility predictions of different

auditory models appears to be a promising approach. Such models vary consid-

erably regarding their assumptions and components, which could prove insightful

in determining which acoustic features were driving the observed effects. For ex-

ample, the recent multi-resolution speech-based envelope power spectrum model
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(mr-sEPSM; Jørgensen et al., 2013, see also Figs. 4.8 and 5.7), which contains a

modulation filter bank with a wide range of centre frequencies (1–256 Hz), seems

well-suited to predict the masker-periodicity benefit, as this effect is in part thought

to be caused by the different modulation spectra of periodic and aperiodic maskers.

The mr-sEPSM should thus outperform models such as the audibility-based ex-

tended speech intelligibility index (ESII; Rhebergen and Versfeld, 2005), that does

not include a modulation filter bank, or the speech-based speech transmission index

(sSTI; Goldsworthy and Greenberg, 2004), which only considers slower envelope

modulations (<12.5 Hz). Secondly, none of the aforementioned models (ESII, sSTI,

and mr-sEPSM) takes pitch information into account. As harmonic cancellation and

stream segregation both depend on the ability to perceive pitch information, these

models should in theory not predict the masker-periodicity benefit accurately. Pre-

liminary results indeed support both of these assumptions.

Consequently, these data could also prove useful for improving existing au-

ditory models, which are usually evaluated with maskers that vary widely regard-

ing their spectro-temporal properties (e.g. interfering talkers, car noise, pub noise;

see Jørgensen et al., 2013; Taal et al., 2011), rather than individual acoustic fea-

tures such as periodicity. Additionally, relatively little is known about how acoustic

degradations of the target speech, for example vocoding, affect the predictions of

current auditory models. The vast majority of modelling studies has been concerned

with the acoustic properties of the maskers, leaving the target speech untouched (for

exceptions see e.g. Christiansen et al., 2010). Spectral resolution and intelligibility

of the target speech materials used in chapter 2 vary over a wide range, making them

an ideal data set for investigating this issue. Specifically, it would be interesting to

see whether the models predict a similarly small effect of periodicity in the target

speech.
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6.5 Conclusions

The main findings of this thesis, grouped into behavioural and electrophysiological

results, may be summarised as follows:

1. Acoustic periodicity was shown to be an important factor in the perception of

speech in quiet and in noise. Participants substantially benefitted from period-

icity in the masker, even more so than from masker amplitude modulations.

Surprisingly, however, the presence or absence of periodicity in the target

speech did hardly affect speech recognition performance. Even in simula-

tions of cochlear implants, the masker-periodicity benefit was to some extent

maintained, demonstrating the robustness of the effect. On the other hand,

the absolute reduction compared to normal hearing was also larger than the

reduction of the fluctuating-masker benefit, which appears to be an important

factor when explaining the poor performance of CI users.

2. EEG signals recorded at the cortical level reflect the amount of acoustic pe-

riodicity in the speech signals, their intelligibility, and even the attentional

state of the listener before speech onset. Firstly, the event-related potentials

during the first second after sentence onset had greater negative amplitudes

with more periodicity in the speech stimuli. Secondly, after controlling for

acoustic differences, it was found that the power of slow neural delta oscil-

lations was increased when the stimulus sentences were more intelligible to

the listeners. A similar effect was observed in the time domain, where intel-

ligible sentences elicited a slow negativity in the ERP. Finally, as reflected by

increased neural alpha power, listeners appeared to be less attentive before

sentences that turned out to be unintelligible to them.
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