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Abstract

We study the problem of completing a binary matrix in an online learning setting.
On each trial we predict a matrix entry and then receive the true entry. We propose
a Matrix Exponentiated Gradient algorithm [1] to solve this problem. We provide a
mistake bound for the algorithm, which scales with the margin complexity [2, 3] of
the underlying matrix. The bound suggests an interpretation where each row of
the matrix is a prediction task over a finite set of objects, the columns. Using this
we show that the algorithm makes a number of mistakes which is comparable up
to a logarithmic factor to the number of mistakes made by the Kernel Perceptron
with an optimal kernel in hindsight. We discuss applications of the algorithm to
predicting as well as the best biclustering and to the problem of predicting the
labeling of a graph without knowing the graph in advance.

1 Introduction

We consider the problem of predicting online the entries in an m× n binary matrix U . We formulate
this as the following game: nature queries an entry (i1, j1); the learner predicts ŷ1 ∈ {−1, 1} as the
matrix entry; nature presents a label y1 = Ui1,j1 ; nature queries the entry (i2, j2); the learner predicts
ŷ2; and so forth. The learner’s goal is to minimize the total number of mistakes M = |{t : ŷt 6= yt}|.
If nature is adversarial, the learner will always mispredict, but if nature is regular or simple, there is
hope that a learner may make only a few mispredictions.

In our setting we are motivated by the following interpretation of matrix completion. Each of the
m rows represents a task (or binary classifier) and each of the n columns is associated with an
object (or input). A task is the problem of predicting the binary label of each of the objects. For a
single task, if we were given a kernel matrix between the objects in advance we could then use the
Kernel Perceptron algorithm to sequentially label the objects and this algorithm would incurO(1/λ2)
mistakes, where λ is the margin of the best linear classifier in the inner product space induced by
the kernel. Unfortunately, in our setup, we do not know a good kernel in advance. However, we will
show that a remarkable property of our algorithm is that it enjoys, up to logarithmic factors, a mistake
bound of O(1/γ2) per task, where γ is the largest possible margin (over the choice of the kernel)
which is achieved on all tasks.
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The problem of predicting online the labels of a finite set of objects under the assumption that the
similarity between objects can be described by a graph was introduced in [4], building upon earlier
work in the batch setting [5, 6]. In this and later research the common assumption is that two objects
are similar if there is an edge in the graph connecting them and the aim is to predict well when there
are few edges between objects with disagreeing labels. Lower bounds and an optimal algorithm (up
to logarithmic factors) for this problem were given in [7, 8]. The problem of predicting well when
the graph is unknown was previously addressed in [9, 10]. That research took the approach that when
receiving a vertex to predict, edges local to that vertex were then revealed. In this paper we take a
different approach - the graph structure is never revealed to the learner. Instead, we have a number of
tasks over the same unknown graph, and the hope is to perform comparably to the case in which the
graph in known in advance.

The general problem of matrix completion has been studied extensively in the batch statistical i.i.d.
setting, see for example [11, 12, 13] and references therein. These studies are concerned either with
Rademacher bounds or statistical oracle inequalities, both of which are substantially different from the
focus of the present paper. In the online mistake-bound setting a special form of matrix completion
was previously considered as the problem of learning a binary relation [14, 15] (see Section 5). In
a more general online setting, with minimal assumptions on the loss function [16, 17] bounded the
regret of the learner in terms of the trace-norm of the underlying matrix. Instead our bounds are
with respect to the margin complexity of the matrix. As a result, although our bounds have a more
restricted applicability they have the advantage that they become non-trivial after only Θ̃(n) matrix
entries1 are observed as opposed to the required Θ̃(n3/2) in [16] and Θ̃(n7/4) in [17]. The notion
of margin complexity in machine learning was introduced in [2] where it was used to the study the
learnability of concept classes via linear embeddings and further studied in [3], where it was linked
to the γ2 norm. Here we adopt the terminology in [11] and refer to the γ2 norm as the max-norm.
The margin complexity seems to be a more natural parameter as opposed to the trace-norm for the
0-1 loss as it only depends on the signs of the underlying comparator matrix. To the best of our
knowledge the bounds contained herein are the first online matrix completion bounds in terms of the
margin complexity.

To obtain our results, we use an online matrix multiplicative weights algorithm, e.g., see [1, 18, 17, 19]
and references therein. These kinds of algorithms have been applied in a number of learning
scenarios, including online PCA [20], online variance minimization [21], solving SDPs [18], and
online prediction with switching sequences [22]. These algorithms update a new hypothesis matrix
on each trial by trading off fidelity to the previous hypothesis and the incorporation of the new label
information. The tradeoff is computed as an approximate spectral regularization via the quantum
relative entropy (see [1, Section 3.1]). The particular matrix multiplicative weights algorithm we
apply is Matrix Winnow [19]; we adapt this algorithm and its mistake bound analysis for our purposes
via selection of comparator, threshold, and appropriate “progress inequalities.”

The paper is organized as follows. In Section 2 we introduce basic notions used in the paper. In
Section 3 we present our algorithm and derive a mistake bound, also comparing it to related bounds
in the literature. In Section 4 we observe that our algorithm is able to exploit matrix structure to
perform comparably to the Kernel Perceptron with the best kernel known in advance. Finally, in
Section 5 we discuss the example of biclustered matrices, and argue that our bound is optimal up to a
polylogarithmic factor. The appendix contains proofs of the results only stated in the main body of
the paper, and other auxiliary results.

2 Preliminaries

We denote the set of the first m positive integers as Nm = {1, . . . ,m}. We denote the inner
product of vectors x,w ∈ Rn as 〈x,w〉 =

∑n
i=1 xiwi and the norm as |w| =

√
〈w,w〉. We

let Rm×n be the set of all m × n real-valued matrices. If X ∈ Rm×n then Xi denotes the i-th
n-dimensional row vector and the (i, j) entry inX is Xij . The trace of a square matrixX ∈ Rn×n

is Tr(X) =
∑n
i=1Xii. The trace norm of a matrix X ∈ Rm×n is ‖X‖1 = Tr(

√
X>X), where√

· indicates the unique positive square root of a positive semi-definite matrix. For every matrix
U ∈ {−1, 1}m×n, we define SP(U) = {V ∈ Rm×n : ∀ijVijUij > 0}, the set of matrices which

1For simplicity we assume m ∈ Θ(n).
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are sign consistent with U . We also define SP1(U) = {V ∈ Rm×n : ∀ijVijUij ≥ 1}, that is the set
of matrices which are sign consistent to U with a margin of at least one.

The max-norm (or γ2 norm [3]) of a matrix U ∈ Rm×n is defined by the formula

‖U‖max := inf
PQ>=U

{
max

1≤i≤m
|P i| max

1≤j≤n
|Qj |

}
, (1)

where the infimum is over all matrices P ∈ Rm×k andQ ∈ Rn×k and every integer k. The margin
complexity of a matrix U ∈ Rm×n is

mc(U) := inf
PQ>∈SP(U)

max
ij

|P i||Qj |
|〈P i,Qj〉|

.

This quantity plays a central role in the analysis of our algorithm. If we interpret the rows of U as m
different binary classification tasks, and the columns as a finite set of objects which we wish to label,
the “min-max” margin with respect to an embedding is smallest of the m maximal margins over the
tasks. The quantity 1/mc(U) is then the maximum “min-max” margin with respect to all possible
embeddings. Specifically, the rows of matrix P represent the “weights” of the binary classifiers
and the rows of matrix Q the “input vectors” associated with the objects. The quantity |〈P i,Qj〉|

|P i||Qj |
is the margin of the i-th classifier on the j-th input. Observe that margin complexity depends only
on the sign pattern of the matrix and not the magnitudes. The margin complexity is equivalently
mc(U) = minV ∈SP1(U) ‖V ‖max, see e.g., [3, Lemma 3.1].

In our online setting we are concerned with predicting an (example) sequence
((i1, j1), y1), . . . , ((iT , jT ), yT ) ∈ (Nm × Nn) × {−1, 1}. A sequence must be consistent, that is,
given examples ((i, j), y) and ((i′, j′), y′) if (i, j) = (i′, j′) then y = y′. We define the set of sign-
consistent matrices with a sequence S as cons(S) := {M ∈ Rm×n : 0 < yMij , ((i, j), y) ∈ S}.
We extend the notion of margin complexity to sequences via mc(S) := infU∈cons(S) mc(U).

The number of margin violations in a sequence S at complexity γ is defined to be,

merr(S, γ) := inf
PQ>∈cons(S)

∣∣∣∣{((i, j), y) ∈ S :
|P i||Qj |
|〈P i,Qj〉|

>
1

γ

}∣∣∣∣ . (2)

In particular, note that merr(S, γ) = 0 if γ ≤ 1
mc(S) .

Finally, we introduce the following quantity, which plays a central role in the amortized analysis of
our algorithm.
Definition 2.1. The quantum relative entropy of symmetric positive semidefinite square matricesA
andB is

∆(A,B) := Tr(A log (A)−A log (B) +B −A).

3 Algorithm and Analysis

Algorithm 1 presents an adaptation of the Matrix Exponentiated Gradient algorithm [1, 17, 18, 19] to
our setting. This algorithm is a matrix analog of the Winnow algorithm [19]; we refer to the above
papers for more insights into this family of algorithms.

The following theorem provides a mistake bound for the algorithm.
Theorem 3.1. The number of mistakes, M , on sequence S made by the Algorithm 1 with parameter
0 < γ ≤ 1 is upper bounded by

M ≤ c
[
(m+ n) log(m+ n)

1

γ2
+ merr(S, γ)

]
, (3)

where c = 1/(3− e) ≤ 3.55 and the quantity merr(S, γ) is given in equation (2).

Proof. Given U ∈ Rm×n, let P ∈ Rm×k and Q ∈ Rn×k be such that PQ> = U . For every
i ∈ Nm, we denote by P i the i-th row vector of P and for every j ∈ Nn, we denote byQj the j-th
row vector ofQ. We construct the (m+ n)× k matrix

R := diag

(
1

|P 1|
, . . . ,

1

|Pm|
,

1

|Q1|
, . . . ,

1

|Qn|

)[
P
Q

]
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Algorithm 1 Predicting a binary matrix.
Parameters: Learning rate 0 < γ ≤ 1 .

Initialization: W (0) ← I
(m+n) , where I is the (m+ n)× (m+ n) identity matrix.

For t = 1, . . . , T

• Get pair (it, jt) ∈ Nm × Nn.
• DefineX(t) := 1

2 (eit + em+jt)(eit + em+jt)
>, where ek is the k-th basis vector of Rm+n.

• Predict

ŷt =

{
1 if Tr(W (t−1)X(t)) ≥ 1

m+n ,

−1 otherwise.

• Receive label yt ∈ {−1, 1} and if ŷt 6= yt update

W (t) ← exp
(

log
(
W (t−1)

)
+
γ

2
(yt − ŷt)X(t)

)
.

and construct Ũ := ( 1
m+n )RR>. Define matrix X(t) := 1

2 (eit + em+jt)(eit + em+jt)
>, where

ek is the k-th basis vector of Rm+n.

Note that Tr(X(t)) = 1, Tr(Ũ) = 1 (since every row ofR is normalized) and

Tr(ŨX(t)) =
1

n+m
Tr((RR>)

1

2
(eit + em+jt)(eit + em+jt)

>)

=
1

2(n+m)
(eit + em+jt)

>RR>(eit + em+jt)

=
1

2(n+m)
(R>(eit + em+jt))

>(R>(eit + em+jt))

=
1

2(n+m)

(
P it

|P it |
+
Qjt

|Qjt |

)(
P it

|P it |
+
Qjt

|Qjt |

)>
=

1

(n+m)

(
1 +
〈P it ,Qjt〉
|P it ||Qjt |

)
.

For a trial t we say there is a margin violation if
|P it ||Qjt

|
|〈P it ,Qjt

〉| >
1
γ . Let M− denote the number of

mistakes made in trials with margin violations and let M+ denote the number of mistakes made in
trials without margin violations.

From Lemma A.3 in the appendix we have

∆(Ũ ,W (t−1))−∆(Ũ ,W (t)) ≥ γ

2
(yt − ŷt) Tr(ŨX(t)) +

(
1− e

γ
2 (yt−ŷt)

)
Tr(W (t−1)X(t)) ,

then substituting in the above we have that

∆(Ũ ,W (t−1))−∆(Ũ ,W (t)) ≥ γ

2
(yt − ŷt)

1

n+m

(
1 +
〈P it ,Qjt〉
|P it ||Qjt |

)
+
(

1− e
γ
2 (yt−ŷt)

)
Tr(W (t−1)X(t)) .

To further simplify the above we use Lemma A.4 presented in the appendix, which gives

∆(Ũ ,W (t−1))−∆(Ũ ,W (t)) ≥


(c′ − 1) 1

n+mγ
2, if there is a margin violation ,

c′ 1
n+mγ

2, otherwise.

where c′ = 3− e.
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Using a telescoping sum, this gives

∆(Ũ ,W (0)) ≥ ∆(Ũ ,W (0))−∆(Ũ ,W (T )) ≥M+c′
1

n+m
γ2 +M−(c′ − 1)

1

n+m
γ2

= (c′M+ − (1− c′)M−)
1

n+m
γ2

and hence

M+ ≤ 1

c′ 1
n+mγ

2
∆(Ũ ,W (0)) +

1− c′

c′
M− .

We conclude that

M = M+ +M− ≤ 1

c′ 1
n+mγ

2
∆(Ũ ,W (0)) +

1

c′
M− .

We also have that

∆(Ũ ,W (0)) = Tr(Ũ log(Ũ))− Tr(Ũ log(W (0))) + Tr(W (0))− Tr(Ũ)

= Tr(Ũ log(Ũ))− Tr(Ũ log(W (0))) + 1− 1

= Tr(Ũ log(Ũ))− Tr(Ũ log(W (0))) .

Write the eigen-decomposition of Ũ as
∑m+n
i=1 λiαiα

T
i . Now we have

∑m+n
i=1 λi = Tr(Ũ) = 1

so all eigenvalues λi are in the range [0, 1] meaning log(λi) ≤ 0 so λi log(λi) < 0 which are the
eigenvalues of Ũ log(Ũ) meaning that Tr(Ũ log(Ũ)) ≤ 0. Also, log(W (0)) = log( 1

n+m )I so
Ũ log(W (0)) = log( 1

n+m )Ũ and hence−Tr(Ũ log(W (0))) = − log( 1
n+m ) Tr(Ũ) = log(m+n).

So by the above we have
∆(Ũ ,W (0)) ≤ log(m+ n)

and hence putting together we get

M ≤ m+ n

c′γ2
log(m+ n) +

1

c′
M− .

Observe that in the simplifying case when we have no margin errors (merr(S, γ) = 0) and the
learning rate is γ := 1

mc(S) we have that the number of mistakes of Algorithm 1 is bounded by

Õ((n+m) mc2(S)). More generally although the learning rate is fixed in advance, we may use a
“doubling trick” to avoid the need to tune the γ.
Corollary 3.2. For any value of γ∗ the number of mistakes M made by the following algorithm:

DOUBLING ALGORITHM:

Set κ←
√

2 and loop over

1. Run Algorithm 1 with γ = 1
κ until it has made d2c(m+ n) log(m+ n)κ2e mistakes

2. Set κ← κ
√

2

is upper bounded by

M ≤ 12c

[
(m+ n) log(m+ n)

1

(γ∗)2
+ merr(S, γ∗)

]
,

with c = 1/(3− e) ≈ 3.55.

See the appendix for a proof. We now compare our bound to other online learning algorithms for
matrix completion. The algorithms of [16, 17] address matrix completion in a significantly more
general setting. Both algorithms operate with weak assumptions on the loss function, while our
algorithm is restricted to the 0–1 loss (mistake counting). Those papers present regret bounds,
whereas we apply the stronger assumption that there exists a consistent predictor. As a regret bound
is not possible for a deterministic predictor with the 0–1 loss, we compare Theorem 3.1 to their
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bound when their algorithm is allowed to predict ŷ ∈ [−1, 1] and uses absolute loss. For clarity in
our discussion we will assume that m ∈ Θ(n).

Under the above assumptions, the regret bound in [17, Corollary 7] becomes
2
√
‖U‖1(m+ n)1/2 log(m+ n)T . For simplicity we consider the simplified setting in

which each entry is predicted, that is T = mn; then absorbing polylogarithmic factors, their bound is
Õ(n5/4‖U‖

1
2
1 ). From Theorem 3.1 we have a bound of Õ(nmc2(U)). Using [11, Theorem 10], we

may upper bound the margin complexity in terms of the trace norm,

mc(U) ≤ 3 min
V ∈SP1(U)

‖V ‖
1
3
1 ≤ 3‖U‖

1
3
1 . (4)

Substituting this into Theorem 3.1 our bound is Õ(n‖U‖
2
3
1 ). Since the trace norm may be bounded

as n ≤ ‖U‖1 ≤ n3/2, both bounds become vacuous when ‖U‖1 = n3/2, however if the trace norm
is bounded away from n3/2, the bound of Theorem 3.1 is smaller by a polynomial factor. An aspect
of the bounds which this comparison fails to capture is the fact that since [17, Corollary 7] is a regret
bound it will degrade more smoothly under adversarial noise than Theorem 3.1.

The algorithm in [16] is probabilistic and the regret bound is of Õ(‖U‖1
√
n). Unlike [17], the setting

of [16] is transductive, that is each matrix entry is seen only once, and thus less general. If we use the
upper bound from [11, Theorem 10] as in the discussion of [17] then [16] improves uniformly on
our bound and the bound in [17]. However, using this upper bound oversimplifies the comparison
as 1 ≤ mc2(U) ≤ n while n ≤ ‖U‖1 ≤ n3/2 for U ∈ {−1, 1}m×n. In other words we have been
very conservative in our comparison; the bound (4) may be loose and our algorithm may often have a
much smaller bound. A specific example is provided by the class of (k, `)-biclustered matrices (see
also the discussion in Section 5 below) where mc2(U) ≤ min(k, `), in which case bound becomes
nontrivial after Θ̃(min(k, `)n) examples while the bounds in [16] and [17] become nontrivial after
at least Θ̃(n3/2) and Θ̃(n7/4) examples, respectively.

With respect to computation our algorithm on each trial requires a single eigenvalue decomposition
of a PSD matrix, whereas the algorithm of [17] requires multiple eigenvalue decompositions per trial.
Although [16] does not discuss the complexity of their algorithm beyond the fact that it is polynomial,
in [17] it is conjectured that it requires at a minimum Θ(n4) time per trial.

4 Comparison to the Best Kernel Perceptron

In this section, we observe that Algorithm 1 has a mistake bound that is comparable to Novikoff’s
bound [23] for the Kernel Perceptron with an optimal kernel in hindsight. To explain our observation,
we interpret the rows of matrixU asm different binary classification tasks, and the columns as a finite
set of objects which we wish to label; think for example of users/movies matrix in recommendation
systems. If we solve the tasks independently using a Kernel Perceptron algorithm, we will make
O(1/γ2) mistakes per task, where γ is the largest margin of a consistent hypothesis. If every task has
a margin larger than γ we will make O(m/γ2) mistakes in total. This algorithm and the parameter γ
crucially depend on the kernel used: if there exists a kernel which makes γ large for all (or most of)
the tasks, then the Kernel Perceptron will incur a small number of mistakes on all (or most of) the
tasks. We now argue that our bound mimics this “oracle”, without knowing in advance the kernel.
Without loss of generality, we assume m ≥ n (otherwise apply the same reasoning below to matrix
U>). In this scenario, Theorem 3.1 upper bounds the number of mistakes as

O

(
m logm

γ2

)
where γ is chosen so that merr(S, γ) = 0. To further illustrate our idea, we define the task complexity
of a matrix U ∈ Rm×n as

τ(U) = min
{
h(V ) : V ∈ SP1(U)

}
where

h(V ) = inf
K�0

max
1≤i≤m

V iK
−1V >i max

1≤j≤n
Kjj . (5)

Note that the quantity V iK
−1V >i max1≤j≤nKjj is exactly the bound in Novikoff’s Theorem on

the number of mistakes of the Kernel Perceptron on the i-th task with kernelK. Hence the quantity

6



h(V ) represents the best upper bound on the number of mistakes made by a Kernel Perceptron on
the worst (since we take the maximum over i) task.

Proposition 4.1. For every U ∈ Rm×n, it holds that mc2(U) = τ(U).

Proof. The result follows by Lemma A.6 presented in the appendix and by the formula mc(U) =
minV ∈SP1(U) ‖V ‖max, see, e.g., [3, Lemma 3.1].

Returning to the interpretation of the bound in Theorem 3.1, we observe that if no more than r out of
the m tasks have margin smaller than a threshold λ then in Algorithm 1 setting parameter γ = λ,
Theorem 3.1 gives a bound of

O

(
(m− r) logm

λ2
+ rn

)
.

Thus we essentially “pay” linearly for every object in a difficult task. Since we assume n ≤ m,
provided r is small the bound is “robust” to the presence of bad tasks.

We specialize the above discussion to the case that each of the m tasks is a binary labeling of an
unknown underlying connected graph G := (V, E) with n vertices and assume that m ≥ n. We
let U ∈ {−1, 1}m×n be the matrix, the rows of which are different binary labelings of the graph.
For every i ∈ Nm, we interpret U i, the i-th row of matrix U , as the i-th labeling of the graph
and let Φi be the corresponding cutsize, namely, Φi := |{(j, j′) ∈ E : Uij 6= Uij′}| and define
Φmax := max1≤i≤m Φi. In order to apply Theorem 3.1, we need to bound the margin complexity of
U . Using the above analysis (Proposition 4.1), this quantity is upper bounded by

mc2(U) ≤ max
1≤i≤m

U iK
−1U>i max

1≤j≤n
Kjj . (6)

We choose the kernel K := L+ + (R 11T ), where L is the graph Laplacian of G, the vector 1
has all components equal to one, and R = maxj L

+
jj . Since the graph is connected then 1 is the

only eigenvector of L with zero eigenvalue. Hence K is invertible and K−1 = L+ (R 11T )+ =
L+(Rn 1√

n
11T 1√

n
)+ = L+ 1

Rn211
T . Then using the formula Φi = 1

4U iLU
>
i we obtain from (6)

that

mc2(U) ≤ max
1≤i≤m

(
4Φi +

1

R

)
R .

Theorem 3.1 then gives a bound of M ≤ O ((1 + ΦmaxR)m logm). The quantity R may be further
upper bounded by the graph resistance diameter, see for example [24].

5 Biclustering and Near Optimality

The problem of learning a (k, `)-binary-biclustered matrix, corresponds to the assumption that the
row indices and column indices represent k and ` distinct object types and that there exists a binary
relation on these objects which determines the matrix entry. Formally we have the following

Definition 5.1. The class of (k, `)-binary-biclustered matrices is defined as

Bm,nk,` = {U ∈ Rm×n : r ∈ Nmk , c ∈ Nn` ,F ∈ {−1, 1}k×`, Uij = Fricj , i ∈ Nm, j ∈ Nn} .

The intuition is that a matrix is (k, `)-biclustered if after a permutation of the rows and columns the
resulting matrix is a k × ` grid of rectangles and all entries in a given rectangle are either 1 or −1.
The problem of determining a (k, `)-biclustered matrix with a minimum number of “violated” entries
given a subset of entries was shown to be NP-hard in [25]. Thus although we do not give an algorithm
that provides a biclustering, we provide a bound in terms of the best consistent biclustering.

Lemma 5.2. If U ∈ Bm,nk,` then mc2(U) ≤ min(k, `).

Proof. We use Proposition 4.1 to upper bound mc2(U) by h(U), where the function h is given
in equation (5). We further upper bound h(U) by choosing a kernel matrix in the underlying
optimization problem. By Definition 5.1, there exists r ∈ Nmk , c ∈ Nn` and F ∈ {−1, 1}k×`

7



such that Uij = Fricj , for every i ∈ Nm and every j ∈ Nn. Then we choose the kernel matrix
K = (Kjj′)1≤j,j′≤n such that

Kjj′ := δcjc′j + εδjj′

One verifies that U iK
−1U>i ≤ ` for every i ∈ {1, . . . ,m}, hence by taking the limit for ε → 0

Proposition 4.1 gives that mc2(U) ≤ ` . By the symmetry of our construction we can swap ` with k,
giving the bound.

Using this lemma with Theorem 3.1 gives us the following upper bound on the number of mistakes.

Corollary 5.3. The number of mistakes of Algorithm 1 applied to sequences generated by a (k, `)-
binary-biclustered matrix is upper bounded by O(min(k, `)(m+ n) log(m+ n)).

A special case of the setting in this corollary was first studied in the mistake bound setting in [14].
In [15] the bound was improved and generalized to include robustness to noise (for simplicity we do
not compare in the noisy setting). In both papers the underlying assumption is that there are k distinct
row types and no restrictions on the number of columns thus ` = n. In this case they obtained an
upper bound of kn + min(m

2

2e log2 e,m
√

3n log2 k). Comparing the two bounds we can see that
when k < n

1
2−ε the bound in Corollary 5.3 improves over [15, Corollary 1] by a polynomial factor

and on other hand when k ≥ n 1
2 we are no worse than a polylogarithmic factor.

We now establish that the mistake bound (3) is tight up to a poly-logarithmic factor.

Theorem 5.4. Given an online algorithm A that predicts the entries of a matrix U ∈ {−1, 1}m×n
and given an ` ∈ Nn there exists a sequence S constructed by an adversary with margin complexity
mc(S) ≤

√
`. On this sequence the algorithm A will make at least `×m mistakes.

See the appendix for a proof.

6 Conclusion

In this paper, we presented a Matrix Exponentiated Gradient algorithm for completing the entries of a
binary matrix in an online learning setting. We established a mistake bound for this algorithm, which
is controlled by the margin complexity of the underlying binary matrix. We discussed improvements
of the bound over related bounds for matrix completion. Specifically, we noted that our bound requires
fewer examples before it becomes non-trivial, as compared to the bounds in [16, 17]. Here we require
only Θ̃(m + n) examples as opposed to the required Θ̃((m + n)3/2) in [16] and Θ̃((m + n)7/4),
respectively. Thus although our bound is more sensitive to noise, it captures structure more quickly
in the underlying matrix. When interpreting the rows of the matrix as binary tasks, we argued that
our algorithm performs comparably (up to logarithmic factors) to the Kernel Perceptron with the
optimal kernel in retrospect. Finally, we highlighted the example of completing a biclustered matrix
and noted that this is instrumental in showing the optimality of the algorithm in Theorem 5.4.

We observed that Algorithm 1 has a per trial computational cost which is smaller than currently
available algorithms for matrix completion with online guarantees. In the future it would be valuable
to study if improvements in this computation are possible by exploiting the special structure in our
algorithm. Furthermore, it would be very interesting to study a modification of our analysis to the
case in which the tasks (rows of matrix U ) grow over time, a setting which resembles the lifelong
learning frameworks in [26, 27].
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A Appendix

In this appendix we give proof of some of the results only stated in the main body of the paper and
collect some auxiliary results. The first result is the well known Golden-Thompson Inequality, whose
proof can be found, for example, in [28].

Lemma A.1. For any symmetric matricesA andB we have that

Tr(exp (A+B)) ≤ Tr(exp (A) exp (B)). (7)

The next result is taken from [1].

Lemma A.2. IfA � 0 with eigenvalues in [0, 1] and a ∈ R, then

(1− ea)A � I − exp (aA) .

The next lemma is useful for the analysis of Matrix Winnow, see [1, 19, 22].

Lemma A.3.

∆(Ũ ,W (t−1))−∆(Ũ ,W (t)) ≥ γ

2
(yt − ŷt) Tr(ŨX(t)) +

(
1− e

γ
2 (yt−ŷt)

)
Tr(W (t−1)X(t))

Proof. We observe that

∆(Ũ ,W (t−1))−∆(Ũ ,W (t)) = Tr(Ũ logW (t) − Ũ logW (t−1)) + trW (t−1) − trW (t)

=
γ

2
(yt − ŷt) Tr(ŨX(t)) + trW (t−1) − tr

(
elogW (t−1)+ γ

2 (yt−ŷt)X
(t)
)

≥ γ

2
(yt − ŷt) Tr(ŨX(t)) + trW (t−1) − tr

(
elogW (t−1)

e
γ
2 (yt−ŷt)X

(t)
)

=
γ

2
(yt − ŷt) Tr(ŨX(t)) + tr

(
W (t−1)

(
I − e

γ
2 (yt−ŷt)X

(t)
))

≥ γ

2
(yt − ŷt) Tr(ŨX(t)) + (1− e

γ
2 (yt−ŷt)) Tr(W (t−1)X(t))

where the second equality follows by the update formula in Algorithm 1, the first inequality follows
by Golden-Thompson Inequality (Lemma A.1), and the last inequality follows by Lemma A.2.

The next lemma further analyzes the quantity ∆(Ũ ,W (t−1))−∆(Ũ ,W (t)) distinguishing between
the case in which there is a margin violation or not.

Lemma A.4. Let c′ = 3− e. If yt 6= ŷt, it holds that

∆(Ũ ,W (t−1))−∆(Ũ ,W (t)) ≥


(c′ − 1) 1

n+mγ
2, if there is a margin violation ,

c′ 1
n+mγ

2, otherwise.

Proof. If yt = 1, ŷt = −1 and there is not a margin violation then

∆(Ũ ,W (t−1))−∆(Ũ ,W (t)) ≥ γ 1

n+m

(
1 +
〈P it ,Qjt〉
|P it ||Qjt |

)
+

1

n+m
(1− eγ)

≥ 1

n+m
(γ + γ2 + 1− eγ)

≥ c′ 1

n+m
γ2 .
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And if yt = −1, ŷt = 1 and there is not a margin violation then

∆(Ũ ,W (t−1))−∆(Ũ ,W (t)) ≥ −γ 1

n+m

(
1 +
〈P it ,Qjt〉
|P it ||Qjt |

)
+

1

n+m
(1− e−γ)

≥ 1

n+m
(−γ + γ2 + 1− e−γ)

≥ c′ 1

n+m
γ2 .

If yt = 1, ŷt = −1 and there is a margin violation then

∆(Ũ ,W (t−1))−∆(Ũ ,W (t)) ≥ γ 1

n+m

(
1 +
〈P it ,Qjt〉
|P it ||Qjt |

)
+

1

n+m
(1− eγ)

≥ 1

n+m
(γ + γ0 + 1− eγ)

=
1

n+m
(γ + 1− eγ)

≥ (c′ − 1)
1

n+m
γ2 .

And if yt = −1, ŷt = 1 and there is a margin violation then

∆(Ũ ,W (t−1))−∆(Ũ ,W (t)) ≥ −γ 1

n+m

(
1 +
〈P it ,Qjt〉
|P it ||Qjt |

)
+

1

n+m
(1− e−γ)

≥ − 1

n+m
(γ − γ0− 1 + e−γ)

=
1

n+m
(−γ + 1− e−γ)

≥ (c′ − 1)
1

n+m
γ2 .

So on a mistaken trial t without a margin violation we have

∆(Ũ ,W (t−1))−∆(Ũ ,W (t)) ≥ c′ 1

n+m
γ2

and on a mistaken trial t with a margin violation we have

∆(Ũ ,W (t−1))−∆(Ũ ,W (t)) ≥ (c′ − 1)
1

n+m
γ2.

The constant c′ is chosen via Lemma A.5 below.

Lemma A.5. For every x ∈ [0, 1] it holds that

min(x2 − x+ 1− e−x, x2 + x+ 1− ex) ≥ (3− e)x2.

Proof. Let f(x) := x2 − x+ 1− e−x − (3− e)x2 and g(x) := x2 + x+ 1− ex − (3− e)x2.

We first show that f(x) ≥ 0. Taking a derivative we have that f ′(x) := e−x + (2e − 4)x. Since
f ′(0) = 0 and f ′(x) is strictly increasing for x ≥ 0 this implies that f(x) ≥ 0 for x ≥ 0.

Second, we show that g(x) ≥ 0. Taking derivatives we have that g′(x) = 1 + (2e − 4)x − ex
and g′′(x) = (2e − 4) − ex. Since g′′ is strictly decreasing, g′ is concave and has at most two
zero-crossings. Therefore g has at most two critical points. One critical point is at 0 and the other is
at an x∗ ∈ [0.6, 0.8]. Since g′′(0) is positive, 0 is a minimum of g and since g′′(x) < 0 for 0.6 < x,
x∗ is a maximum of g. Thus g is unimodal in [0, 1] with minimum values at g(0) = g(1) = 0.

The following provides an alternative formulation of the max-norm.
Lemma A.6. For every V ∈ Rm×n, we have that ‖V ‖2max = h(V ).
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Proof. Let f(P ,Q) = max
1≤i≤m

|P i|2 max
1≤j≤n

|Qj |2. Then we have that

‖V ‖2max = inf
PQ>=V

f(P ,Q) (8)

where the infimum is over all real matrices P ∈ Rm×k, Q ∈ Rn×k and every integer k. For
any K � 0, set P = V

√
K−1 and Q =

√
K. Note that PQ> = V and, for every i ∈ Nm,

|P i|2 = V iK
−1V >i . Moreover, for any j ∈ Nn, it holds |Qj |2 = Kjj . This shows that every

feasible point in the optimization problem (5) maps to a feasible point for the optimization problem
(8) and that the two objective functions take the same value at these points. Hence, we have shown,
for every V ∈ Rm×n, that

‖V ‖2max ≤ h(V ). (9)

To show the reverse inequality, let k ∈ N, let P ∈ Rm×k and Q ∈ Rn×k be a solution of the
optimization problem (8). SetK = QQ> + εI for ε > 0. Then for every j ∈ Nn, Kjj = |Qj |2 + ε
and, for every i ∈ Nm, we have that

V iK
−1V >i = e>i V K

−1V >ei = e>i PQ
>K−1QP>ei ≤ P iP

>
i = |P i|2

where we used the fact thatQ>
(
QQ> + εI

)−1
Q ≺ I . Thus

max
1≤i≤m

V iK
−1V >i max

1≤j≤n
Kjj < max

1≤i≤m
|P i|2 max

1≤j≤n

(
|Qj |2 + ε

)
and taking the limit of ε→ 0, we conclude that h(V ) ≤ ‖V ‖2max. This inequality, combined with
inequality (9) proves the result.

Proof of Corollary 3.2. For any γ > 0 define A(γ) := c(m + n) log(m + n) 1
γ2 , B(γ) :=

cmerr(S, γ), andM(γ) := A(γ) + B(γ) which is equal to the mistake bound for Algorithm 1 with
learning rate γ. Let η be such that for all γ ≤ η we have A(γ) ≥ B(γ) and for all γ > η we have
A(γ) ≤ B(γ) which is defined and positive since A(·) is continuous and monotonic decreasing (and
limiting to 0) and B(·) is monotonic non-decreasing (with B(0) = 0). Since A(·) is continuous let ε
be such that ε > 0 and A(η + ε) ≥ A(η)− 1

2 . For γ ≤ η + ε we haveM(γ) ≥ A(γ) ≥ A(η + ε)
and for γ ≥ η + ε we have M(γ) ≥ B(γ) ≥ B(η + ε) ≥ A(η + ε) so in either case we have
M(γ) ≥ A(η + ε) ≥ A(η)− 1

2 .

Let z be the minimum integer power of
√

2 that is greater than or equal to 1/η. i.e. z := min{
√

2
i

:

i ∈ N,
√

2
i ≥ 1/η}. Since 1/z ≤ η we have B(1/z) ≤ B(η) ≤ A(η) ≤ A(1/z) soM(1/z) =

A(1/z) + B(1/z) ≤ 2A(1/z) = 2c(m+ n) log(m+ n)z2 and hence the doubling algorithm above
terminates at some κ ≤ z. The total number of mistakes, M , made by doubling algorithm above is
then bounded above by

(2A(2−1/2) + 1) + (2A(2−2/2) + 1) + (2A(2−3/2) + 1) + · · ·+ (2A(1/z) + 1)

≤ 3A(2−1/2) + 3A(2−2/2) + · · ·+ 3A(1/z)

≤ 3c(m+ n) log(m+ n)(2 + 22 + · · · z2)

≤ 6c(m+ n) log(m+ n)z2 − 6

= 6A(1/z)− 6.

We also have z ≤
√
2
η so A(1/z) ≤ 2A(η) and putting together we get M ≤ 12A(η)− 6 so since,

by above, A(η) ≤M(γ) + 1
2 for all γ > 0 we’re done.

Proof of Theorem 5.4. Observe that for the set of (k, `)-biclustered m× n matrices we have that,

k × ` ≤ VC-dimension(Bm,nk,` )

as each of k×` “tiles” may be labeled independently of the others. Thus there exists an adversary that
may forcem×`mistakes via a constructed sequence S that is consistent with some (m, `)-biclustered
matrix U . By Lemma 5.2 we have that mc2(U) ≤ min(m, `) and hence mc(S) ≤

√
`.
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