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Synopsis

In Susceptibility Mapping (SM) using multi-echo gradient-echo phase data, unwrapping

and/or background-Òeld removal is often performed using Laplacian-based methods.

However, SM pipelines in the literature have applied these methods at di×erent stages. Here,

using simulated and acquired images, we compared the performance of three pipelines that

apply Laplacian-based methods at di×erent stages. We showed that Laplacian-based

methods alter the linearity of the phase over time. We demonstrated that only a processing

pipeline that takes this into account, i.e. by Òtting the multi-echo data over time to correctly

estimate a Òeld map before applying Laplacian-based methods, gives accurate susceptibility

values.
Introduction

In Susceptibility Mapping (SM), Laplacian-based techniques, e.g. SHARP , have been used to perform

unwrapping and/or background-Òeld removal of multi-echo gradient-echo phase data. The unwrapped

gradient-echo phase at time and location is

where is the proton gyromagnetic ratio, the phase o×set and the total Òeld variation from

local ( ) and background ( ) sources. In SM, multi-echo acquisitions are preferable because they

allow Òtting to Equation (1) to give and increase the accuracy of estimates .

Several studies have used Laplacian unwrapping at each echo time (TE) as an initial step. Assuming

, a Òeld map has then been calculated by scaling the Laplacian-unwrapped phase according to (1)

at each TE and averaging the results. Similarly, other studies have used simultaneous Laplacian

unwrapping and background-Òeld removal at each TE followed by scaling according to (1), again assuming

. However, averaging the processed phase images assumes that Laplacian-based methods

preserve the linear phase-time dependence (1). In contrast, others have Òtted the unwrapped phase

over TEs to calculate (and ) and have then removed from the Òtted using a

Laplacian-based technique.

Purpose

Here, we applied three processing pipelines to phase images of a numerical phantom and a healthy

volunteer. We investigated the e×ect of using Laplacian-based methods at di×erent stages of the SM

pipeline on the phase-time linearity (1) and the accuracy of estimation.
Methods

Laplacian-based phase unwrapping (Lap-Unw) or background-Òeld removal (Lap-Bg) were implemented

with SHARP and a 3x3x3 Laplacian kernel . For Lap-Unw, non-eroded brain mask (FSL BET for the

volunteer) and threshold were used. For Lap-Bg, the same brain mask with 2-voxel erosion

and threshold were used.

Phantom

Wrapped phase ( ) was simulated at Òve echoes (TE /ΔTE = 10/10 ms) from a ground-truth

susceptibility distribution (Zubal phantom , Figure 1), using a Fourier-based forward model .

Background-Òeld free Òeld maps were then calculated using three distinct pipelines:

- Avg-Unw: Lap-Unw on the phase at each TE; Òeld map calculation:
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then Lap-Bg on .

- Avg-Bg : Lap-Bg on the phase at each TE; Òeld map calculation:

- Fit: linear Òt of the simulated (non-wrapped) phase over TEs; Lap-Bg on the Òtted .

maps were calculated (TKD with correction for underestimation and ) to assess the e×ect of

each pipeline on the values. mean, standard deviation (SD) and Root Mean Square Error (RMSE) were

calculated in all the regions of interest (ROIs) shown in Figure 1.

Volunteer

3D gradient-echo brain images of a healthy volunteer were acquired on a Philips Achieva 3T scanner with a

32-channel head coil, 1-mm isotropic resolution, 7 echoes (TE /ΔTE = 3.7/6.9 ms), TR = 50 ms, SENSE factor

= 2 and Óip angle = 10°.

The e×ect of Lap-Unw and Lap-Bg was tested. For comparison, the phase at each TE was also unwrapped

with PRELUDE . The mean and SD of the processed phase were calculated in three ROIs (Figure 3a) drawn

on the Òfth-echo magnitude image.

Results and Discussion

Laplacian-based processing altered the linearity of the phase-time relationship (1) in both the numerical

phantom (Figure 2) and the volunteer (Figure 3). Such alterations of (1) were expected, because SHARP

involves non-linear operations. These Òndings suggest that Laplacian unwrapping does not only unwrap the

phase but also removes some from , even with a very small .

In the phantom, scaling and averaging the SHARP-processed phase caused inaccuracies in the estimated

Òeld maps (Figure 4) and, therefore, errors in and versus (Figure 5). Unlike

, and underestimated in the caudate nucleus and globus pallidus,

whereas all mean estimates were similar in the thalamus and white matter. had the lowest SDs or

the smallest RMSE values in all ROIs except the globus pallidus, in which, however, had the lowest

RMSE as a percentage of .

Conclusions

We demonstrated that Laplacian-based techniques alter the phase-time linearity (1). We also showed that

Fit, therefore, gave the most accurate results, suggesting that Fit, or analogous pipelines that Òt the

phase over multiple echoes, should be used before applying Laplacian-based methods.
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Figures

F igure 1. Susceptibility phantom and values. values were taken from Ref. 13 for white matter, caudate nucleus, putamen, globus pallidus, thalamus, superior sagittal sinus and other brain

regions and from Ref. 14 for air/non-brain regions.
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Figure 2. Phantom: e×ect of Avg-Unw (b) and Av g- Bg (c) on the phase simulated from the ground-truth distribution (a). Mean and SD of the phase in four ROIs (caudate nucleus, thalamus,

globus pallidus and white matter) are plotted against TEs.

F igure 3. Healthy volunteer: e×ect of PRELUDE unwrapping (b), Lap-Unw (c) and Lap-Bg (d) on the measured phase. Mean and SD of the phase in three ROIs drawn on the Òfth-echo magnitude

image (a) are plotted against TEs.

F igure 4. Phantom: transverse and coronal slices of Òeld maps calculated with Avg- Unw (a), Avg- Bg (b) and Fi t (c).

F igure 5. Phantom: transverse and coronal slices of maps calculated with Avg- Unw (b), Avg-Bg (c) and Fit (d) versus the true (a).

The table (e) shows the true and calculated [ppm] (mean ± SD) and the RMSEs [ppm] for each method in all ROIs.
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