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Abstract

The statistical analysis of longitudinal randomised controlled trials is frequently complicated by the

occurrence of protocol deviations which result in incomplete datasets for analysis. However analysis

is approached, an unverifiable assumption about the distribution of the unobserved post-deviation

data must be made. In such circumstances it is consequently important to assess the robustness

of the primary analysis of the trial to different credible assumptions about the distribution of the

missing data.

Reference based multiple imputation procedures have been proposed for contextually relevant

sensitivity analysis of longitudinal trials. Differences between the mean and variance of observed

and missing data are specified with qualitative reference to trial arms and multiple imputation is

used for estimation and inference. The primary analysis model is retained in the sensitivity analysis

to assess the impact of alternative sampling behaviour on the original planned analysis. Rubin’s

rules are used to combine the treatment effect and variance estimates across imputed datasets,

however it is unclear precisely what an appropriate measure of variance is in this setting and how

Rubin’s variance formula relates to this.

We begin by defining a lower bound for variance estimation in the reference based settings as

the variance estimate we would obtain were we able to observe the deviation data under the

postulated post-deviation data assumption. We show Rubin’s variance estimate always exceeds

this and moreover it approximately preserves the loss of information in the primary analysis. We

also explore Rubin’s variance estimate in the δ-adjusted sensitivity analysis setting and show that

Rubin’s variance formula preserves the loss of information in this context.

Alongside, we develop a new Stata command “mimix” for implementation of reference based sensi-

tivity analyses. We illustrate the relevance and accessibility of the proposed methods of sensitivity

analysis using data from a chronic asthma trial and a study of peer review.
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Xi vector of baseline covariates for individual i, p× 1, including treatment
Yzij outcome for patient i at occasion j in treatment arm z
z indexes treatment arm of individuals in the data set
β regression coefficient
β column vector of regression coefficients
φ generic vector-parameter for the missing data mechanism
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Chapter 1

Introduction

1.1 Missing data in randomised controlled trials

Longitudinal randomised controlled trials (RCTs) are widely used in medical research and provide

essential evidence for the evaluation of new and existing treatments and interventions. Unfortu-

nately protocol deviations, such as treatment withdrawal, partial compliance or loss to follow-up

are unavoidable during the full course of a trial. Consequently we often cannot measure what we

intended to for deviating individuals. Planned outcomes may be unobtainable due to the type of

the deviation and, depending on the nature of the analysis, even values that were recorded post-

deviation may be best regarded as missing. The result is a missing data problem, complicating the

analysis.

Complexity arises with missing data because, in any analysis, we are forced to make an assumption

about the distribution of the unobserved data. If the wrong assumption is made the obtained

treatment effect and its standard error will be biased, resulting in misleading inferences. This

could have clinically disastrous implications for patients.

Crucially the missing data assumption cannot be empirically verified from the observed data, thus

in the presence of missing data it can never be fully ascertained that the resulting treatment effect

is unbiased. To understand how far the key inferences depend on the missing data assumption,

analysis of incomplete data should therefore consist not only of a primary analysis, under the

most plausible missing data assumption, but include alternative analyses, which make a range of

different credible assumptions for the unobserved post-deviation data; that is include sensitivity

analysis [1].

There are many forms of sensitivity analysis [2, 3]. We define sensitivity analysis, using the

definition provided by Daniels and Hogan [4] as an,

“assessment of sensitivity of model-based inferences to assumptions that cannot be verified or

checked within the data.”

In the current missing data setting we are specifically interested in variation in model-based in-
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ferences with regards to untestable assumptions about the distribution of the unobserved data.

Ideally, inferences will be stable across sensitivity analysis indicating the missing data does not

seriously affect the interpretation of results. But, it is even more important if this is not the case

since it allows trialists to assess under what conditions results change and how plausible these

conditions are.

The endemic of missing values in the clinical trial arena was recently highlighted by Bell et al. [5].

Out of the 77 published RCTs they reviewed in four leading medical journals between July and

December 2013, 73 (95%) had partly missing outcome data. Despite an abundance of statistical

methods for handling incomplete data and sensitivity analysis [6, 7, 8] only 18 (25%) of the trials

with missing data conducted sensitivity analysis that altered the missing data assumption made

in the primary analysis. An earlier comparable review of 71 RCTs published in the same journals

between July and December 2001 by Wood et al. [9] identified only 13 (21%) trials with missing

data reported a sensitivity analysis, illustrating how not much has changed during this period.

This is worrying since substantially different results can be obtained in sensitivity analysis. For

example, in a RCT comparing two interventions (brief negotiation or direct advice) against a

control for increasing physical activity Wood et al. [10] found if dropouts were assumed to have

similar activity levels to those observed in their randomised intervention arm, i.e. brief negotiation

dropouts were assumed to behave like those observed in the brief negotiation arm and direct

advice dropouts were assumed to behave like those observed in the direct advice arm, then the

brief negotiation intervention was significantly more effective than the direct advice intervention.

If all dropouts were alternatively assumed to behave like those in the control group the effect fell

below significance.

Recent regulatory guidelines from the European Medicines Agency (EMA) [11] and a Food and

Drug Administration (FDA) mandated panel report from the US National Research Council [12]

emphasise the importance of conducting sensitivity analysis in this context. Both reports also

highlight a need for accessible and relevant methods of sensitivity analysis, where the changes in

assumptions are directly applicable to the primary analysis.

Controlled imputation procedures have been proposed for contextually relevant sensitivity analysis

of longitudinal trials with protocol deviation [7, 13]. Trialists are currently using such methods (see

for example [14] and [15]) and their use is gaining in popularity [16]. However there is uncertainty

about the appropriate variance estimator for the treatment estimator when these techniques are

used [17]. We expand upon this issue in detail in the following chapter. The overall goal of this

research is to evaluate these procedures and establish the required variance estimator within the

context of sensitivity analysis.

We begin this first chapter with an outline of the well established typology for the mechanisms

generating missing data and discuss appropriate methods for inference for each class of missingness.

We then outline frameworks to investigate the sensitivity of inferences to missing data in the trial

setting and introduce the controlled imputation techniques that form the main focus of this thesis.
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1.2 Inference when data are missing

First we introduce notation and terminology that is used throughout this and subsequent chapters.

Consider a typical longitudinal RCT and let Yij denote the planned response measurement for each

patient i at time j where i = 1, ..., N and j = 1, ..., J . For each patient, planned measurements

can be grouped into the vector Yi = (Yi1, ...YiJ). Independence between patients is assumed.

The distribution of the measurement data, for patient i, is defined f(Yi|Xi,θ) where θ is the key

vector-parameter of interest and Xi is the vector of observed covariates, including treatment, for

patient i.

Missing data are defined as values that are not available but would be meaningful for analysis if

collected [12]. When data that we intend to collect are missing, the reasons for the data being

missing play a key role in informing the analysis. That is, the selection or missing data mechanism

operating. We denote the response indicator as Rij = 1 if Yij is observed, or Rij = 0 if Yij

is unobserved. For each patient, missing data indicators can be grouped into the vector Ri =

(Ri1, ..., RiJ). The missing data mechanism is formally defined as the vector process generating Ri

and is modelled as the conditional distribution, f(Ri|Yi,Xi,φ) where φ is the vector-parameter

for the missing data mechanism. θ and φ are separate/distinct.

In the presence of dropout the measurement process and missingness mechanism must be considered

simultaneously as, f(Yi,Ri|Xi,θ,φ). Yi can be partitioned into two sub-vectors, Yio and Yim,

where Yio is the sub-vector of observed responses (Rij = 1) and Yim is the sub-vector of missing

responses (Rij = 0).

If the measurements can be ordered in such a way that, for a patient i, Yij missing implies Yij∗

is missing for all j∗ > j and responses 1, ..., j − 1 are observed then the missing data pattern is

referred to as monotone. Dropout in a longitudinal trial is an example of a monotone missingness

pattern. Alternatively the missing data pattern is non-monotone.

1.2.1 Mechanisms

There are three broad classes of missing data mechanisms originally introduced by Rubin in 1976

[18], that predicate the statistical handling of missing data: Missing Completely At Random

(MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR).

A missingness process is said to be MCAR where the probability of data being missing does

not depend on the unobserved values of the data themselves, or the observed values of other

recorded variables. More broadly, missingness is unrelated to the inference we wish to draw. That

is, f(Ri|Yi,Xi,φ) = f(Ri|φ). Consider a trial comparing vitamin D supplementation against

placebo for progression of knee osteoarthritis. The primary outcome measure is Joint Space Width

(JSW) in the knee measured from an X-ray at baseline, one year and three years. If the X-ray

machine is not working on a particular day, all patients who attend the clinic that day for follow-up

will not be able to obtain an X-ray and their JSW measure will consequently be missing for that

visit. In this case the data will be MCAR as the missingness does not depend on the underlying

JSW measurement or any patient characteristics, it is unrelated to the inferences we wish to draw.
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In the less strict case of MAR, the probability of data being missing does not depend on the

unobserved values of the data themselves, given observed information. That is the missingness

depends on observed values marginally, but given the observed data is conditionally independent

of the missing data, i.e. f(Ri|Yi,Xi,φ) = f(Ri|Yio,Xi,φ). In our example missingness at three

years will be MAR if given the observed data (baseline, one year JSW and treatment group) the

unseen response provides no additional information on the reason for non-response.

If in addition to MAR (or MCAR) the parameters of the missingness process (φ) and those of the

data measurement process (θ) are distinct, such that the joint parameter space is the product of

the two separate parameter spaces, then the missing data mechanism is termed ignorable.

The missingness process is termed MNAR where even given the observed data the probability of

data being missing does depend on the unobserved values of the data themselves. That is,

f(Ri|Yi,Xi,φ) 6= f(Ri|Yio,Xi,φ). This is also often referred to as non-ignorable missingness.

In our example missingness at three years will be MNAR if a patient experiences a sudden decline

in JSW sometime after the year 1 visit e.g. due to a fall, which greatly impacts their mobility and

renders them unable to attend the planned follow-up. The observed data up to time 1 does not

capture the reason for non-response.

There is no test that will definitively reveal which missingness mechanism is operating within any

dataset. Although MCAR can be distinguished from MAR, e.g. via a logistic regression of observed

outcomes and/or covariates on missingness, the data at hand cannot confirm which mechanism is

operating. Since we can never know what the missing values are, we cannot distinguish between

MNAR and both MAR and MCAR. Thus sensitivity analysis, in the sense introduced above,

plays an important role. In collaboration with the trial team/regulators we must pick the most

plausible assumption for the data at hand, conduct primary analysis under that assumption and

then perform sensitivity analysis under alternative plausible missing data assumptions to assess

the robustness of the results.

1.2.2 Methods for inference

The process of making assumptions is separate, but informs the statistical methods we use for

parameter estimation and inference with missing data. When taking a frequentist approach to

inference, two issues arise when we use missing data techniques. These are finding unbiased

parameter estimates (that home in on the true value as the sample size increases i.e. are consistent)

and providing variance estimators or standard errors that are reliable for inferential purposes.

Within this thesis the sampling variance of an estimator is defined as the variance of the estimator

of interest over repeated sampling from the population, i.e. the variance in a long-run sense over

an assumed data mechanism. The estimated variance is the variance of the estimator of interest

computed using the analysis model from the single sample of data available to the analyst. When

the assumptions of the analysts modelling procedure correspond with the assumptions for the data

generating mechanism the sampling variance and estimated variance will asymptotically agree.

The most basic, but common, Complete Case (CC) analysis approach ignores patients with missing

data and includes only completely observed cases in the analysis i.e. patients who complete the

trial. This approach provides unbiased results under MCAR and MAR provided the analysis
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model includes treatment and all covariates associated with the missingness. For example when

the analysis consists of a linear regression model relating an outcome Y to one or more predictors

X, if missingness occurs in the outcome Y or one or more of the predictors X (or both Y and X),

fitting the regression model to the completers will be unbiased provided the probability of being

a completer is independent of Y conditional on X. But due to a reduced sample size results will

be less precise than when full data is observed, an inevitable consequence of missing data. We can

immediately see this in a longitudinal trial setting where the unadjusted mean of the outcomes at

follow-up time point J , YiJ , over all patients is of interest, where we assume YiJ ∼ N(µJ , σ
2). If

YiJ is observed for all N cases, the estimated variance of the mean in expectation will be σ2/N

where σ2 denotes the variance of YiJ . But if YiJ is observed for only a subset of no cases, the

estimated variance of the expected mean from CC analysis will be σ2/no in expectation. The CC

estimated variance is greater by a factor of N/no. So while CC analysis has its advantages in

simplicity, it can be an inefficient method especially if there are post-randomisation pre-primary

end point data.

Under ignorability (union of MAR and MCAR) a variety of options, including Likelihood-based

methods or Bayesian inference, which are based on all the observed data, will provide valid inference

for the parameter of interest (θ). To see this, we show that the contribution for patient i to the

observed data likelihood is obtained by integrating out the missing data as follows,

f(Yio,Ri|Xi,θ,φ) =

∫
f(Yio,Yim|Xi,θ)f(Ri|Yio,Yim,φ)dYim.

Since under MAR, f(Ri|Yio,Yim,φ) = f(Ri|Yio,φ), the observed likelihood contribution for

patient i can be re-written as,

f(Yio,Ri|Xi,θ,φ) =

∫
f(Yio,Yim|Xi,θ)f(Ri|Yio,φ)dYim,

which simplifies to,

f(Yio,Ri|Xi,θ,φ) = f(Ri|Yio,φ)

∫
f(Yio,Yim|Xi,θ)dYim

= f(Ri|Yio,φ)f(Yio|Xi,θ).

Thus under ignorabilty and further when θ and φ are disjoint, valid inferences can be obtained from

the observed likelihood only. For example, the analysis of a longitudinal trial under ignorability

can be appropriately conducted using a mixed model for repeated measures (MMRM).

Alternatively, single imputation methods may be employed for inference, which entail substituting a

reasonable ‘guess’ for the missing data and analysing the data as if it were complete. Many different

imputation methods can be employed from simply substituting the mean of the observed data on

the same variable (unconditional mean imputation) to conditional mean imputation, which uses
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a regression model based on observed variables to predict missing values. Consider a longitudinal

trial with J = 2 time points with planned measurements Yi1 and Yi2, where Yi1 is observed for all

patients however Yi2 is only partially observed. Conditional mean imputation is achieved by first

regressing Yi2 on Yi1 in the observed data. The regression parameter estimates are then used to

predict Yi2 for patients missing this outcome as follows,

Yi2 = β̂0 + β̂1Yi1. (1.1)

Simple imputation methods however suffer from a key downfall. In analysing the imputed data

as if it were real data, standard errors are underestimated and test statistics overestimated. In

the case of unconditional mean imputation the estimated variance of the observed and imputed

values is s2
o(no − 1)/(N − 1), where s2

o is the estimated variance from the no observed cases. Since

s2
o is a consistent estimator for the true sampling variance under MCAR, the estimated variance

underestimates the variance by a factor of (no − 1)/(N − 1).

An improvement upon both simple imputation methods is stochastic regression imputation which

incorporates an element of randomness into the process. In our example, instead of imputing from

(1.1) we impute from,

Yi2 = β̂0 + β̂1Yi1 + ei,

where ei
iid∼ N(0, σ̂2.1) and σ̂2.1 is the residual variance from the regression of observed Yi2 on Yi1.

However, this still does not fully take into account the uncertainty of imputation. The imputed

values are given the same status as observed values and we haven’t acknowledged the uncertainty

in estimating β0, β1 and σ2.1.

Multiple Imputation (MI) [19] is a popular technique that addresses this downfall by repeating

the imputation more than once to provide a valid estimate of the standard error of the parameter

estimates. Random draws are taken using an appropriate Bayesian predictive distribution and the

same analysis that would be undertaken had the data been complete is fitted to each imputed

dataset. A set of combination rules are used to provide one overall estimate and an estimate of

precision. The variability across the multiple imputations is used to adjust the standard error

appropriately upwards to reflect the imputation uncertainty. The MI procedure is very flexible

and outlined in full detail in Section 1.4.

An alternative approach to analysis under MAR weights the observed data by the probability of

non-response. The probability of non-response can be estimated as a function of the observed

responses e.g. via a logistic regression of the response indicator on observed covariates and pre-

dictors of response. The (analysis) model relating the response to the explanatory variables and

covariates is then fit using weights which are based on the observed probability of non-response.

This is referred to as inverse probability weighting (IPW) [20, 21].

Under MNAR, because the missingness mechanism cannot be factored out from the joint distribu-

21



tion of the data and the missingness mechanism, inference must be based on the joint distribution.

That is we must postulate a model for both the missingness and data. Fitting MNAR models, as

described in [4] and [8], can be more computationally demanding. But since we will never know

the exact missing data mechanism, MNAR modelling —which we expand upon below— most often

cannot be ruled out.

1.3 Sensitivity analysis with missing data

In any incomplete data setting there is not one analysis that can be considered definitive. Since

unverifiable assumptions are required for the analysis, we should postulate the most plausible

missingness mechanism and perform a valid analysis for that class of missingness for the trials

primary analysis. Subsequently we should postulate alternative plausible missingness mechanisms

and perform valid analysis as sensitivity analysis.

1.3.1 Frameworks for sensitivity analysis

In the clinical trial setting it is recommended that ignorable (MAR) likelihood based methods

be used for primary analysis [6, 7, 8]. The strong MCAR assumption is unlikely to be valid,

particularly in longitudinal settings when data are missing due to uncontrollable events, since these

events are often associated with the study variables. Analysis under MCAR is additionally very

inefficient in this setting. Although not verifiable, MAR can often be considered the most plausible

assumption. Further analysis under MAR, unlike MNAR, does not require the modelling of the

dropout procedure. Any analysis under a postulated MNAR assumption is heavily assumption led

thus cannot be considered definitive. Since we can never be sure of the model for the dropout

MAR is a natural starting point. This is the approach we adopt to primary analysis throughout

this thesis.

Since analysis under the assumption of MAR generally forms the primary analysis, procedures for

sensitivity analysis focus on approaches to MNAR analysis where the measurement process and

missingness mechanism must be jointly modelled. As highlighted by Little and Rubin [22] the joint

distribution can be factorised in two different ways,

f (Ri|Yi,Xi,φ) f(Yi|Xi,θ) = f (Yi,Ri|Xi,θ,φ) = f (Yi|Ri,Xi,θ) f(Ri|Xi,φ)

Either a model for the missing data mechanism, Ri given the measurement data, with a marginal

model for the data Yi as expressed on the left can be specified or the conditional distributions

of the response data given the fully observed data on the right with a marginal model for the

missingness process can be given. The former factorisation is referred to as the selection model,

whilst the latter is termed the pattern mixture model.

There are many ways in which either type of model can then be fully specified, however many

specifications will be practically implausible. In the RCT setting we desire a principled accessible
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framework for approaching this. A commonly advocated way to perform sensitivity analysis is

to explore departures from the joint distribution implied by MAR [4, 7]. MAR provides an un-

ambiguous starting point for MNAR exploration. In Section 1.2 the selection form of the MAR

assumption was presented. The MAR assumption can be expressed in the pattern mixture form

as, f(Yi,Xi|Ri,θ) = f(Yim|Yio,Xi,θ). This reveals MAR implies the conditional distributions

of later response data given earlier response data are equal for patients who do and do not com-

plete. Molenberghs et al. [23] show that this relationship holds quite generally and each selection

model form implies a pattern mixture form. It naturally follows that for sensitivity analysis one

can model departures from MAR either via the selection process or within the different patterns

of data.

1.3.2 Sensitivity analysis using selection models

Selection models consist of a multivariate model for the response and a model for the reason

for missing data. The precise form for each model depends on the specific trial context. The two

models are fitted together. The models can be fitted together in a frequentist framework [7, 24, 25].

Numerical integration over the missing data is required. Since numerical convergence problems

may be experienced model fitting may alternatively be done using MCMC methods, which can be

implemented in winBUGS [7, 26].

Diggle and Kenward [24] describe a general selection modelling approach for dropout in longitudinal

studies consisting of a multivariate linear model for the underlying measurement response, with a

logistic discrete hazard model for the selection process. These two models are then fitted together.

Consider a simple trial with a single follow-up Yi for each patient i. The probability of dropout is

related to the possibly unobserved outcome and any baseline covariates, Xi, via a linear logistic

link,

logitPr (Ri) = α+ Xi + δYi.

The log odds of response depend on the baseline covariates Xi and the response Yi for non-zero

values of δ. Departures from MAR are consequently expressed in terms of differences in the (log)

odds of response per unit change in the response, conditional on all the other variables in the model

—as δ—.

For sensitivity analysis, a series of selection models can be run using plausible values of δ to inves-

tigate how results change under alternative credible MNAR missing data assumptions. Plausible

values should be identified through discussions with clinical experts on the trial team. When δ = 0,

this model represents analysis under MAR. Thus larger δ represent greater departures from MAR.

Specifying differences in the odds of response per unit change in the unobserved outcome given

patients characteristics (δ), may however not seem natural or even be understandable to all clinical

colleagues. Therefore such models may not be immediately usable. For longitudinal trials we will

need to incorporate additional sensitivity analysis parameters (δ) in the model for the selection

process to reflect dependence of missingness on previously measured outcomes, which can also
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differ by treatment arm and patients characteristics, further complicating the interpretation.

1.3.3 Sensitivity analysis using pattern mixture models

For sensitivity analysis to be useful, methods and assumptions must be transparent and inter-

pretable to all involved in the trial, not just the experienced statistician. If the assumptions are

not understood then the results cannot be. A pattern mixture model requires specification of the

joint distribution of the partially and fully observed response variables Yi, for each pattern of

missing data, which implies the conditional distribution of partially observed response data given

the observed response data within each pattern as follows,

f (Yi|Ri,Xi,θ) f(Ri|Xi,φ) = f (Yim|Yio,Ri,Xi,θ) f (Yio|Ri,Xi,θ) f(Ri|Xi,φ).

In the pattern mixture framework, the assumptions correspond directly to what is observed i.e.

the data in the different subgroups of the trial having different distributions. So the pattern

mixture approach is a convenient way to proceed. By construction pattern mixture models are

underidentified [27]. The observed data does not reveal the distribution of the unobserved data.

Various identifying restrictions have been discussed in the literature which can be used for analysis.

These include so-called complete case missing values (CCMV) and neighbouring case missing values

(NCMV), where identification is done based on either the completers’ or neighbours’ pattern [27].

Identification via setting all distributions that condition on the same set of observations as equal,

known as available case missing values (ACMV), was also proposed in [27]. ACMV corresponds to

MAR in the pattern mixture framework [23] .

The distribution of the observed data i.e. f(Y|X,R = 1) provides a natural starting point to

explore departures from. MNAR assumptions can then be framed in a transparent manner, with

explicit description of how data for completers differs to incompleters. We therefore argue, in line

with White et al. [28] and Daniels and Hogan [4] that the pattern mixture approach lends itself to

more accessible assumptions. Scharfstein et al. [29] argue that parameters governing dropout in a

selection model framework are more plausibly determined a-priori. However we agree with White

et al. [28] who dispute the relevance of this point if non-informative priors are incorporated into

the pattern mixture framework.

As discussed by Daniels and Hogan [4], starting with specification of the conditional data distribu-

tion implied by MAR, one can readily perform sensitivity analysis exploring departures from MAR

by utilising location and scale shifts to create shifted distributions for the unobserved measures.

Trial statisticians should seek clinical experts opinion on the degree of departure from MAR, e.g.

for a single continuous outcome the anticipated likely mean difference in outcome between com-

pleters and non-completers. This can be directly incorporated into the analysis using a pattern

mixture approach.

For example, discussions with clinical colleagues can help to identify by how much on average

the unobserved deviators outcomes are expected to be worse or better than those observed. In a

depression trial it could be specified that the observed rate of decline in a depression score for those
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that deviate is for example, 20%, 50% or 75% worse than that observed for the patients in the

trial. Alternatively that the outcome is worse than for those observed in the trial at a specific time

point by 0.25SD, 0.5SD etc. It is important that the assessed assumptions are clinically plausible

and established a-priori from clinical experts in the field. But too often this is done post-hoc and

using a single departure from MAR. A variety of departures from MAR should be considered to

test sensitivity.

An alternative implementation considers a variety of differences of means (for continuous data)

between the observed and missing cases and seeks the point at which the study conclusion is

changed. This can be done by sequentially scaling or adding increments to the MAR mean. It is

then important to assess the plausibility of the mean which results in changes. This is referred to

as a tipping point analysis in Yan (2009) [30].

After specifying and fitting the separate response models for each pattern, they are weighted by

their respective probabilities to obtain inference. As discussed, not all response models will be

identifiable from the data. By setting inestimable parameters of deviators data distributions to be

functions of those observed, the sensitivity of results to departures from MAR can be determined.

Either a Maximum Likelihood (ML) or full Bayesian approach can be used to fit pattern mixture

models.

White et al. [1] describe how approximate formula for the treatment effect and its standard error

can also be employed for inference. For a continuous outcome this entails using a mean score

approach, following analysis of the complete data. For example, consider a simple two arm trial

setting with a single continuous outcome, denoted Yiz for patient i in arm z where z = a, r (active

arm or reference/control arm). One potential pattern mixture model supposes that those observed

in the active arm follow a distribution with mean µa and variance σ2 whilst those unobserved in

the active arm have mean µa + δa and variance σ2
M . For the reference/control arm, those observed

come from a distribution with mean µr and variance σ2. The unobserved in the reference arm

have mean µr + δr and variance σ2
M . That is,

Yiz|Ri = 1 ∼ (µz, σ
2)

Yiz|Ri = 0 ∼ (µz + δz, σ
2
M )

Under this model, where πz = Pr(Riz = 0), the average treatment effect is,

∆ = [(1− πa)µa + πa (µa + δa)]− [(1− πr)µr + πr (µr + δr)] = (µa − µr) + (πaδa − πrδr) .

As noted by White et al. [1] (µa − µr) can be estimated as the average treatment effect amongst

the completers using the usual complete case analysis. Therefore in this simple setting the δz-

adjusted treatment effect can be derived in a straight forward manner using the complete case

estimate of (µa − µr) and sample estimates of πa and πr. White et al. [1] also present formula for

establishing the associated variance estimator under the assumption of normality. With additional

covariates and longitudinal follow-up the formula are however not so straight forward.
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A detailed example which illustrates how to implement a full Bayesian approach to pattern mixture

modelling using winBUGS is also presented in [1]. In Section 1.5 we will see how MI provides an

alternative solution for pattern mixture modelling, which avoids the need to fit the models directly,

which can often be quite complex and require sophisticated programing. Essentially the MI analysis

approximates a full Bayesian approach. MI can be a more accessible practical approach for busy

trialists.

1.3.4 Alternative approaches to sensitivity analysis

An alternative approach to sensitivity analysis entails adding ancillary variables to the analysis of

the outcome of interest using MAR methods [31, 12, 32]. That is variables beyond the trials design

factors, in order to make the MAR assumption more plausible. This approach seeks to improve

the performance of the missing data procedure.

Ancillary variables can be added to likelihood based analyses, included mixed models for repeated

measures (MMRM), as covariates or as an additional response. Alternatively, if analysis is con-

ducted via MI, they can be simply added to the imputation model. Taking this approach the

ancillary variables are not also required in the analysis model.

A different approach to sensitivity analysis is to assume that the missing values can be represented

by a bad outcome. This is most natural for a categorical or binary outcome. For example in

an eye injury trial where the outcome is defined as clinical improvement in visual acuity in the

study eye (yes/no), sensitivity analysis can explore the impact of the unobserved having no clinical

improvement. After completing the missing values the analysis method that would have been used

in the absence of missing data can be used.

With a continuous outcome this is not so straight forward. Methods which assign an order to

observed an unobserved outcomes have been proposed. The unobserved can be assigned appropri-

ately poor scores to place them in the required order. Statistical methods based on ranks can then

be employed [33, 34].

An approach known as Last Observation Carried Forward (LOCF) sets patients missing values

equal to their last observed measurement, enabling complete data methods to then be used. Al-

though it is commonly used as a sensitivity analysis [9], we do not advocate this approach (or other

single imputation methods). Many researchers, including [7, 35, 36, 37, 38], have highlighted the

undesirable consequences of performing such an analysis. In brief, LOCF results in downwardly

biased variance estimators, since it is a single imputation method which treats imputed observa-

tion as if they were observed. The resulting treatment estimator may be conservative or liberal

depending on the context. Further it does not always represent a meaningful or realistic treatment

comparison. LOCF has been shown to result in biased treatment estimators under MAR and

MCAR [39]. Only under very specific and unrealistic assumptions is LOCF valid [38].

More recently doubly robust methods which utilise IPW have been proposed. Doubly robust

estimators require three models: (i) the (analysis) model relating the response to the explanatory

variables and covariates of interest, (ii) a model for the probability of response and (iii) a joint

model of the mean of partially observed variables given fully observed variables. If either model (ii)

or model (iii) are incorrect then doubly robust estimators have the property that the estimators
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in model (i) are still consistent. This is because the expectation of the estimating equation is still

zero. We do not expand further on this approach here but refer the reader to Chapters 9 and 22

in [8] and [21] for a more in-depth discussion of this approach.

In this thesis we are interested in sensitivity analysis via the pattern-mixture modelling approach

(discussed in Subsection 1.3.3), since we believe assumptions are framed in the most accessible

form. Additionally, as we outline in following sections, MI provides a direct means for analysis

without the need for complex model fitting or formula.

1.3.5 Estimands

Up to now we have focussed discussion on sensitivity analysis, in the general context of assessing

the impact of alternative missing data assumptions (i.e. MCAR, MAR or MNAR) on our model

based inferences. We now introduce the notion of the estimand of interest. That is the precise

definition of what is to be estimated to address the scientific question under study; for who, what

and when the trial’s intervention effect is estimated for. Therefore, what we wish to explore if

inference is sensitive to.

The primary analysis of a trial should be designed to addresses the estimand of interest. When

framing sensitivity analysis in the clinical trial setting we must also carefully consider the precise

estimand of interest. This is because the choice made on how to model the missing data, i.e. how

to model departures from MAR can influence what is actually being estimated. The missing data

model should be consistent with what is being estimated.

Carpenter, Roger and Kenward introduce two main types of estimand it is important to distinguish

between [13]. First, a de-jure estimand estimates the treatment effect had all patients adhered to

the protocol as planned. Thus seeks to answer an efficacy question as to whether the treatment

works under the best case scenario. It is closely linked to a per protocol or on-treatment analysis.

If we assume missing data are MAR and patients withdraw when they violate the protocol, a

likelihood based analysis naturally addresses the de-jure question, but is not the only way to do

so. Thus the de-jure estimand links with MAR. This is in contrast to a de-facto estimand which

estimates the treatment effect seen in practice, that is the effect of the randomised treatment

regardless of protocol adherence. A de-facto estimand may be more appropriate where we seek to

estimate the holistic effect of intending to treat a group of patients. It is linked to an Intention-To-

Treat (ITT) analysis, which includes all patients as randomised, regardless of the actual treatment

taken [40].

As discussed by Carpenter, Roger and Kenward these two terms (de-jure and de-facto) correspond

to estimands as defined by the National Research Council [12]. Further they put the focus on the

assumption about post-deviation behaviour and provide a common language to talk about missing

data and compliance issues in safety and efficacy.

With missing data, in both cases the primary analysis must be consistent with the estimand of

interest, in that it must make the most plausible appropriate assumptions about treatment use for

cases with missing data following deviation or dropout. Sensitivity analysis to address the impact

of alternative missing data assumptions for the primary estimand should then be conducted. In

many settings it will be important to explore how robust inferences are to assumptions about
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differing post-deviation treatment behaviour in sensitivity analysis. Departures from the MAR

assumption can also be formulated in terms of proposed or known treatment group differences.

The pattern mixture modelling route lends itself nicely to exploring reference based departures

from MAR.

In such cases the underlying missing data assumptions might change the definition of the estimand,

to ensure that the robustness of the primary estimand is assessed. This provides a more complete

picture of the treatment under investigation. Hence the need to have accessible assumptions to

discuss with experts. Often a de-jure estimand will be of primary interest. Clearly defined alter-

native/secondary estimands, exploring departures from the de-jure/MAR linked analysis provide

additional contextually relevant insights. So a generic overall framework for sensitivity analysis in

the clinical trial setting, as presented by Kenward in [13] is,

1. A clear definition of the estimand of interest.

2. The assumptions under which the primary analysis is valid for this estimand.

3. A nomenclature for practically relevant and accessible departures from these assumptions.

4. Valid methods for assessing sensitivity to these assumptions.

Where the specific approach taken in step (3) will be guided by the estimands of interest, dictated

by the specific setting at hand.

Regardless of whether de-jure or de-facto estimands are of interest, the discussed pattern mixture

modelling route provides a useful path for assessing relevant assumptions in step (3). Whilst

methods for fitting such MNAR pattern mixture models can often be computationally awkward,

MI can be employed to avoid the need of fitting MNAR models directly. We now outline in full

the flexible MI procedure, prior to discussing and demonstrating its flexibility for fitting MNAR

pattern mixture models.

1.4 Multiple imputation

MI was originally introduced by Rubin in 1987 as a Bayesian procedure with good frequentist

properties to handle non-response in sample surveys [19]. The method and its applications to

RCTs have since been studied extensively by many including Rubin (1996) [41], Little (1996) [42],

Schafer (1997) [43] and Carpenter and Kenward in (2008) [7] and (2013) [44]. The standard MI

procedure imputes missing data for a patient as a Bayesian draw from the conditional distribution

of their missing data given that observed under the assumption of ignorability (i.e. MAR). This is

done in a way that takes full account of the uncertainty created by the missing data, k = 1, ...,K

times to create K completed datasets.

That is, as described by Carpenter and Kenward [44] for k = 1, ...,K imputations, for patient i

data is imputed from the conditional distribution of their missing data given observed,
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[Yim|Yio,η] , (1.2)

where η denotes the current draw of the parameters of this distribution from the appropriate

Bayesian posterior distribution, unique to the present draw k. For each imputation required we

must first obtain η prior to drawing Yim. The posterior of η is,

[η|Yo] ∝ [Yo|η] [η] . (1.3)

For each imputation required we obtain a draw of η from (1.3). Then for the missing data,

[Ym,η|Yo] = [Ym|Yo,η] [η|Yo] , (1.4)

where [η|Yo] is as specified in (1.3). After drawing Ym we can then calculate θ (Ym,Yo) which

estimates the posterior distribution of our key parameter of interest θ. The analysis model of

interest, that would have been used on the full dataset had there been no missing data is used at

this stage. A new draw of η is obtained from (1.3) and Ym from (1.4) for as many imputations

required. Thus we end up obtaining K draws of η, for K draws of missing data to estimate θ, K

times. The procedure is appealing since standard complete data methods can be employed post-

imputation for inference following the imputation of the missing data. We refer to the analysis

model of interest as the substantive model. We make clear here that the substantive model is quite

separate to the model used to create the imputations (1.2), which we refer to as the imputation

model. MI is a two stage process.

Results across imputed datasets are combined using Rubin’s rules [19] to give a single MI estimator

for inferential results. For a scalar treatment effect, estimated in each imputed dataset as θk with

estimated variance σ2
k, results are combined as follows,

θ̂MI =
1

K

K∑
k=1

θ̂k, (1.5)

with estimated variance,

V̂MI = Ŵ +

(
1 +

1

K

)
B̂, (1.6)

where,
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Ŵ =
1

K

K∑
k=1

σ̂2
k, (1.7)

B̂ =
1

K − 1

K∑
k=1

(
θ̂k − θ̂MI

)2

. (1.8)

The first component of the estimated variance V̂MI (1.6), denoted Ŵ , averages the estimated

variance from each imputed dataset, and is consequently referred to as the within variance. Ŵ

essentially estimates the variance of θ̂ that we see if there is no missing data. Thus Rubin’s variance

formula depends on the (asymptotic) normality of θ̂ if there is no missing data. The second part,

denoted as B̂, quantifies the variance of the imputation estimates over the K imputations and

is referred to as the between imputation variance. We see it is the variability across imputed

datasets, which is provided by the random components in the imputation model (the imputation

model parameter draws, and the subsequent missing data draws unique to each imputation) that is

used to adjust the variance estimate upwards. As discussed in Chapter 2 of [44] the term
(
1 + 1

K

)
adjusts for the fact we are conditioning on a finite number of imputations, K.

As detailed extensively by Rubin [19], (1.6) gives us a valid estimate of variance, both for Bayesian

and frequentist inference (under conditions we expand upon below). One that is bounded below

by the variance of the treatment estimate had the missing data been observed and naturally

encapsulates the loss of information. Intuitively it makes sense that by incorporating the between

imputation variance this variance estimate reflects the uncertainty due to the missing data, which

the single imputation methods described earlier did not.

For θ̂MI a scalar, to test the hypothesis that θ̂MI equals some null value, that is θ̂MI = θ̂0 we refer

the below test statistic,

θ̂MI − θ̂0√
V̂MI

,

to a t-distribution with v degress of freedom, where v comes from a standard Satterthwaite-type

approximation [19],

v = (K − 1)

[
1 +

Ŵ(
1 + 1

K

)
B̂

]2

.

Rubin shows this is more appropriate than referring to the standard normal distribution with a

finite number of imputations, since there will be uncertainty in the variance parameter. Confidence

intervals for θ̂MI can then be constructed using the appropriate quantiles of the t-distribution.

As Rubin’s rules condition on the number of imputations, estimates, confidence intervals and infer-
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ences will be sensible with two or more imputations. However, with a small number of imputations

results will be imprecise. Rubin [19] showed that the relative variance i.e. the efficiency of an esti-

mate using only K imputations compared to an infinite number is approximately (1 + λ
K ), where

λ is the fraction of missing information. As discussed in [7], 5–10 imputations is sufficient to get

a reasonably accurate answer for most applications. For more critical inferences, as in this thesis,

50 or more imputations are recommended [44]. The error in estimating p-values will be smaller

with larger numbers of imputations. The between imputation variance will also be more precisely

estimated with greater K [6, 45].

1.4.1 Justification for Rubin’s rules

Here, we justify Rubin’s rules from the Bayesian perspective by presenting the details given in

Carpenter and Kenward, p. 46–47 [44]. We have observed data Yo and missing data Ym. We now

suppress η —the parameters of the distribution of the observed data— interest lies in θ, the key

parameters of the substantive model of interest. The missing data and parameters of interest have

the following joint posterior distribution,

f(Ym,θ|Yo).

Using standard conditional probability rules this can be partitioned as follows,

f(Ym,θ|Yo) = f(Ym|Yo)f(θ|Ym,Yo).

The missing data can now be separated out, and the marginal posterior for our parameters of

interest can be expressed as,

f(θ|Yo) = EYm|Yo
{f(θ|Ym,Yo)} .

By using the rules of iterated expectations, the posterior mean and variance for θ are then given

by,

E(θ|Yo) = EYm|Yo

{
Eθ(θ|Ym,Yo)

}
, (1.9)

VAR(θ|Yo) = EYm|Yo

{
VARθ(θ|Ym,Yo)

}
+ VARYm|Yo

{
Eθ(θ|Ym,Yo)

}
. (1.10)

These required quantities can be approximated empirically using imputed data for Ym|Yo. If we
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let Ym,k denote the kth draw of the missing data (for k = 1, ...K) from the Bayesian predictive

distribution f(Ym|Yo) then (1.9) can be approximated as follows,

E(θ|Yo) ≈
1

K

K∑
k=1

Eθ(θ|Ym,k,Yo).

That is by the average of the estimates of θ from each imputed dataset. For scalar θ this gives

(1.5). Equation (1.10) can be approximated as,

VAR(θ|Yo) ≈
1

K

K∑
k=1

VARθ(θ|Ym,k,Yo)

+
1

K − 1

K∑
k=1

(
Eθ(θ|Ym,k,Yo)−

1

K

K∑
k=1

Eθ(θ|Ym,k,Yo)

)2

.

This is the average of the estimates of the variance of θ from each imputed dataset combined with

the variance of θ across imputed datasets. For large K these quantities are valid approximations

for the mean and variance of the posterior distribution. As discussed in [44], p. 50, for small K

there is increased uncertainty in the estimated mean of θ. To account for this we must therefore

adjust the second term on the right hand side (RHS) —the between imputation variance— by a

factor of 1
K , which for a scalar θ gives us (1.6).

Despite being Bayesian in nature, provided some subtle conditions hold, Rubin’s combination rules

also provide valid frequentist inference, in that they provide an estimator which is asymptotically

unbiased and an accompanying estimate of variance which can be used to construct confidence

intervals with coverage equal to that specified. Rubin outlines the requirements for this as follows,

which we elaborate on below.

1. Draw imputations following the Bayesian paradigm as repetitions from a Bayesian poste-

rior distribution of the missing values under the chosen models for non-response and data,

or an approximation to this posterior distribution that incorporates appropriate between-

imputation variability.

2. Choose models of nonresponse appropriate for the posited response mechanism.

3. Choose models for the data that are appropriate for the complete-data statistics likely to be

used - if the model for the data is correct, then the model is appropriate for all complete-data

statistics.

[19]

Conditions 1 and 2 essentially refer to what Rubin termed proper imputation [19]. They require

sampling from a properly defined posterior distribution under a correct model for the non-response

and data. That is the imputation models assumptions about the missing data mechanism are

32



correct, such that our estimate of the treatment effect and its variance, averaged over each imputed

dataset, θ̂MI and Ŵ are unbiased for the complete-data treatment effect and estimated variance,

were these to exist. The estimated variance of our treatment effect across the imputations, B̂,

should be approximately unbiased for the sampling variance of θ̂MI over repeated imputations.

We note that conditions 1–3 also imply that the substantive model is correctly specified for valid

frequentist inference.

These conditions incorporate the requirement for congeniality between the imputation model and

analysis model which, subsequent to the development of MI, was described and explored by Meng

[46]. Assume there exists a full Bayesian procedure for obtaining the posterior of θ from the joint

data distribution and this is partitioned accordingly and also used to impute the missing data. If

the resulting imputation distribution is the same as the predictive distribution obtained by the

imputation model then the imputation model and substantive model are said to be congenial.

That is, the imputation model is derivable from the joint data distribution. We interpret this as

the imputation and analysis model must have the same content and structure and so be formed

around the same assumptions to be congenial.

When the substantive model and imputation model do not satisfy this condition, they are described

as uncongenial [46]. The validity of Rubin’s variance estimator is not guaranteed when this is the

case. Uncongeniality may occur when the imputation model contains more variables or structure

than the substantive model. When the imputation model contains a congenial imputation model

nested within it, then the imputation model is said to be richer than the substantive model.

Alternatively the imputation model may lack variables or structure present in the substantive

model, then the imputation model is said to be poorer.

When the imputation model is richer and the additional information built into the imputation

model is correct Meng [46] and Rubin [41] show that the θ̂MI will be more efficient. Or as termed

by Rubin “superefficient” [41]. As the imputer has used additional superior knowledge the sampling

variance of the MI estimate will be reduced. Since additional predictors are used in the imputation

that are not incorporated into the analysis, Rubin’s variance formula over estimates the sampling

variability. Confidence intervals will therefore have greater than nominal coverage. Carpenter and

Kenward [47] note that this overestimation is typically not large. Thus practically this tends not

to be too much of a disadvantage.

However when additional structure included in the imputation model is not correct, this can have

more unwelcome consequences. The imputations will be biased, therefore the results of the analysis

will be. Biased estimation in analysis will also occur when the imputation model is poorer than the

analysis model. For example if an important predictor of the outcome or an important predictor

of missingness is not included in the imputation model. As Schafer clearly outlines [43] the main

danger from uncongeneiality comes when the imputer makes poorly grounded assumptions, that

the analyst does not. It is therefore recommended for the imputation of a variable Y to include

all variables that are related to the missingness of Y in the imputation model along with variables

related to Y.

33



1.4.2 Obtaining imputations from a Bayesian posterior

It is the repeated Bayesian draws of the parameters in the imputation model (η) from (1.3) and

the subsequent missing data draws (Ym) from (1.4) that allow us to take into account all of the

uncertainty when estimating θ. The construction and fitting of an appropriate imputation model

(1.2) to obtain these draws (or approximate Bayesian draws) given the observed data is therefore

key.

With missingness on a single variable, under MAR, this is fairly straightforward to achieve using

regression modelling and uninformative priors. We recall that under MAR (or MCAR) regression

models where only the response variable has missingness give valid parameter estimates. To illus-

trate this we consider a simple example, adapted from [44] p. 41–42, where Yi1 and Yi2 denote

two normally distributed continuous variables collected from a sample of i = 1, ..., N patients. The

target of our analysis, that is the substantive model is the marginal mean of Yi2. However a total

of nd values of Yi2 are missing, assumed to be MAR conditional on Yi1; N − nd = no values of Yi2

are observed. In this example, using the above notation, η = β0, β1, σ2.1. To impute the missing

values we follow the below procedure,

1. Fit the linear regression model of Yi2 on Yi1 to the observed data using least squares, Yi2 =

β0 + β1Yi1 + ei, ei
iid∼ N(0, σ2.1) to obtain estimates of β̂0, β̂1, σ̂2.1.

2. Obtain draws for β̃0, β̃1, σ̃2.1 from the Bayesian posterior, using uninformative priors by first

drawing, σ̃2.1 = (no−2)σ̂2.1

X where X ∼ χ2
no−2, then drawing, β̃0, β̃1 from,

(
β0

β1

)
∼ N


(
β̂0

β̂1

)
; σ̃2.1

[
no

∑no
i=1 Yi1∑no

i=1 Yi1
∑no
i=1 Y

2
i1

]−1
 .

3. Missing data can then be obtained by drawing from Yi2,k = β̃0+β̃1Yi1+ẽi,k, ẽi,k ∼ N(0, σ̃2.1).

4. Repeat steps 2 and 3, K times.

We fit our substantive model of interest, the marginal mean of Yi2, which can be derived from

the data model (i.e. is congenial) to each imputed dataset and obtain appropriate inference with

Rubin’s rules (1.5)-(1.6).

With missingness on a single non-continuous variable an alternative logistic, multinomial or ordinal

regression model may be used in step 1, depending on the specific type of the variable with

missingness. With multivariate data subject to non-response, particularly with a combination of

different types of variables, e.g. continuous and nominal, or a non-monotone missingness pattern

forming an imputation model is more complex.

Two main routes have been established. In the first a joint multivariate normal (MVN) model is

assumed for all variables. Various methods can then be employed to make Bayesian draws from this

joint distribution. With a monotone missingness pattern the joint likelihood of the observed data

can be readily factorised into independent likelihood functions for each partially observed variable.

For example, for three variables Yi1, Yi2, Yi3, with a monotone missingness pattern whereby Yi1
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is more observed than Yi2, which is more observed than Yi3 their joint distribution, omitting

parameterisation, can be expressed as,

f(Yi1, Yi2, Yi3) = f(Yi3|Yi1, Yi2)× f(Yi2|Yi1)× f(Yi1). (1.11)

Under MAR we can validly estimate the parameters of each conditional distribution separately

using the observed data. Thus imputing from each of the conditionals in turn gives a valid imputa-

tion from the joint distribution. Approximate draws from a Bayesian posterior for the parameters

of each conditional, followed by draws of missing data can be made sequentially employing the

technique outlined above [22, 44]. At each time point previously imputed variables are included in

the imputation model.

If the missingness is not monotone then one or more of the distributions in (1.11) will not be validly

separately estimated. A Markov Chain Monte Carlo (MCMC) sampler, such as the Gibbs sampler

will be required to simulate random draws from the appropriate posterior [43]. MCMC samplers

employ Markov chains to generate draws of random variables from complex distributions.

In our context of interest the Gibbs sampler can be utilised to obtain repeated draws of the

parameters in the joint imputation model (η), and the missing data (Y). The missing data are

essentially regarded as parameters and they are updated in turn. The MCMC sampler is initiated

with starting values for the parameters, denoted η0, which can be computed as the mean and

covariances from the observed data. These are used to obtain starting value for the missing

data from the appropriate conditional distribution, denoted Y0. Then in turn the Gibbs sampler

proceeds to draw each parameter from (1.3) and the missing data from (1.4), conditional on each

other and the observed data.

The sampler is run for a sufficient time, known as the ‘burn-in’, to allow the chain to reach its

stationary distribution. The current draw of the missing data at the end of the ‘burn-in’ forms the

first imputed dataset with the observed data. The sampler then proceeds with further draws since

imputations need to be independent, until another draw of the missing data is taken, together with

the observed data to form the second imputed dataset for analysis. The updating of the chain, the

‘burn-between,’ and collection of the imputed data is repeated for as many imputations as required.

Carpenter and Kenward [44] recommend a ‘burn-in’ of 1000 iterations with a ‘burn-between’ of

500. The Gibbs sampler is outlined in more detail in [44] p. 306–309 and [43] p. 68–70.

In some circumstances, when the observed data likelihood is difficult to compute, the Expectation

Maximisation (EM) algorithm may be used to calculate ML estimates to initiate the sampler [43].

Briefly, the EM algorithm is an iterative algorithm for maximising log-likelihoods, consisting of

two steps; the E step and the M step [48]. The E step computes the conditional expectation of the

missing data, given the observed data and current estimated parameters, i.e. E(Yim|Yio,Xi,η).

These expectations are substituted for the missing data. The M step then maximises the expected

complete data log-likelihood estimation, as if there were no missing data. These two steps are

repeated until convergence is achieved. The initial parameter vector for the EM algorithm can be

found from a complete case analysis or any simple method of imputation.

As a brief aside, we note that since the EM algorithm is likelihood based it can in fact be used as a
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method of inference in itself under the assumption of ignorabilty for missing data. However unlike

MI, it does not yield standard errors of the estimates, additional steps are required as detailed in

[22], p. 190–199.

Regardless of whether the missing data pattern is monotone or not, using a joint MVN model for

MI does necessitate strong assumptions. If data are skewed, one can consider transformation to

approximate normality, then impute, then transform back. Schafer [43] however reports simulations

that show imputations drawn under the MVN model are robust to moderate skewness. Additionally

Schafer reports the normal model to be a useful tool for imputing ordinal and binary data. Nominal

variables can be included in the model with a series of binary dummy variables. Thus, in practice

the normal model is useful even when the data are not normal.

Alternatively the second route to obtaining imputations, which has been termed Multiple Imputa-

tion by Chained Equations (MICE), or Fully Conditional Specification (FCS), involves a series of

univariate conditional models, formed as a regression of each partially observed variable, given all

other variables [49]. Each variable can then be imputed in turn in the fashion of a Gibbs sampler.

The MCMC method is used to complete the imputation process (drawing parameters and missing

data sequentially from their conditional distributions).

Strong assumptions of normality are avoided using this approach. Each univariate imputation

model is dependent on the characteristics of the variable being imputed. For example, binary

variables can be modelled using a logistic regression and continuous variables modelled using

linear regression. It is hoped that the collection of the univariate models converge or correspond

to a genuine joint distribution, but there is no guarantee this will be the case. As discussed by

Azur et al. [50], MICE lacks the theoretical justification of other imputation approaches. Other

research however indicates this is not a principal issue and shows how in practice the method

performs well and provides unbiased estimates with appropriate coverage [49, 51]. Recently Zhu

and Raghunathan [52] investigated the convergence properties in detail and developed conditions

for convergence.

MI is very flexible. Although originally developed in the ignorability (i.e. MAR/MCAR) context,

MI can be used in sensitivity analysis to explore departures from MAR, i.e. under MNAR, avoiding

the need to fit MNAR models directly. Of course, this does require us to re-evaluate the properties

of the usual MI estimators, as we will see in this thesis. In the next section we explore alternative

implementations of MI which are particularly relevant for sensitivity analysis of clinical trials.

1.5 Relevant accessible sensitivity analysis via multiple

imputation

Rubin first recognised the value of MI for sensitivity analysis in 1987 [19]. The imputation model

and substantive model are separate and do not have to be the same. They can reflect different

structures, thus departures from a MAR response mechanism can be readily accommodated by

altering the imputation model and maintaining the substantive model of interest.

Standard MI, under the assumption of MAR, utilises the conditional distribution of partially

observed response data given the observed response data for imputation across all missing data
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patterns (1.2). Through altering the values of the parameters of this distribution by missingness

pattern we can explore departures from MAR via MI. This approach directly corresponds with the

pattern-mixture modelling sensitivity analysis approach outlined in Section 1.3. MI provides an

accessible route to explore the impact of such models, without the need for complex model fitting

or specification of formula.

For MNAR imputation, for each deviating individual with missing data pattern mi we require the

distribution of their missing outcomes, given their observed data denoted as,

[Ymi|Yoi,mi,ηm] . (1.12)

ηm are the parameters of this distribution, whose values differ across missingness patterns, and

whose values we first have to estimate, before we can impute missing data from (1.12) using the

standard MI procedure. That is for each missing data pattern m, we create K complete datasets

by taking a draw of ηm from the appropriate Bayesian posterior distribution, [ηm|Yo]. We then

draw the missing data from (1.12) using the current draw of ηm given Yo. Each imputed data

set is analysed using the substantive model of interest. Results are then combined using Rubin’s

combination rules.

When exploring departures from MAR for each missing data pattern m we choose a form for

constructing ηm from η, the parameters of our imputation model under MAR. This is based

on a pre-specified rule that reflects a specific assumption. This enables us to assess the impact

of alternative missing data assumptions on the trial results in a principled manner, with MAR

providing a natural starting point to MNAR exploration.

For longitudinal trials with a number of different missing data patterns, as with all pattern-mixture

approaches —and indeed less interpretable selection modelling approaches— this can require the

specification of many parameters. Two alternative techniques for forming ηm are now discussed

for longitudinal clinical trials with continuous outcomes. We will see that explicit parameter

specification is however not always required.

1.5.1 The ‘δ-method’

Quite often it may be of interest to explore the impact of deviators having a poorer response post-

deviation than those observed. In other cases it might even be of interest to assess the impact of a

better response post-deviation. The ‘δ-method’ provides a useful accessible route to explore such

pertinent departures from MAR via MI in the clinical trial setting.

For each missing data pattern m, the parameters of the conditional data distribution used for

imputation, ηm, are constructed using the parameters of the MAR implied conditional distribution,

η, and numerical information which ideally would be elicited from experts. That is a consensus

is reached on the extent to which the parameters of the distribution of missing data are likely to

differ from the observed. The postulated difference for pattern m is referred to as δ. η is then

edited accordingly (by δ) to obtain ηm.
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Carpenter and Kenward [7, 44] outline how this pattern mixture MI approach can be used to

accommodate an anticipated change in rate of improvement or decline post-deviation from that

predicted under MAR in a longitudinal trial setting. They introduce a chronic asthma randomised

placebo controlled trial. The primary outcome was FEV1 (Forced Expiratory Volume in 1 second,

measured in Litres) recorded at baseline, 2, 4, 8 and 12 weeks: however a number of patients

failed to complete the study in both arms. Further those who dropped out were observed to have a

poorer response over times they were observed. Initially K imputations are generated under MAR.

For each deviating patient, the first MAR imputed FEV1 observation is reduced by a postulated

amount, δ, which itself has an appropriate prior distribution. The second MAR imputed FEV1

observation is reduced by twice this postulated amount, 2δ, and so on. This reflects a worsening

response over time.

Figure 1.1 illustrates the ‘δ-method’ using data from a similar asthma trial with FEV1 outcome

data (described in full detail in Section 1.7.2). The first MAR imputed FEV1 observation is reduced

by δ = 0.05, and the second by 2δ = 0.10.

The δ-adjusted imputed datasets are analysed using the substantive model of interest. Results are

combined across imputed datasets using Rubin’s rules. In the present example this provides the

treatment estimate where active deviators are assumed to have a change of δ = 0.05 in the rate of

decline post-deviation, i.e. a gradual worsening in response over time. Full technical details of the

‘δ-method’ are presented in Chapter 5.

δ 2δ
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Placebo MAR means Active MAR means Observed active data

Imputed active data − MAR Imputed active data − δ

Figure 1.1: Illustration of the ‘δ-method’

Such formal pre-specification of quantitative sensitivity parameters that is required in the regulated

trial environment is however notoriously difficult [28]. Even more so when additional baseline

covariates are included in the analysis. A different approach can be employed, whereby adjustments

for δ of an increasing size can be applied until the conclusions of the trial change. Afterward the

plausibility of the assumption underlying the analysis when conclusions change can be evaluated,

that is the particular size of δ representing the difference in outcome between the observed and

non-observed. This is the tipping point analysis approach [30]. However this approach is open to

criticism since it often relies on post-hoc justification.
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1.5.2 Reference based sensitivity analysis

Another option is to make statements about post-deviation data, by reference to other groups of

individuals in the trial (typically individuals in different treatment arms). For each missing data

pattern we can construct the parameters for our missing data, ηm, using within trial information.

The ‘δ-method’ can require pre-specification of a large number of sensitivity parameters especially

when the data are longitudinal and the number of missing data patterns (m) is large. Reference

based approaches avoid the need for explicit parameter specification, which can often be hard to

justify. In-study data is used to make qualitative rather than quantitative missing data assumptions

based on plausible clinical scenarios.

An early version of reference based MI was originally introduced by Little and Yau in 1996 [42].

Little and Yau used sequential regression and MI to impute for patients as actually treated af-

ter dropout. Building on the ideas of Little and Yau, more recently in 2013, Carpenter, Roger

and Kenward [13] formalised the approach and presented a novel collection of MI procedures for

reference based sensitivity analysis of trials with protocol deviation.

The technique revolves around a fitted MAR model to the observed data for each treatment arm.

The parameters of the required conditional distributions used to impute data, ηm, are pieced

together with qualitative reference to trial arms, using the MAR parameters. For continuous

data the mean vector and variance-covariance matrix of the required conditional distributions are

constructed using the information from other groups in the trial. The primary analysis model,

based on a comparison of the randomised groups, is retained in the sensitivity analysis, in keeping

with the ITT principle. This allows for the assessment of the impact of alternative sampling

behaviour only on the primary analysis as originally planned.

For example, future statistical behaviour of deviating patients on an active treatment can be

assumed to be similar to that of observed control subjects. In the chronic asthma trial comparing

an active treatment against placebo, it may be of interest to assess the robustness of inferences

from the primary analysis if we assume deviating patients in the active arm stopped taking their

treatment post-deviation i.e. the active patients jump to placebo behaviour. Under this de-facto

assumption the unobserved data for deviating active patients can be imputed from the appropriate

conditional distribution formed using the mean and covariance matrix from the active arm at

pre-deviation times and the mean and covariance matrix from the placebo arm for post-deviation

times. Figure 1.2 is a schematic illustration of so-called jump to reference (J2R) imputation for

the same active deviator observed in Figure 1.1. In comparison to imputation under MAR (Figure

1.1), we see the imputed data is much lower under the J2R assumption.

A full description of the reference based MI procedures, with technical details, is given in Chapter

2.

The above example illustrates how MI provides an accessible route for open and interpretable

sensitivity analysis that all trial personnel can understand. No direct estimation of a MNAR

model is required. Both de-jure and de-facto estimands can be assessed via this route. It is

a useful tool to assess both the sensitivity of the primary estimand to alternative missing data

assumptions and the sensitivity of the primary estimand to alternative target estimands.
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Figure 1.2: Illustration of jump to reference imputation

1.6 Two classes of sensitivity analysis

We have described sensitivity analysis using the definition provided by Daniels and Hogan as

an “assessment of sensitivity of model-based inferences to assumptions that cannot be verified or

checked within the data” [4]. For the purpose of the following chapters it is important to make clear

a final distinction between two different types of sensitivity analysis that fall under this working

definition when we are assessing the impact of alternative missing data assumptions [13].

First where the original primary analysis is retained, despite it being inconsistent with the pos-

tulated data mechanism. For example reference based MI, retains analysis as randomised, despite

alternative assumptions about treatment taken being made in the imputation model. This type

of sensitivity analysis seeks to assess exclusively the impact of alternative assumptions about the

missing data on the original intended analysis. This is a practical approach which is desirable since

it shows how inference from the primary analysis varies over different assumptions.

Second where the analysis model is chosen to satisfy the postulated data mechanism in the par-

ticular sensitivity analysis. In this case the entire analysis is built upon the postulated MNAR

assumption. Complex MNAR modelling will be required. This type of sensitivity analysis seeks

to address the impact of reconstructing the entire analysis under alternative assumptions.

MI is useful for both classes of sensitivity analysis. For the later type the imputation model

and analysis model are congenial. For the former category, which includes the reference based

procedures, the imputation model and analysis model are not necessarily congenial. There will

be no full likelihood analysis that corresponds to this analysis. This distinction is important as

described by Kenward in [16] “Failure to appreciate this difference can lead to mistaken attempts

to assess the properties of one approach through the behaviour of the other.” We are interested

in evaluating the first category of sensitivity analysis in this thesis where the imputation model

and substantive uncongenial. Because whilst the imputation model and substantive analysis model

are separate and can be different, as alluded to in Section 1.4 Rubin’s rules are not necessarily

guaranteed to hold when the imputation and substantive model have different structures, i.e. they

are uncongenial. We now introduce two case studies that serve as motivation and illustration for

the theory developed in this thesis.
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1.7 Motivating datasets

1.7.1 Peer review study

The quality of peer review is a controversial topic. Schroter et al. [53] performed a single blind

randomised controlled trial among reviewers for the BMJ (British Medical Journal) to investigate

the effects of face-to-face training or a self-taught training package on the quality of peer review.

As written in the original trial publication [53] and by others [44], each recruited reviewer was sent

a baseline article to review (paper 1). Upon return of the review as randomised reviewers then (i)

participated in a full day of face-to-face training or (ii) received a self-taught training package in

the post or (iii) received no training. Two to three months later participants who completed their

first review were sent a further article to review (paper 2).

Participants were asked to review articles based on previously published articles with nine major

and five minor errors introduced. Original author names, titles and location were changed. The

quality of review was measured by the mean (from two raters) of the validated Review Quality

Instrument (RQI). The RQI contains eight items, each scored from one to five. Analysis of the trial

indicated that the only significant difference was in the quality of the review of paper 2 between

those in the self-taught group and no training group. In this thesis we therefore focus our attention

on the self-taught group versus no training group comparison for paper 2. The response in our

analysis is the mean of the first seven items of the RQI, averaged over the two raters. This ranged

between 1 and 5, where 5 indicates a perfect score.

Table 1.1 summarises the observed review quality data at baseline for those who completed the

second review and those who did not. We can see that a larger proportion of participants in the

self-taught group failed to return paper 2, further these participants had a notable lower baseline

review quality score, i.e. a disproportionate number of poor reviewers in the self-taught group failed

to review paper 2.

No training Self-taught
n mean SD n mean SD

Returned paper 2 162 2.65 0.81 120 2.80 0.62

Did not return paper 2 11 3.02 0.50 46 2.55 0.75

Table 1.1: Peer review study: quality of peer review at baseline for those who did and did not
complete the second review

The original trial analysis was conducted under the MAR assumption. It is important to assess how

robustness the conclusions of the primary analysis are to the MAR assumption. Using reference

based MI we are able to establish what the results would like if we assume the reviewers who

did return paper 2 behaved like those in the no training group. In Chapter 6 we will apply the

reference based methodology evaluated in this thesis to establish the impact this assumption has

on inference from the primary analysis. We will compare and contrast this result with sensitivity

analysis via the ‘δ-method,’ which has previously been conducted by Carpenter and Kenward [44].

We replicate and extend their δ-adjusted analysis.
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1.7.2 Asthma trial

Data from a randomised double-blind placebo controlled trial of budesonide delivered by Tur-

buhaler for the treatment of adult patients with chronic asthma [54] provides further motivation

for the evaluation of the reference based MI sensitivity analysis procedures.

As described in [13, 54, 55], a total of 473 individuals were randomised to either a daily dose of

200, 400, 800 or 1600µg of budesonide or placebo. The primary outcome—measured at weeks 0

(baseline), 2, 4, 8 and 12—was forced expiratory volume in one second (FEV1), recorded in Litres

(L), however a number of individuals deviated and did not complete the full 12-week follow-up.

In this thesis we focus our attention on the placebo and lowest dose active arms (200µg budesonide).

The observed mean profiles by treatment arm and the various missing data patterns are shown in

Figure 1.3. Only 38 of the 92 individuals in the placebo arm (41%) and 72 of the 91 individuals

in the active arm (79%) remained in the trial at 12 weeks; 3 individuals (2 placebo and 1 active)

had interim missing data.
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Figure 1.3: Observed Mean FEV1 by treatment arm and deviation profile against time. Solid
lines join observed means at each time point for the various deviation (withdrawal) patterns;
dashed lines join observed means of the three individuals with interim missing data. Numbers

indicate the counts of individuals with the associated profile.

The primary analysis of the original trial consisted of a linear regression of the 12 week FEV1

outcome on-treatment group, adjusted for baseline FEV1, using data from the 110 individuals

measured at week 12. This gave a treatment effect of 0.239 L, p = 0.017. Carpenter and Kenward

[44] undertook an improved analysis under MAR including all the observed data which gave a

treatment effect of 0.335 L, p = 0.002. Reference based sensitivity analysis allows us to assess the

robustness of the results to various plausible post-deviation assumptions.

In Chapter 6 we illustrate the relevance and accessible nature of the evaluated reference based

sensitivity analysis methodology with the newly developed Stata command “mimix” [56]. The

asthma trial dataset also informs the simulation studies in Chapters 2 to 5. In the remainder of

this chapter we outline the focus of the evaluations in this thesis and the structure of the following

chapters.
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1.8 Thesis focus

The main focus of this PhD is the statistical performance of the reference based MI procedures

introduced by Carpenter, Roger and Kenward [13] for sensitivity analysis of longitudinal RCTs

with continuous outcome data. Specifically, the evaluation of Rubin’s variance estimator is of key

interest. In the reference based sensitivity analysis settings the imputation model and substantive

analysis model make different assumptions. Rubin’s rules are not necessarily guaranteed to hold

when this is the case.

As outlined in Subsection 1.5.2 reference based MI is a promising technique for relevant accessible

methods of sensitivity analysis. As highlighted in [11] and [12] there is a need for such methods.

We confirm that the reference based MI estimator is unbiased and define a criteria for the variance

of reference based (MI) estimators. We show how Rubin’s variance estimator relates to this, to

fully establish the methodology.

In Chapter 2 we provide technical details on the reference based MI procedure for a continuous

outcome, along with elaborated reasoning for evaluating the variance estimate in this setting. This

includes a motivating simulation study. Chapter 3 introduces an information anchoring principle

for variance estimation in sensitivity analysis of the type proposed. We then investigate the usual

MI variance estimate in the baseline and single follow-up trial setting. This leads to a general

proposition and proof on the properties of the usual MI variance estimate in this context and more

complex longitudinal trial settings in Chapter 4. We then evaluate the usual MI variance estimate

for the ‘δ-method’ in Chapter 5 for comparison. Software for the proposed method of reference

based sensitivity analysis is introduced in Chapter 6 and applied to the two case studies. This

chapter is based on a Stata journal article, authored by myself and my supervisors [55]. We finish

with a summary of the results in Chapter 7 and discuss other proposals.
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Chapter 2

Reference based sensitivity

analysis via multiple imputation

In Chapter 1 relevant accessible approaches to sensitivity analysis for trials with missing data

via MI were introduced. Through modifying the MAR imputation distribution the impact of

alternative missing data assumptions on the primary analysis model can be assessed. Following

Carpenter, Roger and Kenward [13] we argued that one principled way of doing this, particularly

relevant for the RCT setting, is through reference to other trial arms.

In this chapter we first outline in full detail the novel collection of MI procedures proposed by

Carpenter, Roger and Kenward [13] in Section 2.1, so there is a clear foundation for the theory

that follows. These procedures construct post-deviation data distributions for imputation with

qualitative reference to relevant trial arms, for referenced based sensitivity analysis of a continuous

outcome. We then lay the motivation for exploring the properties of these procedures, with specific

focus on the variance estimate in this setting in Section 2.2. A general principle for variance

estimation in this setting is proposed. In Section 2.3 the results of an initial investigatory simulation

study are presented and discussed.

2.1 Reference based multiple imputation

Carpenter, Roger and Kenward [13] present a novel collection of MI procedures that can be utilised

for performing reference based sensitivity analysis of trials with missing data. As outlined in [13]

the primary analysis is conducted under the MAR assumption, where the conditional distributions

of later response data given earlier response data are equal for patients who do and do not deviate.

Sensitivity is explored by retaining the primary analysis model and fitting this to data imputed

under a range of clinically relevant assumptions.

The sensitivity analysis builds out from the fitted MAR model, and the parameters of the re-

quired conditional distributions used to impute MNAR data are pieced together with qualitative

reference to trial arms. For continuous data the mean vector and variance-covariance matrix of
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the required conditional distributions are constructed with reference to other arms. The pieced

together conditional distributions are then used to multiply impute K completed datasets.

The generic reference based MI algorithm of Carpenter, Roger and Kenward, for longitudinal trials

with a continuous outcome, as described in [13] is now presented with minor modifications.

1. Separately for each treatment arm take all the observed data, and assuming MAR, fit a

MVN distribution with an unstructured mean (i.e. a separate mean for each of the baseline

and post-randomisation observation times) and variance-covariance matrix using a Bayesian

approach with an improper prior for the mean and an uninformative Jeffrey’s prior for the

covariance matrix.

2. Draw a mean vector and covariance matrix from the posterior distribution for each treatment

arm. Specifically we use the Markov-Chain Monte Carlo (MCMC) method to draw from the

appropriate Bayesian posterior, with a sufficient burn-in and update the chain sufficiently in-

between to ensure subsequent draws are independent, given the observed data. The sampler

can be initiated using the EM algorithm.

3. Use the draws in step 2 to form the joint distribution of each deviating individual’s observed

and missing outcome data as required. This can be done under a range of assumptions, in

order to explore the robustness of inference about the treatment effects. The options pre-

sented by Carpenter, Roger and Kenward in [13] that each translate to a relevant assumption

are described in Table 2.1.

4. Construct the conditional distribution of missing (post-deviation) given observed outcome

data for each individual who deviated, using their joint distribution formed in step 3. Sample

missing post-deviation data from the conditional distributions to create a completed dataset.

5. Repeat steps 2–4 K times, resulting in K imputed datasets.

Example

To illustrate how the generic algorithm enables reference based sensitivity analysis we consider

the chronic asthma RCT introduced in Section 1.7.2. This was a double-blind RCT comparing

the active treatment budesonide against placebo. The primary outcome was FEV1 recorded at

baseline (time 0), 2, 4, 8 and 12 weeks. Using the approach described above, initially we fit a MVN

distribution, assuming MAR, with an unstructured mean and variance-covariance matrix separately

by treatment arm. We then obtain a draw of the MAR mean vector and variance-covariance matrix

by treatment arm via the MCMC method from the fitted Bayesian posterior. We denote the current

draw of the active group means and variance-covariance by µa = [µa0, µa2, µa4, µa8, µa12] and Σa.

The current draw of the placebo group means and variance-covariance from the posterior is denoted

by µp = [µp0, µp2, µp4, µp8, µp12] and Σp. Figure 2.1 illustrates the current draw of the mean MAR

vector by treatment arm for the asthma data. The three solid triangles in Figure 2.1 represent

observations from a randomly selected active patient who deviated some time following week 4 and

henceforth has unobserved data.

Under the primary MAR assumption the joint distribution of a deviating patient’s observed and
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missing data is formed as MVN with mean and variance-covariance matrix from their randomised

arm. For the randomly selected active deviator in our example, their joint distribution is formed as

MVN with mean µa and covariance matrix Σa as shown in Figure 2.2. For each deviating patient

we then construct the conditional distribution the joint MAR distribution implies for their missing

data, given their observed data. A random sample is drawn from each of the formed conditional

distributions to complete the deviating patient’s measurements for imputation K. The process of

drawing a mean vector and covariance matrix (for each treatment arm) and forming the required

conditional distribution for subsequent imputation is repeated for as many imputations required.

The primary analysis model which would have been used in the absence of any missing data is

fitted to each imputed data set and results combined using Rubin’s rules for inference.
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Figure 2.1: MAR mean profiles in the asthma RCT
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Figure 2.2: Drawing imputed data under MAR in the asthma RCT

In sensitivity analysis we could alternatively assume deviating patients stopped taking their ran-

domised treatment following deviation and subsequently behaved like a member of an alternative

reference group. This assumption is referred to as jump to reference (J2R). The joint distribu-

tion of a deviating patient’s observed and missing data is formed as MVN with mean from the

patient’s randomised arm for pre-deviation measurements. For post-deviation measurements the

mean matches that observed for a reference group. The variance-covariance matrix matches that

observed for the randomised arm for pre-deviation measurements and the reference group for the

post-deviation and conditional components of post- given pre-deviation measurements. For any de-

viators already in the reference group this means their missing data will be imputed under MAR.

The proposed mean for the deviating active patient in our example, denoted by µi, where the
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reference group is the placebo arm, is µi = [µa0, µa2, µa4, µp8, µp12] as shown in Figure 1.2.

The proposed variance-covariance matrix,

ΣJ2R =

[
Σ11 Σ12

Σ21 Σ22

]

as shown by Carpenter, Roger and Kenward [13], is constructed by first partitioning the posterior

draws of the active and placebo variance-covariance matrices by their pre- and post-deviation

measurements. Below Σa and Σp have been accordingly partitioned; 1 indexes pre-deviation

measurements (baseline, week 2 and week 4) and 2 indexed post-deviation measurements (week 8

and 12).

Σa =

[
a11 a12

a21 a22

]
,

Σp =

[
p11 p12

p21 p22

]
.

Then as shown by Carpenter, Roger and Kenward in [13], Σ11 = a11, Σ12 = Σ21 = p21p
−1
11 a11

and Σ22 = p22 − p21p
−1
11 (p11 − a11) p−1

11 p12.

It may be more appropriate to assume deviating patients maintain a benefit from their randomised

treatment and post-deviation their mean profile tracks the mean profile in a reference group. This

assumption is referred to as copy increments in reference (CIR). The joint distribution of a deviating

patient’s observed and missing data is formed as MVN with mean from the patient’s randomised

active arm for pre-deviation measurements. For post deviation measurements the mean follows

the increments observed for a specified reference group. The variance-covariance matrix matches

that observed for the randomised arm for pre-deviation measurements and the reference group for

the post-deviation and conditional components of post- given pre-deviation measurements. That

is ΣCIR = ΣJ2R. For any deviators already in the reference group this means, like J2R, their

missing data will be imputed under MAR. For our selected active deviator under CIR, where the

reference group is the placebo arm, µi = [µa0, µa2, µa4, µa4 + (µp8 − µp4), µa4 + (µp12 − µp4)], as

illustrated in Figure 2.3.

Or we could assume deviating patients never started taking their randomised treatment and hence

behaved like a patient from a specified reference group for the duration of the trial. This is the copy

reference (CR) assumption. The joint distribution of a deviating patient’s observed and missing

data is formed as MVN with mean and variance-covariance from a specified reference group for all

measurements. Deviators already in the reference group will again be imputed under MAR. For

our deviating active patient, as shown in Figure 2.4, µi = [µp0, µp2, µp4, µp8, µp12] under CR where

the reference group is the placebo arm. The variance-covariance matrix is, ΣCR = Σp.
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Finally we could assume that post-deviation, deviating patients response’s stay, on average, con-

stant at the value of the mean for their randomised arm at their last pre-deviation measurement.

The joint distribution of a deviating patient’s observed and missing data is formed as MVN with

mean from the patients randomised active arm for pre-deviation measurements. For post-deviation

measurements the mean remains constant, at the level of the patients randomised arm, for their

last pre-deviation measurement. The variance-covariance matrix matches their randomised arm.

Figure 2.5 illustrates this assumption, which is referred to as last mean carried forward (LMCF),

for our active deviator. That is µi = [µa0, µa2, µa4, µa4, µa4]. The variance-covariance matrix

matches the active arm, i.e. ΣLMCF = Σa.

Under all the alternative reference based assumptions, after forming the required joint distribution

for each deviator we construct the appropriate conditional distributions the pieced together MVN

distributions imply for the missing data, given the observed data. A random sample is drawn

from the formed conditional distributions to complete the deviating patients’ measurements for

imputation K. Subsequently a new draw of the MAR mean vector and variance-covariance matrix

by treatment arm via the MCMC method from the fitted Bayesian posterior is made. The formation

of the required distributions and drawing of data is repeated, for the number of imputations

required.
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Figure 2.3: Drawing imputed data under CIR in the asthma RCT
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Figure 2.4: Drawing imputed data under CR in the asthma RCT
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Figure 2.5: Drawing imputed data under LMCF in the asthma RCT

The substantive analysis model using in the primary analysis, which defines treatment group

by randomisation, is retained in the sensitivity analysis and fitted to each imputed dataset in

turn. This is regardless of the treatment regime assumed in imputation, to assess the impact of

alternative sampling behaviour on the primary analysis as originally planned. This follows the

Intention-To-Treat (ITT) principle which states that all randomised patients in a clinical trial

should be included in the analysis according to the group they are randomised, irrespective of

treatment taken [40]. This preserves the randomisation, which ensures treatment groups are alike

in all important aspects and only differ with regards to treatment (any differences will be chance

imbalances). Carpenter et al. [57] term such an analysis a design based analysis and note this also

follows the general principle that analysis should not condition on post-baseline information.

The results are then summarised for inference using Rubin’s rules. For example, often the de-

sign based analysis model is an analysis of covariance in which the final outcome is regressed on

randomised group, adjusted for baseline. Estimates of the treatment effect, θ̂k are obtained with

variance σ̂2
k. Results across imputations can then be combined using Rubin’s rules (1.5) to (1.6)

to estimate the overall treatment effect and its associated variance under the given assumption.

It is important to note that as the design based analysis used in the primary analysis is retained

in the sensitivity analysis, the analysis model is not always consistent with the data generation

model. Under MAR, post-deviation data for deviating patients will be assumed to behave like that

of their original randomisation. Under CR, J2R and CIR post-deviation data is assumed to follow

that of an alternative treatment group. Under LMCF post-deviation data are assumed to follow

the distribution of earlier outcomes in the patient’s randomised arm. Table 2.1 summarises the

options presented by Carpenter, Roger and Kenward [13] for piecing together post-deviation data

distributions.
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Method Description

Randomised-arm
MAR

The joint distribution of patients’ pre- and post-deviation out-
come data is MVN with mean and covariance matrix from their
randomised arm. A natural option for a de-jure estimand.

Jump to reference
(J2R)

The joint distribution is MVN with mean vector from the pa-
tients randomised arm up to their last observation time, post-
deviation the mean vector follows that observed for a refer-
ence group (typically control). The covariance matches the
randomised arm for pre-deviation measurements and the ref-
erence arm for the conditional components of post- given pre-
deviation measurements. Appropriate when we believe the de-
viator ceased their randomised treatment and started treat-
ment similar to that available in one of the other arms (the
reference) post-deviation.

Last mean carried
forward (LMCF)

The joint distribution is MVN with mean vector from the pa-
tients randomised arm up to their last observation time, post-
deviation the means are set equal to the marginal mean for the
patients randomised arm at their last observed time. The co-
variance matrix remains as that for their randomised treatment
arm. Appropriate when we believe the effect of randomised
treatment is maintained on average post-deviation.

Copy increments in
reference (CIR)

The joint distribution is MVN with mean vector from the pa-
tients randomised arm up to their last observed time, post-
deviation the patients mean increments follow those from a
reference arm. The covariance is the same as in J2R. Appro-
priate when we wish to assume that post-deviation the disease
resumes the course observed in the reference arm.

Copy reference
(CR)

The joint distribution of patients’ pre- and post-deviation out-
come data is MVN with mean and covariance matrix from a
reference arm regardless of deviation time. A natural option
when we believe patients followed a different (reference) treat-
ment from their randomised allocation throughout the trial.

Table 2.1: Reference based multiple imputation options
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2.2 Variance estimation

2.2.1 Motivation for evaluation

It is important to asses the statistical properties of the reference based multiple imputation pro-

cedures to ensure their use is fully justified and theoretically sound.

Under the discussed reference based MI options patients are assumed to follow an alternative

treatment regime to their original randomisation and data is generated under that alternative

regime. The design based analysis model however does not incorporate these assumptions and

treats all patients as originally randomised, regardless of deviation. It is important that the design

based analysis model used in the primary analysis is retained in the sensitivity analysis. Because

the impact of alternative assumptions about the missing data on the key parameter of interest in

the primary analysis can then be assessed.

In reference based MI, Rubin’s rules are used to combine results across imputed datasets, but

where there is a mismatch between the data generation and analysis model, it is actually unclear

precisely what Rubin’s variance formula is estimating. As outlined in Section 1.4.1 Rubin’s rules

were developed in a congenial setting. That is, the imputation and analysis model are both

derivable from the joint distribution of the data and missingness. They consequently make the

same assumptions and have the same structure.

But here we are in an uncongenial setting. There is a mismatch between the data generation

and analysis model. They essentially match on the observed data, but the imputation model

has structure that is additional to the substantive model for the unobserved data. For example

under the J2R assumption, alternative treatment group behaviour is assumed post-deviation for

deviators. It is therefore unclear what Rubin’s variance estimator will give us in the reference

based settings.

It is possible we could have more information in the sensitivity analysis than we would have had

if we had actually observed the data. On the other extreme, it is quite possible to be so imprecise

there is much less information in the sensitivity analysis than in the primary analysis (conducted

under MAR), and any conclusion from the primary analysis can be overturned. Pharmaceutical

companies rightly want to be sure that sensitivity analyses are not throwing away expensively

obtained information. Regulators wish to be sure that sensitivity analyses are not injecting infor-

mation unawares. We aim to establish whether Rubin’s treatment estimator and variance estimator

provide us with appropriate inference in the reference based settings.

In order to answer this question we first need to consider what is required of our variance estimate

in the reference based sensitivity analysis setting. Then we can evaluate the proposed use of

Rubin’s rules.
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2.2.2 A lower bound for variance estimation

We now introduce a simple extended example to set out the issues raised and explore our prin-

ciples for variance estimation. Consider a two arm randomised trial of an active versus reference

treatment, denoted by z = a, r, consisting of two patients per arm (i = 1, 2). Each patient has a

single follow-up, Yzi. We assume independence between patients and the data come from normal

distributions with a different mean but the same variance in each arm, Yzi
iid∼ N(µz, σ

2). The

design based analysis is the difference in means between the two randomised arms, with variance

estimated for each arm using the usual sample variance formula, which is consistent with the un-

derlying data generating mechanism. We denote the estimated treatment effect as θ̂, the estimated

variance of the treatment effect by V and the long-run sampling variance by VAR[θ̂].

Suppose all patients are observed without deviation, i.e. on-treatment. We are interested in the

mean treatment group difference, θ̂ = (Ya1 + Ya2)/2 − (Yr1 + Yr2)/2. Under our data generating

mechanism θ̂ has expectation, E
[
θ̂
]

= µa − µr.

The empirical long-run sampling variance of the treatment effect under our assumptions for the

data is,

VAR
[
θ̂
]

=
σ2

2
+
σ2

2
= σ2. (2.1)

If we use the data to estimate this variance, with the usual sample variance formula, we get,

V =
1

2

[∑2
i=1

(
Yai − Ȳa

)2
2− 1

+

∑2
i=1

(
Yri − Ȳr

)2
2− 1

]

=
1

2

[
(Ya1 − Ya2)

2

2
+

(Yr1 − Yr2)
2

2

]
. (2.2)

Under our data generating mechanism, Yzi
iid∼ N(µz, σ

2), the expected value of this variance

estimate (2.2) matches the sampling variance (2.1). This is expected since the assumptions made

in analysis match the data generating assumptions.

In order to illustrate the issues surrounding reference based analysis we now suppose one of the

active arm patients deviates during the trial and their outcome, Ya2, is missing. We consider first

MCAR/MAR given treatment analysis then compare and contrast results with reference based

analysis. The treatment effect of interest under the assumption of MCAR/MAR given treatment

from a full ML analysis becomes, θ̂ = Ya1 − (Yr1 + Yr2)/2. Under our assumed data generating

mechanism this has expectation, E
[
θ̂
]

= µa − µr and a long-run sampling variance,

VAR
[
θ̂
]

= σ2 +
σ2

2
=

3σ2

2
. (2.3)
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We see in this simple example missing half the patients in the active arm directly inflates the

sampling variance of the mean in the active arm by a factor of 2. The sampling variance of the

treatment estimate increases, reflecting the loss of information, which is inevitable with missing

data. Under the assumptions of our data generating mechanism the expected value of the variance

estimator matches this long-run sampling variance. Thus also reflects the loss of information.

The agreement between the sampling variance and variance estimator is again expected since the

assumptions made in the analysis match the data generating assumptions.

When we do not see the data for the deviator in our sensitivity analysis we want to understand how

different post-deviation behaviour effects the conclusions we draw. Suppose the deviating active

patient switches treatment, so their outcome actually follows the same distribution as the patients

in the reference arm, i.e. Ya2
iid∼ N(µr, σ

2). We are still interested in the mean treatment group

difference, where treatment is defined as randomised. This is our design based analysis.

If we were hypothetically able to see the deviator’s outcome, under the assumptions of our updated

data generating mechanism, the mean treatment group difference in expectation would now be

E
[
θ̂
]

= (µa − µr)/2. The empirical long-run sampling variance for the treatment effect would be,

VAR
[
θ̂
]

=
σ2

2
+
σ2

2
= σ2. (2.4)

This is the sum of the variances of the averages of the two observations in each randomised

treatment arm, which each individually have variance σ2. This is equivalent to the empirical

long-run sampling variance for the treatment effect when patients are observed on-treatment (2.1).

However, the expected value of the variance estimate, calculated for the original design based

analysis using the sample variance formula under the assumptions of our updated data generating

mechanism becomes,

E [V ] =
σ2

2
+
σ2

2
+

(µa − µr)2

4
. (2.5)

The estimated variance is slightly higher than the sampling variance when we maintain our orig-

inal design based analysis by randomsied arm and the corresponding variance estimator. This

is because the original design based analysis is no longer fully compatible with the updated data

generating mechanism. (2.5) consequently incorporates an additional component that captures the

heterogeneity within the active arm, a consequence of the deviator’s off-treatment behaviour.

In practice when we do not see the deviator’s outcome and use our observed reference group

data to replace Ya2 by Ỹa2 where E
[
Ỹa2

]
= µr the ML estimate of our treatment estimate is,

θ̂ = (Ya1 + Ỹa2)/2 − (Yr1 + Yr2)/2 which has expectation, E[θ̂] = (µa − µr)/2. This corresponds

to assuming CR behaviour for our deviator, which in this simple scenario is equivalent to J2R and

CIR.
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The long-run sampling variance of this ML treatment estimate is then,

VAR
[
θ̂
]

=
3

4
σ2 +

1

4
VAR

[
Ỹa2

]
− 1

2
COV

[
Ỹa2, Yr1 + Yr2

]
. (2.6)

By contrast, the variance estimator calculated from the design based analysis model using the

sample variance formula is,

V =
1

2

[
(Ya1 − Ỹa2)2

2
+

(Yr1 − Yr2)2

2

]
.

This has expected value,

E[V ] =
1

2

[
σ2 + VAR(Ỹa2) + (µa − µr)2

2
+ σ2

]

=
1

2

[
3σ2

2
+

VAR(Ỹa2) + (µa − µr)2

2

]

=
3σ2

4
+

1

4
VAR(Ỹa2) +

(µa − µr)2

4
. (2.7)

It is immediately clear that the long-run sampling variance of this ML treatment estimate (2.6) does

not correspond with the variance estimator calculated from the primary design based analysis model

(2.7). There are two key observations to note here. Firstly we see the variance estimator calculated

from the primary design based analysis model (2.7) incorporates an additional component that

captures the heterogeneity within the active arm, a consequence of the deviator’s off-treatment

behaviour, (µa − µr)2
/4. This is not surprising given the primary design based analysis model is

inconsistent with the updated data generating mechanism. The sampling variance (2.6) does not

incorporate this component. This is consistent with our earlier inferences when we supposed the

CR deviation data was actually observable. This is a consequence of the partial mismatch between

the assumptions of the analysis model and the updated data generation mechanism.

Moreover, when we use the observed data in the reference arm to create the imputation distribution

for the active patient who copies reference, an unwanted covariance between these two naturally

independent groups is introduced. We see this is included in the long-run sampling variance

of our reference based treatment estimate (2.6) when we maintain our design based analysis by

randomised arm. As we are examining the difference by randomised arm the unwanted covariance

is taken away in the sampling variance. It is unwanted as when the active patient does actually

CR behaviour in practice, they will be independent of all the other patients in the reference arm.

This covariance term does not appear in the long-run sampling variance for the treatment estimate

when the deviator is actually observed to CR (2.1).

As a consequence of borrowing information ‘between’ arms the long-run sampling variance of

54



our treatment estimate (2.6) becomes smaller than when the deviation data is actually observed

under CR behaviour (2.4). Further the long-run sampling variance of our treatment estimate

(2.6) becomes smaller than in our primary analysis (2.3) (assuming (1/4)V AR[Ỹa2] ≤ (3/4)σ2 +

(1/2)COV[Ỹa2, Yr1 + Yr2]), implying we have added information in the sensitivity analysis.

But this cannot be right for sensitivity analyses of the type we have proposed. We cannot have

more information in the sensitivity analysis (2.6) than when the deviation data is actually observed

under reference behaviour (2.5). A loss of information is inevitable with missing data. We must

account for this. Also we must acknowledge the additional heterogeneity among the deviators.

This leads us to our first key principle that generally, the expected value of the design based variance

estimator if we were able to observe all the post-deviation data under the specified scenario (2.5)

provides a natural lower bound for the expectation of the variance estimator in sensitivity analysis.

In sensitivity analysis our estimate of variance (2.5) must be scaled up to account for the missing

information. We are not adding any additional information to the data in sensitivity analysis.

We now introduce a second trial setting with baseline and a single follow-up and apply our principle

to this scenario to further highlight these issues in a more realistic setting. We develop this example

in Chapter 3.

Application of principle

Consider a randomised trial with an active and reference arm (z = a, r), and two repeated mea-

surements per patient i, (Yzi1, Yzi2) where time 1 is a baseline and time 2 a follow-up visit. Data

from the patients in the reference arm are observed without deviation from the following bivariate

normal distribution,

(
Yri1

Yri2

)
∼ N

{(
µ1

µr2

)
;

[
σr11 σr12

σr12 σr22

]}
, i = 1, ..., nr.

In the active arm post-baseline nd of the na patients deviate, no of the na active patients do not

such that no + nd = na. Let D and O define the sets of indices for the patients in the active

arm who do and do not deviate respectively. Data from the active arm comes from the following

bivariate normal distributions,

(
Yai1

Yai2

)
∼ N

{(
µ1

µa2

)
;

[
σa11 σa12

σa12 σa22

]}
, i ∈ O

(
Yai1

Yai2

)
∼ N

{(
µ1

µd2

)
;

[
σd11 σd12

σd12 σd22

]}
, i ∈ D.

The design based analysis is the unadjusted difference in means between the two randomised arms
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at time 2. In Chapter 3 we develop this example for the baseline adjusted treatment effect. We first

suppose that post-deviation data is observed. Interim steps in the below calculations are presented

in Appendix B.1. The unadjusted treatment effect of interest is computed as,

θ̂ =
1

na

(∑
i∈O

Yai2 +
∑
i∈D

Yai2

)
− 1

nr

nr∑
i=1

Yri2. (2.8)

Conditioning on na, nd and nr, the expected treatment effect at visit 2 is,

E
[
θ̂
]

=

(
no
na
µa2 +

nd
na
µd2

)
− µr2.

The variance of the treatment effect is estimated by,

V =
σ̂r22

nr
+
σ̂a22

na
=

1
nr−1

∑nr
i=1

(
Yri2 − Ȳr2

)2
nr

+

1
na−1

∑na
i=1

(
Yai2 − no

na
Ȳa2,o − nd

na
Ȳa2,d

)2

na

which has expected value,

E[V ] =
σr22

nr
+

no
na
σa22 + nd

na
σd22

na
+

nond∆
2

(na − 1)n2
a

(2.9)

where ∆ = µa2 − µd2. This is asymptotically equivalent to,

E[V ] =
σr22

nr
+

no
na
σa22 + nd

na
σd22

na
+
nond∆

2

n3
a

.

Assuming the variance is equal in both arms, σr22 = σd22 = σa22 = σ22 and nr = na = n this is

equivalent to,

E[V ] =
2σ22

n
+

∆2ndno
n3

. (2.10)

As discussed the expected value of the design based variance estimator if we were able to observe

all the post-deviation data under the specified scenario provides a natural lower bound for the

expectation of the variance estimator in sensitivity analysis.
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In the presence of missing post-deviation data we require an estimate of variance for the imputation

treatment effect that is larger this specified lower bound (2.10) in expectation. This is to take into

account the uncertainty created by the loss of information. Loss of efficiency is an inevitable

consequence of missing data.

Conventional long-run sampling variance

Our earlier simple example indicated that the conventional long-run sampling variance of the

treatment effect will be too small in reference based settings, since a negative covariance between

the deviators and reference group is induced. We now explore this further. Suppose post-deviation

data are now missing and our treatment effect (2.8) is estimated by ML assuming CR behaviour for

the deviators. In this setting, where time 1 is a baseline, this is equivalent to assuming J2R or CIR.

The estimated treatment effect and the empirical long-run sampling variance of the treatment effect

obtained using CR MI will be asymptotically equivalent to that of the ML estimator investigated

here. Denoting the ML estimates of µa2 as µ̂a2 and µr2 and µd2 as µ̂r2 the ML estimate of the

treatment effect will be,

θ̂ML =
no
na
µ̂a2 +

nd
na
µ̂r2 − µ̂r2 =

no
na

(µ̂a2 − µ̂r2) .

We see that as nd → na and no → 0 the sampling variance of this estimate will tend to zero. The

sampling variance will indeed be less than the variance computed using the data (2.10), unless

nd = 0 where no = na.

Thus the conventional long-run sampling variance is not what we want for exploring the sensitivity

of the primary analysis estimator as assumptions vary treatment group behaviour. It is too small

partly because we have used the observed reference data twice. We have said the active deviators

mean is 100% correlated with the mean in the reference arm. There is also the partial mismatch

between the data generation mechanism and analysis model. The design based analysis model

does not make the same assumptions as the imputation model.

The conventional long-run sampling variance is therefore misleading. It does not incorporate any

uncertainty. With missing post-deviation data we require an estimate of variance that is larger

than (2.10), to properly reflect the uncertainty associated with the unknown observations.

2.2.3 Rubin’s treatment and variance estimate

Rubin’s treatment estimator is not anticipated to be biased since each imputation only adds random

terms with an expectation of zero to the observed data quantities. The average of the treatment

estimates over the imputed data sets is then computed. The MI and ML reference based estimators

will be equivalent.

We now consider Rubin’s variance estimate in the reference based MI setting. As discussed by Meng

in 1994 [46] Rubin’s variance estimator provides valid inference for the long-run sampling variance
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of the MI estimator when imputations are repeated draws from a Bayesian prediction model, and

the procedure for analysing the multiply imputed datasets is congenial to the imputation model.

In the MAR setting, the primary design based analysis model that categorises patients as ran-

domised is congenial or consistent with the MAR data generating mechanism that imputes data

for patients as randomised. In this case Rubin’s variance formula provides correct frequentist

inference when we are looking for the long-run sampling variance of the MI estimator, which

asymptotically matches the long-run variance of the ML estimator. This would initially imply

Rubin’s variance estimator may not be what is required in the reference based settings, since as

discussed we do not want the long-run sampling variance of the ML estimator; or that of the MI

estimator of the reference based estimand (as the MI and ML reference based estimator will be

equivalent). This violates our principle.

However, consider the J2R setting where post-deviation, patients’ mean response distributions in

the active group follow that observed for a reference group. There is no single Bayesian (imputa-

tion) model whose posterior mean of the treatment effect θ and corresponding posterior variance

will be asymptotically the same as the estimate and variance from the primary analysis procedure

which categorises patients as randomised. In this case and in the other reference based cases there

is a partial mismatch between the data generation model and the analysis model. The imputation

and analysis model are not congenial, violating the frequency validity of Rubin’s rules long-run.

In this particular context where the imputer is assuming more in the imputation model Meng [46]

showed that due to the additional information built into the imputation model, Rubin’s variance

estimator will actually over estimate the long-run sampling variance. We therefore expect that

Rubin’s variance estimator will be larger than long-run sampling variance in the reference based

settings. The key question of interest is, does it give us what we need? Does it fulfil our general

principle?

We summarise the key points so far regarding variance estimation in the reference based cases:

1. The expected value of the design based variance estimator if we observed post-

deviation data provides a lower bound for the expectation of the variance estimator

in sensitivity analysis.

2. An estimate of variance that is above this bound is required to take into account the

loss of information.

3. The conventional long-run variance of the ML estimator is not appropriate in the

reference based settings, it is too small.

4. It is unclear whether Rubin’s MI variance formula provides us with a suitable estimate

of variance.

In the following section we investigate the statistical performance of Rubin’s MI treatment estima-

tor and variance estimator alongside the conventional long-run sampling variance of the reference

based MI/ML treatment estimator in a more complex longitudinal setting through simulation.
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2.3 Exploratory simulation study

A simulation study was conducted to evaluate the performance of Rubin’s MI treatment and

variance estimator for each of the proposed imputation options of Carpenter, Roger and Kenward

[13]; MAR, CR, J2R, CIR and LMCF.

2.3.1 Methods

The data from the asthma trial (see Section 1.7.2) formed the motivating example for generating

the datasets [54]. The primary outcome was forced expiratory volume, FEV1 (in Litres), recorded

at baseline, 2, 4, 8 and 12 weeks, however completion rates at week 12 were only 41% and 79%

in the placebo and active arms respectively. A summary of the observed deviation patterns can

be found in Section 1.7.2. Data (baseline, 2, 4, 8 and 12 week FEV1) were generated using an

underlying MVN distribution with means and covariance matrices obtained in the study as,

µplacebo = [2.06, 1.97, 1.94, 1.91, 1.88] , µactive = [2.05, 2.17, 2.21, 2.22, 2.20]

Σplacebo =


0.35 0.29 0.22 0.26 0.17

0.29 0.45 0.28 0.35 0.41

0.22 0.28 0.33 0.26 0.24

0.26 0.35 0.26 0.45 0.37

0.17 0.41 0.24 0.37 0.54



Σactive =


0.42 0.42 0.43 0.43 0.39

0.42 0.56 0.53 0.55 0.51

0.43 0.53 0.64 0.59 0.54

0.43 0.55 0.59 0.70 0.60

0.39 0.51 0.54 0.60 0.60



One thousand independent complete datasets were generated in total and a sample size of n=180

patients (n=90 placebo, n=90 active) was assumed for all simulations.

A monotone missingness mechanism, dependent on treatment group, baseline FEV1 and the pre-

viously observed outcome was imposed on the FEV1 outcomes at 4, 8 and 12 weeks using logistic

regression models on indicators of missingness. This ensured the missingness was missing at ran-

dom (MAR). Let i = 1, ..., n index patients and j = 0, 1, 2, 3, 4 index the planned observation times

of baseline, 2, 4, 8 and 12 weeks respectively. Let the outcome for each patient i, at time j be

denoted by yij and the response indicator be defined as Rij = 1 if yij is observed without deviation,

otherwise Rij = 0. The model for response, where zi denotes the treatment group assignment for

patient i is denoted,
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{
logit Pr (Rij = 1|yi1, ..., yij , zi) = α0 + α1zi + α2yi0 + α3yi(j−1), j = 2, 3, 4

Pr (Rij = 1) = 0 if Ri(j−1) = 0.

Initially all α’s were obtained from the information in the observed asthma study data to give

an overall rate of missingness of approximately 40% at week 12 (59% placebo arm, 21% active

arm) with dropout pattern as observed in the trial. Three other settings were considered, with

overall rates of missingness of approximately 30%, 20% and 10% at week 12. This was achieved

by calibrating the value of α0 in the missingness model accordingly. The exact values of the used

α’s are presented in Table A.1. In each case a probability of response for each incomplete outcome

was calculated for every patient and compared against a random value from the Uniform[0, 1]

distribution. The outcome was set to missing if their uniformly distributed value exceeded the

calculated probability, or if the outcome at the previous follow-up time point was unobserved.

The reference based MI approach of Carpenter, Roger and Kenward [13] was applied to each

incomplete dataset under MAR, CR, J2R, CIR and LMCF with 1000 imputations. For the methods

alluding to a reference group, the analysis was conducted once with placebo as reference and second

with active as reference. We used the same set of 1000 incomplete datasets for each imputation

procedure and setting to eliminate sample variability and strengthen comparisons.

In each scenario and simulation run post-deviation data were regenerated using the appropriate

conditional normal distributions for the underlying assumption, to compute the treatment effect

and its SE had the post-deviation data been observed (averaged over the 1000 simulations for

comparisons).

The analysis model was a linear regression of the 12 week response on treatment group, adjusted for

baseline. The main outcomes of interest in each scenario were Rubin’s MI estimate and Standard

Error (SE) of the treatment effect (averaged over the 1000 simulations for comparison), and the

empirical long-run SE of the MI estimator over the 1000 simulations.

2.3.2 Results

Table 2.2 summarises the results for each of the imputation procedures in the 40% missingness

setting, which mimics the deviation rate observed in the asthma study. True θ is the true value of

the treatment effect; θ̂ (MCSE range 0.002 to 0.003) is the average of the completed-data treatment

effect estimates, thus represents the average treatment effect obtained when the deviators are

actually observed to have the indicated post-deviation behaviour; Rubin’s θ̂MI (MCSE range 0.002

to 0.003) is the average treatment effect using MI under the indicated assumption with Rubin’s

Rules. We expect these to be equal.

In all scenarios, as expected, there is minimal to no bias of Rubin’s treatment effect, Rubin’s θ̂MI .

Both θ̂ and Rubin’s θ̂MI lie within 2 monte-carlo-standard errors (MCSE) of the True θ in all

cases.

Model SE (MCSE range 0.0001 to 0.0002) is the average of the completed-data model based

standard errors i.e. the average of the model based standard errors we would obtained if the
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deviators are actually observed; Empirical SE is the empirical long-run standard error of the 1000

completed-data treatment estimates (MCSE range 0.0018 to 0.0021); Rubin’s SEMI (MCSE range

0.00018 to 0.00022) is the square root of the average estimate of variance obtained using MI with

Rubin’s rules; Empirical SEMI (MCSE range 0.001 to 0.002) is the empirical long-run standard

error of the 1000 MI treatment effects, which is asymptotically equivalent to that of the ML

estimator since θ̂MI is unbiased, and COV Rubin’s MI is the coverage of 95% confidence interval

from Rubin’s rules (MCSE range 0.42 to 0.69).

The average of the completed-data model based standard errors, Model SE, which approaches the

expected value of the design based variance where all post-deviation data is observed under the

specified scenario, provides a lower bound for the variance of the treatment effect. With missing

post-deviation data we expect a larger variance estimate to reflect the introduced uncertainty. We

see in all cases Rubin’s estimate of the standard error, Rubin’s SEMI , is larger than this lower

bound, as required.

Under MAR we see Rubin’s estimate of the standard error of the treatment effect estimates the

long-run sampling standard error, Empirical SEMI , without bias (within 2×MCSE). Nominal

coverage is achieved (95%) as expected.

For all reference based methods, except CR-placebo, the empirical standard error of the MI im-

putation estimator, Empirical SEMI , whose value is asymptotically equal to the long-run variance

of the ML estimator is lower than that based on the complete data. This is as expected since the

long-run MI/ML variance estimator includes the induced negative covariance between the devia-

tors and reference group. The variance in treatment contrasts decreases as the sample becomes

more homogeneous, whereas the design based estimated variance does not.

Thus for all reference based imputation options it is evident that Rubin’s MI estimate of the

standard error is desirably overestimating the long-run variability of the MI/ML point estimate, as

expected. The coverage of 95% confidence intervals from Rubin’s rules is consequently conservative,

ranging from 0.955 to 0.999. This overestimation is less noticeable for CR-placebo due to the lower

number of active deviators. For the procedures that assume statistical behaviour of a reference arm

post-deviation, the difference between Rubin’s MI variance estimator and the long-run empirical

variance is larger where the active arm is the reference as overall there is a greater proportion of

patients deviating with reference to the other arm.

Figures 2.6 and 2.7 summarise the results for MAR and the reference based settings with 10–40%

missingness. In all missingness scenarios we see Rubin’s estimate of variance is greater than the

lower bound (variance estimate if the deviators could be observed) and increases as the proportion

of missing data increases. This is in contrast to the long-run empirical sampling variance for

the MI/ML estimator which is lower than the variance estimator from the complete data and

decreases towards zero as the amount of missing data increases. The long-run sampling variance, as

anticipated, is misleading for sensitivity analysis as it does not incorporate the additional variability

incurred with the greater loss of data.
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Figure 2.6: Rubin’s SE (Mean Rubin’s SEMI) vs. conventional long-run sampling variance of the
MI/ML estimate (SE of the 1000 MI estimates, Empirical SEMI) vs. SE where deviators

observed (Mean Model SE over 1000 simulations) for MAR, LMCF and CR.
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Figure 2.7: Rubin’s SE (Mean Rubin’s SEMI) vs. conventional long-run sampling variance of the
MI/ML estimate (SE of the 1000 MI estimates, Empirical SEMI) vs. SE where deviators

observed (Mean Model SE over 1000 simulations) for CIR and J2R.

2.3.3 Discussion

Rubin’s MI treatment estimator is unbiased for the reference based treatment estimate. The

long-run sampling variance of the reference based MI treatment effect, which is equivalent to the

long-run sampling variance of the ML treatment effect, is confirmed as being too small. Rubin’s
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MI variance estimate as expected is different to this and has desirable properties. Rubin’s MI

variance estimate is larger than the design based variance where the deviation data is observed,

which provides a lower bound for the variance of the treatment effect. Rubin’s variance estimate

also increases as the proportion of missing data increases.

2.4 Summary

Rubin’s MI treatment estimate is confirmed as unbiased for the reference based treatment estima-

tor. We therefore do not explore this issue further in the subsequent developments.

With missing data in reference based sensitivity analysis we require an estimate of variance that

is greater than the estimated variance we would observe from the design based analysis under the

given scenario if all data were actually observed. The conventional long-run sampling variance of

the reference based treatment effect (estimated via MI or ML) does not meet this criteria. Rubin’s

MI variance estimator does satisfy this principle and has desirable properties. It is larger than the

design based variance estimate we would obtain were we able to observe the reference based post-

deviation data, and increases as the proportion of missing data increases. Thus MI with Rubin’s

rules appears to be a fruitful route for performing reference based analyses.

However further exploration is required in each reference based setting to assess exactly what

Rubin’s variance estimator is giving us. In the next chapter we discuss and define desirable

properties of the required variance estimator in the reference based setting and compare this to

Rubin’s estimator with baseline and a single follow-up. In this setting the exact properties of

Rubin’s variance estimate can be derived. This paves the way for more generalised results on the

properties of Rubin’s variance estimator in reference based MI in Chapter 4.
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Chapter 3

Behaviour of Rubin’s variance

estimator in reference based

multiple imputation; baseline and

single follow-up

In this chapter we define and derive the required variance estimate for the reference based treat-

ment estimator in Section 3.1. We then explore whether Rubin’s MI variance estimator provides

an acceptable estimate of this in the baseline and single follow-up trial setting. First, for the un-

adjusted treatment estimator in Section 3.2. Following theoretical results, a supporting simulation

study is presented in Section 3.3. We then extend our inferences for the baseline adjusted treatment

estimator in Section 3.4. We summarise our findings in Section 3.5. This leads to a more general

proposition and proof on the properties of Rubin’s variance estimator in the following chapter.

Throughout this chapter we retain the notation introduced in Chapter 2 where θ̂ denotes the

estimated treatment effect of interest from the design based analysis. The estimated variance of the

treatment effect is denoted by V . As introduced in Subsection 1.3.5, a de-jure estimand compares

the effect of treatments as randomised that are taken strictly according to the protocol. It does not

necessarily require the MAR assumption in the presence of missing data. However as these two are

linked throughout this chapter our de-jure estimate, indexed with the subscript DJ denotes analysis

under MAR. A de-facto estimand compares the effect of treatments as randomised, regardless of

protocol adherence. A de-facto estimate, indexed with the subscript DF, therefore denotes a general

reference based analysis, that is under one of CR, J2R, CIR or LMCF. Where we refer to a specific

de-facto analysis only we index the estimate with the subscript CR, J2R, CIR or LMCF as appropriate.

Setting

We consider the same two arm trial setting introduced in Subsection 2.2.2, with the additional

assumption that the variance-covariance matrix is the same in both treatment arms. This is a trial
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of an active versus reference treatment, denoted by z = a, r, with i = 1, ..., n subjects per arm with

a baseline (time 1) and single follow-up outcome (time 2). The unadjusted difference in means

between the two trial arms at time 2 is the key parameter of interest. In Section 3.4 we develop this

example and consider the baseline adjusted difference in means as the key parameter of interest.

All of the reference arm (z = r) and no of the n active arm patients (z = a) are observed at both

times without deviation. Post-baseline the remaining nd active arm patients deviate such that

no + nd = n. We condition on nd and where O and D define the sets of indices for the completers

and deviators in the active arm respectively, assume the data comes from the following bivariate

normal distributions with equal variance-covariance structures,

(
Yzi1

Yzi2

)
∼ N

{(
µz1

µz2

)
;

[
σ11 σ12

σ12 σ22

]}
, i = 1, ..., n for z ∈ r or i ∈ O for z ∈ a

(
Yzi1

Yzi2

)
∼ N

{(
µz1

µd2

)
;

[
σ11 σ12

σ12 σ22

]}
, i ∈ D and z ∈ a.

As described in Subsection 2.2.2, the expected value of the variance estimator for the treatment

effect from the design based analysis, if we observe all the post-deviation data under the specified

de-facto scenario (one of CR, J2R, CIR or LMCF), provides a lower bound for the expectation

of the appropriate variance estimator in the presence of missing data. We now denote this lower

bound by E [VDF, full] and in the current setting with equal known variance, as derived in Subsection

2.2.2 (2.10) this is,

E [VDF, full] =
2σ22

n
+

∆2ndno
n3

, (3.1)

where ∆ = µa2−µd2 and µd2 represents the proposed mean at time 2 under the particular de-facto

scenario of interest. In the presence of missing data we require an estimate of variance whose

expectation is greater than this and appropriately incorporates the loss of information. So the

first question is, what is the appropriate inflation factor to apply to (3.1) with missing data? The

second question is, does Rubin’s MI variance estimator give an acceptable estimate of the desired

variance estimator constructed from (3.1) and the appropriate inflation factor?

3.1 Information anchored sensitivity analysis

We focus here on the appropriate inflation factor to apply to (3.1) in the presence of missing data

when we use reference based MI for sensitivity analysis in the way set out in Chapter 2.

A natural principle for sensitivity analyses which retain the primary design based analysis model

is to keep the information loss due to missing data constant or anchored across the primary and

sensitivity analyses. A loss of information is inescapable with missing data and the extent of

information loss in the primary analysis under MAR is linked to the chosen analysis model, rather

than the actual proportion of incomplete records. Thus we propose the loss of information due to
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missing data in the primary analysis should equal the loss of information due to missing data in

all sensitivity analyses which retain the design based analysis model.

The variance of our treatment estimator in reference based MI will be derived from the variance

of the imputed data. So ultimately is in the control of the analyst through the assumption about

the variability of the missing data. Under reference based MI we could alternatively inflate or

deflate the variance of the missing data. A wealth of potential options exist, but these all require

external judgements beyond the observed trial data. Essentially arbitrary choices. Anchoring the

information loss in the primary analysis provides context and a natural logical foundation.

When conducting reference based sensitivity analysis we should not be artificially adding any

extra information to our data. Sensitivity analysis should not inject information ‘by the back

door.’ Neither do we want to loose valuable information collected in the trial. In summary we

want to preserve the loss of information in the primary design based analysis in the design based

sensitivity analysis.

In reference based sensitivity analysis the primary analysis is conducted under the MAR assump-

tion. As discussed in Section 1.3 analysis under MAR is a natural starting point since it is often

most plausible that patients who deviate will exhibit the same response as those with the same

history still in the trial i.e. those in the same treatment arm. Further modelling of the dropout

in the reference based settings is not required. The primary MAR analysis provides the building

blocks for the sensitivity analysis. Our post-deviation data distributions are pieced together using

the parameters from the underlying MAR model. We can therefore measure the information loss

in the primary MAR analysis, relative to when there is no missing data. Then explore how this re-

lates to the inflation in Rubin’s variance estimator under reference based post-deviation behaviour,

when the deviation data is missing, relative to when there is no missing data.

Let VDJ, full denote the variance estimator for the treatment effect from the design based analysis

with full data i.e. no deviations. When deviations occur and post-deviation data is unobserved let

VDJ, MI denote Rubin’s variance estimator for the treatment effect from the design based MAR MI

analysis (primary analysis). We propose that the variance estimator required for the treatment

estimate in sensitivity analysis denoted by Vanchored is,

Vanchored =
VDJ, MI

VDJ, full

× VDF, full. (3.2)

VDJ, MI/VDJ, full provides a measure of the information loss in the primary analysis. When this

inflation factor is applied to VDF, full —the design based variance estimator if we observed all

the reference based post-deviation data— this gives our proposed information anchored variance

estimate.
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We recall here that the information on a parameter, denoted by I, is defined as the reciprocal of

its variance. If the variance is small, the information on the associated parameter is thus large,

however if the variance is large, the information on the parameter will be small. We can therefore

also express the proposed variance as,

Vanchored =
IDJ, full

IDJ, MI

× VDF, full.

The information preserving principle described by Rubin [19] tells us, Iobs = Ifull − Imiss, that

is Iobs + Imiss = Ifull, i.e. the observed information plus the missing information equals the full

information. We can therefore immediately see that this inflation directly takes account and

preserves the fraction of missing information in the primary design based analysis. The inflation

is a measure of the loss of precision due to non-response as follows,

IDJ, full

IDJ, MI

=
IDJ, MI + Imiss

IDJ, MI

= 1 +
Imiss

IDJ, MI

.

We define the proposed estimate of variance that keeps the information loss constant across the

primary and sensitivity analysis as the information anchored variance.

Example

In the current setting outlined at the beginning of this chapter, the expected value of the design

based variance estimator in full data, if no deviations occur (i.e. everyone on-treatment) using

standard normal distribution results is,

E [VDJ, full] =
2σ22

n
.

To establish the required information anchored variance in sensitivity analysis we need to compute

the expected value of the variance estimator for the treatment effect in the primary design based

MAR setting. When performing MI under MAR and the congeniality condition, Rubin’s variance

estimator, VDJ, MI, yields appropriate inference that is equivalent (as K → ∞) to the correspond-

ing full likelihood analysis. We now analytically derive the expectation of Rubin’s MI variance

estimator under MAR which demonstrates this. The result of the derivation is then used in the

subsequent exploration of the reference based MI variance estimator.
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3.1.1 Rubin’s variance estimator under MAR

To derive the expectation of Rubin’s MI variance estimator for the treatment estimate under

MAR an appropriate imputation distribution for the missing outcomes at time 2 is required, with

a suitable posterior for the included parameters. We assume the data is normal. In practice,

as detailed in Section 2.1 an improper prior for the parameters of the imputation distribution

and an uninformative prior for the covariance matrix is assumed. Throughout this exposition

and the subsequent reference based expositions the variance is assumed to be known i.e. we do not

incorporate a prior distribution on the variance in imputation without any serious loss of generality.

This is following inference by Carpenter and Kenward in [44] (p. 56–59) that examines Rubin’s

rules for a simple mean with known and unknown variance. Carpenter and Kenward show, because

of the conditional argument underlying the derivation, the additional complication of an unknown

variance does not have a profound effect on the development. It simply results in multiples of

terms that are ≈ 1 and thus approach 1 fast as n→∞. The results are asymptotically the same.

To simplify subsequent calculations we define Y ∗ai1 = Yai1− Ȳa1,o where Ȳa1,o = 1
no

∑
i∈O Yai1. The

data from the completers in the active arm at time 1 is denoted by the column vector,

Y∗a1,o = {Y ∗ai1; i ∈ O}T .

The observed data at time 2 in the active arm is denoted by the column vector Ya2,o where,

Ya2,o = {Yai2; i ∈ O}T .

Under MAR, our imputation model is formed from the regression of Yai2 on Y ∗ai1 for the set of

completers in the active arm (i ∈ O). Let xi = (1, Y ∗ai1)T then the conditional model of interest

for imputation is,

Yai2 = xTi β + ei, ei ∼ N(0, σ2.1) i = 1, ..., no,

where σ2.1 is the residual variance from the regression of Yai2 on Y ∗ai1. Re-expressed in matrix

notation the conditional distribution of interest Ya2,o|Y∗a1,o is,

(
Ya2,o|Y∗a1,o

)
∼ N (Xβ;σ2.1) ,

where X is the design matrix,
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X =

 1 Y ∗a11

1 .

1 Y ∗ano1

 .

The ordinary least squares estimates of the parameters, β, of this distribution which we de-

note by β̂, are obtained by fitting the conditional model to the observed data and calculating(
XTX

)−1
XTYa2,o which gives,

β̂ =

(
β̂20.1

β̂21.1

)
=

(
Ȳa2,o

r/q

)
,

where Ȳa2,o = 1
no

∑
i∈O Yai2, r =

∑
i∈O

(
Yai1 − Ȳa1,o

) (
Yai2 − Ȳa2,o

)
and q =

∑
i∈O

(
Yai1 − Ȳa1,o

)2
,

with associated variance σ2.1

(
XTX

)−1
, which is,

V ar
(
β̂
)

= σ2.1

(
n−1
o 0

0 q−1

)
,

for σ2.1 = σ22 − σ2
12/σ11. We assume the data is normal and improper priors for the missing

observations, so the posterior of the model parameters (β) is approximately normal and let the

observed data dominate the prior. The variance is assumed to be known without any serious loss of

generality, following inference by Carpenter and Kenward [44]. Thus the MAR imputation model

for patient i and imputation k is,

Ỹai2,k = Ȳa2o + uk + (r/q + bk)
(
Yai1 − Ȳa1o

)
+ ei,k, for i ∈ D, k = 1, ...,K, (3.3)

where,

uk ∼ N
(
0, n−1

o σ2.1

)
bk ∼ N

(
0, q−1σ2.1

)
ei,k ∼ N (0, σ2.1) .

Following MI from the above model for the deviators, we are interested in establishing the expecta-

tion of Rubin’s MI estimator and variance estimator for the treatment difference at time 2, which

we denote respectively as θ̂DJ, MI and VDJ, MI. Firstly,
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E(θ̂DJ, MI) = E

(
1

K

K∑
k=1

θ̂DJ, k

)
.

Where the sample mean treatment difference, at time 2 in the kth imputation set, θ̂DJ, k is obtained

as,

θ̂DJ, k = µ̂a2,k − µ̂r2 = Ȳa2,k − Ȳr2 =
no
n
Ȳa2o +

nd
n
Ȳa2d,k − Ȳr2

where,

Ȳa2d,k =
1

nd

∑
i∈D

Ỹai2,k = Ȳa2,o + uk +

(
r

q
+ bk

)(
Ȳa1d − Ȳa1,o

)
+ ēk

and ēk = 1
nd

∑
i∈D ei,k and Ȳa1d = 1

nd

∑
i∈D Yai1. Averaging the sample mean estimate for the kth

imputation, over the imputation set, K, gives Rubin’s MI estimator as,

θ̂DJ, MI =
no
n
Ȳa2o +

nd
n

[
Ȳa2,o + ū+

(
r

q
+ b̄

)(
Ȳa1d − Ȳa1,o

)
+ ē

]
− Ȳr2,

where ū = 1
K

∑K
k=1 uk, b̄ = 1

K

∑K
k=1 bk and ē = 1

K

∑K
k=1 ēk. Taking the necessary expectations

reveals,

E(θ̂DJ, MI) =
no
n
µa2 +

nd
n
µa2 − µr2 = µa2 − µr2,

which as required, is unbiased for the treatment difference. For Rubin’s MI variance estimator,

under MAR, we require,

E (VDJ, MI) = E
(
Ŵ
)

+

(
1 +

1

K

)
E
(
B̂
)
,

where, Ŵ and, B̂ are defined as in (1.7) and (1.8). First we consider E
(
Ŵ
)

,
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E
(
Ŵ
)

= E
(
σ̂2
k

)
=E

(
1

n−1

∑n
i=1 (Yri2 − µ̂r2)

2

n

)

+ E


1

n−1

[∑
i∈O (Yai2 − µ̂a2,k)

2
+
∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
]

n

 .

Expanding these sums where required and taking the necessary expectations, (see Appendix B.4.1

for detailed calculations) for time 1 a baseline, where µa1 = µr1, ρ2 = σ2
12/σ11σ22 (the correlation

between time 1 and time 2 squared) and σ2.1 = σ22(1− ρ2) gives,

E

(
1

n− 1

n∑
i=1

(Yri2 − µ̂r2)
2

)
= σ22,

E

(
1

n− 1

[∑
i∈O

(Yai2 − µ̂a2,k)
2

+
∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
])

= σ22 +
2ndσ22(1− ρ2)

(no − 1)(n− 1)
. (3.4)

We now consider
(
1 + 1

K

)
E
(
B̂
)

where E
[
B̂
]

= 1
K−1E

[∑K
k=1

(
θ̂DJ, k − θ̂DJ, MI

)2
]
. Taking the

necessary expectations (see Appendix B.4.1) reveals,

(
1 +

1

K

)
E
(
B̂
)

=

(
1 +

1

K

)
σ22(1− ρ2)

nd
n (no − 1)

. (3.5)

Assuming that n is sufficiently large so that we may take (n − 1) to be n and (no − 1) to be no

and where πd = nd/n, gives Rubin’s variance estimator asymptotically as,

E [VDJ, MI] =
2σ22

n
+

2σ22

(
1− ρ2

)
πd

n2 (1− πd)
+

(
1 +

1

K

)
σ22

(
1− ρ2

)
πd

n (1− πd)
.

For infinite K this is equivalent to,

E [VDJ, MI] = σ22

[
1

n
+

1

no

]
− σ2

12

σ11

πd
n (1− πd)

+
2σ22

(
1− ρ2

)
πd

n2 (1− πd)
. (3.6)

Table B.1 summarises Rubin’s derived variance under MAR alongside simulation results for various

proportions of missing data in a setting inspired by the baseline and week 12 data in the asthma

trial, introduced in Section 1.7.2. In all settings the derived results are within 2 MCSE’s of the
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simulation results.

This result provides us with key insight into the behaviour of Rubin’s MI variance estimator.

Under MAR we know valid inference is given from a full ML analysis of the observed data. The

expectation of the variance of the treatment effect from a full ML analysis is (see Appendix B.2

for detailed calculations),

E [VDJ, ML] = σ22

[
1

n
+

1

no

]
− σ2

12

σ11

πd
n (1− πd)

. (3.7)

We see Rubin’s MI variance estimator (3.6) indeed approximates the variance estimate from a full

likelihood analysis of the observed data (3.7), which accounts for the loss of information, giving a

valid estimate of the variance in the observed incomplete data under MAR. The difference between

(3.6) and (3.7) is O(n−2), which is smaller in magnitude than E [VDJ, ML]. We see the information

in complete data relative to that in incomplete data as measured by Rubin’s MI variance estimator

under MAR (with K →∞) is,

IDJ, full

IDJ, MI

= 1 +

(
1− ρ2

)
2

[
n+ 1

n
πd +

2n+ 1

2n
π2
d +

4n+ 1

4n
π3
d +

8n+ 1

8n
π4
d . . .

]
≈ 1 +

(
1− ρ2

)
2

[
πd + π2

d + π3
d + π4

d . . .
]
. (3.8)

This is asymptotically equivalent to the information in complete data relative to that in incomplete

data from a full ML analysis, which is,

IDJ, full

IDJ, ML

= 1 +

(
1− ρ2

)
2

[
πd + π2

d + π3
d + π4

d . . .
]
.

We have now derived the inflation factor which provides a measure of the loss of information

due to missing data in the primary design analysis. The required information anchored variance

estimator in sensitivity analysis is the design based variance estimator we would obtain for the

treatment effect, were we able to observe the post-deviation data under reference based deviation,

multiplied by this factor (3.8). We will now assess whether Rubin’s variance estimator provides

an acceptable estimate of the ideal information anchored variance estimate (3.2) in the reference

based MI settings.

3.2 Rubin’s variance estimator

We now analytically derive the expectation of Rubin’s MI variance estimator in each of the de-

facto settings (CR, J2R, CIR and LMCF) and compare this to the expectation of the information

anchored variance estimate, which preserves the fraction of missing information in the primary
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design based analysis.

Henceforth, in calculations for E [VDJ, MI], we take up to the O(n−2) terms to simplify subsequent

expressions, since this is equivalent to the MAR ML variance (3.7). Our inferences below do not

change in doing so, since we would only have additional very small terms. Additionally we maintain

our assumption of a known variance throughout, without any serious loss of generality [44].

3.2.1 Copy reference

Here we consider the case of CR behaviour post-deviation, and suppose that the partially observed

patients in the active arm (i.e. those missing at time 2) have a time 2 mean equal to µr2.

Rubin’s variance estimator under copy reference

As under MAR, an appropriate imputation distribution for the missing outcomes at time 2 is

required, which also requires a suitable posterior for the included parameters. Under CR the data

follows the distribution of the reference arm throughout the trial. For imputation we therefore

require the conditional distribution of Yri2 on Yri1.

To simplify subsequent calculations we define Y ∗ri1 = Yri1 − Ȳr1 where Ȳr1 = 1
n

∑n
i=1 Yri1. The

observed data at time 2 in the reference arm is denoted by the vector Yr2 where,

Yr2 = (Yr12, ..., Yrn2)
T
.

The data from the reference arm at time 1 is denoted by the vector,

Y∗r1 = (Y ∗r11, ..., Y
∗
rn1)

T
.

Under CR, our imputation model is formed from the regression of Yri2 on Y ∗ri1 for the n patients

in the reference arm. Let xi = (1, Y ∗ri1)T then the conditional model of interest is,

Yri2 = xTi β + ei, ei ∼ N(0, σ2.1) i = 1, ..., n,

where σ2.1 is the residual variance from the regression of Yri2 on Y ∗ri1. Re-expressed in matrix

notation the conditional distribution of interest for imputation Yr2|Y∗r1 is,
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(Yr2|Y∗r1) ∼ N (Xβ;σ2.1) ,

where X is the design matrix,

X =

 1 Y ∗r11

1 .

1 Y ∗rn1

 .

The ordinary least square estimates, β̂, are obtained by fitting the conditional model to the observed

data and calculating
(
XTX

)−1
XTYr2 which gives,

β̂ =

(
Ȳr2

r/q

)
,

where Ȳr2 = 1
n

∑n
i=1 Yri2, and under CR we have r =

∑n
i=1

(
Yri1 − Ȳr1

) (
Yri2 − Ȳr2

)
and q =∑n

i=1

(
Yri1 − Ȳr1

)2
, with associated variance σ2.1

(
XTX

)−1
. That is,

V ar
(
β̂
)

= σ2.1

(
n−1 0

0 q−1

)
,

for σ2.1 = σ22 − σ2
12/σ11. We assume the data is normal, the variance is known, improper priors

for the missing observations and so the posterior of the model parameters is approximately normal

and let the observed data dominate the prior. Then the CR imputation model for patient i and

imputation k is,

Ỹai2,k = Ȳr2 + uk + (r/q + bk)
(
Yai1 − Ȳr1

)
+ ei,k, for i ∈ D, k = 1, ...,K, (3.9)

where,

uk ∼ N
(
0, n−1σ2.1

)
bk ∼ N

(
0, q−1σ2.1

)
ei,k ∼ N (0, σ2.1) .

Using the above imputation model, the treatment effect for the kth imputation over the missing
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cases is obtained as,

θ̂CR, k = µ̂a2,k − µ̂r2 =
no
n
Ȳa2o +

nd
n
Ȳa2d,k − Ȳr2,

where,

Ȳa2d,k =
1

nd

∑
i∈D

Ỹai2,k = Ȳr2 + uk +

(
r

q
+ bk

)(
Ȳa1d − Ȳr1

)
+ ēk,

and ēk = 1
nd

∑
i∈D ei,k and Ȳa1d = 1

nd

∑
i∈D Yai1. Averaging the sample mean estimate for the kth

imputation, over the imputation set, K, gives Rubin’s MI estimator as,

θ̂CR, MI =
no
n
Ȳa2o +

nd
n

[
Ȳr2 + ū+

(
r

q
+ b̄

)(
Ȳa1d − Ȳr1

)
+ ē

]
− Ȳr2,

where ū = 1
K

∑K
k=1 uk, b̄ = 1

K

∑K
k=1 bk and ē = 1

K

∑K
k=1 ēk. Taking the necessary expectations

reveals,

E(θ̂CR, MI) =
no
n

(µa2 − µr2) ,

which as required, is unbiased for the treatment effect under CR. This is unsurprising given the

results of the simulation study in Section 2.3. We explicitly see how the imputation only incor-

porates additive terms which have an expectation of zero, thus how taking the average treatment

effect over the imputation set provides an unbiased estimator. For Rubin’s MI variance estimator,

under CR, we require,

E (VCR, MI) = E
(
Ŵ
)

+

(
1 +

1

K

)
E
(
B̂
)
,

where, Ŵ and, B̂ are defined as in (1.7) and (1.8). First we consider E
(
Ŵ
)

,
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E
(
Ŵ
)

= E
(
σ̂2
k

)
=E

(
1

n−1

∑n
i=1 (Yri2 − µ̂r2)

2

n

)

+ E


1

n−1

[∑
i∈O (Yai2 − µ̂a2,k)

2
+
∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
]

n

 . (3.10)

We define the first component on the RHS of (3.10) as W1 and the second component on the RHS

of (3.10) as W2. Expanding these sums where required and taking the necessary expectations, (see

Appendix B.4.2 for detailed calculations) for time 1 a baseline, where µa1 = µr1, πd = nd/n and

∆ = µa2 − µr2 gives,

E (W1) =
σ22

n
,

E (W2) =
σ22

n
+

∆2πdno
n(n− 1)

+
2σ22

(
1− ρ2

)
πd

n(n− 1)

[
2− πd

(
1 +

1

n

)]
. (3.11)

We now consider
(
1 + 1

K

)
E
(
B̂
)

. Taking the necessary expectations reveals,

(
1 +

1

K

)
E
(
B̂
)

=

(
1 +

1

K

)
σ22

(
1− ρ2

)
πd

(πd + 1)

(n− 1)
. (3.12)

Assuming that n is sufficiently large so that we may take (n − 1) to be n gives Rubin’s estimate

asymptotically as,

E [VCR, MI] =
2σ22

n
+

∆2πd(1− πd)
n

+
2σ22

(
1− ρ2

)
πd

n2

[
2− πd

(
1 +

1

n

)]
+

(
1 +

1

K

)
σ22

(
1− ρ2

)
πd

(πd + 1)

n
.

For infinite K this is equivalent to,

E [VCR, MI] =
2σ22

n
+

∆2πd (1− πd)
n

+
2σ22

(
1− ρ2

)
πd

n2

[
2− πd

(
1 +

1

n

)]
+ σ22

(
1− ρ2

)
πd

(πd + 1)

n
. (3.13)

Table B.3 summarises Rubin’s derived variance under CR alongside simulation results. In all
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missingness settings the derivation results are within 2 MCSE’s of the results.

Information anchoring under copy reference

Consider the expectation of the ideal information anchored variance estimate that preserves the

fraction of missing information in the primary design based analysis under CR. This is calculated

as (3.8)×(3.1). For ∆ = (µa2 − µr2) up to the order π4
d/n terms this is,

E [Vanchored] =
2σ22

n
+

∆2πd (1− πd)
n

+
σ22

(
1− ρ2

)
πd

n
+

[
σ22

n
+

∆2

2n

] (
1− ρ2

)
π2
d

+
σ22

(
1− ρ2

)
π3
d

n
+
σ22

(
1− ρ2

)
π4
d

n
. (3.14)

Now compare this to Rubin’s CR MI variance estimator where K → ∞ (3.13), which can be

re-expressed as,

E [VCR, MI] =
2σ22

n
+

∆2πd (1− πd)
n

+
σ22

(
1− ρ2

)
πd

n
+
σ22

(
1− ρ2

)
π2
d

n

+
2σ22

(
1− ρ2

)
πd

n2

[
2− πd

(
1 +

1

n

)]
.

The difference (3.13) - (3.14) is computed as,

E [VCR, MI]− E [Vanchored] =
2σ22

(
1− ρ2

)
πd

n2

[
2− πd

(
1 +

1

n

)]
−

∆2
(
1− ρ2

)
π2
d

2n

−
σ22

(
1− ρ2

)
π3
d

n
−
σ22

(
1− ρ2

)
π4
d

n
. (3.15)

The largest order terms in the difference between Rubin’s MI variance and the ideal variance under

CR are,

−
∆2
(
1− ρ2

)
π2
d

2n
−
σ22

(
1− ρ2

)
π3
d

n
−
σ22

(
1− ρ2

)
π4
d

n
. (3.16)

We see there is excellent agreement. The difference depends on the size of the trial (n), the amount

of missingness in the active arm (nd), the correlation between the time 1 and time 2 measurement

(ρ2), the variance of the data at time 2 (σ22), as well as the mean difference between the active and

reference arm at time 2 (∆). Rubin’s variance estimator will better approximate the information

anchored variance in larger trials with smaller amounts of missingness, higher correlation between

the time 1 and time 2 measurements and smaller differences between the arms at time 2. However,
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we see from its composition that the difference will still be small in settings with greater amounts of

missingness, smaller correlations between time 1 and time 2 measurements and greater differences

between the arms at time 2. For larger n the difference quickly approaches zero, at a faster rate

than that of the required information anchored variance. The information anchored variance (3.14)

is dominated by the 2σ22/n term, which is O(n−1).

The ratio of the difference between Rubin’s variance estimator and the information anchored

variance (3.16) to the information anchored variance (3.14) is,

(
1− ρ2

)
π2
d

[
−∆2 − 2σ22

(
πd + π2

d

)]
4σ22 + πd [∆2 (2 (1− πd) + (1− ρ2)πd) + 2σ22 (1− ρ2) (1 + πd + π2

d + π3
d)]
.

We recall here the simple sample size formula for detecting a difference in means between two

independent groups [58],

n =
2σ22

(
Zβ + Zα

2

)2
(µ1 − µ2)

2 ,

where n is the sample size required in each group, Zβ is the one-sided percentage point of the

normal distribution corresponding to the required power, Zα
2

is the percentage point of the normal

distribution corresponding to the two-sided significance level, σ22 is the variance of the outcome

variable and µ1 − µ2 represents the difference in means to detect. In a typical RCT powered at

80% (Zβ = 0.84) with 5% (Zα
2

= 1.96) statistical significance therefore,

∆2 ≈ (µ1 − µ2)
2

=
15.68σ22

n
. (3.17)

Thus the first term in (3.16) is very small and O(n−2). The second two components in (3.16)

are O(π3
dn
−1) and O(π4

dn
−1). Since πd < 1 in sensitivity analysis, these terms will also be tiny

in practice. For realistic proportions of missing data i.e. πd ≤ 0.5, these two terms are at most

O((8n)−1) and O((16n)−1) respectively. Thus all these terms are very small relative to the infor-

mation anchored variance we desire.

We can use (3.17) to express the difference between Rubin’s variance estimator and the information

anchored variance and the ratio of this difference to the information anchored variance, in terms of

the variance σ22. Table 3.1 summarises the difference between Rubin’s CR MI variance estimator

and the information anchored variance estimate for various sized trials and proportions of missing

data with ρ = 0.5, in multiples σ22.

We clearly see how in practice the agreement between Rubin’s variance estimator and the informa-

tion anchored variance will be excellent, even for smaller sample sizes. With small proportions of

missing data we see Rubin’s variance estimator will be marginally overestimating the information

anchored variance. This is because the positive terms in (3.15) will dominate the difference. With
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larger proportions of missing data Rubin’s variance estimator will be marginally underestimating

the information anchored variance as the negative terms in (3.15) become larger. However in all

cases the difference between Rubin’s variance estimator and the information anchored variance is

negligible in size, in comparison to the information anchored variance. The ratio of the difference

to the information anchored variance is tiny in all cases. Rubin’s variance estimator provides an

excellent approximation for the ideal information anchored variance.

n Proportion of Information anchored Difference Difference/Information

Missingness variance anchored variance

(active) (in multiples of σ22) (in multiples of σ22) (in multiples of σ22)

20 0.1 0.107841 0.000522 0.004840

0.2 0.116220 0.000395 0.003399

0.3 0.125496 -0.000744 -0.005928

0.4 0.136120 -0.003342 -0.024552

0.5 0.148631 -0.007941 -0.053428

50 0.1 0.042255 0.000074 0.001751

0.2 0.044842 -0.000023 -0.000513

0.3 0.047905 -0.000433 -0.009039

0.4 0.051626 -0.001338 -0.025917

0.5 0.056219 -0.002954 -0.052545

100 0.1 0.020980 0.000014 0.000667

0.2 0.022146 -0.000042 -0.001897

0.3 0.023571 -0.000240 -0.010182

0.4 0.025342 -0.000670 -0.026438

0.5 0.027570 -0.001441 -0.052267

250 0.1 0.008357 0.000000 0.000000

0.2 0.008793 -0.000024 -0.002729

0.3 0.009337 -0.000102 -0.010924

0.4 0.010024 -0.000269 -0.026836

0.5 0.010899 -0.000568 -0.052115

Table 3.1: Difference between Rubin’s CR MI variance estimator and the information anchored
variance with ρ = 0.5 using (3.17)

3.2.2 Jump to reference

We now derive the expectation of Rubin’s variance estimator in the J2R scenario and compare this

with the information anchored variance.

Rubin’s variance estimator under jump to reference

The data distribution for active deviators under J2R is formed using: the mean from the active

arm at time 1, the mean from the reference arm at time 2, variance from the active arm at time

1 and variance from the reference arm for time 2 and the conditional components (time 2 given

time 1). Appendix B.3 details the steps taken to form the conditional model this implies for

time 2 given time 1. Assuming the data is normal, variance is known and improper priors for
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the missing observations, then the posterior of the model parameters is approximately normal,

with prior dominated by the observed data. Then the J2R imputation model for patient i and

imputation k is,

Ỹai2,k = Ȳr2 + uk + (r/q + bk)
(
Yai1 − Ȳa1

)
+ (r/q + bk) (rk − ak) + ei,k,

for i ∈ D, k = 1, ...,K, (3.18)

where,

uk ∼ N
(
0, n−1σ2.1

)
bk ∼ N

(
0, q−1σ2.1

)
rk ∼ N

(
0, σ11

n

)
ak ∼ N

(
0, σ11

n

)
ei,k ∼ N (0, σ2.1) ,

and under J2R r =
∑n
i=1

(
Yri1 − Ȳr1

) (
Yri2 − Ȳr2

)
and q =

∑n
i=1

(
Yri1 − Ȳr1

)2
. Using the above

imputation model we obtain the treatment effect for the kth imputation over the missing cases as,

θ̂J2R, k = µ̂a2,k − µ̂r2 =
no
n
Ȳa2o +

nd
n
Ȳa2d,k − Ȳr2,

where,

Ȳa2d,k =
1

nd

∑
i∈D

Ỹai2,k = Ȳr2 + uk +

(
r

q
+ bk

)(
Ȳa1d − Ȳa1

)
+ (r/q + bk) (rk − ak) + ēk,

and ēk = 1
nd

∑
i∈D ei,k and Ȳa1d = 1

nd

∑
i∈D Yai1. Averaging the sample mean estimate for the kth

imputation, over the imputation set, K, gives Rubin’s MI estimator as,

θ̂J2R, MI =
no
n
Ȳa2o +

nd
n

[
Ȳr2 + ū+

(
r

q
+ b̄

)(
Ȳa1d − Ȳa1

)
+

1

k

K∑
k=1

(r/q + bk) (rk − ak) + ē

]
− Ȳr2

where ū = 1
K

∑K
k=1 uk, b̄ = 1

K

∑K
k=1 bk and ē = 1

K

∑K
k=1 ēk. Taking the necessary expectations

reveals,
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E(θ̂CR, MI) =
no
n

(µa2 − µr2) ,

which as required is unbiased for the J2R treatment effect, which with baseline and a single follow-

up is the same as the CR treatment estimate. For Rubin’s MI variance estimator, under J2R, we

require,

E (VJ2R, MI) = E
(
Ŵ
)

+

(
1 +

1

K

)
E
(
B̂
)
,

where, Ŵ and, B̂ are defined as in (1.7) and (1.8). First we consider E
(
Ŵ
)

,

E
(
Ŵ
)

= E
(
σ̂2
k

)
=E

(
1

n−1

∑n
i=1 (Yri2 − µ̂r2)

2

n

)

+ E


1

n−1

[∑
i∈O (Yai2 − µ̂a2,k)

2
+
∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
]

n

 . (3.19)

We define the first component on the RHS of (3.19) as W1 and the second component on the RHS

of (3.19) as W2. Expanding these sums where required and taking the necessary expectations, (see

Appendix B.4.3 for detailed calculations) for time 1 a baseline, where µa1 = µr1, πd = nd/n and

∆ = µa2 − µr2 gives,

E (W1) =
σ22

n
,

E (W2) =
σ22

n
+

∆2πdno
n(n− 1)

+
σ22πd (2− πd)
n(n− 1)

+
σ2

12

σ11

πd (2− 3πd)

n(n− 1)

+
σ22

(
1− ρ2

)
πd

n(n− 1)

[
2n

(n− 1)
− 2πd

(n− 1)
− πd

]
. (3.20)

We now consider
(
1 + 1

K

)
E
(
B̂
)

. Taking the necessary expectations reveals,

(
1 +

1

K

)
E
(
B̂
)

=

(
1 +

1

K

)
π2
d

[
σ22

(
1− ρ2

)
(n− 1)

(
2

n
+ 1 +

1

πd

)
+

2

n

σ2
12

σ11

]
. (3.21)

Assuming that n is sufficiently large so that we may take (n − 1) to be n gives Rubin’s variance
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estimator asymptotically as,

E [VJ2R, MI] =
2σ22

n
+

∆2πd(1− πd)
n

+
σ22πd(2− πd)

n2
+
σ2

12

σ11

πd(2− 3πd)

n2

+
σ22(1− ρ2)πd

n2

[
2− 2πd

n
− πd

]
+

(
1 +

1

K

)
π2
d

n

[
σ22(1− ρ2)

(
2

n
+ 1 +

1

πd

)
+ 2

σ2
12

σ11

]
.

For infinite K this is,

E [VJ2R, MI] =
2σ22

n
+

∆2πd (1− πd)
n

+
σ22

(
1− ρ2

)
πd

n
+
σ22

(
1− ρ2

)
π2
d

n
+ 2

σ2
12

σ11

π2
d

n

+
σ2

12

σ11

πd (2− 3πd)

n2
+
σ22

(
1− ρ2

)
πd

n2

[
2 + πd

(
1− 2

n

)]
+
σ22πd (2− πd)

n2
. (3.22)

Table B.5 shows the derived results for Rubin’s variance estimator under J2R are within 2 MCSE’s

of simulation results.

Information anchoring under jump to reference

Consider the expectation of the ideal information anchored variance estimate under J2R. For

∆ = (µa2 − µr2) up to the order π4
d/n terms this is,

E [Vanchored] =
2σ22

n
+

∆2πd (1− πd)
n

+
σ22

(
1− ρ2

)
πd

n
+

[
σ22

n
+

∆2

2n

] (
1− ρ2

)
π2
d

+
σ22

(
1− ρ2

)
π3
d

n
+
σ22

(
1− ρ2

)
π4
d

n
. (3.23)

We now compare this to Rubin’s J2R MI variance estimator where K →∞ (3.22). The difference

(3.22) - (3.23) is,

E [VJ2R, MI]− E [Vanchored] =2
σ2

12

σ11

π2
d

n
+
σ2

12

σ11

πd (2− 3πd)

n2

+
σ22

(
1− ρ2

)
πd

n2

[
2 + πd

(
1− 2

n

)]
+
σ22πd (2− πd)

n2

−
∆2
(
1− ρ2

)
π2
d

2n
−
σ22

(
1− ρ2

)
π3
d

n
−
σ22

(
1− ρ2

)
π4
d

n
.

The largest order terms in the difference between Rubin’s MI variance and the ideal variance under

J2R are,
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2
σ2

12

σ11

π2
d

n
−

∆2
(
1− ρ2

)
π2
d

2n
−
σ22

(
1− ρ2

)
π3
d

n
−
σ22

(
1− ρ2

)
π4
d

n
. (3.24)

We see the difference depends on the same elements as identified for the CR scenario: trial size,

proportion of missing data in the active arm, correlation between time 1 and time 2 measurements

and the difference in means between the arms at time 1 and time 2. With smaller amounts of

missingness, higher correlations and smaller effect sizes Rubin’s variance estimator will preserve

the fraction of missing information in the primary design based analysis more closely. However

following the inferences in Subsection 3.2.1 we highlight how small the terms in (3.24) actually

are. The second term in (3.24) will be O(n−2) and the third and fourth terms will respectively be

O(π3
dn
−1) and O(π4

dn
−1). As previously discussed these terms will be negligible in practice. The

first term in (3.24) is O(π2
dn
−1). This will also be of a very small size in practice in comparison to

the information anchored variance we desire —(3.23) which is O(n−1)— since πd < 1. The ratio

of the difference between Rubin’s variance estimator and the information anchored variance (3.24)

to the information anchored variance (3.23) is,

(
1− ρ2

)
π2
d

[
−∆2 − 2σ22

(
πd + π2

d

)]
+ 4σ2

12σ
−1
11 π

2
d

4σ22 + πd [∆2 (2 (1− πd) + (1− ρ2)πd) + 2σ22 (1− ρ2) (1 + πd + π2
d + π3

d)]
.

Thus we infer that in practice agreement will be excellent. The difference is of no practical im-

portance. Rubin’s variance estimator also approximates the ideal information anchored variance

under J2R.

3.2.3 Copy increments in reference

We now calculate the expectation of Rubin’s variance estimator in the CIR scenario and compare

this to the information anchored variance estimate.

Rubin’s variance estimator under copy increments in reference

The data distribution under CIR is formed using: the mean from the active arm at time 1, the

mean in the active arm at time 1 plus the difference in the means at time 2 and time 1 in the

reference arm for time 2, variance from the active arm at time 1 and variance from the reference

arm for time 2 and the conditional components. Appendix B.3 details the steps taken to form

the conditional model this implies for time 2 given time 1. Again, assuming the data is normal,

variance is known and improper priors for the missing observations, then the posterior of the model

parameters is approximately normal, with prior dominated by the observed data. Then the CIR

imputation model for patient i and imputation k is,
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Ỹai2,k = Ȳa1 + Ȳr2 − Ȳr1 + uk + (r/q + bk)
(
Yai1 − Ȳa1

)
+ (r/q + bk) (rk − ak) + ak − rk + ei,k,

for i ∈ D, k = 1, ...,K,

(3.25)

where,

uk ∼ N
(
0, n−1σ2.1

)
bk ∼ N

(
0, q−1σ2.1

)
rk ∼ N

(
0, σ11

n

)
ak ∼ N

(
0, σ11

n

)
ei,k ∼ N (0, σ2.1) ,

and for CIR we have r =
∑n
i=1

(
Yri1 − Ȳr1

) (
Yri2 − Ȳr2

)
and q =

∑n
i=1

(
Yri1 − Ȳr1

)2
. Using the

above imputation model we obtain the treatment effect for the kth imputation over the missing

cases as,

θ̂CIR, k = µ̂a2,k − µ̂r2 =
no
n
Ȳa2o +

nd
n
Ȳa2d,k − Ȳr2,

where,

Ȳa2d,k =
1

nd

∑
i∈D

Ỹai2,k = Ȳa1 + Ȳr2 − Ȳr1 + uk +

(
r

q
+ bk

)(
Ȳa1d − Ȳa1

)
+ (r/q + bk) (rk − ak)

+ ak − rk + ēk,

and ēk = 1
nd

∑
i∈D ei,k and Ȳa1d = 1

nd

∑
i∈D Yai1. Averaging the sample mean estimate for the kth

imputation, over the imputation set, K, gives Rubin’s MI estimator as,

θ̂CIR, MI =
nd
n

[
Ȳr2 + ū+

(
r

q
+ b̄

)(
Ȳa1d − Ȳa1

)
+

1

k

K∑
k=1

(r/q + bk) (rk − ak) + ā− r̄ + ē

]
+
no
n
Ȳa2o − Ȳr2,

where ū = 1
K

∑K
k=1 uk, b̄ = 1

K

∑K
k=1 bk, ā = 1

K

∑K
k=1 ak, r̄ = 1

K

∑K
k=1 rk and ē = 1

K

∑K
k=1 ēk.

Taking the necessary expectations reveals,
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E(θ̂CIR, MI) =
no
n

(µa2 − µr2) ,

which is unbiased for the treatment estimate under CIR. We note this is also equivalent to the

CR/J2R treatment estimate in the baseline and single follow-up setting. For Rubin’s MI variance

estimator we first require E
(
Ŵ
)

under CIR,

E
(
Ŵ
)

= E
(
σ̂2
k

)
=E

(
1

n−1

∑n
i=1 (Yri2 − µ̂r2)

2

n

)

+ E


1

n−1

[∑
i∈O (Yai2 − µ̂a2,k)

2
+
∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
]

n

 . (3.26)

We again define the first component on the RHS of (3.26) as W1 and the second component on

the RHS of (3.26) as W2. For time 1 a baseline where, µa1 = µr1, πd = nd/n and ∆ = (µa2−µr2)

we obtain,

E (W1) =
σ22

n
,

E (W2) =
σ22

n
+

∆2πdno
n(n− 1)

+
σ22πd (2− πd)
n(n− 1)

+
σ2

12

σ11

πd (2− 3πd)

n(n− 1)

+
σ22

(
1− ρ2

)
πd

n(n− 1)

[
2n

(n− 1)
− 2πd

(n− 1)
− πd

]
+

4πd (1− πd)
n(n− 1)

(σ11 − 2σ12) . (3.27)

We now consider
(
1 + 1

K

)
E
(
B̂
)

. Taking the required expectations reveals,

(
1 +

1

K

)
E
(
B̂
)

=

(
1 +

1

K

)
π2
d

[
σ22

(
1− ρ2

)
(n− 1)

(
2

n
+ 1 +

1

πd

)
+

2

n

(
σ2

12

σ11
+ σ11 − 2σ12

)]
.

(3.28)

Assuming that n is sufficiently large so that we may take (n − 1) to be n gives Rubin’s variance

estimator asymptotically as,
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E [VCIR, MI] =
2σ22

n
+

∆2πd(1− πd)
n

+
σ22πd (2− πd)

n2
+
σ2

12

σ11

πd (2− 3πd)

n2

+
σ22

(
1− ρ2

)
πd

n2

[
2− 2πd

n
− πd

]
+

4πd(1− πd)
n2

(σ11 − 2σ12)

+

(
1 +

1

K

)
π2
d

n

[
σ22(1− ρ2)

(
2

n
+ 1 +

1

πd

)
+ 2

(
σ2

12

σ11
+ σ11 − 2σ12

)]
.

For infinite K this is,

E [VCIR, MI] =
2σ22

n
+

∆2πd (1− πd)
n

+
σ22

(
1− ρ2

)
πd

n
+
σ22

(
1− ρ2

)
π2
d

n
+ 2

σ2
12

σ11

π2
d

n

+
σ2

12

σ11

πd (2− 3πd)

n2
+
σ22

(
1− ρ2

)
πd

n2

[
2 + πd

(
1− 2

n

)]
+
σ22πd (2− πd)

n2

+ 2πd (σ11 − 2σ12)

[
(n− 2)πd + 2

n2

]
. (3.29)

Table B.7 summarises Rubin’s derived variance under CIR alongside simulation results. In all

settings the derivation results are within 2 MCSE’s of the simulation results.

Information anchoring under copy increments in reference

The expectation of the ideal information anchored variance estimate under CIR, for ∆ = (µa2 − µr2)

up to the order π4
d/n terms is,

E [Vanchored] =
2σ22

n
+

∆2πd (1− πd)
n

+
σ22

(
1− ρ2

)
πd

n
+

[
σ22

n
+

∆2

2n

] (
1− ρ2

)
π2
d

+
σ22

(
1− ρ2

)
π3
d

n
+
σ22

(
1− ρ2

)
π4
d

n
. (3.30)

The difference between Rubin’s CIR MI variance estimator where K →∞ (3.29) and (3.30) is,

E [VCIR, MI]− E [Vanchored] =2
σ2

12

σ11

π2
d

n
+
σ2

12

σ11

πd (2− 3πd)

n2
+
σ22πd (2− πd)

n2

+
σ22

(
1− ρ2

)
πd

n2

[
2 + πd

(
1− 2

n

)]
+ 2πd (σ11 − 2σ12)

[
(n− 2)πd + 2

n2

]
−

∆2
(
1− ρ2

)
π2
d

2n
−
σ22

(
1− ρ2

)
π3
d

n
−
σ22

(
1− ρ2

)
π4
d

n
.

The difference between Rubin’s MI variance and the ideal variance under CIR is dominated by the

following terms which have the largest magnitude,
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2
σ2

12

σ11

π2
d

n
+ 2 (σ11 − 2σ12)

π2
d

n
−

∆2
(
1− ρ2

)
π2
d

2n
−
σ22

(
1− ρ2

)
π3
d

n
−
σ22

(
1− ρ2

)
π4
d

n
. (3.31)

The difference is again notably very small. It matches the difference seen under J2R, plus the

additional component, 2πd (σ11 − 2σ12)πd/n. This term is O(π2
dn
−1). Since πd < 1 this extra

term will also always be relatively small in comparison to the information anchoring variance we

are targeting, which is O(n−1). Thus we see Rubin’s variance estimator also provides an excellent

approximation of the ideal information anchored variance that preserves the loss of information in

the primary analysis under CIR.

The ratio of the difference between Rubin’s variance estimator and the information anchored

variance (3.31) to the information anchored variance (3.30) under CIR is,

(
1− ρ2

)
π2
d

[
−∆2 − 2σ22

(
πd + π2

d

)]
+ 4σ2

12σ
−1
11 π

2
d + 4 (σ11 − 2σ12)π2

d

4σ22 + πd [∆2 (2 (1− πd) + (1− ρ2)πd) + 2σ22 (1− ρ2) (1 + πd + π2
d + π3

d)]
.

3.2.4 Last mean carried forward

Finally we calculate Rubin’s MI variance estimator in the LMCF setting.

Rubin’s variance estimator under last mean carried forward

The data distribution under LMCF is formed using the mean from the active arm at time 1 for

time 1 and time 2 and variance from the active arm. Appendix B.3 provides the full details of the

steps taken to form the conditional model this implies for time 2 given time 1. Again assuming

the data is normal, variance is known and improper priors for the missing observations themselves,

then the posterior of the model parameters is approximately normal, with prior dominated by the

observed data. The LMCF imputation model for patient i and imputation k is,

Ỹai2,k = Ȳa1 + uk + (r/q + bk)
(
Yai1 − Ȳa1 − uk

)
+ ei,k, for i ∈ D, k = 1, ...,K, (3.32)

where,

uk ∼ N
(
0, n−1σ11

)
bk ∼ N

(
0, q−1σ2.1

)
ei,k ∼ N (0, σ2.1) ,

and under LMCF r =
∑
i∈O

(
Yai1 − Ȳa1,o

) (
Yai2 − Ȳa2,o

)
and q =

∑n
i∈O

(
Yai1 − Ȳa1,o

)2
. Using the
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above imputation model we obtain the treatment effect for the kth imputation over the missing

cases as,

θ̂LMCF, k = µ̂a2,k − µ̂r2 =
no
n
Ȳa2o +

nd
n
Ȳa2d,k − Ȳr2,

where,

Ȳa2d,k =
1

nd

∑
i∈D

Ỹai2,k = Ȳa1 + uk +

(
r

q
+ bk

)(
Ȳa1d − Ȳa1 − uk

)
+ ēk,

and ēk = 1
nd

∑
i∈D ei,k and Ȳa1d = 1

nd

∑
i∈D Yai1. Averaging the sample mean estimate for the kth

imputation, over the imputation set, K, gives Rubin’s MI estimator as,

θ̂LMCF, MI =
no
n
Ȳa2o +

nd
n

[
Ȳa1 + ū+

(
r

q
+ b̄

)(
Ȳa1d − Ȳa1 − ū

)
+ ē

]
− Ȳr2,

where ū = 1
K

∑K
k=1 uk, b̄ = 1

K

∑K
k=1 bk and ē = 1

K

∑K
k=1 ēk. Taking the necessary expectations

reveals,

E(θ̂LMCF, MI) =
no
n
µa2 +

nd
n
µa1 − µr2.

This is unbiased for the treatment effect under LMCF. For Rubin’s MI variance estimator under

LMCF we require,

E
(
Ŵ
)

= E
(
σ̂2
k

)
=E

(
1

n−1

∑n
i=1 (Yri2 − µ̂r2)

2

n

)

+ E


1

n−1

[∑
i∈O (Yai2 − µ̂a2,k)

2
+
∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
]

n

 . (3.33)

We again define the first component on the RHS of (3.33) as W1 and the second component on

the RHS of (3.33) as W2. For time 1 a baseline where, µa1 = µr1, πd = nd/n and we redefine

∆ = (µa2 − µa1) we obtain,
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E (W1) =
σ22

n
,

E (W2) =
σ22

n
+

∆2πdno
n(n− 1)

+
2πd (1− πd)
n (n− 1)

[
σ11 − 2σ12 +

σ2
12

σ11

]
+

2σ22

(
1− ρ2

)
πd

n (no − 1)
. (3.34)

We now consider
(
1 + 1

K

)
E
(
B̂
)

. Taking the necessary expectations reveals,

(
1 +

1

K

)
E
(
B̂
)

=

(
1 +

1

K

)
π2
d

n

[
σ11 − 2σ12 +

σ2
12

σ11
+ σ22

(
1− ρ2

)( non+ nd
nd (no − 1)

)]
. (3.35)

Assuming that n is sufficiently large so that we may take (n − 1) to be n and (no − 1) to be no,

gives Rubin’s variance estimator asymptotically as,

E [VLMCF, MI] =
2σ22

n
+

∆2πd(1− πd)
n

+
2πd(1− πd)

n2

[
σ11 − 2σ12 +

σ2
12

σ11

]
+

2σ22

(
1− ρ2

)
πd

n2(1− πd)

+

(
1 +

1

K

)
π2
d

n

[
σ11 − 2σ12 +

σ2
12

σ11
+ σ22

(
1− ρ2

)( 1

πd
+

1

n(1− πd)

)]
.

For infinite K this is,

E [VLMCF, MI] =
2σ22

n
+

∆2πd(1− πd)
n

+
σ22

(
1− ρ2

)
πd

n

[
1 +

2

n(1− πd)
+

πd
n(1− πd)

]
+
πd (2 + (n− 2)πd)

n2

[
σ11 − 2σ12 +

σ2
12

σ11

]
. (3.36)

Table B.9 summarises Rubin’s derived variance under LMCF alongside simulation results. In all

settings the derivation results are within 2 MCSE’s of the simulation results.

Information anchoring under last mean carried forward

The expectation of the ideal information anchored variance estimate that preserves the fraction of

missing information in the primary design based analysis under LMCF, where ∆ = (µa2 − µa1) up

to the order π4
d/n terms is,
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E [Vanchored] =
2σ22

n
+

∆2πd (1− πd)
n

+
σ22

(
1− ρ2

)
πd

n
+

[
σ22

n
+

∆2

2n

] (
1− ρ2

)
π2
d

+
σ22

(
1− ρ2

)
π3
d

n
+
σ22

(
1− ρ2

)
π4
d

n
. (3.37)

We now compare this to Rubin’s LMCF MI variance estimator whereK →∞ (3.36). The difference

(3.36) - (3.37) is,

E [VLMCF, MI]− E [Vanchored] = +
πd (2 + (n− 2)πd)

n2

[
σ11 − 2σ12 +

σ2
12

σ11

]
+
σ22

(
1− ρ2

)
πd (2 + πd)

n2(1− πd)
−

∆2
(
1− ρ2

)
π2
d

2n

−
σ22

(
1− ρ2

)
π2
d

n
−
σ22

(
1− ρ2

)
π3
d

n
−
σ22

(
1− ρ2

)
π4
d

n
.

The difference between Rubin’s’ MI variance and the ideal variance under LMCF is dominated by

the following terms which have the largest order,

π2
d

n

[
σ11 − 2σ12 +

σ2
12

σ11

]
−

∆2
(
1− ρ2

)
π2
d

2n
−
σ22

(
1− ρ2

)
π2
d

n
−
σ22

(
1− ρ2

)
π3
d

n
−
σ22

(
1− ρ2

)
π4
d

n
.

(3.38)

Under LMCF the difference once again depends on the trial size, the amount of missingness in

the active arm (nd), the correlation between the time 1 and time 2 measurements (ρ2), and the

variance of the data at time 2 (σ22), but now additionally depends further on the mean difference

between time 1 and time 2 in the active arm (∆ = µa2 − µa1). Rubin’s variance estimator will

better approximate the information anchored variance with smaller amounts of missingness and

when the mean at time 1 is closer to mean 2. However the terms in the difference are of a very

small order and in practice negligible. The largest term in (3.38) is O(π2
dn
−1). This is tiny in

comparison to the information anchored variance, which is O(n−1). We see that Rubin’s variance

estimator also approximates the ideal information anchored variance under LMCF. For larger n

the difference approaches zero. Under LMCF the ratio of the difference between Rubin’s variance

estimator and the information anchored variance (3.38) to the information anchored variance (3.37)

is,

(
1− ρ2

)
π2
d

[
−∆2 − 2σ22

(
1 + πd + π2

d

)]
+ 2π2

d

(
σ11 − 2σ12 + σ2

12σ
−1
11

)
4σ22 + πd [∆2 (2 (1− πd) + (1− ρ2)πd) + 2σ22 (1− ρ2) (1 + πd + π2

d + π3
d)]
.

Our exposition has revealed that in the described baseline and single follow-up setting,
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Rubin’s variance estimator approximates the information anchored variance that preserves

the loss of information in the design based primary analysis for all reference based MI

sensitivity analysis scenarios.

We summarise the results of the derivations undertaken in this Section in Tables 3.2 and 3.3. The

difference between Rubin’s variance and the information anchored variance is of a small order

in each case. Rubin’s variance estimator keeps the information constant across the primary and

sensitivity analysis as desired. We now explore this property in a simulation study based on real

data.

Imputation Rubin’s MI variance - Information anchored variance

Method (largest order terms)

CR −∆2(1−ρ2)π2
d

2n − σ22(1−ρ2)π3
d

n − σ22(1−ρ2)π4
d

n

J2R −∆2(1−ρ2)π2
d

2n − σ22(1−ρ2)π3
d

n − σ22(1−ρ2)π4
d

n + 2
σ2

12

σ11

π2
d

n

CIR −∆2(1−ρ2)π2
d

2n − σ22(1−ρ2)π3
d

n − σ22(1−ρ2)π4
d

n + 2
σ2

12

σ11

π2
d

n + 2 (σ11 − 2σ12)
π2
d

n

LMCF −∆2(1−ρ2)π2
d

2n − σ22(1−ρ2)π2
d

n − σ22(1−ρ2)π3
d

n − σ22(1−ρ2)π4
d

n +
π2
d

n

[
σ11 − 2σ12 +

σ2
12

σ11

]

Table 3.2: Difference between Rubin’s MI variance estimator and the information anchored
variance for CR, J2R, CIR and LMCF imputation with baseline and a single follow-up. Note:

∆ = µa2 − µr2 for CR, J2R and CIR. For LMCF ∆ = µa2 − µa1.

Imputation (Rubin’s - Information anchored variance)/Information anchored variance

Method (largest order terms)

CR
(1−ρ2)π2

d[−∆2−2σ22(πd+π2
d)]

4σ22+πd[∆2(2(1−πd)+(1−ρ2)πd)+2σ22(1−ρ2)(1+πd+π2
d+π3

d)]

J2R
(1−ρ2)π2

d[−∆2−2σ22(πd+π2
d)]+4σ2

12σ
−1
11 π

2
d

4σ22+πd[∆2(2(1−πd)+(1−ρ2)πd)+2σ22(1−ρ2)(1+πd+π2
d+π3

d)]

CIR
(1−ρ2)π2

d[−∆2−2σ22(πd+π2
d)]+4σ2

12σ
−1
11 π

2
d+4(σ11−2σ12)π2

d

4σ22+πd[∆2(2(1−πd)+(1−ρ2)πd)+2σ22(1−ρ2)(1+πd+π2
d+π3

d)]

LMCF
(1−ρ2)π2

d[−∆2−2σ22(1+πd+π2
d)]+2π2

d(σ11−2σ12+σ2
12σ
−1
11 )

4σ22+πd[∆2(2(1−πd)+(1−ρ2)πd)+2σ22(1−ρ2)(1+πd+π2
d+π3

d)]

Table 3.3: The ratio of the difference between Rubin’s MI variance estimator and the information
anchored variance to the information anchored variance CR, J2R, CIR and LMCF imputation
with baseline and a single follow-up. Note: ∆ = µa2 − µr2 for CR, J2R and CIR. For LMCF

∆ = µa2 − µa1.
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3.3 Simulation study to investigate Rubin’s variance

estimator

We present the results of a simulation study conducted to further evaluate the information anchor-

ing properties of Rubin’s MI variance estimator in a variety of trial settings for each of the reference

based procedures (CR, J2R, CIR and LMCF). The baseline and week 12 data from the asthma

trial described in Subsection 1.7.2 formed the motivating example for generating the datasets.

3.3.1 Methods

Baseline (time 1) and follow-up (time 2) data were generated using an underlying bivariate normal

distribution with means and covariance matrices similar to those obtained in the asthma study at

baseline and week 12 as,

µplacebo = [2, 1.9] , µactive = [2, µa,2] ,

Σplacebo = Σactive =

[
0.4 0.2

0.2 0.6

]
.

In the asthma study a mean treatment group difference of ∆ = 0.3 was observed at follow-up

(µa,2 = 2.2). We consider a range of µa,2 corresponding to treatment differences of ∆ = {0, 0.3, 1}
for 10–70% missing data in the active arm only at time 2.

One thousand independent complete datasets were generated for each combination of µa,2 and

missingness, and a sample size of n=500 patients (n=250 placebo, n=250 active) was drawn for all

simulations.

Interest lies in the mean treatment group difference at time 2. For each setting, the treatment

effect and estimated variance were computed using the full data. The analysis model was a linear

regression of the time 2 response on randomised treatment group. Within the active arm, a MCAR

missingness mechanism, was then imposed on the FEV1 outcome at time 2 by independently

sampling a binary indicator from a Bernoulli distribution with success probability equal to the

proportion of missing data required for patients in the active arm. If the indicator equalled one

then the corresponding outcome at time 2 was set missing.

The reference based MI approach of Carpenter, Roger and Kenward [13] was then applied to

each incomplete dataset under MAR, CR, J2R, CIR and LMCF with 50 imputations. We used

the same set of 1000 incomplete datasets for each imputation procedure in order to minimise the

Monte-Carlo variability in our comparisons.

In each scenario post-deviation data were regenerated using the appropriate conditional normal

distributions in order to compute the treatment effect and its variance had the post-deviation data

been observed in the particular de-facto setting (VDF, full).
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The main outcomes of interest in each scenario were Rubin’s MI estimate of variance and the

information anchored variance, computed using (3.2), for the treatment effect at time 2. Estimates

were averaged over the 1000 simulations in each scenario for comparison.

Additional simulations were run with the above mean and variance parameters but a smaller

(n=100) and larger (n=1000) sample size per arm to explore the effect the trial size has on the

information anchoring properties of Rubin’s variance estimator. We then considered the effect

of having a smaller or larger conditional variance at time 2 given baseline for the original mean

structure and sample size of n=250 per arm, with the following alternative covariance structures

for each missingness scenario,

Low covariance set-up,

Σplacebo,low = Σactive,low =

[
1 0.05

0.05 1

]
.

High covariance variance set-up,

Σplacebo,high = Σactive,high =

[
1 0.75

0.75 1

]
.

3.3.2 Results

Simulations with a moderate treatment effect of ∆ = 0.3 (µa,2 = 2.2), as observed in the asthma

trial, show excellent information anchoring by Rubin’s variance estimator for up to 40–50% missing

data in the active arm for all reference based settings (Figure 3.1) i.e. for realistic proportions of

missing data.

Rubin’s variance estimator reflects our increased uncertainty with greater proportions of missing

data and is appropriately greater than the variance estimator based on completely observed data

under each postulated scenario.

This is in contrast to the behaviour of the empirical long-run sampling variance of the reference

based MI estimator (the variance of the MI treatment estimator over the 1000 simulations), which is

equivalent to the long-run sampling variance of the reference based ML estimator, labelled Sampling

MI/ML variance in Figures 3.1 to 3.5. In all reference based settings the sampling variance of the

MI/ML estimator does not increase as the proportion of missing data increases to reflect the loss

of information. Specifically for CR, CIR and J2R we see the sampling variance of the MI/ML

estimate tends towards zero as the proportion of missing data increases. This is because the mean

proposed for the active deviators in imputation is no longer independent of the mean from the

reference group. As established in Subsection 2.2.2, when looking at the difference between these

two groups the introduced covariance is then taken away in the sampling variance. The sampling

variance of the reference based MI/ML estimator is smaller than the variance estimator based on

completely observed reference based deviation data, thus is not appropriate.

For smaller and larger treatment effects we see the same behaviour (see Figures C.1 to and C.2).

Even with a large treatment effect of ∆ = 1.0 (µa,2 = 2.9) corresponding to 5
3σ22 —thus much
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larger than would be anticipated in any trial in practice— there is excellent agreement between

Rubin’s variance estimator and the information anchored variance for up to 40–50% missing data

in the active arm.
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Figure 3.1: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with the asthma trial treatment effect of ∆ = 0.3 and n=250 per arm.

When a smaller sample size of n=100 per arm is considered we still see an excellent approximation

between Rubin’s variance estimator and the information anchored variance for up to 40–50%

missing data, see Figure 3.2 with ∆ = 0.3 (for ∆ = 0 and ∆ = 1 with n=100 per arm see Figures

C.3 and C.4). When the sample size was inflated, see Figure 3.3 with ∆ = 0.3, as expected we

also see excellent agreement and smaller differences (for ∆ = 0 and ∆ = 1 with n=1000 per arm

see Figures C.5 and C.6).
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Figure 3.2: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with the asthma trial treatment effect of ∆ = 0.3 and n=100 per arm.
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Figure 3.3: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the
1000 MI estimates, with the asthma trial treatment effect of ∆ = 0.3 and n=1000 per arm.

We now consider more extreme covariance structures. We see a similar relationship between Rubin’s

variance estimator and the ideal information anchored variance when we have a low covariance

between time 1 and 2, i.e. a larger conditional variance (see Figure 3.4 with ∆ = 0.3; for ∆ = 0

and ∆ = 1 see Figures C.7 and C.8). There is still excellent agreement for up to 40–50% missingness

in the active arm despite a smaller correlation between time 1 and time 2 outcomes. We see when

we have a higher covariance between time 1 and 2, i.e. a smaller conditional variance agreement is
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even better and excellent for higher (60–70%) missingness (see Figure 3.5 with ∆ = 0.3; for ∆ = 0

and ∆ = 1 see Figures C.9 and C.10).

The simulation results support the results from the derivations. That is, Rubin’s variance estima-

tor provides an excellent approximation for the information anchored variance that preserves the

information loss in the primary design based analysis.
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Figure 3.4: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with the asthma trial treatment effect of ∆ = 0.3 and a low covariance
between time 1 and time 2 outcomes (σ12 = 0.05). n=250 per arm.
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Figure 3.5: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the
1000 MI estimates, with the asthma trial treatment effect of ∆ = 0.3 and a high covariance

between time 1 and time 2 outcomes (σ12 = 0.75). n=250 per arm.

3.3.3 Discussion

So far we have seen that θ̂DF, MI is an unbiased estimator, whose long-run sampling variance is

too small. But whose variance can be estimated under the information anchoring principle using

Rubin’s MI rules. We have shown that Rubin’s variance estimator approximately preserves the loss

of information seen in the primary design based analysis across reference based sensitivity analysis

in a variety of realistic trial settings. When considering more extreme scenarios, i.e. altering

the treatment effect and covariance structure we see Rubin’s variance estimator still provides an

excellent approximation for the information anchoring variance for proportions of missing data

realistically seen. This provides a solid justification for using Rubin’s variance formula to provide

an estimate of variance in the reference based sensitivity analysis settings.

The approximation between Rubin’s variance and the required information anchored variance is

notably not so good when missingness is greater than 50% in the active arm. With 50% or more

missing data we would indeed be cautious of results from any method of analysis. We would be

worried why our trial arm has so much missing data and would need to carefully investigate the

failures of the trial further.

3.4 Baseline adjusted setting

We now investigate Rubin’s MI variance estimator for the baseline adjusted treatment effect.

We consider the same baseline and single follow-up trial set-up outlined at the beginning of this

chapter. Interest now lies in the baseline adjusted mean difference between the treatment groups
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at the follow-up time point, with an appropriate measure of precision.

3.4.1 Information anchoring for the baseline adjusted treatment

estimator

As in the unadjusted setting, in reference based sensitivity analysis it is postulated that the ap-

propriate variance estimate for the baseline adjusted treatment effect is the design based variance

estimator we would obtain if we observed the deviation data in the given de-facto scenario (one

of CR, J2R, CIR or LMCF), inflated by the loss of information seen in the primary design based

analysis (under MAR). We want to keep the information loss constant across the primary and sensi-

tivity analysis. As discussed in Section 3.1 this is a natural and sensible principled approach. That

is, the information anchored variance estimator required for the treatment estimate in sensitivity

analysis is,

Vanchored =
VDJ, MI

VDJ, full

× VDF, full.

In the adjusted treatment effect setting, VDJ, full denotes the variance estimator for the baseline

adjusted treatment estimator, from the design based analysis with full data (no deviation); VDJ, MI

denotes Rubin’s variance estimator for the baseline adjusted treatment estimator from the design

based MAR MI analysis (primary analysis); and VDF, full denotes the design based variance estimator

for the baseline adjusted treatment estimator if post-deviation data were observed in the postulated

reference based scenario (one of CR, J2R, CIR or LMCF). We now compute the expectation of

these components in the baseline and single follow-up setting, in order to compare the desired

information anchored variance with the expectation of Rubin’s variance estimator. It is trivial to

see from the unadjusted calculation in Section 3.2 that all MI estimates are unbiased under their

scenario, so we don’t discuss this further.

To identify the expected value of the variance estimate for the baseline adjusted treatment estimate

in full data, when no deviations occur, VDJ, full, we consider the conditional distributions of Yz2|Y∗z1,

(Yz2|Y∗z1) ∼ N (Xzβz;σ2.1,z) ,

where Yz2 is the vector of outcome data at time 2 from the n patients in arm z, Yz2 = (Yz12, ..., Yzn2)
T

for z = a, r. To simplify calculations Y∗z1 is the vector of baseline data from the n patients in arm

z after adjustment for the overall mean at baseline in arm z (so Y∗z1 has mean zero). That is,

Y∗z1 = (Y ∗z11, ..., Y
∗
zn1)

T
, where Y ∗zi1 = Yzi1 − Ȳz1 and Ȳz1 = 1

n

∑n
i=1 Yzi1. Xz is the design matrix,
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Xz =


1 Y ∗z11

1 Y ∗z21

...
...

1 Y ∗zn1

 .

The usual least square estimates are given by
(
XT
z Xz

)−1
XT
z Yz2 which gives,

β̂z =

(
Ȳz2∑n

i=1 Y
∗
zi1Yzi2∑n

i=1 Y
∗2
zi1

)
.

Having adjusted Yz1 for the overall mean at baseline in that arm (Ȳz1), Ȳz2 represents the average

level of Yz2 for a patient with average Yz1. The variance of the least square estimates are,

(XT
z Xz)

−1σ2.1,z =

[
n−1 0

0 1∑n
i=1 Y

∗2
zi1

]
σ2.1,z,

where σ2.1,z is the residual variance in arm z, which can be calculated as, σ2.1,z = σ22,z−σ2
12,z/σ11,z.

In the current set-up, using the definitions above, the adjusted treatment group difference of

interest, denoted θ̂DJ, full, is calculated as, Ȳa2 − Ȳr2. The expectation of this is, µa2 − µr2. This

is the effect for an active patient with average baseline - reference patient with average baseline.

The variance estimator for this adjusted treatment difference is, σ̂2.1,a/n+ σ̂2.1,r/n.

When no deviations occur, conditional on time 1, the expected value of the residual variance terms

are, E [σ̂2.1,a] = E [σ̂2.1,r] = σ2.1 = σ22 − σ2
12/σ11. The expected value of the variance estimate for

the adjusted treatment effect when no deviations are observed is therefore,

E [VDJ, full] =
2σ2.1

n
. (3.39)

To identify the expected value of the variance estimate for the baseline adjusted treatment estimate

when deviations occur in the active arm and the post-deviation data are observed, in the de-facto

reference based settings, VDF, full, we reconsider the conditional distribution of Ya2|Y∗a1 in the

presence of deviation. Ya2 is now the vector of outcome data at time 2 from the active arm

including deviators and non-deviators. Y∗a1 is the vector of baseline data from the active arm.

After adjustment for the overall mean at baseline in the active arm.

(Ya2|Y∗a1) ∼ N (Xaβa;σ2.1,a) .
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Here Xa is the design matrix,

Xa =


1 Y ∗a11,

1 Y ∗a21

...
...

1 Y ∗an1

 .

The usual least square estimates are given by
(
XT

a Xa

)−1
XT

a Ya2 which gives,

β̂a =

(
1
n (noȲa2o + ndȲa2d)∑n

i=1 Y
∗
ai1Yai2∑n

i=1 Y
∗2
ai1

)
,

with variance,

(XT
a Xa)−1σ2.1,a =

∣∣∣∣∣ n−1 0

0 1∑n
i=1 Y

∗2
ai1

∣∣∣∣∣σ2.1,a,

where σ2.1,a is the residual variance, which can be calculated as, σ2.1,a = σ22,a − σ2
12,a/σ11,a.

With deviation in the active arm, the adjusted treatment group difference of interest, θ̂DF, full, is

calculated as (1/n)(noȲa2o+ndȲa2d)− Ȳr. The expectation of this is (no/n)µa2 +(nd/n)µd2−µr2.

The expected value of the variance at time 2 as derived in Appendix B.1 is, E [σ̂22,a] = σ22 +

ndno∆
2/n3 and as the design based analysis conditions on baseline data E

[
σ̂2

12,a/σ̂11,a

]
= σ2

12/σ11

(assuming COV(Yai1, Yai2) = σ12 for i ∈ O,D). The expected value of the residual variance in the

active arm, where ∆ = µa2 − µr2, is therefore,

E [σ̂2.1,a] = σ22 +
ndno∆

2

n3
− σ2

12

σ11
= σ2.1 +

ndno∆
2

n3
.

The expected value of the variance estimate for the adjusted treatment effect when reference based

post-deviation data is observed is therefore,

E [VDF, full] = E

[
σ̂2.1,r

n

]
+ E

[
σ̂2.1,a

n

]
=

2σ2.1

n
+

∆2ndno
n3

. (3.40)

The last component needed to establish the expected value of the required variance estimate for

the baseline adjusted treatment effect is the expected value of Rubin’s variance estimator for the
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baseline adjusted treatment effect in the primary MI MAR setting.

We follow the same set-up and initial developments for an appropriate imputation distribution

under MAR as in the unadjusted treatment effect setting outlined in Subsection 3.1.1. The impu-

tation model is as in (3.3).

The MI estimator, calculated using Rubin’s rules is, θ̂DJ, MI = 1
K

∑K
k=1 θ̂DJ, k, where θ̂DJ, k represents

the baseline adjusted treatment estimator in the kth imputed dataset. From the full data setting

outlined above we infer that the baseline adjusted treatment estimator, in imputation k is computed

as, θ̂DJ, k = Ȳa2,k− Ȳr2. The expectation of Ȳa2,k and Ȳr2 have already been computed under MAR

in Subsection 3.1.1, which reveals E
[
θ̂DJ, k

]
= µa2 − µr2 and E

[
θ̂DJ, MI

]
= µa2 − µr2. This is

unbiased under the described conditions, where adjustment for the overall mean at baseline in

each arm has been made, prior to including this variable in the analysis.

Our target is Rubin’s variance estimator for the baseline adjusted treatment effect, which is given

by, Ŵ + (1 + 1
K )B̂, where Ŵ = 1

K

∑K
k=1 σ̂

2
k and σ̂2

k now represents the variance estimator for the

adjusted treatment estimator in imputation k.

We infer from the full data setting outlined above, that the variance estimator for the adjusted

treatment difference for imputation k will be, σ̂2
k = σ̂2.1,r/n+ σ̂2.1,a,k/n. Thus,

E
[
Ŵ
]

=
σ2.1

n
+
E [σ̂2.1,a,k]

n
.

Breaking this down for the active arm, since we are conditioning on baseline (time 1) E
[
σ̂2

12,a,k/σ̂11,a,k

]
=

σ2
12/σ11 we have,

E [σ̂2.1,a,k] = E [σ̂22,a,k]− σ2
12

σ11
,

where σ̂22,a,k denotes the variance of the data at time 2 in the active arm, in the kth imputed

dataset. The expectation of σ̂22,a,k has already been computed under MAR in Section 3.1.1 as,

E [σ̂22,a,k] = σ22 +
2ndσ2.1

(no − 1)(n− 1)
.

The between imputation variance is given by B̂ = 1
K−1

∑K
k=1

(
θ̂DJ, k − θ̂DJ, MI

)2

. Taking the nec-

essary expectations, as done in Section 3.1.1 reveals,

E
[
B̂
]

=
σ2.1nd

n (no − 1)
.
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Thus the overall expected value of the variance estimator of the MI estimator under MAR, where

we assume that n is sufficiently large so that we may take (n− 1) to be n and (no− 1) to be no is,

E [VDJ, MI] =
2σ2.1

n
+

2σ2.1πd
n2(1− πd)

+

(
1 +

1

K

)
σ2.1πd

n (1− πd)
.

For infinite K this is equal to,

E [VDJ, MI] =
2σ2.1

n
+

2σ2.1πd
n2(1− πd)

+
σ2.1πd

n (1− πd)
= σ2.1

[
1

n
+

1

no

]
+

2σ2.1πd
n2(1− πd)

. (3.41)

Table B.2 summarises Rubin’s derived variance estimator under MAR alongside simulation results.

Derived results are within 2 MCSE’s of the simulation results. Rubin’s MAR variance estimator is

asymptotically equivalent to the expected value of the estimated variance of the baseline adjusted

treatment effect in the observed data from a full likelihood analysis, E [VDJ, ML]. That is the effect

of an active patient with average baseline - reference patient with average baseline, estimated from

a regression of the time 2 outcome on mean adjusted baseline in each arm, for individuals observed

at both time points only. When deviation data is missing at time 2 only, under MAR (or MCAR),

the active cases observed a time 1 only contribute no information towards the baseline adjusted

treatment effect.

To see this we now derive the ML variance. Consider the conditional distribution of Ya2o|Y∗a1o.

Ya2o is the vector of outcome data at time 2 from the no active patients observed at both time

points, Ya2o = {Yai2; i ∈ O}T . Y∗a1o is the vector of baseline data from the non-deviating active

patients, after adjustment for the mean baseline outcome at time 1 for the no active arm patients,

Y∗a1o = {Y ∗ai1; i ∈ O}T , where Y ∗ai1 = Yai1 − Ȳa1o, Ȳa1o = 1
no

∑
i∈O Yai1,

(Ya2o|Y∗a1o) ∼ N (Xaoβao;σ2.1,ao) ,

where Xao is the design matrix,

Xao =


1 Y ∗a11,

1 Y ∗a21

...
...

1 Y ∗ano1

 .

The usual least square estimates are given by
(
XT

aoXao

)−1
XT

aoYa2o which gives,
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β̂ao =

(
Ȳa2o∑

i∈O Y
∗
ai1Yai2∑

i∈O Y
∗2
ai1

)
,

with variance,

(XT
aoXao)

−1σ2.1,ao =

∣∣∣∣∣ n−1
o 0

0 1∑
i∈O Y

∗2
ai1

∣∣∣∣∣σ2.1,ao,

where σ2.1,ao is the residual variance, which can be calculated as, σ2.1,ao = σ22,ao − σ2
12,ao/σ11,ao.

The adjusted treatment group difference of interest, under the described conditions, is calculated

as, Ȳa2o − Ȳr. The expectation of this is, µa2 − µr2. The variance estimator for the adjusted

treatment difference will be, σ̂2.1,ao/no + σ̂2.1,r/n.

Since conditioning on baseline (time 1) E [σ̂2.1,ao] = E [σ̂2.1,r] = σ2.1 = σ22−σ2
12/σ11, the expected

value of the variance for the adjusted treatment effect when post-deviation data are unobserved,

from a full likelihood analysis is,

E [VDJ, ML] = σ2.1

[
1

n
+

1

no

]
.

This is asymptotically equivalent to the MI MAR variance estimator using Rubin’s variance formula

(3.41) (for n→∞, K →∞). We now have the inflation factor to apply to the design based variance

estimator for the adjusted treatment effect where reference based deviation data is observed (3.40)

to derive the required variance estimator in sensitivity analysis with missing post-deviation data.

That is (3.41) (up to the O(n−2) terms) divided by (3.39),

E [VDJ, MI]

E [VDJ, full]
= 1 +

πd
2(1− πd)

= 1 +
πd + π2

d + π3
d + π4

d + ...

2
.

We will now assess whether Rubin’s variance formula comes close to the desired information an-

chored variance estimate in each of the reference based settings.

3.4.2 Rubin’s variance estimator for the baseline adjusted treatment

estimator

Here we analytically derive Rubin’s MI variance estimator in each of the CR, J2R, CIR and LMCF

settings and compare this to the information anchored variance estimate. We use the results
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from Section 3.2 within computations. In each de-facto scenario, MI proceeds in the same way as

when the unadjusted treatment estimator was of interest in Section 3.2. It is just the substantive

primary analysis model that is different, because it is now baseline adjusted. Under the described

conditions, the adjusted treatment estimate is the effect for an active patient with average baseline

- reference patient with average baseline.

Rubin’s variance estimator under copy reference

We follow the same set-up and initial developments for an appropriate imputation distribution un-

der CR as in the unadjusted treatment effect setting outlined in Subsection 3.2.1. The imputation

model is as in (3.9).

The MI estimator, calculated using Rubin’s rules is, θ̂CR, MI = 1
K

∑K
k=1 θ̂CR, k, where θ̂CR, k rep-

resents the baseline adjusted treatment estimator in the kth imputed dataset. From the full

data setting outlined above we infer that the baseline adjusted treatment estimator in imputa-

tion k is computed as, θ̂CR, k = Ȳa2,k − Ȳr2. The expectation of Ȳa2,k and Ȳr2 have already

been computed under CR in Subsection 3.2.1, which reveals E
[
θ̂CR, k

]
= (no/n) (µa2 − µr2) and

E
[
θ̂CR, MI

]
= (no/n) (µa2 − µr2).

Rubin’s variance estimator for the adjusted treatment effect, is given by, Ŵ + (1 + 1
K )B̂, where

Ŵ = 1
K

∑K
k=1 σ̂

2
k and σ̂2

k represents the variance estimator for the adjusted treatment difference in

imputation k. We infer from the full data setting outlined above, that the variance estimator for

the adjusted treatment difference for imputation k will be, σ̂2
k = σ̂2.1,r/n+ σ̂2.1,a,k/n. Thus,

E
[
Ŵ
]

=
σ2.1

n
+
E [σ̂2.1,a,k]

n
.

Under CR imputation, since we are conditioning on baseline (time 1) E
[
σ̂2

12,a,k/σ̂11,a,k

]
= σ2

12/σ11.

We therefore have, E [σ̂2.1,a,k] = E [σ̂22,a,k]−σ2
12/σ11, where σ̂22,a,k denotes the estimated variance

of the data at time 2 in the active arm, in the kth imputed dataset. The expectation of σ̂22,a,k has

already been computed under CR in Subsection 3.2.1 as,

E [σ̂22,a,k] = σ22 +
∆2πdno
(n− 1)

+
2σ2.1πd
(n− 1)

[
2− πd

(
1 +

1

n

)]
.

The between imputation variance is given by, B̂ = 1
K−1

∑K
k=1

(
θ̂CR, k − θ̂CR, MI

)2

. Taking the

necessary expectations, as done in Subsection 3.2.1 reveals,

E
[
B̂
]

= σ2.1πd
(πd + 1)

(n− 1)
.
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Thus the overall expected value of the variance of the MI estimator under CR, where we assume

that n is sufficiently large so that we may take (n− 1) to be n is,

E [VCR, MI] =
2σ2.1

n
+

∆2πd(1− πd)
n

+
2σ2.1πd
n2

[
2− πd

(
1 +

1

n

)]
+

(
1 +

1

K

)
σ2.1πd

(πd + 1)

n
.

For infinite K this is equal to,

E [VCR, MI] =
2σ2.1

n
+

∆2πd (1− πd)
n

+
2σ2.1πd
n2

[
2− πd

(
1 +

1

n

)]
+ σ2.1πd

(πd + 1)

n
.

Table B.4 summarises Rubin’s derived variance estimator under CR alongside simulation results.

Derived results are within 2 MCSE’s of the simulation results. The expectation of the ideal

information anchored variance under CR is,

E [Vanchored] =
2σ2.1

n
+

∆2πd(1− πd)
n

+
∆2π2

d

2n
+

σ2.1πd
(1− πd)n

,

which up to the π4
d/n terms, is equivalent to,

E [Vanchored] =
2σ2.1

n
+

∆2πd(1− πd)
n

+
∆2π2

d

2n
+
σ2.1πd
n

+
σ2.1π

2
d

n
+
σ2.1

n

[
π3
d + π4

d

]
.

The difference between Rubin’s MI variance estimator under CR where K → ∞ and the ideal

information anchored variance is,

E [VCR, MI]− E [Vanchored] =
2σ2.1πd
n2

[
2− πd

(
1 +

1

n

)]
− ∆2π2

d

2n
− σ2.1π

3
d

n
− σ2.1π

4
d

n
.

The largest terms of the difference are,

−∆2π2
d

2n
− σ2.1π

3
d

n
− σ2.1π

4
d

n
. (3.42)

We see that the difference is very small and approaches zero for larger n. The different is not the

same as in the unadjusted setting. But similar to the unadjusted setting discussed in Subsection
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3.2.1, the precise difference depends on the size of the trial (n), the amount of missingness in the

active arm (nd), the correlation between the time 1 and time 2 measurement, the variance of the

data at time 2 (σ2.1 = σ22(1−ρ2)), as well as the mean difference between the active and reference

arm at time 2 (∆). For realistic trial settings (powered at 80% with 5% statistical significance)

where ∆2 ≈ 15.68σ22/n the difference is at most O(π3
dn
−1). The first term in (3.42) will be O(n−2)

and the second two terms are respectively O(π3
dn
−1) and O(π4

dn
−1). The information anchored

variance is of a larger order, O(n−1). The terms in (3.42) are therefore practically negligible in

comparison. Under CR the ratio of the difference between Rubin’s variance estimator and the

information anchored variance to the information anchored variance is,

π2
d

[
−∆2 − 2σ22

(
1− ρ2

) (
πd + π2

d

)]
4σ2.1 + πd [∆2 (2 (1− πd) + πd) + 2σ22 (1− ρ2) (1 + πd + π2

d + π3
d)]
.

Thus Rubin’s variance estimator provides an excellent approximation for the information anchored

variance estimate that preserves the information loss in the primary analysis in the baseline ad-

justed CR setting.

Rubin’s variance estimator under J2R

We follow the same set-up and initial developments for an appropriate imputation distribution un-

der J2R as in the unadjusted treatment effect setting outlined in Subsection 3.2.2. The imputation

model is as in (3.18).

Under the described conditions the baseline adjusted treatment estimator in imputation k is com-

puted as, θ̂J2R, k = Ȳa2,k − Ȳr2. The expectation of Ȳa2,k and Ȳr2 have already been computed

under J2R in Subsection 3.2.2, which reveals E
[
θ̂J2R, k

]
= (no/n) (µa2 − µr2), thus E

[
θ̂J2R, MI

]
=

(no/n) (µa2 − µr2).

For Rubin’s variance estimator we require,

E
[
Ŵ
]

=
σ2.1

n
+
E [σ̂2.1,a,k]

n
,

where,

E [σ̂2.1,a,k] = E [σ̂22,a,k]− σ2
12

σ11
.

The expectation of σ̂22,a,k under J2R as computed in Subsection 3.2.2 is,
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E [σ̂22,a,k] =σ22 +
∆2πdno
(n− 1)

+
σ22πd (2− πd)

(n− 1)
+
σ2

12

σ11

πd (2− 3πd)

(n− 1)

+
σ2.1πd
(n− 1)

[
2n

(n− 1)
− 2πd

(n− 1)
− πd

]

where ∆ = (µa2 − µr2). Taking the necessary expectations, as done in Subsection 3.2.2, reveals

the between imputation variance is,

E
[
B̂
]

= π2
d

[
σ2.1

(n− 1)

(
2

n
+ 1 +

1

πd

)
+

2

n

σ2
12

σ11

]
.

Thus the overall expected value of the variance of the MI estimator under J2R, where we assume

that n is sufficiently large so that we may take (n− 1) to be n is,

E [VJ2R, MI] =
2σ2.1

n
+

∆2πd(1− πd)
n

+
σ22πd(2− πd)

n2
+
σ2

12

σ11

πd(2− 3πd)

n2

+
σ2.1πd
n2

(
2− 2πd

n
− πd

)
+

(
1 +

1

K

)
π2
d

n

[
σ2.1

(
2

n
+ 1 +

1

πd

)
+ 2

σ2
12

σ11

]
.

For infinite K this is equal to,

E [VJ2R, MI] =
2σ2.1

n
+

∆2πd (1− πd)
n

+
σ2.1πd
n

+
σ2.1π

2
d

n
+ 2

σ2
12

σ11

π2
d

n
+
σ2

12

σ11

πd (2− 3πd)

n2

+
σ2.1πd
n2

[
2 + πd

(
1− 2

n

)]
+
σ22πd (2− πd)

n2
.

Table B.6 shows Rubin’s derived variance estimator under J2R is within 2 MCSE’s of simulation

results. The expectation of the ideal information anchored variance under J2R up to the order

π4
d/n terms, where ∆ = (µa2 − µr2) is,

E [Vanchored] =
2σ2.1

n
+

∆2πd(1− πd)
n

+
∆2π2

d

2n
+
σ2.1πd
n

+
σ2.1π

2
d

n
+
σ2.1

n

[
π3
d + π4

d

]
.

The difference between Rubin’s MI variance estimator where K → ∞ and the ideal information

anchored variance is,
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E [VJ2R, MI]− E [Vanchored] =
σ2

12

σ11

πd
n

(
2πd +

2− 3πd
n

)
+
σ2.1πd
n2

[
2 +

πd(n− 2)

n

]
+
σ22πd(2− πd)

n2
− ∆2π2

d

2n
− σ2.1π

3
d

n
− σ2.1π

4
d

n
.

The terms with the largest magnitude in the difference are,

2π2
d

n

σ2
12

σ11
− ∆2π2

d

2n
− σ2.1π

3
d

n
− σ2.1π

4
d

n
. (3.43)

The difference is very small and approaches zero for larger n. The difference again depends on the

size of the trial (n), the amount of missingness in the active arm (nd), the correlation between the

time 1 and time 2 measurement, the variance of the data at time 2 (σ2.1 = σ22(1−ρ2)), as well as the

mean difference between the active and reference arm at time 2 (∆). But for realistic trial settings

the difference is tiny. The first term in (3.43) will be O(π2
dn
−1) therefore practically negligible in

comparison to the information anchored variance we desire, which is O(n−1). The remaining three

terms in the difference are of an even smaller order than that of the first term in (3.43). Under

J2R the ratio of the difference between Rubin’s variance estimator and the information anchored

variance to the information anchored variance is,

π2
d

[
−∆2 − 2σ22

(
1− ρ2

) (
πd + π2

d

)]
+ 4σ2

12σ
−1
11 π

2
d

4σ2.1 + πd [∆2 (2 (1− πd) + πd) + 2σ22 (1− ρ2) (1 + πd + π2
d + π3

d)]
.

Thus Rubin’s variance estimator also well approximates the ideal information anchored variance

in the J2R baseline adjusted setting.

Rubin’s variance estimator under copy increments in reference

We follow the same set-up and initial developments for an appropriate imputation distribution un-

der CIR as in the unadjusted treatment effect setting outlined in Subsection 3.2.3. The imputation

model is as in (3.25).

The baseline adjusted treatment estimator in imputation k is computed as, θ̂CIR, k = Ȳa2,k − Ȳr2.

The expectation of Ȳa2,k and Ȳr2 have already been computed under CIR in Subsection 3.2.3,

which reveals E
[
θ̂CIR, k

]
= (no/n) (µa2 − µr2) and E

[
θ̂CIR, MI

]
= (no/n) (µa2 − µr2).

For Rubin’s variance estimator we require,

E
[
Ŵ
]

=
σ2.1

n
+
E [σ̂2.1,a,k]

n
,
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where,

E [σ̂2.1,a,k] = E [σ̂22,a,k]− σ2
12

σ11
.

The expectation of σ̂22,a,k under CIR, as computed in Subsection 3.2.3 is,

E [σ̂22,a,k] =σ22 +
∆2πdno
(n− 1)

+
σ22πd (2− πd)

(n− 1)
+
σ2

12

σ11

πd (2− 3πd)

(n− 1)

+
σ2.1πd
(n− 1)

[
2n

(n− 1)
− 2πd

(n− 1)
− πd

]
+

4πd(1− πd)
(n− 1)

(σ11 − 2σ12) ,

for ∆ = (µa2 − µr2). Taking the necessary expectations reveals the between imputation variance

is,

E
[
B̂
]

= π2
d

[
σ2.1

(n− 1)

(
2

n
+ 1 +

1

πd

)
+

2

n

(
σ2

12

σ11
+ σ11 − 2σ12

)]
.

Thus the overall expected value of the variance of the MI estimator under CIR, where we assume

that n is sufficiently large so that we may take (n− 1) to be n is,

E [VCIR, MI] =
2σ2.1

n
+

∆2πd(1− πd)
n

+
σ22πd(2− πd)

n2
+
σ2

12

σ11

πd(2− 3πd)

n2

+
σ2.1πd
n2

[
2− 2πd

n
− πd

]
+

4πd(1− πd)
n2

(σ11 − 2σ12)

+

(
1 +

1

K

)
π2
d

n

[
σ2.1

(
2

n
+ 1 +

1

πd

)
+ 2

(
σ2

12

σ11
+ σ11 − 2σ12

)]
.

For infinite K this is,

E [VCIR, MI] =
2σ2.1

n
+

∆2πd (1− πd)
n

+
σ2.1πd
n

+
σ2.1π

2
d

n
+ 2

σ2
12

σ11

π2
d

n
+
σ2

12

σ11

πd (2− 3πd)

n2

+
σ2.1πd
n2

[
2 + πd

(
1− 2

n

)]
+
σ22πd (2− πd)

n2

+ 2πd (σ11 − 2σ12)

[
(n− 2)πd + 2

n2

]
.

Table B.8 shows Rubin’s derived variance estimator under CIR is within 2 MCSE’s of simulation

results. The expectation of the ideal information anchored variance under CIR up to the π4
d/n

terms, where ∆ = (µa2 − µr2) is,
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E [Vanchored] =
2σ2.1

n
+

∆2πd(1− πd)
n

+
∆2π2

d

2n
+
σ2.1πd
n

+
σ2.1π

2
d

n
+
σ2.1

n

[
π3
d + π4

d

]
.

The difference between Rubin’s MI variance estimator where K → ∞ and the ideal information

anchored variance is,

E [Vanchored]− E [VCIR, MI] =
σ2

12

σ11

πd
n

(
2πd +

2− 3πd
n

)
+
σ2.1πd
n2

[
2 +

πd(n− 2)

n

]
+
σ22πd(2− πd)

n2
+ 2πd (σ11 − 2σ12)

[
(n− 2)πd + 2

n2

]
− ∆2π2

d

2n
− σ2.1π

3
d

n
− σ2.1π

4
d

n
.

The difference is dominated by,

σ2
12

σ11

2π2
d

n
+

2π2
d (σ11 − 2σ12)

n
− ∆2π2

d

2n
− σ2.1π

3
d

n
− σ2.1π

4
d

n
.

The difference is again very small and approaches zero for larger n. As in the unadjusted setting

the difference here matches the difference seen under J2R, plus an additional component, which

is also very small and O(π2
dn
−1). This will again be practically negligible in comparison to the

information anchored variance we desire, which is O(n−1). Under CIR the ratio of the difference

between Rubin’s variance estimator and the information anchored variance to the information

anchored variance is,

π2
d

[
−∆2 − 2σ22

(
1− ρ2

) (
πd + π2

d

)]
+ 4σ2

12σ
−1
11 π

2
d + 4 (σ11 − 2σ12)π2

d

4σ2.1 + πd [∆2 (2 (1− πd) + πd) + 2σ22 (1− ρ2) (1 + πd + π2
d + π3

d)]
.

Thus we see Rubin’s variance estimator also approximates the ideal information anchored variance

under CIR for the baseline adjusted treatment effect.

Rubin’s variance estimator under last mean carried forward

Finally for imputation under LMCF we follow the same set-up and initial developments for an

appropriate imputation distribution as in the unadjusted treatment effect setting outlined in Sub-

section 3.2.4. The imputation model is as in (3.32).

The baseline adjusted treatment estimator in imputation k is computed as, θ̂LMCF, k = Ȳa2,k −
Ȳr2. The expectation of Ȳa2,k and Ȳr2 have already been computed under LMCF in Subsection

3.2.3, which reveals E
[
θ̂LMCF, k

]
= (no/n)µa2 + (nd/n)µa1 − µr2 and E

[
θ̂LMCF, MI

]
= (no/n)µa2 +
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(nd/n)µa1 − µr2.

For Rubin’s variance estimator we require,

E
[
Ŵ
]

=
σ2.1

n
+
E [σ̂2.1,a,k]

n
,

where,

E [σ̂2.1,a,k] = E [σ̂22,a,k]− σ2
12

σ11
.

The expectation of σ̂22,a,k under LMCF, as computed in Subsection 3.2.4 is,

E [σ̂22,a,k] =σ22 +
∆2πdno
(n− 1)

+
2πd(1− πd)

(n− 1)

[
σ11 − 2σ12 +

σ2
12

σ11

]
+

2σ2.1πd
(no − 1)

,

for ∆ = (µa2− µa1). Taking the necessary expectations as in Subsection 3.2.4 reveals the between

imputation variance where we assume that n is sufficiently large so that we may take (no − 1) to

be no is,

E
[
B̂
]

=
π2
d

n

[
σ11 − 2σ12 +

σ2
12

σ11
+ σ2.1

(
1

πd
+

1

n (1− πd)

)]
.

Thus the overall expected value of the variance of the MI estimator under LMCF, where we assume

that n is sufficiently large so that we may take (n− 1) to be n and (no − 1) to be no is,

E [VLMCF, MI] =
2σ2.1

n
+

∆2πd(1− πd)
n

+
2πd(1− πd)

n2

[
σ11 − 2σ12 +

σ2
12

σ11

]
+

2σ2.1πd
n2(1− πd)

+

(
1 +

1

K

)
π2
d

n

[
σ11 − 2σ12 +

σ2
12

σ11
+ σ2.1

(
1

πd
+

1

n(1− πd)

)]
.

For infinite K this is,

E [VLMCF, MI] =
2σ2.1

n
+

∆2πd(1− πd)
n

+
σ2.1πd
n

[
1 +

2

n(1− πd)
+

πd
n(1− πd)

]
+
πd (2 + (n− 2)πd)

n2

[
σ11 − 2σ12 +

σ2
12

σ11

]
.
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The expectation of the ideal information anchored variance under LMCF up to the π4
d/n terms,

where ∆ = (µa2 − µa1) is,

E [Vanchored] =
2σ2.1

n
+

∆2πd(1− πd)
n

+
∆2π2

d

2n
+
σ2.1πd
n

+
σ2.1π

2
d

n
+
σ2.1

n

[
π3
d + π4

d

]
.

Table B.10 summarises Rubin’s derived variance estimator under LMCF alongside simulation re-

sults. Derived results are within 2 MCSE’s of the simulation results. The difference between

Rubin’s MI variance estimator where K →∞ and the ideal information anchored variance is,

E [Vanchored]− E [VLMCF, MI] =
σ2.1πd
n

[
2

n(1− πd)
+

πd
n(1− πd)

]
+
πd (2 + (n− 2)πd)

n2

[
σ11 − 2σ12 +

σ2
12

σ11

]
− ∆2π2

d

2n

− σ2.1π
2
d

n
− σ2.1π

3
d

n
− σ2.1π

4
d

n
.

The difference is dominated by,

π2
d

n

[
σ11 − 2σ12 +

σ2
12

σ11

]
− ∆2π2

d

2n
− σ2.1π

2
d

n
− σ2.1π

3
d

n
− σ2.1π

4
d

n
. (3.44)

Again the difference is very small and approaches zero for larger n. Similar to the unadjusted

setting, the precise difference depends on the size of the trial (n), the amount of missingness in the

active arm (nd), the correlation between the time 1 and time 2 measurement, the variance of the

data at time 2 (σ2.1 = σ22(1− ρ2)), as well as the mean difference between the active arm mean at

time 1 and time 2 (∆). The largest term in (3.44) is O(π2
dn
−1). This is tiny in comparison to the

information anchored variance, which is O(n−1). Under LMCF the ratio of the difference between

Rubin’s variance estimator and the information anchored variance to the information anchored

variance is,

π2
d

[
−∆2 − 2σ22

(
1− ρ2

) (
1 + πd + π2

d

)]
+ 2π2

d

(
σ11 − 2σ12 + σ2

12σ
−1
11

)
4σ2.1 + πd [∆2 (2 (1− πd) + πd) + 2σ22 (1− ρ2) (1 + πd + π2

d + π3
d)]

.

We see that Rubin’s variance estimator also provides and excellent approximation for the ideal

information anchored variance under LMCF.

We see in all the reference based settings the difference between Rubin’s variance estimator and

the ideal information anchored variance estimate for the baseline adjusted treatment effect is of

a very small order. Rubin’s variance estimator approximates the desired information anchored

variance for the adjusted treatment effect, thus keeps the information loss constant across primary

and sensitivity analysis.
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The results for Rubin’s variance estimator for the baseline adjusted treatment effect are similar

to those for the unadjusted treatment effect. The inference proceeds as expected. The difference

is due to replacing a marginal variance with a conditional variance. However this difference is

minimal. In Table 3.4 we summarise the difference between Rubin’s MI variance estimator and

the information anchored variance for each imputation procedure for both the unadjusted and

baseline treatment estimator. For the baseline adjusted treatment estimators we have replaced

σ2.1 = σ22

(
1− ρ2

)
for comparison.

Imputation Rubin’s MI variance - Information anchored variance

Method (largest order terms)

Unadjusted treatment estimator:

CR −∆2(1−ρ2)π2
d

2n − σ22(1−ρ2)π3
d

n − σ22(1−ρ2)π4
d

n

J2R −∆2(1−ρ2)π2
d

2n − σ22(1−ρ2)π3
d

n − σ22(1−ρ2)π4
d

n + 2
σ2

12

σ11

π2
d

n

CIR −∆2(1−ρ2)π2
d

2n − σ22(1−ρ2)π3
d

n − σ22(1−ρ2)π4
d

n + 2
σ2

12

σ11

π2
d

n + 2 (σ11 − 2σ12)
π2
d

n

LMCF −∆2(1−ρ2)π2
d

2n − σ22(1−ρ2)π2
d

n − σ22(1−ρ2)π3
d

n − σ22(1−ρ2)π4
d

n +
π2
d

n

[
σ11 − 2σ12 +

σ2
12

σ11

]
Baseline adjusted treatment estimator:

CR −∆2π2
d

2n −
σ22(1−ρ2)π3

d

n − σ22(1−ρ2)π4
d

n

J2R −∆2π2
d

2n −
σ22(1−ρ2)π3

d

n − σ22(1−ρ2)π4
d

n + 2
σ2

12

σ11

π2
d

n

CIR −∆2π2
d

2n −
σ22(1−ρ2)π3

d

n − σ22(1−ρ2)π4
d

n + 2
σ2

12

σ11

π2
d

n + 2 (σ11 − 2σ12)
π2
d

n

LMCF −∆2π2
d

2n −
σ22(1−ρ2)π2

d

n − σ22(1−ρ2)π3
d

n − σ22(1−ρ2)π4
d

n +
π2
d

n

[
σ11 − 2σ12 +

σ2
12

σ11

]

Table 3.4: Difference between Rubin’s MI variance estimator and the information anchored
variance for CR, J2R, CIR and LMCF imputation with baseline and a single follow-up and

baseline adjustment. Note: ∆ = µa2 − µr2 for CR, J2R and CIR. For LMCF ∆ = µa2 − µa1.

We see the only difference is in the first term of each equation, which involves the ∆ term. There is

an additional multiplier of
(
1− ρ2

)
in the unadjusted case due to the marginal variance. However

the overall magnitude of this component in both cases is tiny, that is O(n−2). Thus the additional

multiplier will not have a practically important impact. In Table 3.5 we summarise the ratio of the

difference between Rubin’s MI variance estimator and the information anchored variance to the

information anchored variance for each imputation procedure for both the unadjusted and baseline

treatment estimator. The baseline adjustment does not greatly effect the information anchoring

properties of Rubin’s variance estimator. We now demonstrate this via a simulation study.
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Imputation Rubin’s MI variance - Information anchored variance

Method (largest order terms)

Unadjusted treatment estimator:

CR
(1−ρ2)π2

d[−∆2−2σ22(πd+π2
d)]

4σ22+πd[∆2(2(1−πd)+(1−ρ2)πd)+2σ22(1−ρ2)(1+πd+π2
d+π3

d)]

J2R
(1−ρ2)π2

d[−∆2−2σ22(πd+π2
d)]+4σ2

12σ
−1
11 π

2
d

4σ22+πd[∆2(2(1−πd)+(1−ρ2)πd)+2σ22(1−ρ2)(1+πd+π2
d+π3

d)]

CIR
(1−ρ2)π2

d[−∆2−2σ22(πd+π2
d)]+4σ2

12σ
−1
11 π

2
d+4πd(σ11−2σ12)πd

4σ22+πd[∆2(2(1−πd)+(1−ρ2)πd)+2σ22(1−ρ2)(1+πd+π2
d+π3

d)]

LMCF
(1−ρ2)π2

d[−∆2−2σ22(1+πd+π2
d)]+2π2

d(σ11−2σ12+σ2
12σ
−1
11 )

4σ22+πd[∆2(2(1−πd)+(1−ρ2)πd)+2σ22(1−ρ2)(1+πd+π2
d+π3

d)]

Baseline adjusted treatment estimator:

CR
π2
d[−∆2−2σ22(1−ρ2)(πd+π2

d)]
4σ2.1+πd[∆2(2(1−πd)+πd)+2σ22(1−ρ2)(1+πd+π2

d+π3
d)]

J2R
π2
d[−∆2−2σ22(1−ρ2)(πd+π2

d)]+4σ2
12σ
−1
11 π

2
d

4σ2.1+πd[∆2(2(1−πd)+πd)+2σ22(1−ρ2)(1+πd+π2
d+π3

d)]

CIR
π2
d[−∆2−2σ22(1−ρ2)(πd+π2

d)]+4σ2
12σ
−1
11 π

2
d+4(σ11−2σ12)π2

d

4σ2.1+πd[∆2(2(1−πd)+πd)+2σ22(1−ρ2)(1+πd+π2
d+π3

d)]

LMCF
π2
d[−∆2−2σ22(1−ρ2)(1+πd+π2

d)]+2π2
d(σ11−2σ12+σ2

12σ
−1
11 )

4σ2.1+πd[∆2(2(1−πd)+πd)+2σ22(1−ρ2)(1+πd+π2
d+π3

d)]

Table 3.5: The ratio of the difference between Rubin’s MI variance estimate and the information
anchored variance to the information anchored variance for CR, J2R, CIR and LMCF imputation
with baseline and a single follow-up and baseline adjustment. Note: ∆ = µa2 − µr2 for CR, J2R

and CIR. For LMCF ∆ = µa2 − µa1.
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3.4.3 Simulation study to investigate Rubin’s variance estimator for

the baseline adjusted treatment estimator

We present the results of simulation study conducted to evaluate the information anchoring prop-

erties of Rubin’s MI variance estimator in a variety of trial scenarios, for the baseline adjusted

treatment effect in each of the reference based settings (CR, J2R, CIR and LMCF). The base-

line and week 12 data from the asthma trial described in Subsection 1.7.2 formed the motivating

example for generating the datasets.

Methods

Baseline (time 1) and follow-up (time 2) data were generated using an underlying bivariate normal

distribution with means and covariance matrices similar to those obtained in the asthma study at

baseline and week 12 as,

µplacebo = [2, 1.9] , µactive = [2, µa,2] ,

Σplacebo = Σactive =

[
0.4 0.2

0.2 0.6

]
,

with a range of µa,2 corresponding to treatment effects of ∆ = {0, 0.3, 1} and a sample size of n=250

per arm. Interest now lies in the baseline adjusted mean treatment group difference at time 2. The

analysis model was a linear regression of the time 2 response on randomised treatment group, with

adjustment for baseline. For each setting (unique ∆), the treatment effect and estimated variance

were computed using the full data for 1000 simulations. After imposing the missingness mechanisms

outlined in Subsection 3.3.1, corresponding to 10–70% missingness at time 2 in the active arm,

the reference based MI approach of Carpenter, Roger and Kenward [13] was then applied to each

incomplete dataset under MAR, CR, J2R, CIR and LMCF with 50 imputations. In each scenario

post-deviation data were regenerated using the appropriate conditional normal distributions to

compute the baseline adjusted treatment effect and its variance had the post-deviation data been

observed in the particular de-facto scenario.

The main outcomes of interest were Rubin’s MI estimate of variance and the ideal information

anchored variance computed as in Subsection 3.4.1 for the baseline adjusted treatment effect.

Estimates were averaged over the 1000 simulations in each scenario for comparison.

Results

In simulations with a treatment effect of ∆ = 0.3 (µa,2 = 2.2), as observed in the original asthma

trial, excellent agreement is seen between Rubin’s MI variance estimator and the information

anchored variance for up to 40–50% missing data in the active arm. This corresponds with the

results seen for the unadjusted treatment effect. Excellent agreement up to 40–50% missingness is

also observed with smaller and larger treatment effects (see Figures C.11 and C.12).
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Figure 3.6: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with the asthma trial treatment effect of ∆ = 0.3 and n=250 per arm.

When a smaller sample size of n= 100 per arm is considered we still see excellent agreement between

Rubin’s variance estimator and the information anchored variance for up to 40–50% missing data

(see Figure 3.7 with ∆ = 0.3; for ∆ = 0 and ∆ = 1 with n=100 per arm see Figures C.13 and

C.14). This is also true for a larger sample size of n=1000 per arm (see Figure 3.8 with ∆ = 0.3;

for ∆ = 0 and ∆ = 1.0 with n=1000 per arm see Figures C.15 and C.16). As expected, we see

an even better approximation of the ideal variance by Rubin’s variance estimator with a larger

sample size.
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Figure 3.7: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with the asthma trial treatment effect of ∆ = 0.3 and n=100 per arm.
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Figure 3.8: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with the asthma trial treatment effect of ∆ = 0.3 and n=1000 per arm.

When we consider a low covariance between time 1 and time 2 measurements we see Rubin’s

variance still approximates the required variance well for up to 40–50% missingness in the active

arm (see Figure 3.9 with ∆ = 0.3; for ∆ = 0 and ∆ = 1 with σ12 = 0.05 see Figures C.17 and

C.18). When we consider a higher covariance between time 1 and time 2 measurements we see
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Rubin’s variance approximates the required variance well for even larger proportions of missing

data (see Figure 3.10 with ∆ = 0.3; for ∆ = 0 and ∆ = 1 with σ12 = 0.75 see Figures C.19 and

C.20). Agreement is excellent for up to 60–70% missingness.
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Figure 3.9: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with the asthma trial treatment effect of ∆ = 0.3 and a low covariance between time 1 and time 2
outcomes (σ12 = 0.05). n=250 per arm.
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Figure 3.10: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with the asthma trial treatment effect of ∆ = 0.3 and a high covariance between time 1 and time
2 outcomes (σ12 = 0.75). n=250 per arm.
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Discussion

The agreement between Rubin’s variance estimator and the information anchored variance for the

baseline adjusted treatment effect is excellent in a variety of realistic trial settings (i.e. for up to

40-50% missing data in the active arm). The results confirm the findings from the derivations.

Rubin’s variance formula asymptotically approximates the information preserving variance. We

conclude we are also justified in using Rubin’s rules in the baseline adjusted single follow-up trial

setting.

3.5 Summary

In this chapter we have defined our information anchoring principle for variance estimation in

reference based sensitivity analysis. We have shown that Rubin’s MI variance estimator approxi-

mates the information anchored variance we desire in the baseline and single follow-up trial setting

for the unadjusted and baseline adjusted average treatment difference. That is, it approximates

the design based variance estimate we would obtain, were we able to observe deviation data in

the given scenario, inflated by the loss of information in the primary design based analysis. The

difference is of a very small order, and negligible in realistic trial settings. For n→∞ it tends to

zero faster than the actual information anchored variance. This provides justification for use of

Rubin’s variance formula in these settings. Rubin’s variance estimator keeps the information loss

constant across the primary and sensitivity analysis.

In this chapter our exploration has focused on the baseline and single follow-up trial setting with

deviation in the active arm only. In the next chapter we present a general theory on the properties

of Rubin’s variance estimator in the baseline and single follow-up setting, then extend this for more

complex longitudinal trial settings.
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Chapter 4

General theory for Rubin’s

variance estimator in reference

based analysis

So far we have introduced reference based sensitivity analysis, and argued that since the design

based analysis model is retained in the sensitivity analysis, a natural principle for the treatment

estimator variance is to keep the information loss due to missing data constant or anchored across

the primary analysis and the sensitivity analyses. In this chapter we present a general theory of the

information anchoring properties of Rubin’s variance estimator for the baseline and single follow-up

trial setting following reference based MI in Section 4.1. The substantive model considered here is

a linear regression of a continuous outcome on randomised treatment group and observed baseline

covariates. However, the general results presented can be applied to other settings which meet the

outlined conditions.

We then extend the theory for more complex longitudinal trial settings. First for longitudinal

trials where only the last measured variable is subject to non-response in Section 4.2. Then we

consider longitudinal trials with more than one deviation pattern in Section 4.3 . We restrict our

attention to monotone missingness patterns since this is the most commonly observed pattern of

missing data in longitudinal trials. A linear regression of a continuous outcome at the final time

point on randomised treatment group and observed baseline covariates is the substantive analysis

model of interest in the longitudinal settings.

The theory is initially developed under the assumption of an infinite number of imputations, K.

In Section 4.4 we assess the impact of a finite K, as occurs in practice. In Section 4.5 we finish this

chapter with a simulation study designed to explore the performance of Rubin’s variance estimator

in a variety of longitudinal trial settings.

As in Chapter 3 let VDJ, full denote the variance estimator for the treatment effect in the design

based analysis with fully observed data if no deviations occur; VDF, full denotes the variance esti-

mator for the treatment effect in the design based analysis where deviations occur off-treatment,

but the deviation data is fully observed (under one of CR, J2R, CIR or LMCF); VDJ, MI denotes
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Rubin’s variance estimator for the treatment effect in the primary design based analysis where post-

deviation data are unobserved but imputed under our de-jure (on-treatment MAR) assumption

and VDF, MI denotes Rubin’s variance estimator for the treatment effect in the design based sen-

sitivity analysis where post-deviation data are unobserved but imputed under de-facto behaviour

(one of CR, J2R, CIR or LMCF).

4.1 Baseline and single follow-up setting

Here we present a general theory on Rubin’s variance estimator and how it anchors the information

loss due to missing data in the primary analysis across sensitivity analysis in the baseline and single

follow-up reference based MI setting. For ease of exposition the initial proof focuses on the setting

with deviation in one arm only. In Subsection 4.1.6 we show how the result holds with deviation

in both arms. We also consider an infinite number of imputations, K. In Section 4.4 we show how

the results in this chapter hold with finite K.

4.1.1 Setting for Proposition 1

Consider a two arm trial consisting of 2n patients with a single continuous follow-up outcome

and baseline. n patients have been randomised to an active arm and n to a reference arm. Y

is the (2n × 1) vector of outcome data, and x, is the corresponding (2n × p) matrix of observed

baseline covariates including baseline outcome and treatment. The estimated treatment effect can

be written aTY where a may or may not incorporate x. For example, when the substantive model

is a linear regresion model aT =
(
xTx

)−1
xT .

We assume Y is normally distributed and has a known variance Σ. The variance of the data is

assumed to be known i.e. we do not incorporate a prior distribution on the variance in imputation

without any serious loss of generality, following inference by Carpenter and Kenward in [44] (p. 56–

59). Carpenter and Kenward examine Rubin’s rules for a simple mean with known and unknown

variance and show, because of the conditional argument underlying the derivation, the additional

complication of an unknown variance does not have a material effect on the development. It simply

results in multiples of terms that are ≈ 1. Thus, results are asymptotically the same.

Suppose all n reference patients and no of the active arm are observed without deviation at baseline

and follow-up. The remaining nd active arm patients deviate post-baseline such that for the active

arm no + nd = n. Let D and O define the sets of indices for the deviators and completers in the

active arm respectively and assume the variance-covariance matrix of baseline and follow-up is the

same in both treatment arms.

Assume VDF, full = VDJ, full + O(n−2). Typically, although not necessarily, some form of regression

model will be the substantive model of interest, used to make inferences about the treatment effect

in the population of interest. As shown in Appendix B.1, for an unadjusted mean difference where

πd = nd/n,
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E [VDF, full] =
2σ22

n
+

∆2πd (1− πd)
n

,

where σ22 is the variance of the follow-up data, ∆ = µa2 − µd2 and µd2 represents the proposed

mean at follow-up under the particular de-facto scenario of interest. For a baseline adjusted mean

difference (as derived in Subsection 3.4.1),

E [VDF, full] =
2σ2.1

n
+

∆2πd (1− πd)
n

,

where σ2.1 is the conditional variance of the follow-up data, given baseline. As discussed in Sub-

section 3.2.1, for a typical RCT powered at 80% with 5% statistical significance ∆2 ≈ 15.68σ22/n.

Therefore VDF, full = VDJ, full +O(n−2) holds for the mean treatment group difference, adjusted and

unadjusted for baseline outcome i.e. holds for ANCOVA.

4.1.2 Proposition 1

For sensitivity analyses of a two arm trial with baseline and a single follow-up performed by MI

using the algorithm of Carpenter, Roger and Kenward [13], the difference between Rubin’s variance

estimator and the information anchored variance for the treatment effect is,

π2
dP̄a,d (Va,o −VDF,o) P̄T

a,d +
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
.

Va,o represents the variance-covariance matrix of the parameter estimates in the de-jure imputation

model and VDF,o represents the variance-covariance matrix of the parameter estimates in the de-

facto imputation model. P̄a,d is a vector containing the mean of the baseline covariates for each

deviating active patient. In other words,

VDJ, MI

VDJ, full

=
VDF, MI

VDF, full

+ π2
dP̄a,d (Va,o −VDF,o) P̄T

a,d +
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
.

4.1.3 Proof of Proposition 1

Let z = a, r index the randomised active arm or reference arm allocation for each patient i with

follow-up outcome denoted by Yzi. The outcome data for the reference patients is contained in the

vector Yr = (Yr1, ...Yrn)
T

. The outcome data for the non-deviating active patients is contained in
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the vector Ya,o = {Yai; i ∈ O}T .

We suppose that each deviating patient has two potential outcomes: the one that would occur

if they remain on active treatment (de-jure) and the other that would occur off-treatment (de-

facto). The potentially observable de-jure outcome data for the nd deviating patients are contained

in the vector Ya,DJ,d and the alternative de-facto outcome data in the vector Ya,DF,d. Define

Y = (Yr,Ya,o,Ya,DJ,d,Ya,DF,d)
T

as the collection of observed and potentially observable outcome

data, which has dimensions [(n+ no + 2nd)× 1].

For each deviating patient we can only observe one of the potential outcomes, either de-jure or

de-facto. Consider two [(n+ no + 2nd)× (n+ no + 2nd)] matrices, DDJ and DDF of 0’s and 1’s,

arranged such that DDJY gives the [(n+ no + 2nd)× 1] de-jure data (with zero entries for the

potential de-facto outcomes). DDFY gives the [(n+ no + 2nd)× 1] de-facto data (with zero entries

for the potential de-jure outcomes).

Let a be a [(n+ no + 2nd)× 1] vector such that aTDDJY returns the de-jure treatment estimate

and aTDDFY returns the de-facto treatment estimate. When deviating patients experience on-

treatment/de-jure behaviour post-deviation and their follow-up outcome data are observed the

expectation of the variance estimator for the de-jure on-treatment estimand can be expressed as,

E [VDJ, full] = E [ V
(
aTDDJY

)]
= E

[
aTDDJ V (Y)DT

DJa
]

= aTDDJΣDT
DJa. (4.1)

We use the proposition condition that the variance estimator for the de-facto estimand can be

expressed as,

E [VDF, full] = aTDDJΣDT
DJa +O(n−2). (4.2)

We now suppose that post-deviation data are unobserved, i.e. the potentially observable de-facto

and de-jure entries in Y are missing for the nd active patients. We alternatively impute these

outcomes, using de-jure imputation and de-facto imputation. This gives K ‘complete’ data samples

Yk, of size [(n+ no + 2nd)× 1]. For this we need an appropriate imputation model for the missing

data under each scenario, with a suitable posterior for the included parameters.

Under our de-jure assumption (on-treatment MAR) our imputation model is formed from the

regression of Ya,o on Pa,o where Pa,o is the [no × p] design matrix for the imputation model,

which contains the values of the (p-1) covariates included in the imputation model (including the

baseline outcome but excluding the treatment indicator since we perform imputation separately by

arm) with a vector of 1’s to include an intercept term in the model, for observed active patients.

The parameter estimates for the de-jure imputation model are found using,

β̂a,o = (PT
a,oPa,o)

−1PT
a,oYa,o with assumed known covariance matrix Va,o = (PT

a,oPa,o)
−1σ2. We

assume the large sample posterior for the parameter estimates of the de-jure imputation model,

denoted as β̂DJ , is normal and centered on the ML estimator β̂a,o with covariance matrix Va,o.
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That is,

β̂DJ |Ya,o ∼ N(β̂a,o; Va,o).

The de-jure imputation model for patient i and imputation k can therefore be expressed as,

Ỹai,k|Ya,o = Pa,d,i

[
β̂a,o + ba,o,k

]
+ ei,k for i ∈ D,ba,o,k ∼ N(0,Va,o), ei,k ∼ N(0, σ2),

where Pa,d,i is the covariate data for each deviating active patient i (excluding treatment group

but including a 1), of dimension [1× p].

The conditional model for post-deviation data given pre-deviation data may take various different

forms for de-facto imputation. Generally we assume the large sample posterior for the parameters

of the imputation model, β̂DF , is normal and centered on the ML estimator β̂DF,o with known

covariance matrix VDF,o, that is,

β̂DF |YDF,o ∼ N(β̂DF,o; VDF,o),

where YDF,o consists of the relevant observed data under the particular de-facto setting of interest.

The de-facto imputation model for patient i and imputation k can therefore be expressed as,

Y̆ai,k|YDF,o = Pa,d,i

[
β̂DF,o + bDF,o,k

]
+ ei,k for i ∈ D,bDF,o,k ∼ N(0,VDF,o), ei,k ∼ N(0, σ2).

Under the assumption of equal variance-covariance matrix of baseline and follow-up by treatment

arm we consequently assume the same variance for the residuals in the de-jure and de-facto impu-

tation models (denoted σ2). In Subsection 4.1.5 we explore the impact of relaxing this assumption.

We are interested in imputation inference for, 1
K

∑K
k=1 aTDDJYk or 1

K

∑K
k=1 aTDDFYk.

Letting the number of imputations, K → ∞, the variance of our MI treatment estimate as esti-

mated by Rubin’s rules is, VDJ, MI = ŴDJ + B̂DJ or VDF, MI = ŴDF + B̂DF where under the conditions

required in the proposition,

E
[
ŴDJ

]
= E

[
1

K

K∑
k=1

aTDDJΣ̂kDT
DJa

]
→ aTDDJΣDT

DJa,
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E
[
ŴDF

]
= E

[
1

K

K∑
k=1

aTDDFΣ̂kDT
DFa

]
→ aTDDFΣDT

DFa +O(n−2).

Under de-jure,

B̂DJ =
1

K − 1

K∑
k=1

[
πd (ēk − ē) + πd

(
P̄a,dba,o,k − P̄a,db̄a,o

)]2
,

where ēk = 1
nd

∑
i∈D ei,k, ē = 1

K

∑K
k=1 ēk, P̄a,d = 1

nd

∑
i∈D Pa,d,i and b̄a,o = 1

K

∑K
k=1 ba,o,k.

This has expectation,

E
[
B̂DJ

]
=

1

K − 1

(
π2
d

[
(K − 1)

σ2

nd
+ (K − 1) P̄a,dVa,oP̄

T
a,d

])
= π2

d

[
σ2 + ndP̄a,dVa,oP̄

T
a,d

nd

]
.

Under de-facto,

B̂DF =
1

K − 1

K∑
k=1

[
πd (ēk − ē) + πd

(
P̄a,dbDF,o,k − P̄a,db̄DF,o

)]2
,

where b̄DF,o = 1
K

∑K
k=1 bDF,o,k. This has expectation,

E
[
B̂DF

]
=

1

K − 1

(
π2
d

[
(K − 1)

σ2

nd
+ (K − 1) P̄a,dVDF,oP̄

T
a,d

])
= π2

d

[
σ2 + ndP̄a,dVDF,oP̄

T
a,d

nd

]
.

The information anchored variance is,

E [Vanchored] =
E [VDF, full]

(
E
[
ŴDJ

]
+ E

[
B̂DJ

])
E [VDJ, full]

= E [VDF, full]

1 +
E
[
B̂DJ

]
E
[
ŴDJ

]
 .

Since E
[
ŴDJ

]
= E [VDJ, full] that is,

126



E [Vanchored] = aTDDJΣDT
DJa +O(n−2) +

E
[
B̂DJ

]
E
[
ŴDJ

] [aTDDJΣDT
DJa +O(n−2)

]

= aTDDJΣDT
DJa +O(n−2) + E

[
B̂DJ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]O(n−2). (4.3)

If Rubin’s variance estimator preserves the information loss due to missing data in the primary

analysis (under MAR) in the sensitivity analysis then,

E
[
ŴDF

]
+ E

[
B̂DF

]
≈ aTDDJΣDT

DJa +O(n−2) + E
[
B̂DJ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]O(n−2).

That is,

aTDDJΣDT
DJa +O(n−2) + E

[
B̂DF

]
≈aTDDJΣDT

DJa +O(n−2)

+ E
[
B̂DJ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]O(n−2).

After simplification and rearrangement this becomes,

0 ≈ E
[
B̂DJ

]
− E

[
B̂DF

]
+
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
. (4.4)

Which is,

0 ≈ π2
dP̄a,d (Va,o −VDF,o) P̄T

a,d +
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
. (4.5)

This gives the required result,
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VDJ, MI

VDJ, full

=
VDF, MI

VDF, full

+ π2
dP̄a,d (Va,o −VDF,o) P̄T

a,d +
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
.

�

This result shows the difference between Rubin’s variance estimator and the information anchoring

variance is a small quantity, under the described conditions. In comparison to the information

anchoring variance we desire (4.3) it is practically negligible.

Although not immediately obvious, in practice the difference between the variance of the coefficients

in the de-jure and de-facto imputation distributions, Va,o−VDF,o, will be small. Va,o and VDF,o

are two very similar quantities. We know Va,o = A/no where A is a generic variance-covariance

matrix of the data. VDF,o will depend on the specific de-facto scenario. But as detailed in

Section 2.1, the parameters for the imputation models in each de-facto setting are pieced together

using the parameters from the two treatment arm MVN MAR models. Thus the variance of

the coefficients in the de-facto imputation distribution VDF,o, will not be too dissimilar to the

variance of the coefficients in the de-jure imputation distribution in the current setting. Further

in all de-facto cases Va,o − VDF,o is multiplied by π2
d. For realistic proportions of missing data

seen in practice (≤ 50%), π2
d will be ≤ 1/4. Thus the first term on the RHS of (4.5) will be

relatively small in comparison to the terms which dominate the composition of the information

anchored variance we are targeting (4.3). The information anchored variance is dominated by

E [VDJ, full] = E
[
ŴDJ

]
= aTDDJΣDT

DJa, which is O(n−1).

The second term on the RHS of (4.5) consists of a quantity which is O(n−2) multiplied by

E
[
B̂DJ

]
/E
[
ŴDJ

]
. When there is no missing data B̂DJ = 0. The proportion of information

with missing data (assuming K →∞), relative to the information in full data, denoted by P , can

be estimated as,

P =

(
ŴDJ

ŴDJ + B̂DJ

)
.

This implies B̂DJ = ŴDJ(1 − P )/P which indicates, B̂DJ < ŴDJ for P > 0.5. So unless the

information available with missing data is ≤ 1/2 that in the full data, B̂DJ will be less than ŴDJ.

In practice we would not expect to lose more than half of the intended information. Since E
[
B̂DJ

]
is typically much smaller than E

[
ŴDJ

]
for realistic trial scenarios i.e. with small to moderate

proportions of missing data, the second term on the RHS will also be of a relatively small size.

To help understand this result we look at the CR example and then make some more general

remarks.
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Copy reference example

Suppose Yzi
iid∼ N(µz, σ22) for z = a, r; the deviating patients CR and interest lies in the mean

treatment group difference in Y . In this setting we know,

E [VDJ, full] =
2σ22

n
,E [VCR, full] =

2σ22

n
+

∆2πd (1− πd)
n

,

where ∆ = µa − µr (see Appendix B.1 for derivation of this result). The CR imputation model is

formed from the regression of Yr on Pr where Pr is the [n× p] design matrix for the imputation

model, which contains the values of the (p-1) covariates included in the imputation model (including

the baseline outcome but excluding the treatment indicator) with a vector of 1’s to include an

intercept term in the model, for the n patients in the reference arm.

Parameter estimates for the CR de-facto imputation model are found as, β̂r = (PT
r Pr)

−1PT
r Yr

with assumed known covariance Vr = (PT
r Pr)

−1σ2. We assume the large sample posterior for

βCR is normal and centered on the ML estimator β̂r with covariance matrix Vr, that is,

β̂CR|Yr ∼ N(β̂r; Vr).

The CR imputation model for individual i for imputation k can therefore be expressed as,

Y̆ai,k|Yr = Pa,d,i

[
β̂r + br,k

]
+ ei,k for i ∈ D where, br,k ∼ N(0,Vr), ei,k ∼ N(0, σ2).

For each imputation k we are interested in either,

aTDDJYk =
1

n

[∑
i∈O

Yai +
∑
i∈D

Ỹai,k −
n∑
i=1

Yri

]

=
1

n

[
noȲa,o + ndP̄a,dβ̂a,o + ndP̄a,dba,o,k + ndēk − nȲr

]
,

or,

aTDDFYk =
1

n

[∑
i∈O

Yai +
∑
i∈D

Y̆ai,k −
n∑
i=1

Yri

]

=
1

n

[
noȲa,o + ndP̄a,dβ̂r + ndP̄a,dbr,k + ndēk − nȲr

]
.

It follows that,

129



E
[
ŴDJ

]
=

2σ22

n
,E
[
ŴCR

]
=

2σ22

n
+

∆2πd (1− πd)
n

.

Under de-jure deviation the between imputation variance is computed as,

B̂DJ =
1

K − 1

K∑
k=1

[
πd (ēk − ē) + πd

(
P̄a,dba,o,k − P̄a,db̄a,o

)]2
.

The expected value of this estimate is,

E
[
B̂DJ

]
=

1

K − 1

(
π2
d

[
(K − 1)

σ2

nd
+ (K − 1) P̄a,dVa,oP̄

T
a,d

])
= π2

d

[
σ2 + ndP̄a,dVa,oP̄

T
a,d

nd

]
.

Under CR deviation the between imputation variance is computed as,

B̂CR =
1

K − 1

K∑
k=1

[
πd (ēk − ē) + πd

(
P̄a,dbr,k − P̄a,db̄r

)]2
.

where b̄r = 1
K

∑K
k=1 br,k. This has expected value,

E
[
B̂CR

]
=

1

K − 1

(
π2
d

[
(K − 1)

σ2

nd
+ (K − 1) P̄a,dVrP̄

T
a,d

])
= π2

d

[
σ2 + ndP̄a,dVrP̄

T
a,d

nd

]
.

The information anchored variance we require under CR is found by substituting E
[
B̂DJ

]
, E
[
ŴDJ

]
and E

[
ŴCR

]
into (4.3),

E [Vanchored] =
2σ22

n
+

∆2πd (1− πd)
n

+ π2
d

[
σ2

nd
+ P̄a,dVa,oP̄

T
a,d

]
+ π2

d

[
σ2

nd
+ P̄a,dVa,oP̄

T
a,d

]
∆2πd(1− πd)

2σ22
. (4.6)
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To establish the information anchoring properties of Rubin’s variance formula we substitute E
[
B̂DJ

]
,

E
[
B̂CR

]
, E
[
ŴDJ

]
and E

[
ŴCR

]
into (4.4) which gives,

0 ≈ π2
d

[
P̄a,d (Va,o −Vr) P̄T

a,d

]
+ π2

d

[
σ2

nd
+ P̄a,dVa,oP̄

T
a,d

]
∆2πd(1− πd)

2σ22
. (4.7)

We separately consider the two terms on the RHS of (4.7) which make up the difference between

Rubin’s variance estimator and the information anchoring variance. We refer to the first term on

the RHS of (4.7) as RHS1 and the second term as RHS2. The magnitude of RHS1 depends on the

difference between the variance of the parameters in the CR de-facto imputation model and the

variance of the parameters in the de-jure imputation model. In practice the difference between the

variance of the coefficients in the imputation distributions will be small. Under the assumption of

equal variance-covariance matrix by treatment arm we assume Va,o is A/no and Vr is A/n where

A is a generic variance-covariance matrix of the data. Thus where πd = nd/n,

Va,o −Vr = A

(
1

no
− 1

n

)
= A

(
πd

n (1− πd)

)
= A

1

n

[
πd + π2

d + π3
d....

]
.

This reveals Va,o−Vr is O(n−1). RHS1 consists of Va,o−Vr multiplied by π2
d, so will be of an even

smaller magnitude. πd < 1 and for realistic proportions of missing data i.e. πd ≤ 1/2, π2
d ≤ 1/4.

The largest term in the desired information anchored variance (4.6) is E
[
ŴDJ

]
= 2σ22/n. This is

O(n−1). Thus RHS1 will always be relatively small in comparison to the quantity we are seeking.

RHS2 can be broken down into two components. The first part of RHS2,

π2
d

σ2

nd

∆2πd(1− πd)
2σ22

= π2
d

σ2∆2(1− πd)
2σ22n

,

is O(n−2) for a typical RCT powered at 80% with 5% statistical significance. As discussed in

Subsection 3.2.1, in such cases ∆2 ≈ (µ1 − µ2)
2

= 15.68σ22/n. The second part of RHS2,

π2
dP̄a,dVa,oP̄

T
a,d

∆2πd(1− πd)
2σ22

is also O(n−2) for a typical RCT. Thus RHS2 will also be of a relatively small size in comparison

to the information anchored variance we are seeking, which is dominated by 2σ22/n.

To explicitly see this we consider the most basic two arm trial scenario with no baseline and just

a single follow-up. Here the data for active deviators are imputed using the mean outcome from

the randomised active arm under de-jure behaviour. Or the mean outcome from the reference arm

under CR de-facto behaviour. Thus P̄a,d,i is a single constant of 1, therefore P̄a,d is also a single
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constant of 1. Figure 4.1 plots the information anchored variance against the two components that

form the difference between Rubin’s MI variance estimator and the information anchored variance

(RHS1 and RHS2) for various sized trials. In each setting we assume the RCT is powered at 80%

with 5% statistical significance, i.e. ∆2 ≈ 15.68σ22/n. Each component is expressed generally as

a proportion of the variance of the outcome data. In all scenarios we can clearly see the relative

small size of RHS1 and RHS2.
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Figure 4.1: Information anchored variance vs. the difference between Rubin’s variance estimator
and the information anchored variance (RHS1 and RHS2) for a trial with a single follow-up.

Components are expressed as a proportion of the total variance of the data.

Proposition 1 corresponds with the inference in Subsection 3.2.1 where we explicitly derived all the

components in this equation. In comparison to the information anchored variance we desire, the

difference between Rubin’s variance estimator and the information anchored variance is in practice

negligible. The results of the simulation study in Subsection 3.3.1 further demonstrate the small

size of the components on the RHS of (4.7).

4.1.4 Implementation for improved information anchoring

We note that if Va,o ≈ VDF,o i.e. the variance of the parameters in the de-facto imputation model

matches the variance of the parameters in the de-jure (MAR) imputation model, the approximation

of the information anchored variance by Rubin’s variance estimator is sharpened. When this is the

case the information anchoring (4.5) becomes,

0 ≈
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
. (4.8)
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In the baseline and single follow-up setting under CR Va,o ≈ Vr is obtained when the number of

fully observed patients in the reference arm is close to no —the number of observed patients in the

active arm at time 2— with the assumption of equal variance by arm.

If the number of observed active patients (no) and reference arm patients (n) are not similar

in a trial with a single follow-up, to achieve improved information anchoring in practice, we can

simply scale the variance of the parameters in the CR imputation distribution by n/no. With equal

variance-covariance of the data by arm, which we denote by A, Va,o = A/no and Vr = A/n. After

scaling Vr by n/no the variance of the parameters in the CR imputation model will therefore match

the variance of the parameters in the de-jure (MAR) imputation model.

Alternatively prior to performing reference based imputation we can bootstrap the observed ref-

erence data in order to obtain a sample of the required size from the reference distribution, which

will result in Va,o ≈ Vr. Bootstrapping involves repeated random sampling, with replacement,

of observed data and enables the estimation of the sampling distribution of statistics of interest

[22]. In the current context, repeated sampling of the observed reference data can be employed to

estimate the distribution of the data in the reference arm. For a simple trial with single follow-up

we can then draw a sample of no reference patients from the estimated reference distribution. The

new sample of reference patients can then be used to construct the reference based imputation

model, rather than the observed reference group patients.

For a trial with baseline (completely observed) and a single follow-up as explored in Proposition 1

after estimating the reference distribution via bootstrapping, we can draw a sample of n reference

patients observed at baseline, of which no are also observed at time 2 to match the composition

of the active group sample used in MAR imputation. The newly drawn sample can then be used

to construct the reference based imputation model. This will also result in improved information

preservation for the J2R and CIR procedures.

The variance of the parameters in LMCF imputation models will be closer to the variance of the

parameters in de-jure (MAR) imputation models when the number of deviators is small, i.e. no is

close to n. In the previous chapter we have already seen how the information anchoring property of

Rubin’s rules is more accurate under LMCF imputation when the number of deviators is smaller.

Simulation study for improved information anchoring

To demonstrate the implementation for improved information anchoring in the CR, J2R and CIR

settings we present results from an extension of the simulation study in Section 3.3.

Methods

The methods used to generate the datasets are described in Subsection 3.3.1. Interest lies in

the mean treatment group difference at time 2. In this extension we consider the setting where

∆ = 0.3, as observed in the asthma trial, with 10–70% missing data at time 2 in the active arm

only. As detailed in Subsection 3.3.1, for each missingness setting, the treatment effect and its

estimated variance were computed using the full data. The analysis model was a linear regression

of the time 2 response on randomised treatment group. In each scenario, following the imposition

of the missing data, post-deviation data were regenerated using the appropriate conditional normal
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distributions to compute the treatment effect and its variance had we observed the post-deviation

data in the particular de-facto scenario.

We then altered the implementation of the reference based MI approach of Carpenter, Roger and

Kenward [13]. First we drew an independent sample of no reference patients with baseline and time

2 data, and a further nd with baseline data only from the known reference population to match the

profile of the observed cases in the active arm. This sample was then used to build the required

imputation models for CR, J2R and CIR imputation following the algorithm in [13], as outlined

in Section 2.1. Of course, this approach is only possible in this simulation study set-up where the

reference population distribution is known. Following imputation the sample of reference patients

drawn for imputation were discarded from analysis. The analysis model was fitted to each imputed

dataset in turn and results summarised for inference in the usual way using Rubin’s rules.

Secondly we bootstrapped the observed reference group data, using 1000 simple random draws

with replacement, to estimate the mean and variance of the data in the reference group. We then

drew an independent sample of no reference patients with baseline and week 12 data, and a further

nd with baseline data only from the estimated reference distribution. The bootstrap attempts to

mimic, ‘going back to the population,’ which is not possible in practice. This second sample was

then used to build the required imputation models for CR, J2R and CIR imputation following the

algorithm in [13]. Following imputation the sample of reference patients drawn for imputation was

again discarded from analysis. The analysis model was fitted to each imputed dataset in turn and

results summarised for inference using Rubin’s rules.

The main outcomes of interest were Rubin’s MI variance estimate for the treatment effect under

the alternative implementations, and the ideal information anchored variance estimate, computed

as in Section 3.1. Estimates were averaged over the 1000 simulations in each scenario. The main

focus was to show how a superior approximation of the information anchored variance can be

obtained by Rubin’s MI variance estimator under the alternative implementations, in comparison

to the standard reference based MI implementation (for which results were presented in Section

3.3.2).

Results

Figure 4.2 shows excellent information anchoring by Rubin’s variance estimator under CR for all

missingness scenarios when an independent sample of reference group patients, chosen to match

the profile of the observed active patients, is drawn from the known reference population to build

the imputation models. This is as expected since Va,o ≈ VDF,o. The approximation of the

information anchored variance by Rubin’s variance corresponds with that seen for the standard

CR MI implementation for up to 40–50% missing data in the active arm, but is notably improved

for 50% or greater missingness. This is only possible via simulation.

However, Figure 4.2 also shows excellent information anchoring by Rubin’s variance estimator

under CR for all missingness scenarios when an independent sample of reference group patients

that matches the profile of the observed active patients is drawn via bootstrapping the observed

data. This could be done in practice if desired.

Figures 4.3 and 4.4 show this also holds for J2R and CIR imputation. The improvement in the

approximation for missingness amounts above 50% is not quite as perfect as under CR, but in

both cases it is superior to the standard reference based MI implementation for larger amounts of
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missingness.

Our focus is not on the long-run empirical sampling variance (over the 1000 simulations) of the

MI estimator here. However it is interesting to see what affect these procedures have on it. We

see that when we draw a sample of independent reference group patients from the population for

imputation the behaviour of the long-run empirical sampling variance changes (Figures 4.2–4.4).

As discussed in Subsection 2.2.2 when we conduct reference based MI using the observed reference

group data we introduce a covariance between the mean of the deviating active patients and the

observed reference group patients. A consequence of borrowing information between trial arms.

When analysing the treatment group difference this covariance is taken away in the computation of

the sampling variance. Because the sample of reference group patients used here in imputation is

an independent draw from the known population, and not included in the analysis, the unwanted

covariance is no longer incorporated.

However, the data from the reference patients that are drawn to build the imputation model are

not included in the analysis. There is therefore a mismatch in the conditioning used in the analysis

and the imputation. This explains why the long-run empirical sampling variance still does not

match Rubin’s variance estimator, i.e. the information anchored variance we are targeting. This

property is discussed by Reiter in [59].

In practice we would have to use the observed data to estimate the parameters of the reference

distribution. When we bootstrap the observed data to estimate the reference distribution for

imputation, the empirical long-run sampling variance of the MI estimate is also unsuitable. It is

smaller than the variance estimate we would obtain if the off-treatment behaviour of the deviators

was actually observed. Moreover, since the data used to build the imputation model are not

included in the analysis (we analyse only the original randomised patients data) there is also a

mismatch in the conditioning used in the analysis and the imputation [59]. This is therefore why we

also see that the empirical long-run sampling variance does not correspond with Rubin’s variance

estimate and the information anchored variance via the bootstrapping implementation.
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Figure 4.2: CR MI with implementation for improved information anchoring. Rubin’s variance
estimator vs. information anchored variance vs. variance where deviators observed (all averaged

over 1000 simulations) vs. long-run sampling variance of the 1000 MI estimates. ∆ = 0.3 and
n=250 per arm.
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Figure 4.3: J2R MI with implementation for improved information anchoring. Rubin’s variance
estimator vs. information anchored variance vs. variance where deviators observed (all averaged

over 1000 simulations) vs. long-run sampling variance of the 1000 MI estimates. ∆ = 0.3 and
n=250 per arm.
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Figure 4.4: CIR MI with implementation for improved information anchoring. Rubin’s variance
estimator vs. information anchored variance vs. variance where deviators observed (all averaged

over 1000 simulations) vs. long-run sampling variance of the 1000 MI estimates. ∆ = 0.3 and
n=250 per arm.

Discussion

Improved information anchoring can be achieved by Rubin’s variance estimator if reference based

imputation is conducted using a sample of reference patients that has the same profile of the

observed active arm patients. This is obtained via bootstrapping the observed reference data.

However, little is gained over using the standard implementation for up to 40-50% missing data

in the active arm, since as discussed in the previous chapter, Rubin’s variance estimator provides

excellent information anchoring in these circumstances. A similar effect could be obtained by

scaling the variance of the parameters in the de-facto imputation model.

Information anchoring will naturally be stronger for a trial with imputed reference based deviation

data in an active arm when the number of observed patients in the active arm corresponds with the

total number of reference patients. When the number of reference cases is considerably different

to the number of observed active cases the proposed alternative implementation may be useful.

However this is unlikely in practice.

4.1.5 Relaxing the equal variance assumption

Proposition 1 included the condition for equal variance-covariance matrix for baseline and follow-

up between the trial arms. This is a common assumption made in the clinical trial setting. Here

we consider the impact of unequal variance structures across the trial arms.

We follow the proof of Proposition 1 for settings in which VDF, full = VDJ, full + O(n−2). If the

equal variance assumption does not hold then the variance of the residuals (ei,k) in the de-jure/on-
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treatment MAR and de-facto/off-treatment imputation models, denoted by σ2, cannot be assumed

to be the same. We therefore alternatively now denote the variance of the residuals in the de-jure

imputation model as σ2
DJ and in the de-facto imputation model as σ2

DF . Then under de-jure

imputation,

E
[
B̂DJ

]
= π2

d

[
σ2
DJ + ndP̄a,dVa,oP̄

T
a,d

nd

]
,

and under de-facto,

E
[
B̂DF

]
= π2

d

[
σ2
DF + ndP̄a,dVDF,oP̄

T
a,d

nd

]
.

The requirement for information anchoring becomes,

0 ≈ π2
d

[
σ2
DJ − σ2

DF

nd
+ P̄a,d (Va,o −VDF,o) P̄T

a,d

]
+
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
. (4.9)

We see that when we relax the equal variance assumption, the difference between Rubin’s vari-

ance estimator and the information anchored variance remains small in size in comparison to the

information anchored variance we are seeking. The information anchored variance is dominated

by E
[
ŴDJ

]
, which is O(n−1). There is now an additional component in the difference between

Rubin’s variance and the ideal variance, which is driven by the degree of difference in the variance

structure by trial arm. The larger the difference in the variance structure by trial arm, the greater

the difference between σ2
DF and σ2

DJ . However, in practice the variance structures are not likely

to differ too drastically by arm (although there will always be exceptions). Further this additional

component is always multiplied by πd/n i.e. is O(πdn
−1), thus will always be relatively small.

The difference between Va,o − VDF,o will also be larger when the the variance structures differ

by trial arm. However if we denote the variance-covariance matrix of the data in the active arm

as A, the variance-covariance matrix of the data in the reference arm can always be expressed as

A + B where B is a matrix of constants. The additional difference can therefore be expressed as a

component with the same order as VDF,o in the equal variance setting. Which we would expect to

be small anyway since A and B are not likely to be too different. Thus the extra difference does

not effect the order of this component in (4.9). The term remains multiplied by π2
d. The inferences

for the limiting behaviour of this term when the variance-covariance structures were equal still

apply here.

Relaxing the equal variance assumption does not have a profound effect on the approximation

between Rubin’s variance estimator and the information anchored variance.
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4.1.6 Extension for deviation in both arms

Up to here, the proof of Proposition 1 has focused on the two arm trial setting with deviation in

one arm only. This is not a requirement for the approximation to hold, rather just a simplification

for clarity. Below we explore the impact of deviation in both arms. We remain focused on settings

where VDF, full = VDJ, full+O(n−2). If VDF, full = VDJ, full+O(n−2) with deviation in one arm then with

deviation in both arms we will also obtain VDF, full = VDJ, full +O(n−2), Appendix B.1 illustrates this

for the baseline and single follow-up setting where the treatment effect is the mean difference in the

follow-up outcome. Since an unequal variance structure by arm has a negligible effect in practice,

we maintain the assumption of equal variance-covariance structure for baseline and follow-up in

what follows.

Suppose among the n reference patients, only nr,o are actually observed, while the remaining nr,d

deviate post-baseline. Let RD and RO define the sets of indices for the deviators and completers

in the reference arm respectively. Let πr,d = nr,d/n. The outcome data for the observed reference

patients are contained in the vector Yr,o = {Yri; i ∈ RO}T . The potentially observable de-jure data

for the nr,d deviating reference patients are contained in the vector Yr,DJ,d and the alternative

de-facto outcome data in the vector Yr,DF,d. The full collection of observed and potentially

observable outcome data is now defined as Y = (Yr,o,Yr,DJ,d,Yr,DF,d,Ya,o,Ya,DJ,d,Ya,DF,d)
T

which has dimensions [(nr,o + 2nr,d + no + 2nd)]. We assume Y is normally distributed and has

known variance Σ.

We redefine the two matrices DDJ and DDF so that DDJY and DDFY now each give the de-

jure data or de-facto data across both treatment arms. We focus on settings where E [VDF, full] =

aTDDJΣDT
DJa +O(n−2).

We follow the steps outlined in Section 4.1 to establish the de-jure imputation model for the

deviating active arm patients. Under de-jure imputation, the imputation model for patient i and

imputation k in the active arm is expressed as,

Ỹai,k|Ya,o = Pa,d,i

[
β̂a,o + ba,o,k

]
+ ei,k for i ∈ D,

where ba,o,k ∼ N(0,Va,o), ei,k ∼ N(0, σ2) and Pa,d,i is the covariate data for each deviating active

patient i (excluding treatment group but including a 1), of dimensions [1× p].

For the reference arm, under our de-jure assumption (on-treatment MAR), our imputation model

is formed from the regression of Yr,o on Pr,o where Pr,o is the [nr,o × p] design matrix for the

imputation model, which contains the values of the (p-1) covariates included in the imputation

model (including the baseline outcome but excluding the treatment indicator since we perform

imputation separately by arm) with a vector of 1’s to include an intercept term in the model, for

observed reference patients.

The parameter estimates for the de-jure imputation model are found using,

β̂r,o = (PT
r,oPr,o)

−1PT
r,oYr,o with assumed known covariance matrix Vr,o = (PT

r,oPr,o)
−1σ2. We

assume the large sample posterior for the parameter estimates for the de-jure imputation model,
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denoted as β̂DJ,r, is normal and centered on the ML estimator β̂r,o with covariance matrix Vr,o,

that is,

β̂DJ,r|Yr,o ∼ N(β̂r,o; Vr,o).

The de-jure imputation model for patient i and imputation k in the reference arm can therefore

be expressed as,

Ỹri,k|Yr,o = Pr,d,i

[
β̂r,o + br,o,k

]
+ ei,k for i ∈ RD,

where br,o,k ∼ N(0,Vr,o), ei,k ∼ N(0, σ2) and Pr,d,i is the covariate data for each deviating

reference patient i (excluding treatment group but including a 1), of dimensions [1× p].

Under de-facto imputation for patients in the active arm we assume the large sample posterior for

the parameters of the imputation model, which we denote by β̂DF,a, is normal and centered on

the ML estimator β̂DF,a,o with known covariance matrix VDF,a,o that is,

β̂DF,a|YDF,a,o ∼ N
(
β̂DF,a,o,VDF,a,o

)
,

where YDF,a,o consists of the relevant observed outcome data under the particular de-facto setting.

The de-facto imputation model for patient i and imputation k in the active arm can therefore be

expressed as,

Ỹai,k|YDF,a,o = Pa,d,i

[
β̂DF,a,o + bDF,a,o,k

]
+ ei,k for i ∈ D,

where bDF,a,o,k ∼ N(0,VDF,a,o), and ei,k ∼ N(0, σ2). Under de-facto imputation for patients

in the reference arm we assume the large sample posterior for the parameters of the imputation

model, which we denote by β̂DF,r, is normal and centered on the ML estimator β̂DF,r,o with known

covariance matrix VDF,r,o that is,

β̂DF,r|YDF,r,o ∼ N
(
β̂DF,r,o,VDF,r,o

)
,

where YDF,r,o consists of the relevant observed outcome data under the particular de-facto setting.

The de-facto imputation model for patient i and imputation k in the reference arm can therefore

be expressed as,
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Ỹri,k|YDF,r,o = Pr,d,i

[
β̂DF,r,o + bDF,r,o,k

]
+ ei,k for i ∈ RD,

where bDF,r,o,k ∼ N(0,VDF,r,o), and ei,k ∼ N(0, σ2). We are interested in imputation inference

for, 1
K

∑K
k=1 aTDDJYk or 1

K

∑K
k=1 aTDDFYk. For Rubin’s variance estimator, under the de-

scribed conditions, E
[
ŴDJ

]
= E

[
1
K

∑K
k=1 aTDDJΣ̂kDT

DJa
]
→ aTDDJΣDT

DJa and

E
[
ŴDF

]
= E

[
1
K

∑K
k=1 aTDDFΣ̂kDT

DFa
]
→ aTDDJΣDT

DJa +O(n−2). Under de-jure,

B̂DJ =
1

K − 1

K∑
k=1

[πd (ēa,k − ēa) + πd
(
P̄a,dba,o,k − P̄a,db̄a,o

)
− πr,d (ēr,k − ēr)

−πr,d
(
P̄r,dbr,o,k − P̄r,db̄r,o

)]2
,

where ēa,k = 1
nd

∑
i∈D ei,k, ēa = 1

K

∑K
k=1 ēa,k, P̄a,d = 1

nd

∑
i∈D Pa,d,i, ēr,k = 1

nr,d

∑
i∈RD ei,k,

ēr = 1
K

∑K
k=1 ēr,k, P̄r,d = 1

nr,d

∑
i∈RD Pr,d,i and b̄r,o = 1

K

∑K
k=1 br,o,k. This has expectation,

E
[
B̂DJ

]
= π2

d

[
σ2 + ndP̄a,dVa,oP̄

T
a,d

nd

]
+ π2

r,d

[
σ2 + nr,dP̄r,dVr,oP̄

T
r,d

nr,d

]
.

Under de-facto,

B̂DF =
1

K − 1

K∑
k=1

[ πd (ēa,k − ēa) + πd
(
P̄a,dbDF,a,o,k − P̄a,db̄DF,a,o

)
−πr,d (ēr,k − ēr)− πr,d

(
P̄r,dbDF,r,o,k − P̄r,db̄DF,r,o

)]2
,

where b̄DF,a,o = 1
K

∑K
k=1 bDF,a,o,k and b̄DF,r,o = 1

K

∑K
k=1 bDF,r,o,k. This has expectation,

E
[
B̂DF

]
=π2

d

σ2

nd
+ π2

r,d

σ2

nr,d
+ π2

dP̄a,dVDF,a,oP̄
T
a,d + π2

r,dP̄r,dVDF,r,oP̄
T
r,d

− 2πdπr,dP̄a,dCov (bDF,a,o,k,bDF,r,o,k) P̄T
r,d.

Which can also be expressed as,
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E
[
B̂DF

]
=E

[
B̂DJ

]
+ π2

dP̄a,d [VDF,a,o −Va,o] P̄
T
a,d + π2

r,dP̄r,d [VDF,r,o −Vr,o] P̄
T
r,d

− 2πdπr,dP̄a,dCov (bDF,a,o,k,bDF,r,o,k) P̄T
r,d.

The information anchored variance is,

E [Vanchored] = aTDDJΣDT
DJa +O(n−2) + E

[
B̂DJ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]O(n−2).

If Rubin’s variance estimator is information anchoring and preserves the information loss seen in

the primary analysis under MAR then since E
[
ŴDJ

]
= E [VDJ, full],

0 ≈ E
[
B̂DJ

]
− E

[
B̂DF

]
+
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
. (4.10)

After substituting in the current results and simplifying this becomes,

0 ≈π2
dP̄a,d [Va,o −VDF,a,o] P̄

T
a,d + π2

r,dP̄r,d [Vr,o −VDF,r,o] P̄
T
r,d

+ 2πdπr,dP̄a,dCov (bDF,a,o,k,bDF,r,o,k) P̄T
r,d +

E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
. (4.11)

With deviation in both arms the difference between Rubin’s variance estimator and the information

anchored variance remains a small quantity in comparison to the information anchored variance.

An additional component which depends on the difference between the variance of the imputation

parameters in the de-jure imputation model and de-facto imputation model for the reference arm,

multiplied by π2
r,d, is now included. The exact size of this additional piece depends on the specific

de-facto scenario. But it will be similar in size to the first component on the RHS of (4.11),

which we have already discussed is of a small order for realistic proportions of missing data. The

covariance between the parameters of the active and reference arm de-facto imputation models

also contributes to the sharpness of the approximation between Rubin’s variance estimator and

the information anchored variance. This is intuitive because the imputations in the arms may

now be correlated. The exact size of this additional piece again depends on the specific de-facto

scenario. But it is always multiplied by πdπr,d thus will be of a relatively small order in practice.

We now explore the implications for each de-facto option.

Under CR imputation, patients already in the reference arm will experience on-treatment MAR
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behaviour. The imputation model for the deviating patients in the reference arm remains the

same as under de-jure imputation, hence VDF,r,o = Vr,o. The de-jure imputation model for the

reference patients also becomes the imputation model for the deviating active patients, that is

VDF,a,o = Vr,o. Therefore in the CR setting result (4.11) is,

0 ≈π2
dP̄a,d [Va,o −Vr,o] P̄

T
a,d + 2πdπr,dP̄a,dVr,oP̄

T
r,d +

E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
.

With deviation in both arms under CR, the sharpness of the approximation depends on the differ-

ence between Va,o and Vr,o, as well as the exact size of Vr,o. When the variance of the parameters

in the de-jure imputation model for the active patients matches the variance of the parameters in

the de-jure imputation model for the reference patients, and both are small, improved information

anchoring will be obtained.

Under LMCF imputation the covariance between the imputation parameters of the active and

reference de-facto imputation models is zero. Hence in the LMCF setting result (4.11) is,

0 ≈π2
dP̄a,d [Va,o −VDF,a,o] P̄

T
a,d + π2

r,dP̄r,d [Vr,o −VDF,r,o] P̄
T
r,d

+
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
.

With deviation in both arms under LMCF, the sharpness of the approximation depends on the

difference between Va,o and VDF,a,o, as well as the difference between Vr,o and VDF,r,o. That

is when the variance of the parameters in the de-jure imputation model for the active patients

matches the variance of the parameters in LMCF imputation model for the active patients and

the variance of the parameters in the de-jure imputation model for the reference patients matches

the variance of the parameters in LMCF imputation model for the reference patients, improved

information anchoring will be obtained.

Under J2R or CIR imputation, the de-facto imputation model for patients in the refernce arm is

the same as under de-jure imputation, i.e. VDF,r,o = Vr,o. Result (4.11) in the J2R/CIR settings

becomes,

0 ≈π2
dP̄a,d [Va,o −VDF,a,o] P̄

T
a,d + 2πdπr,dP̄a,dCov (bDF,a,o,k,br,o,k) P̄T

r,d

+
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
.

With deviation in both arms under CIR or J2R, the sharpness of the approximation depends

on the difference between Va,o and VDF,a,o. When the variance of the parameters in the de-
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jure imputation model for the active patients (Va,o) matches the variance of the parameters in

the de-facto imputation model (VDF,a,o), improved information anchoring will be obtained. The

approximation will also be improved when the covariance between the parameters of the de-facto

imputation model for the active patients and the parameters of the de-jure imputation model for

the reference patients is small.

Implementation for improved information anchoring

With deviation in both arms the covariance between the parameters of the active and reference

imputation models will additionally affect the sharpness of the approximation of the information

anchored variance by Rubin’s variance estimator. Thus we could not simply rescale the variance

parameters in the imputation models to obtain perfect information anchoring. We would need to

also adjust for the covariance. The bootstrap approach, as outlined in Subsection 4.1.4, would also

not achieve this goal. To remove the covariance terms, after bootstrapping the data to estimate

the observed data distributions, we would need to draw separate data for each treatment arm to

construct the imputation models.

We do not develop this approach further here, but highlight that the procedure described in Sub-

section 4.1.4 is not immediately applicable with deviation in both arms. Generally, in all de-facto

settings (one of CR, J2R, CIR or LMCF) the approximation of the information anchored vari-

ance by Rubin’s variance estimator will be excellent, since the order of the terms in the difference

between these quantities are relatively small in comparison to the information anchored variance

itself. In Section 4.5 we explore the impact of deviation in both arms via simulation to demonstrate

this.

4.2 Longitudinal setting with last measured variable

subject to non-response

Here we present a general theory on the information anchoring properties of Rubin’s variance

estimator in the longitudinal trial setting, where we have continuous measurement data recorded

at baseline (time 1) and a further J − 1 follow-up visits and the last measured variable (at time

J) is subject to non-response. Our focus is the treatment effect at the final time point. As in the

previous section we begin by considering a two arm trial setting with deviation in one arm only.

We later extend the proof for deviation in both treatment arms.

Here VDJ, full denotes the variance estimator for the treatment effect at the final time point in

the design based analysis with fully observed data if no deviations occur; VDF, full denotes the

variance estimator for the treatment effect at the final time point in the design based analysis

where deviations occur off-treatment but the deviation data is fully observed (under one of CR,

J2R, CIR or LMCF); VDJ, MI denotes Rubin’s variance estimator for the treatment effect at the

final time point in the primary design based analysis where post-deviation data is unobserved but

imputed under de-jure/MAR and VDF, MI denotes Rubin’s variance estimator for the treatment

effect at the final time point in the design based analysis where post-deviation data is unobserved

but imputed under de-facto behaviour (one of CR, J2R, CIR or LMCF).
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4.2.1 Setting for Proposition 2

Consider a two arm trial consisting of 2n patients. n patients have been randomised to an active

arm and n patients to a reference arm with a continuous outcome measured repeatedly over a series

of visits, j = 1, ..., J (including baseline). The continuous outcome data at the final visit time J

is contained in the (2n× 1) vector Y. A corresponding (2n× p) matrix x consists of the observed

baseline covariates including baseline outcome and treatment, such that the estimated treatment

effect can be written aTY where a may or may not incorporate x.

We assume Y is normally distributed and has known variance Σ. As before, the variance of the

data is assumed to be known without any serious loss of generality, following inference by Carpenter

and Kenward [44].

Suppose all n reference patients are observed at baseline and up to time J without deviation.

However amongst the n active patients, only no patients are observed without deviation at all

time points. The remaining nd active arm patients deviate following time J − 1. For simplicity we

assume there is no interim missing data. Let D and O define the sets of indices for the patients

who do and do not deviate in the active arm respectively. Further suppose the variance-covariance

matrix of baseline and follow-up is the same in both treatment groups. Interest lies in the treatment

effect at time J .

Assume VDF, full = VDJ, full + O(n−2). Typically, although not necessarily, some form of regression

model will be the substantive model of interest, used to make inferences about the treatment effect

in the population of interest. Appendix D.1.1 shows (4.2) holds for the mean treatment group

difference, adjusted and unadjusted for baseline outcome in a trial with baseline (time 1) and J−1

follow-up outcomes with non-response at time J .

4.2.2 Proposition 2

For sensitivity analyses of a two arm trial with baseline and J − 1 follow-up time points with non-

response at time J , performed by MI using the algorithm given by Carpenter, Roger and Kenward

[13], the difference between Rubin’s variance estimator and the information anchored variance for

the treatment effect at time J is,

0 ≈ π2
dP̄a,d (Va,o −VDF,o) P̄T

a,d +
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
.

Va,o represents the variance-covariance matrix of the parameter estimates in the de-jure imputation

model and VDF,o represents the variance-covariance matrix of the parameter estimates in the de-

facto imputation model. P̄a,d is a vector containing the mean of the baseline covariates for each

deviating active patient.
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4.2.3 Proof of Proposition 2

Let z = a, r index the randomised active arm or reference arm allocation for each patient i with

follow-up outcome at time J denoted by YziJ . The outcome data at the final time point for the

reference patients are contained in the vector YrJ = (Yr1J , ...YrnJ)
T

. The final visit outcome data

for the non-deviating active patients are contained in the vector YaJ,o = {YaiJ ; i ∈ O}T .

We suppose that each deviating patient has two potential outcomes at time J : the one that would

occur if they remain on active treatment post-deviation (de-jure) and the other that would occur

off-treatment post-deviation (de-facto).

The potentially observable de-jure data for the nd deviating patients at time J are contained in

the vector YaJ,DJ,d and the alternative de-facto outcome data in the vector YaJ,DF,d. Define

Y = (YrJ ,YaJ,o,YaJ,DJ,d,YaJ,DF,d)
T

as the collection of observed and potentially observable

outcome data, which has dimensions [(n+ no + 2nd)× 1].

For each deviating patient we can only observe one of the potential outcomes, either de-jure or de-

facto. Consider two [(n+ no + 2nd)× (n+ no + 2nd)] matrices, DDJ and DDF of 0’s and 1’s such

that DDJY gives the [(n+ no + 2nd)× 1] de-jure data and DDFY gives the [(n+ no + 2nd)× 1]

de-facto data at time J .

Let a be a [(n+ no + 2nd)× 1] vector such that aTDDJY returns the de-jure treatment estimate

and aTDDFY returns the de-facto treatment estimate. When the deviating patients experience

de-jure behaviour post-deviation and are observed the expectation of the variance of the de-jure

on-treatment estimand can be expressed as in (4.1). We consider settings where the expectation

of the variance of our de-facto estimand can then be expressed as in (4.2).

We now suppose that post-deviation data are unobserved, i.e. the potentially observable de-facto

and de-jure entries in Y are missing for the nd active patients. We alternatively impute these

outcomes, using de-jure imputation and de-facto imputation. This gives K ‘complete’ data samples

Yk, of size [(n+ no + 2nd)× 1].

For this we need appropriate imputation distributions for the missing data under each scenario,

with suitable posteriors for the included parameters. Under the de-jure assumption our imputation

model is formed from the regression of YaJ,o on Pa,o where Pa,o is the design matrix for the

imputation model, which contains the values of the 1, ..., J − 1 outcomes and covariates included

in the imputation model (excluding treatment), along with a vector of 1’s to include an intercept

in the model for the no observed active patients.

The parameter estimates for the de-jure imputation model for the nd patients missing outcome

J are found using β̂a,o = (PT
a,oPa,o)

−1PT
a,oYaJ,o with assumed known covariance matrix Va,o =

(PT
a,oPa,o)

−1σ2.

We assume the large sample posterior for the parameters of the de-jure imputation model, denoted

as β̂DJ , is normal and centered on the ML estimator β̂a,o with covariance matrix Va,o. That is,
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β̂DJ |YaJ,o ∼ N(β̂a,o; Va,o).

The de-jure imputation model for active patient i deviating following time J − 1 and imputation

k can therefore be expressed as,

ỸaiJ,k|YaJ,o = Pa,d,i

[
β̂a,o + ba,o,k

]
+ ei,k for i ∈ D,

where, ba,o,k ∼ N(0,Va,o), ei,k ∼ N(0, σ2) and Pa,d,i contains the values of the 1, ..., J−1 outcomes

and covariates included in the imputation model (plus a 1 for the intercept) for each deviating

patient i, who deviates following time J − 1.

For de-facto imputation we assume the large sample posterior for the imputation parameters for

the nd patients missing outcome J , β̂DF , is normal and centered on the ML estimator β̂DF,o with

known covariance matrix VDF,o, that is,

β̂DF |YDF,J,o ∼ N(β̂DF,o; VDF,o),

where YDF,J,o consists of the relevant observed outcome data under the particular de-facto setting

of interest. The de-facto imputation model for active patient i deviating following time J − 1 and

imputation k can therefore be expressed as,

Y̆aiJ,k|YDF,J,o = Pa,d,i

[
β̂DF,o + bDF,o,k

]
+ ei,k for i ∈ D,

where, bDF,o,k ∼ N(0,VDF,o), and ei,k ∼ N(0, σ2). Under the assumption of equal variance-

covariance matrix of baseline and follow-up by treatment arm we consequently assume the same

variance for the residuals in the de-jure and de-facto imputation models (σ2). In Subsection 4.2.5

we explore the impact of relaxing this assumption. We are interested in imputation inference for,
1
K

∑K
k=1 aTDDJYk or 1

K

∑K
k=1 aTDDFYk.

Letting the number of imputations, K → ∞, the variance of our MI treatment estimate as esti-

mated by Rubin’s rules is, VDJ, MI = ŴDJ + B̂DJ or VDF, MI = ŴDF + B̂DF where under the conditions

required in the proposition, E
[
ŴDJ

]
= E

[
1
K

∑K
k=1 aTDDJΣ̂kDT

DJa
]
→ aTDDJΣDT

DJa and

E
[
ŴDF

]
= E

[
1
K

∑K
k=1 aTDDFΣ̂kDT

DFa
]
→ aTDDJΣDT

DJa +O(n−2).

Under de-jure,
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B̂DJ =
1

K − 1

K∑
k=1

[
πd (ēk − ē) + πd

(
P̄a,dba,o,k − P̄a,db̄a,o

)]2
,

where ēk = 1
nd

∑
i∈D ei,k, ē = 1

K

∑K
k=1 ēk, P̄a,d = 1

nd

∑
i∈D Pa,d,i and b̄a,o = 1

K

∑K
k=1 ba,o,k.

Which has expectation,

E
[
B̂DJ

]
= π2

d

[
σ2 + ndP̄a,dVa,oP̄

T
a,d

nd

]
.

Under de-facto,

B̂DF =
1

K − 1

K∑
k=1

[
πd (ēk − ē) + πd

(
P̄a,dbDF,o,k − P̄a,db̄DF,o

)]2
,

where b̄DF,o = 1
K

∑K
k=1 bDF,o,k. Which has expectation,

E
[
B̂DF

]
= π2

d

[
σ2 + ndP̄a,dVDF,oP̄

T
a,d

nd

]
.

The information anchored variance is,

E [Vanchored] = aTDDJΣDT
DJa +O(n−2) + E

[
B̂DJ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]O(n−2).

If Rubin’s variance estimator is information anchoring and preserves the information loss in the

primary analysis under MAR (4.4) holds, which in this setting is,

0 ≈ π2
dP̄a,d (Va,o −VDF,o) P̄T

a,d +
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
. (4.12)

This gives the required result.

�
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The difference between Rubin’s variance estimator and the information anchored variance is a

small quantity, under the described conditions. We see the result corresponds with that obtained

in the baseline and single follow-up setting. P̄a,d,Va,o and VDF,o will be of greater dimensions

here, but the order of these terms will remain the same i.e. the overall magnitude of these terms

will be very small. The additional follow-up data does not have a marked impact when only the

last measured variable is subject to non-response and the last measured time point is the focus

of analysis. Rubin’s variance estimator provides an excellent approximation of the information

anchored variance.

4.2.4 Implementation for improved information anchoring

As in the baseline and single follow-up setting, if the variance of the parameters in the de-facto

imputation model corresponds to the variance of the parameters in the de-jure imputation model

(Va,o = VDF,o) then Rubin’s variance estimator will better preserve the loss of information in the

primary design based analysis in the current longitudinal trial setting with deviation in one arm.

The first term on the RHS of (4.12) will disappear.

As described in Subsection 4.1.4 when this is not the case we can alter the reference based MI

procedure by bootstrapping the observed reference sample, then drawing the required sample size

from the estimated reference distribution to achieve Va,o = VDF,o. Alternatively we could re-scale

the variance of the parameters in the de-facto imputation distribution to achieve Va,o = VDF,o.

However as discussed in Subsection 4.1.3 the first term on the RHS of (4.12) is very small, relative

to the information anchored variance we desire. Thus even without this additional step we will still

see an excellent approximation between Rubin’s variance estimator and the desired information

anchored variance.

4.2.5 Relaxing the equal variance assumption

As in Subsection 4.1.5 we can consider the impact of relaxing the assumption of equal variance-

covariance matrix for baseline and follow-up across trial arms. Similar to the baseline and single

follow-up setting when we relax the equal variance assumption we can no longer assume the variance

of the residuals in the de-jure imputation model matches the variance of the residuals in the de-facto

imputation model. In this case we denote the variance of the residuals in the de-jure imputation

model as σ2
DJ and in the de-facto imputation model as σ2

DF . Then under de-facto imputation, the

requirement for information anchoring becomes,

0 ≈ π2
d

[
σ2
DJ − σ2

DF

nd
+ P̄a,d (Va,o −VDF,o) P̄T

a,d

]
+
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
. (4.13)

Rubin’s variance estimator still approximates the information anchored variance estimator. The

difference between Rubin’s variance estimator and the information anchored variance remains small

in comparison to the information anchored variance. The additional component in the difference

between Rubin’s variance and the information anchored variance is driven by the degree of the
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difference in the variance structure by trial arm. But this additional component is multiplied by

πd/n i.e. is O(πd/n), thus will always be relatively small. The difference between Va,o−VDF,o will

also be slightly larger when the variance structures differ by trial arm. However as discussed in the

single follow-up outcome setting in Subsection 4.1.5, the additional difference can be expressed as

a component with the same order as VDF,o in the equal variance setting and Va,o−VDF,o remains

multiplied by π2
d. Thus the order of this component will be the same as when variance-covariance

structures were equal.

So we see that —similar to the baseline and single follow-up setting— relaxing the equal variance

assumption does not greatly effect the approximation between Rubin’s variance estimator and

the information anchored variance in the longitudinal setting, where the last measured variable is

subject to non-response in one arm. Especially since we do not expect the variance structure to

differ markedly by arm.

4.2.6 Extension for deviation in both arms

Following the approach outlined in Subsection 4.1.6 for the current longitudinal setting with devi-

ation in both arms, we obtain a result which corresponds with that obtained in the baseline and

single follow-up setting (4.11). The difference between Rubin’s variance estimator and information

anchored variance is,

0 ≈π2
dP̄a,d [Va,o −VDF,a,o] P̄

T
a,d + π2

r,dP̄r,d [Vr,o −VDF,r,o] P̄T
r,d

+ 2πdπr,dP̄a,dCov (bDF,a,o,k,bDF,r,o,k) P̄T
r,d +

E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
.

Rubin’s variance estimator still provides an excellent approximation of the information anchored

variance. This is unsurprising given that the additional follow-up data did not have a marked

impact when only the last measured variable was subject to non-response in one treatment arm.

4.3 Longitudinal setting with more than one deviation

pattern

Often in a longitudinal trial where we have measurement data recorded at baseline (time 1) and

J − 1 follow-up visits we will not only see non-response at the final response time but at earlier

planned measurement occasions. Here we present a general theory on the information anchoring

properties of Rubin’s variance estimator in the longitudinal trial setting, where visit times j =

2, ..., J are subject to non-response. Our focus is the treatment effect at the final time point. We

restrict our attention to monotone missingness patterns, that is when response j is missing for a

patient, responses j + 1 to J are also missing and responses 1, ..., j − 1 are observed. As in the

previous sections we begin by focussing on the two arm trial setting with deviation in one arm

only. Subsequently we extend the proof for deviation in both treatment arms.
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4.3.1 Setting for Proposition 3

Consider a two arm trial consisting of 2n patients. n patients have been randomised to an active

arm and n patients to a reference arm with a continuous outcome measured repeatedly over a series

of visits, j = 1, ..., J (including baseline). The continuous outcome data at the final visit time J

is contained in the (2n× 1) vector Y. A corresponding (2n× p) matrix x consists of the observed

baseline covariates including baseline outcome and treatment, such that the estimated treatment

effect can be written aTY. a may or may not incorporate x.

We assume Y is normally distributed and has known variance Σ. The variance of the data is

assumed to be known without any serious loss of generality, following inference by Carpenter and

Kenward [44].

Suppose all n reference patients are observed at baseline and up to time J without deviation.

However among the n active treatment patients, only no patients are observed without deviation

at all time points. Among the deviating nd active arm patients, we observe nd,j patients who

deviate following time j, for j = 1, ..., J − 1. For simplicity we assume there is no interim missing

data. Let D and O define the sets of indices for the patients who do and do not deviate in the active

arm respectively. Further DJ denotes the set of indices for deviating patients who deviate following

time j, so that nd =
∑J−1
j=1 nd,j . Let πd,j = nd,j/n. Assume the variance-covariance matrix of

baseline and follow-up, is the same in both treatment groups. Interest lies in the treatment effect

at time J .

Assume VDF, full = VDJ, full + O(n−2). Appendix D.1.2 shows (4.2) holds for the mean treatment

group difference (unadjusted and adjusted for baseline) in a trial with baseline (time 1) and J − 1

follow-up outcomes with monotone missingness patterns following baseline.

4.3.2 Proposition 3

For sensitivity analyses of a two arm longitudinal trial with monotone missingness performed by MI

using the algorithm given by Carpenter, Roger and Kenward [13], the difference between Rubin’s

variance estimator and the information anchoring variance for the treatment effect at time J is,

0 ≈
(J−1)∑
j=1

π2
d,jP̄a,d,j (Va,o,j −VDF,o,j) P̄T

a,d,j +
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
. (4.14)

Va,o,j represents the variance-covariance matrix of the parameter estimates in the de-jure imputa-

tion model for patients deviating following time j and VDF,o,j represents the variance-covariance

matrix of the parameter estimates in the de-facto imputation model for patients deviating following

time j. P̄a,d,j is a vector containing the mean of the baseline covariates for each deviating active

patient who deviates following time j.
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4.3.3 Proof of Proposition 3

Let z = a, r index the randomised active arm or reference arm allocation for each patient i with

follow-up outcome at time J denoted by YziJ . The follow-up outcome data at the final time point

for the reference patients are contained in the vector YrJ = (Yr1J , ...YrnJ)
T

. The final visit outcome

data for the non-deviating active patients are contained in the vector YaJ,o = {YaiJ ; i ∈ O}T .

We suppose that each deviating patient has two potential outcomes at time J : the one that would

occur if they remain on active treatment post-deviation (de-jure) and the other that would occur

off-treatment post-deviation (de-facto).

The potentially observable de-jure data for the nd deviating patients at time J are contained in

the vector YaJ,DJ,d and the alternative de-facto outcome data in the vector YaJ,DF,d. Define

Y = (YrJ ,YaJ,o,YaJ,DJ,d,YaJ,DF,d)
T

as the collection of observed and potentially observable

outcome data, which has dimensions [(n+ no + 2nd)× 1].

For each deviating patient we can only observe one of the potential outcomes, either de-jure or de-

facto. Consider two [(n+ no + 2nd)× (n+ no + 2nd)] matrices, DDJ and DDF of 0’s and 1’s such

that DDJY gives the [(n+ no + 2nd)× 1] de-jure data and DDFY gives the [(n+ no + 2nd)× 1]

de-facto data at time J .

Let a be a [(n+ no + 2nd)× 1] vector such that aTDDJY returns the de-jure treatment estimate

and aTDDFY returns the de-facto treatment estimate. When the deviating patients experience

de-jure behaviour post-deviation and are observed the expectation of the variance of the de-jure

on-treatment estimand can be expressed as in (4.1). We consider settings where the expectation

of the variance of our de-facto estimand can then be expressed as in (4.2).

We now suppose that post-deviation data are unobserved, i.e. the potentially observable de-facto

and de-jure entries in Y are missing for the nd active patients. We alternatively impute these

outcomes, using de-jure imputation and de-facto imputation. This gives K ‘complete’ data samples

Yk, of size [(n+ no + 2nd)× 1]. For this we need appropriate imputation distributions for each

missing data pattern under each scenario, with suitable posteriors for the included parameters.

Under our de-jure assumption (on-treatment MAR), the imputation model for patients deviating

following time j, for j = 1, ..., J − 1 is formed from the regression of YaJ,o on Pa,o,j where Pa,o,j

is the design matrix for the imputation model, which contains the values of the 1, ..., j outcomes

and covariates included in the imputation model (excluding treatment) for the no observed active

patients, along with a vector of 1’s to include an intercept in the model. This is appropriate since

we are not imputing any interim missing outcomes here. We only consider monotone missing data

patterns. We are interested in the treatment effect at time J . As described by Carpenter and

Kenward (p. 77–78) [44], under MAR, each of the regressions will be validly estimated from those

observed in the data set.

The parameter estimates for the de-jure imputation model for the nd,j patients missing outcomes

j + 1 to J are found using β̂a,o,j = (PT
a,o,jPa,o,j)

−1PT
a,o,jYaJ,o with assumed known covariance

matrix Va,o,j = (PT
a,o,jPa,o,j)

−1σ2
j .

We assume the large sample posterior for the parameter estimates for the de-jure imputation model,
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denoted β̂DJ,j , is normal and centered on the ML estimator β̂a,o,j with covariance matrix Va,o,j.

That is,

β̂DJ,j |YaJ,o ∼ N(β̂a,o,j ; Va,o,j).

The de-jure imputation model for active patient i deviating following time j, for j = 1, ..., J − 1

and imputation k can therefore be expressed as,

ỸaiJ,k|YaJ,o = Pa,d,j,i

[
β̂a,o,j + ba,o,j,k

]
+ ei,j,k for i ∈ {DJ},

where, ba,o,j,k ∼ N(0,Va,o,j), ei,j,k ∼ N(0, σ2
j ) and Pa,d,j,i contains the values of the 1, ..., j

outcomes and covariates included in the imputation model (excluding treatment, plus a 1 for the

intercept) for each deviating active patient i, who deviates following time j.

For de-facto imputation we assume the large sample posterior for the imputation parameters for

the nd,j patients missing outcomes j + 1 to J , β̂DF,j is normal and centered on the ML estimator

β̂DF,o,j with known covariance matrix VDF,o,j , that is for j = 1, ..., J − 1,

β̂DF,j |YDF,J,o ∼ N(β̂DF,o,j ; VDF,o,j),

where YDF,J,o consists of the relevant observed outcome data under the particular de-facto setting

of interest. The de-facto imputation model for active patient i deviating following time j, for

j = 1, ..., J − 1 and imputation k can therefore be expressed as,

Y̆aiJ,k|YDF,J,o = Pa,d,j,i

[
β̂DF,o,j + bDF,o,j,k

]
+ ei,j,k for i ∈ {DJ},

where, bDF,o,j,k ∼ N(0,VDF,o,j) and ei,j,k ∼ N(0, σ2
j ). Under the assumption of equal variance-

covariance matrix of baseline and follow-up by treatment arm we consequently assume the same

variance for the residuals in the de-jure and de-facto imputation models for patients deviating

following the same time j, for j = 1, ..., J − 1. In Subsection 4.3.5 we consider the impact of

relaxing this assumption. We are interested in imputation inference for, 1
K

∑K
k=1 aTDDJYk or

1
K

∑K
k=1 aTDDFYk.

Letting the number of imputations, K → ∞, the variance of our MI treatment estimate as esti-

mated by Rubin’s rules is, VDJ, MI = ŴDJ + B̂DJ or VDF, MI = ŴDF + B̂DF where under the conditions

required in the proposition, E
[
ŴDJ

]
= E

[
1
K

∑K
k=1 aTDDJΣ̂kDT

DJa
]
→ aTDDJΣDT

DJa and

E
[
ŴDF

]
= E

[
1
K

∑K
k=1 aTDDFΣ̂kDT

DFa
]
→ aTDDJΣDT

DJa +O(n−2).
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Under de-jure,

B̂DJ =
1

K − 1

K∑
k=1

(J−1)∑
j=1

πd,j (ēj,k − ēj) + πd,j
(
P̄a,d,jba,o,j,k − P̄a,d,jb̄a,o,j

)2

,

where ēj,k = 1
nd,j

∑
i∈DJ ei,j,k, ēj = 1

K

∑K
k=1 ēj,k, P̄a,d,j = 1

nd,j

∑
i∈DJ Pa,d,j,i and

b̄a,o,j = 1
K

∑K
k=1 ba,o,j,k. Which has expectation,

E
[
B̂DJ

]
=

(J−1)∑
j=1

π2
d,j

[
σ2
j + nd,jP̄a,d,jVa,o,jP̄

T
a,d,j

nd,j

]
.

Under de-facto,

B̂DF =
1

K − 1

K∑
k=1

(J−1)∑
j=1

πd,j (ēj,k − ēj) + πd,j
(
P̄a,d,jbDF,o,j,k − P̄a,d,jb̄DF,o,j

)2

,

where b̄DF,o,j = 1
K

∑K
k=1 bDF,o,j,k. Which has expectation,

E
[
B̂DF

]
=

(J−1)∑
j=1

π2
d,j

[
σ2
j + nd,jP̄a,d,jVDF,o,jP̄

T
a,d,j

nd,j

]
.

The information anchored variance is,

E [Vanchored] = aTDDJΣDT
DJa +O(n−2) + E

[
B̂DJ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]O(n−2).

As in the previous settings, if Rubin’s rules are information anchoring and preserve the information

loss in the primary analysis under MAR (4.4) holds. Which in this setting is,

0 ≈
(J−1)∑
j=1

[
π2
d,jP̄a,d,j (Va,o,j −VDF,o,j) P̄T

a,d,j

]
+
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]

(4.15)
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This gives the required result in the longitudinal trial setting with monotone missingness in one

treatment arm.

�

The result is a natural extension of that observed for the longitudinal setting with only one pattern

of non-response (missingness at the final time point J). The approximation of the information

anchored variance by Rubin’s variance estimator is sharpened when, for each missing data pattern,

the variance of the parameters in the de-facto imputation model matches the variance of the

parameters in the de-jure (MAR) imputation model. However in practice the approximation is

generally excellent regardless of an exact match in these quantities. Since this term and the other

components in the difference will be of a smaller magnitude, relative to the information anchored

variance, for realistic proportions of missing data.

4.3.4 Implementation for improved information anchoring

If the variance of the parameters in the de-jure imputation model corresponds to the variance of the

parameters in the de-facto imputation model for each missing data pattern (i.e. Va,o,j = VDF,o,j for

j = 1, ..., J − 1), Rubin’s variance estimator will approximate the information anchored variance

that preserves the loss of information in the primary design based analysis more closely in the

longitudinal trial setting with monotone missingness patterns. The first term on the RHS of (4.15)

will disappear for j = 1, ..., J − 1.

As described in Subsection 4.1.4 when this is not the case we can alter the reference based procedure

to achieve improved information anchoring via bootstrapping the observed reference case sample,

then drawing the required samples from the estimated reference distribution to construct the

imputed models to achieve Va,o,j = VDF,o,j for j = 1, ..., J−1. Alternatively we could re-scale the

variance of the parameters in the de-facto imputation model to ensure the variance corresponds

with the variance of the parameters in the de-jure imputation model. With a large number of

missing data patterns the re-scaling will become less trivial. Thus the bootstrap approach may be

more desirable for trials with a larger number of missing data patterns. The choice of the approach

undertaken is entirely at the preference of the trialist. However we note that the first term on the

RHS of (4.12) is generally very small, relative to the information anchored variance. Thus without

this condition we will still see an excellent approximation between Rubin’s variance estimator and

the desired information anchored variance.

4.3.5 Relaxing the equal variance assumption

When we relax the equal variance assumption we can no longer assume the variance of the residuals

in the de-jure imputation model for patients with missingness pattern j matches the variance of

the residuals in the de-facto imputation model for patients with missingness pattern j, for each

missing data pattern j.

In this setting we denote the variance of the residuals in the de-jure imputation model for patients

missing outcomes j + 1, ..., J as σ2
DJ,j and in the de-facto imputation model as σ2

DF,j for j =

1, ..., J − 1. Then under de-jure imputation, the requirement for information anchoring becomes,
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0 ≈
(J−1)∑
j=1

π2
d,j

[
σ2
DJ,j − σ2

DF,j

nd,j
+ P̄a,d,j (Va,o,j −VDF,o,j) P̄T

a,d,j

]
+
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
. (4.16)

For each missingness pattern with deviation following time j, an additional component is incorpo-

rated. The new components in the difference between Rubin’s variance and the ideal information

anchored variance are driven by the degree of difference in the variance structure by trial arm for

each missingness pattern. Since the variance structure is not likely to differ too markedly by trial

arm for each missingness pattern, and these extra components are each multiplied by πd,j/n, the

overall impact will in practice be relatively small.

So we see that similar to the longitudinal setting where the last measured variable is subject

to non-response, relaxing the equal variance assumption does not greatly effect the approximation

between Rubin’s variance estimator and the ideal information anchored variance in the longitudinal

setting with monotone non-response in one arm.

4.3.6 Extension for deviation in both arms

Suppose among the n reference patients only nr,o are actually observed at all time points without

deviation. Among the remaining nr,d deviating reference patients, we observe nr,d,j patients who

deviate following time j for j = 1, ..., J − 1. For simplicity we assume there is no interim missing

data in the reference arm. Let RD and RO define the sets of indices for patients who do and do

not deviate in the reference arm respectively. Further RDJ denotes the set of indices for deviating

reference patients who deviate following time j, so that nr,d =
∑J−1
j=1 nr,d,j . Interest still lies in the

treatment effect at time J .

The outcome data for the observed reference patients at the final time point are contained in the

vector YrJ,o = {YriJ ; i ∈ RO}T . The potentially observable de-jure data for the nr,d deviating

reference patients are contained in the vector YrJ,DJ,d and the alternative de-facto outcome data

in the vector YrJ,DF,d. The full collection of observed and potentially observable outcome data is

now defined as Y = (YrJ,o,YrJ,DJ,d,YrJ,DF,d,YaJ,o,YaJ,DJ,d,YaJ,DF,d)
T

which has dimensions

[(nr,o + 2nr,d + no + 2nd)]. We assume Y is normally distributed and has known variance Σ.

We redefine the two [(nr,o + 2nr,d + no + 2nd)× (nr,o + 2nr,d + no + 2nd)] matrices DDJ and DDF

of 0’s and 1’s so that DDJY and DDFY now each give the [(nr,o + 2nr,d + no + 2nd)× 1] de-jure

data or [(nr,o + 2nr,d + no + 2nd)× 1] de-facto data across both treatment arms. We focus on

settings where E [VDF, full] = aTDDJΣDT
DJa +O(n−2).

We follow the steps outlined above to establish the de-jure imputation model for active arm patient

i, deviating following time j for j = 1, ..., J − 1 and imputation k as,

ỸaiJ,k|YaJ,o = Pa,d,j,i

[
β̂a,o,j + ba,o,j,k

]
+ ei,j,k for i ∈ {DJ},
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where ba,o,j,k ∼ N(0,Va,o,j), ei,j,k ∼ N(0, σ2
j ) and Pa,d,j,i contains the values of the 1, ..., j out-

comes and covariates included in the imputation model (excluding treatment, plus a 1 for the

intercept) for each deviating active patient i, who deviates following time j. For the reference arm,

under our de-jure (on-treatment MAR) assumption the imputation model for patients deviating

following time j, for j = 1, ..., J − 1 is formed from the regression of YrJ,o on Pr,o,j where Pr,o,j

is the design matrix for the imputation model, which contains the values of the 1, ..., j outcomes

and covariates included in the imputation model with a vector of 1’s to include an intercept term

in the model, for the nr,o observed reference patients.

The parameter estimates for the de-jure reference arm imputation model for the nr,d,j patients

missing outcomes j + 1 to J are found using β̂r,o,j = (PT
r,o,jPr,o,j)

−1PT
r,o,jYrJ,o with assumed

known covariance matrix Vr,o,j = (PT
r,o,jPr,o,j)

−1σ2
j . We assume the large sample posterior for

the parameter estimates for the de-jure reference arm imputation model, denoted β̂DJ,r,j , is normal

and centered on the ML estimator β̂r,o,j with covariance matrix Vr,o,j . That is,

β̂DJ,r,j |YrJ,o ∼ N(β̂r,o,j ; Vr,o,j).

The de-jure imputation model for reference patient i deviating following time j, for j = 1, ..., J − 1

and imputation k can therefore be expressed as,

ỸriJ,k|YrJ,o = Pr,d,j,i

[
β̂r,o,j + br,o,j,k

]
+ ei,j,k for i ∈ {RDJ},

where br,o,j,k ∼ N(0,Vr,o,j), ei,j,k ∼ N(0, σ2
j ) and Pr,d,j,i contains the values of the 1, ..., j out-

comes and covariates included in the imputation model (excluding treatment, plus a 1 for the

intercept) for each deviating reference patient i, who deviates following time j. Under de-facto

imputation for patients in the active arm deviating following time j for j = 1, ..., J − 1 we assume

the large sample posterior for the parameters of the imputation model, which we denote by β̂DF,a,j ,

is normal and centered on the ML estimator β̂DF,a,o,j with known covariance matrix VDF,a,o,j .

That is for j = 1, ..., J − 1,

β̂DF,a,j |YDF,a,J,o ∼ N
(
β̂DF,a,o,j ,VDF,a,o,j

)
,

where YDF,a,J,o consists of the relevant observed outcome data under the particular de-facto

setting of interest. The de-facto imputation model for active patient i deviating following time j

for j = 1, ..., J − 1 and imputation k can therefore be expressed as,

ỸaiJ,k|YDF,a,J,o = Pa,d,j,i

[
β̂DF,a,o,j + bDF,a,o,j,k

]
+ ei,j,k for i ∈ DJ,
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where bDF,a,o,j,k ∼ N(0,VDF,a,o,j), and ei,j,k ∼ N(0, σ2
j ). Under de-facto imputation for patients

in the reference arm deviating following time j for j = 1, ..., J − 1 we assume the large sample

posterior for the parameters of the imputation model, which we denote by β̂DF,r,j , is normal

and centered on the ML estimator β̂DF,r,o,j with known covariance matrix VDF,r,o,j . That is for

j = 1, ..., J − 1,

β̂DF,r,j |YDF,r,J,o ∼ N
(
β̂DF,r,o,j ,VDF,r,o,j

)
,

where YDF,r,J,o consists of the relevant observed outcome data under the particular de-facto setting

of interest. The de-facto imputation model for reference patient i deviating following time j for

j = 1, ..., J − 1 and imputation k can therefore be expressed as,

ỸriJ,k|YDF,r,J,o = Pr,d,j,i

[
β̂DF,r,o,j + bDF,r,o,j,k

]
+ ei,j,k for i ∈ RDJ,

where bDF,r,o,j,k ∼ N(0,VDF,r,o,j), and ei,j,k ∼ N(0, σ2
j ). We are interested in imputation infer-

ence for, 1
K

∑K
k=1 aTDDJYk or 1

K

∑K
k=1 aTDDFYk. For Rubin’s variance estimator, under the

described conditions, E
[
ŴDJ

]
= E

[
1
K

∑K
k=1 aTDDJΣ̂kDT

DJa
]
→ aTDDJΣDT

DJa and

E
[
ŴDF

]
= E

[
1
K

∑K
k=1 aTDDFΣ̂kDT

DFa
]
→ aTDDJΣDT

DJa +O(n−2). Under de-jure,

B̂DJ =
1

K − 1

K∑
k=1

(J−1)∑
j=1

πd,j (ēa,j,k − ēa,j) + πd,j
(
P̄a,d,jba,o,j,k − P̄a,d,jb̄a,o,j

)
−πr,d,j (ēr,j,k − ēr,j)− πr,d,j

(
P̄r,d,jbr,o,j,k − P̄r,d,jb̄r,o,j

)]2

where ēa,j,k = 1
nd,j

∑
i∈DJ ei,j,k, ēa,j = 1

K

∑K
k=1 ēa,j,k, P̄a,d,j = 1

nd,j

∑
i∈DJ Pa,d,j,i, b̄a,o,j =

1
K

∑K
k=1 ba,o,j,k, ēr,j,k = 1

nd,j

∑
i∈RDJ ei,j,k, ēr,j = 1

K

∑K
k=1 ēr,j,k, P̄r,d,j = 1

nr,d,j

∑
i∈RDJ Pr,d,j,i

and b̄r,o,j = 1
K

∑K
k=1 br,o,j,k. This has expectation,

E
[
B̂DJ

]
=

(J−1)∑
j=1

π2
d,j

[
σ2
j + nd,jP̄a,d,jVa,o,jP̄

T
a,d,j

nd,j

]
+ π2

r,d,j

[
σ2
j + nr,d,jP̄r,d,jVr,o,jP̄

T
r,d,j

nr,d,j

]
.

Under de-facto,

B̂DF =
1

K − 1

K∑
k=1

(J−1)∑
j=1

πd,j (ēa,j,k − ēa,j) + πd,j
(
P̄a,d,jbDF,a,o,j,k − P̄a,d,jb̄DF,a,o,j

)
−πr,d,j (ēr,j,k − ēr,j)− πr,d,j

(
P̄r,d,jbDF,r,o,j,k − P̄r,d,jb̄DF,r,o,j

)]2
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where b̄DF,a,o,j = 1
K

∑K
k=1 bDF,a,o,j,k and b̄DF,r,o,j = 1

K

∑K
k=1 bDF,r,o,j,k. Which has expectation,

E
[
B̂DF

]
=

(J−1)∑
j=1

π2
d,j

[
σ2
j + nd,jP̄a,d,jVDF,a,o,jP̄

T
a,d,j

nd,j

]
+ π2

r,d,j

[
σ2
j + nr,d,jP̄r,d,jVDF,r,o,jP̄

T
r,d,j

nr,d,j

]
− 2πd,jπr,d,jP̄a,d,jCov (bDF,a,o,j,k,bDF,r,o,j,k) P̄T

r,d,j .

The information anchored variance is,

E [Vanchored] = aTDDJΣDT
DJa +O(n−2) + E

[
B̂DJ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]O(n−2).

If Rubin’s variance estimator is information anchoring and preserves the information loss in the

primary analysis under MAR then (4.4) holds. In this setting (4.4) becomes,

0 ≈
(J−1)∑
j=1

π2
d,jP̄a,d,j [Va,o,j −VDF,a,o,j ] P̄

T
a,d,j + π2

r,d,jP̄r,d,j [Vr,o,j −VDF,r,o,j ] P̄
T
r,d,j

+ 2πd,jπr,d,jP̄a,d,jCov (bDF,a,o,j,k,bDF,r,o,j,k) P̄T
r,d,j +

E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
]
. (4.17)

With deviation in both arms of a longitudinal trial with monotone missingness, the difference be-

tween Rubin’s variance estimator and the information anchored variance remains a small quantity.

Result (4.17) extends the inference drawn in the longitudinal setting where only the last measured

variable was subject to response. With j = 1, ..., J − 1 missing data patterns the sharpness of the

approximation depends on the degree of similarity between the variance of the de-jure imputation

model parameters and de-facto imputation model parameters, for both the active arm and refer-

ence arm, for each missing data pattern. The magnitude of the covariance between the active and

reference arm de-facto imputation model parameters for each missing data pattern also contributes

to the sharpness of the approximation. In practice however these terms will be negligible in size

in comparison to the information anchored variance. In Section 4.5 we conduct a simulation study

to further illustrate this.

So far, throughout this chapter we have assumed an infinite number of imputations. We now

explore the impact a finite number of imputations has on the information anchoring performance

of Rubin’s variance estimator.
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4.4 Finite imputations

The theoretical results in this chapter have concentrated on the setting where the number of

imputations, K → ∞. In practice this will not be the case, however results will still hold for

finite K. For finite K the variance of our MI treatment estimate as estimated by Rubin’s rules is,

VDJ, MI = ŴDJ +
(
1 + 1

K

)
B̂DJ or VDF, MI = ŴDF +

(
1 + 1

K

)
B̂DF. We will therefore have additional

terms in the difference between Rubin’s variance estimator and the ideal information anchored

variance, but these will also be very small. They will be the same order of the terms already

presented multiplied by K−1, thus smaller than the components discussed throughout this chapter.

To see this explicitly we re-consider the proof of Proposition 1 for finite K. If Rubin’s variance

estimator preserves the information loss seen in the primary analysis under MAR in the sensitivity

analysis then,

E
[
ŴDF

]
+

(
1 +

1

K

)
E
[
B̂DF

]
≈ E [VDF, full]

1 +

(
1 + 1

K

)
E
[
B̂DJ

]
E
[
ŴDJ

]
 .

That is,

aTDDJΣDT
DJa +O(n−2) +

(
1 +

1

K

)
E
[
B̂DF

]
≈aTDDJΣDT

DJa +O(n−2) +

(
1 + 1

K

)
E
[
B̂DJ

]
E
[
ŴDJ

] [
aTDDJΣDT

DJa +O(n−2)
]
.

After simplification and rearrangement this becomes,

0 ≈
(

1 +
1

K

)E [B̂DJ

]
− E

[
B̂DF

]
+
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
] .

Which is,

0 ≈
(

1 +
1

K

)(πd)
2
P̄a,d (Va,o −VDF,o) P̄T

a,d +
E
[
B̂DJ

]
E
[
ŴDJ

] [O(n−2)
] .

We see sensitivity analyses performed by MI using the algorithm given by Carpenter, Roger and

Kenward [13] are also information anchoring with finite K. We infer that Proposition 2 and 3
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will similarly still hold. We will only have additional smaller terms in the approximation between

Rubin’s variance estimator and the information anchored variance. To demonstrate this we now

conduct a simulation study. In each MI scenario K = 50 imputations are used.

4.5 Simulation study to explore Rubin’s variance

estimator in the longitudinal setting

This section reports the results of a simulation study to assess the information anchoring properties

of Rubin’s variance formula in a variety of longitudinal trial settings following reference based MI,

for each of CR, J2R, CIR and LMCF.

4.5.1 Methods

Data from the asthma trial formed the motivating example for generating the datasets. Baseline

(time 1), time 2 and time 3 data were generated using an underlying MVN distribution with means

and covariance matrices similar to those obtained in the asthma trial at baseline, week 4 and week

12 as,

µplacebo = [2, 1.95, 1.9] , µactive = [2, 2.21, µa,3] ,

Σplacebo = Σactive =

 0.4 0.2 0.2

0.2 0.5 0.2

0.2 0.2 0.6

 .

In the study µa,3 ≈ 2.2 corresponding to a treatment difference of ∆ = 0.3. We consider a range

of µa,3 corresponding to treatment differences of ∆ = {0, 0.3, 1} at time 3 for a range of monotone

MCAR missingness patterns among the active patients; with 5–35% of active patients missing data

at time 2 and time 3 and a further 5–35% of active patients missing time 3 only, corresponding

to a total of 10–70% missing data at time 3 in the active arm. Table E.1 summarises the specific

proportions of missing data in the active arm at each time point in each scenario.

One thousand independent complete datasets were generated for each combination of µa,3 and

missingness, and a sample of n=500 patients (n=250 placebo, n=250 active) was drawn for all

simulations. For each setting, the treatment effect and its estimated variance (VDJ, full) were com-

puted using the full data. The analysis model was a linear regression of the time 3 response on

randomised treatment group.

Monotone MCAR missingness was achieved by independently sampling a binary indicator from a

Bernoulli distribution with success probability equal to the proportion of missing data required at

time 2 for patients in the active arm (half that required by time 3). If the indicator equalled one

at time 2 then the corresponding outcomes at time 2 and 3 were set missing. A second binary

indicator was independently sampled for active individuals observed at time 2 from a Bernoulli
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distribution with success probability equal to the proportion of additional missing data required at

time 3 to obtain the second missingness pattern. This resulted in a sample of no patients observed

at all time point, nd,1 patients observed with deviation following baseline (time 1) and nd,2 patients

with deviation following time 2 in the active arm.

The reference based MI approach of Carpenter, Roger and Kenward [13] was applied to each incom-

plete dataset under MAR, CR, J2R, CIR and LMCF with 50 imputations. In order to minimise

the Monte-Carlo variability in our comparisons, we used the same set of 1000 incomplete datasets

for each imputation procedure. In each de-facto scenario, and for each of the 1000 incomplete

datasets, we created a full dataset by generating the post-deviation data under the scenario-specific

assumptions using the appropriate conditional normal distributions. This enabled the treatment

effect and its variance, had we been able to the observe post-deviation data under the particular

de-facto setting (VDF, full), to be computed. The ideal information anchored variance computed as

(VDJ, MI/VDJ, full)×VDF, full and Rubin’s estimate of variance were assessed and compared. Estimates

were averaged over the 1000 simulations in each scenario for comparison.

We then considered longitudinal trial settings with monotone deviation in both arms for the asthma

setting with ∆ = 0.3; with 5–35% of patients missing data at time 2 and time 3 and a further

5–35% of patients missing data at time 3 only in both treatment arms, corresponding to total

of 10–70% missingness in both arms at time 3. Table E.1 summarises the specific proportions of

missing data imposed in both arms at each time point in each scenario. We also investigated the

setting where the amount of deviation in the reference arm was half that observed for the active

arm; with 5–35% of patients missing data at time 2 and time 3 and a further 5–35% of patients

missing data at time 3 only in the active arm (total of 10–70% missingness at time 3 in the active

arm) and 2.5%–17.5% of patients missing data at time 2 and a further 2.5–17.5% missing data

at time 3 only in the reference arm (total of 5–35% missingness at time 2 in the reference arm).

Table E.2 summarises the specific proportions of missing data imposed at each time point, in each

scenario, by trial arm.

Additional simulations were run for the asthma inspired setting with ∆ = 0.3 and a smaller (n=100)

and larger (n=1000) sample size per arm. We also considered the effect of having a smaller or

larger covariance between each time point for the original mean structure (∆ = 0.3) and sample

size of n=250 per arm for each missingness scenario as follows,

Low covariance set-up,

Σplacebo,low = Σactive,low =

 1 0.05 0.05

0.05 1 0.05

0.05 0.05 1

 .

High covariance set-up,

Σplacebo,high = Σactive,high =

 1 0.75 0.75

0.75 1 0.75

0.75 0.75 1

 .
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4.5.2 Results

Simulations in a longitudinal setting with monotone missingness in the active arm only and a

moderately large treatment effect of ∆ = 0.3 (µa,3 = 2.2 as observed in the asthma trial), show

excellent approximation of the information anchored variance by Rubin’s variance estimator for

up to 40–50% missing data at the final follow-up, in each reference setting (Figure 4.5). The same

results are observed when there is no treatment effect or a very large treatment effect of ∆ = 1.

(see Figures E.1 and E.2).

With a smaller sample size of n = 100 per arm or a larger sample size of n=1000 per arm we still

see excellent information anchoring by Rubin’s variance estimator for up to 40–50% missing data

in the active arm only for each reference based setting, see Figures 4.6 and 4.7 with ∆ = 0.3.

With a smaller covariance between the measurements at each time point j and j∗ of σj,j∗ = 0.05,

for j = 1, ..., J and j∗ = 1, ..., J where j∗ 6= j, Rubin’s variance estimator still approximates

the information anchored variance for up to 40–50% missing data in the active arm, as shown in

Figure 4.8. With a higher covariance between the measurements at each time point j and j∗ of

σj,j∗ = 0.75, the approximation is excellent for up to 60–70% missingness, see Figure 4.9.

0

.002

.004

.006

.008

.01

V
ar

ia
nc

e

10% 20% 30% 40% 50% 60% 70%

Proportion of missing data (active)

Longitudinal CR

0

.002

.004

.006

.008

.01

V
ar

ia
nc

e

10% 20% 30% 40% 50% 60% 70%

Proportion of missing data (active)

Longitudinal J2R

0

.002

.004

.006

.008

.01

V
ar

ia
nc

e

10% 20% 30% 40% 50% 60% 70%

Proportion of missing data (active)

Longitudinal CIR

0

.002

.004

.006

.008

.01

V
ar

ia
nc

e

10% 20% 30% 40% 50% 60% 70%

Proportion of missing data (active)

Longitudinal LMCF

Deviators observed Rubin’s Information anchored Sampling MI/ML

Figure 4.5: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with the asthma trial treatment effect of ∆ = 0.3 and n=250 per arm.
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Figure 4.6: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with the asthma trial treatment effect of ∆ = 0.3 and n=100 per arm.
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Figure 4.7: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the
1000 MI estimates, with the asthma trial treatment effect of ∆ = 0.3 and n=1000 per arm.
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Figure 4.8: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with the asthma trial treatment effect of ∆ = 0.3, n=250 per arm and a low
covariance structure (σj,j∗ = 0.05).
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Figure 4.9: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the
1000 MI estimates, with the asthma trial treatment effect of ∆ = 0.3, n=250 per arm a high

covariance structure (σj,j∗ = 0.75).

When deviations occur at a similar rate in both arms we see Rubin’s variance estimator still

provides an excellent approximation of the information anchored variance for realistic amounts

of missingness. Figure 4.10 shows excellent agreement for up to 30–40% missing data in both

arms. Beyond 40% missing data in both arms, the approximation is not so close. However we
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note that this total amount of missingness would be uncommon in real trials. With a smaller or

larger sample size per arm or a higher or lower correlation structure the approximation is still

excellent for up to 30–40% missing data in both arms (see Appendix E.2 Figures E.5 to E.3). The

results illustrate how with deviation in both arms, the approximation is additionally effected by

the covariance between the parameters of the active and reference arm imputation models, as well

as the proportion of missing data.

When half the proportion of deviation in the active arm is observed in the reference arm (Figure

4.11) we see the information anchoring by Rubin’s variance estimator is improved for missingness

amounts above 40% in comparison to the setting with the same amount of deviation in both

arms (Figure 4.10). Due to the smaller πd,r, the terms in the difference between Rubin’s variance

estimator and the information anchored variance (4.17) are smaller than with the same deviation

in both arms.

We also looked at how well Rubin’s variance estimator approximates the information anchored

variance for the baseline adjusted treatment effect in each of the longitudinal settings outlined

above. In all cases the baseline adjustment had no notable impact on the information anchoring

properties of Rubin’s variance estimator. There was excellent preservation of the information loss

in the primary analysis in sensitivity analysis by Rubin’s variance estimator for realistic proportions

of missing data in each reference based setting (results not shown).

Further simulations were run in a longitudinal setting, inspired by the asthma trial, with baseline

and three follow-up time points, all subject to non-response, where the treatment effect of interest

was the mean treatment group difference at the last follow-up time. There was again excellent

preservation of the information loss in the primary analysis across sensitivity analysis by Rubin’s

variance estimator for up to 40–50% missing data in the active arm only at the final follow-up and

up to 30–40% missing data in both treatment arms, in each reference based setting as expected

(results not shown for similarity).
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Figure 4.10: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with the asthma trial treatment effect of ∆ = 0.3, n=250 per arm and
deviation in both treatment arms.
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Figure 4.11: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with the asthma trial treatment effect of ∆ = 0.3, n=250 per arm and
deviation in both treatment arms; deviation active = 2x deviation placebo.
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4.5.3 Discussion

We have looked at various longitudinal trial settings with different effect sizes, covariance structures

and monotone missingness patterns via simulation. Rubin’s variance estimator is excellent at

information anchoring in all realistic settings. The results correspond with the inferences drawn

for the baseline and single follow-up setting. The additional complexity of an extra follow-up with

non-response does not greatly impact the information anchoring performance of Rubin’s variance

estimator in practice.

The results of the simulations are not surprising, given general Proposition 3. They are in line with

the theory. In longitudinal settings with monotone missingness Rubin’s variance approximates the

information anchored variance which preserves the loss of information in the primary analysis in

reference based sensitivity analysis. The simulation results support the theoretical findings.

The proportion of missingness in each arm has a notable impact on the sharpness of the approx-

imation. With deviation in one arm only it is only with very high amounts of missingness at the

final follow-up (greater than 50%) when the approximation is not so sharp. However such high

amounts of missingness in one arm are unexpected in practice. With deviation in both arms only

it is only with very high amounts of missingness in both arms at the final follow-up (greater than

40%) when the approximation is not so sharp. With deviation in both arms the strength of the

approximation is additionally effected by the covariance between the parameters in the active and

reference imputation models.

4.6 Summary

The theory in this chapter shows that for reference based sensitivity analyses which satisfy VDF, full =

VDJ, full +O(n−2), estimation and inference via MI using the general algorithm given by Carpenter,

Roger and Kenward [13] keeps the information approximately constant across the primary and

sensitivity analysis. That is Rubin’s variance estimator approximately preserves the loss of infor-

mation seen in the primary analysis in the sensitivity analysis. Simulations confirmed this is the

case.

We have developed a general theory which defines the approximation. The difference in the variance

of the parameters in the de-jure and de-facto imputation models, the covariance between these

parameters and the proportion of missing data were identified as key factors which affect the

sharpness of the approximation. We focussed our attention on either the unadjusted treatment

group difference or the baseline adjusted treatment difference at the final follow-up. However, there

may be many settings which satisfy VDF, full = VDJ, full +O(n−2), thus for which the results hold.

Simulations revealed the approximation is not so sharp when the missing data pattern varies

considerably by arm, i.e. with more than 50% missing data at the final follow-up in the active

arm only. The strength of the approximation is affected by the amount of missingness and the

discrepancy between the variance of the de-jure and de-facto imputation parameters. However we

note that more than 50% missing data in a single trial arm generally would be rare in the clinical

trial arena.
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When there is deviation in both arms of a two arm trial, the approximation is not so sharp with

more than 40% deviation in each arm. The strength of the approximation is affected by the amount

of missingness and the discrepancy between the variance of the de-jure and de-facto imputation

parameters for both the active and reference arm and further the covariance between the imputation

parameters used in each arm. However we also note that in practice it is uncommon to see such

high amounts of missing data in both arms. Thus trialists can be confident that Rubin’s variance

estimator provides a valid estimate of variance when using reference based sensitivity analysis.

Throughout this chapter and the previous we have followed the reference based MI algorithm de-

scribed by Carpenter, Roger and Kenward [13], where the pre-deviation data, including baseline

are modelled separately in each arm. Carpenter, Roger and Kenward acknowledge that “for appro-

priate post-deviation profiles, we therefore need the baseline means to be clinically similar (ideally

equal) across arms. Randomization should ensure this.” Where this is a concern they recommend

centering baseline at the sample mean or sharing the baseline-time interaction across treatment

arms. We remark that if the second approach is taken the presented results will still hold.

There will naturally be covariance between some of the imputation parameters of the active and

reference de-jure imputation models and a greater covariance between the imputation parameters of

the active and reference de-facto imputation models when the baseline-time interaction is shared.

Thus in the most general longitudinal setting we will see slightly increased covariance terms in

(4.17). Rubin’s variance estimator will however still be to a good approximation information

anchoring. We conclude we can use Rubin’s variance estimator with confidence for information

anchored sensitivity analysis.
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Chapter 5

Sensitivity analysis using the

‘δ-method’

The ‘δ-method’ is an alternative controlled MI approach for sensitivity analysis of clinical trials

with missing data. We continue with the setting of previous chapters; continuous baseline and

outcome measure which can be modelled using the MVN distribution. We begin this chapter by

describing the ‘δ-method’ in full for sensitivity analysis of a longitudinal continuous outcome in

Section 5.1. We then present our motivation for investigating Rubin’s treatment and variance

estimator in this setting in Section 5.2. We apply our information anchoring principle for variance

estimation in design based sensitivity analysis that was introduced in Section 3.1.

In Section 5.3 we then proceed to analytically investigate Rubin’s MI variance estimator for a

trial with baseline and a single follow-up and compare this with our target information anchored

variance. We focus on the setting with deviation in one arm only. Subsequently, we present a

general proposition on the information anchoring properties of Rubin’s variance estimator in this

context in Section 5.4. In Section 5.5 a supporting simulation study is presented. We then provide

a more general proposition for Rubin’s δ-adjusted variance estimator in longitudinal trial settings

in Section 5.6. A second simulation study is presented in Section 5.7 to support the theoretical

results. In Section 5.8 we extend the results for deviation in both arms. We finish with a summary

of the findings in Section 5.9.

5.1 The ‘δ-method’

The ‘δ-method’ allows trialists to assess the impact of deviators having a poorer/better response

post-deviation than what is predicted for them under the MAR assumption, on the results of

the primary analysis. That is a poorer/better response than those observed in the trial with the

same history. The primary analysis is conducted under the MAR assumption, where the conditional

distributions of later response data given earlier response data are the same for patients who do and

do not deviate. The sensitivity analysis builds around the primary MAR model. The parameters

of the conditional distributions used in imputation are constructed using the parameters from
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the implied MAR conditional model, combined with our sensitivity analysis parameter, which is

defined as δ.

Specifically, for sensitivity analysis, the conditional distributions for post-deviation data implied

by MAR are edited by adding δ to the imputed post-deviation value. Suppose we have a trial with

a single follow-up, all imputed post-deviation values may be edited by adding δ. Alternatively

we may have a different δ for each treatment arm. For treatment arm z we can define δz as the

change in response post-deviation (departure form MAR) in arm z and edit the imputed values

accordingly. In a trial with two or more treatment arms the ‘δ-method’ can be used to explore

differences in post-deviation response by arm. Clearly, if desired, we can also explore the effect of

a poorer response post-deviation in an experimental arm only.

For longitudinal trials we can add δz to the first post-deviation imputed value, 2δz to the second

and so on. This approach, outlined by Carpenter and Kenward [7, 44], is illustrated in Figure 1.1.

δz is defined to represent the change in the rate of response post-deviation as compared to MAR, in

treatment arm z. Or we can adjust imputations at all time points in arm z by δz. Alternatively a

different δ may be specified for each missing data pattern. This of course requires the specification

of many parameters.

Expert opinion and subject matter knowledge guides the choice of the sensitivity analysis param-

eters δz. They may be fixed or have their own prior with specified mean and variance and thus

vary over the imputation set K, i.e. δz,k ∼ N(δz, σ
2
δ,z) for treatment arm z and imputation k.

White et al. [28] demonstrate successful elicitation of prior information on the difference between

missing and observed outcomes using a number of experts and a pre-specified questionnaire. If

the δz’s are given a distribution, the covariance of the δz’s must also be specified. It can be hard

to elicit reliable information about this. A complicating factor is that the standard error of the

final treatment estimate depends critically on the specified covariance of the δz’s. Carpenter and

Kenward [7] show that larger standard errors are obtained when the correlation is zero. This can

be a useful starting point.

A different implementation of the δ-adjusted approach to sensitivity analysis progressively increases

δz from 0 until the conclusions from the primary analysis are overturned. Each increment represents

an increased departure from MAR (δz = 0). If the value of δz that changes the conclusions is

implausible i.e. realistically the missing data will not be that different from the observed data then

greater confidence in the primary results can be inferred. This is referred to as a tipping point

analysis by Yan [30]. In trials, the plausibility of specific values of δz should be assessed a-priori.

The general ‘δ-method’ thus follows the pattern mixture modelling route. Following MI from

the appropriately formed conditional distributions the intervention effect is re-estimated for each

imputed data set and results combined using Rubin’s rules [19].

Recall that for imputation under MAR, for each deviating patient i, we require the conditional

distribution of their missing data given their observed data, denoted as [YMi|YOi,η]. η represents

the parameters of this distribution. We obtain a unique draw of η from the appropriate posterior

for each imputed data set required, before drawing missing data in turn. For MNAR imputation,

for each deviating patient with missing data pattern mi we require the distribution of their missing

outcomes, given their observed data denoted as, [YMi|YOi,mi,ηm] where ηm represents the the

parameters of this distribution. For a continuous outcome the generic ‘δ-method’ can then be

summarised as follows,
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1. Take all the observed data, and assuming MAR, fit a MVN distribution by treatment arm

to obtain an estimate of the parameters of the conditional distributions of the missing data

given the observed data, η̂.

2. For imputation k, draw η and δz, for z = 1, ..., N treatment arms, from their appropriate

Bayesian posteriors.

3. Use the draws in step 2 to form ηm, for each missing data pattern m, by adding or subtracting

the draw of δz as required from the current draw of η.

4. Impute the missing data using the current draw of ηm, (from [YMi|YOi,mi,ηm]).

5. Repeat steps 2-4 K times.

Equivalently, and comparatively more simply, we could add the δz after imputation under MAR.

The imputed datasets are each analysed using the substantive analysis model of interest (used

in the primary analysis), and results combined using Rubin’s rules for inference. As the analysis

model used in the primary analysis is retained in the sensitivity analysis the ‘δ-method’ follows

the design based analysis approach.

We note that other variants of the ‘δ-method’ exist [60]. The developments explored here are

directly relevant to other versions of the ‘δ method’, which we do not consider further here.

The outlined ‘δ-method’ evidently shares some similarities with reference based sensitivity analysis.

The parameters from an observed data model under MAR form the essential building blocks in the

imputation and a design based analysis approach is followed. However quantitative assumptions

regarding the departures from MAR are made, rather than qualitative assumptions entailing the

‘borrowing’ of information between groups in the trial.

5.2 Motivation for variance evaluation

The ‘δ-method’ uses an imputation model that makes different assumptions to the analysis model.

For example, the imputation model may assume deviators have worse outcomes than those observed

with the same history. The design based analysis model will not account for this variation in

behaviour. As alluded to in Section 1.4 the frequency validity of Rubin’s rules long-run is not

guaranteed when the imputation and substantive model have different structure, i.e. they are

uncongenial. It is therefore also important to assess what Rubin’s rules are providing us with in

this setting.

Since we are not borrowing information from one trial arm to impute another, the sampling vari-

ance of the δ-adjusted treatment effect does not exhibit the strange behaviour we observe in the

reference based settings. In the δ-adjusted setting there is no imposed covariance between patients

of opposing treatment arms. We therefore do not end up incorporating any covariance between

patients of opposing treatment arms in the sampling variance of the δ-adjusted treatment effect.

This appears in the reference based settings as shown in Subsection 2.2.2.
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In Chapters 2 and 3 we introduced principles for variance estimation in sensitivity analysis where

the design based analysis model used in the primary analysis is retained in the sensitivity analysis.

That is, the estimated variance if we observed all the post-deviation data under the specified

scenario provides a lower bound for variance estimation in sensitivity analysis. Here, once again,

we desire to keep the information loss due to missing data constant or anchored across primary

and all sensitivity analysis. This is a natural principle which respects the loss of information in the

primary design based analysis and accordingly accounts for the uncertainty due to the information

loss in the sensitivity analysis.

Throughout this chapter we retain the notation introduced in earlier chapters where θ̂ denotes the

estimated treatment effect of interest from the primary design based analysis and the estimated

variance of the treatment effect is denoted by V . Estimates indexed with the subscript DJ denotes

analysis under our de-jure on-treatment MAR assumption. Estimates with the subscript δ denote

a δ-adjusted estimate.

Let VDJ, full denote the variance estimator for the treatment effect from the design based analysis

with full data i.e. no deviations; when deviations occur and post-deviation data are unobserved let

VDJ, MI denote Rubin’s variance estimator for the treatment effect from the design based MAR MI

analysis (primary analysis) and let Vδ, full denote the variance estimator for the treatment effect from

the design based analysis if post-deviation data incorporating a change in rate of response post-

deviation (i.e. δ-adjusted) were actually observed. The required information anchored variance

estimator for the treatment estimate in δ-adjusted sensitivity analysis denoted by Vanchored is,

Vanchored =
VDJ, MI

VDJ, full

× Vδ, full.

We investigate whether Rubin’s MI variance estimator in δ-adjusted sensitivity analysis, denoted

by Vδ, MI, provides an acceptable estimate of the information anchored variance that preserves the

loss of information in the primary analysis.

In the following section we derive the exact properties of Rubin’s treatment and estimator and

variance estimator in the baseline and single follow-up setting with δ-adjustment. We then compare

Rubin’s variance estimator to the information anchored variance.

5.3 Variance estimation in the baseline and single

follow-up setting

In order to better understand what Rubin’s rules are estimating for the treatment effect obtained

using the ‘δ-method’, Rubin’s MI estimate and variance estimator are now examined in a simple

trial setting with baseline and a single follow-up. This is the same setting considered in Chapter 2,

when the reference based treatment effect was examined. Throughout, we assume the data is nor-

mal and the variance is known. As discussed in Subsection 3.1.1, following inference by Carpenter

and Kenward [44] this does not have a material impact on the conclusions and is asymptotically

irrelevant.
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5.3.1 Rubin’s variance estimator under the ‘δ-method’

As in Chapter 2, consider a two arm randomised trial, with treatment group denoted by z = a, r

with i = 1, ..., n subjects per arm, with a baseline (time 1) and single follow-up outcome (time

2). The design based analysis is the difference in means between the two trial arms at time 2.

All of the reference arm and no of the n active arm are observed at both times without deviation.

Post-baseline the remaining nd active arm patients deviate such that in the active arm no+nd = n.

We condition on nd and where O and D define the sets of indices for the completers and deviators

in the active arm, assume the data comes from the following bivariate normal distributions with

known variance,

(
Yzi1

Yzi2

)
∼ N

{(
µz1

µz2

)
;

[
σ11 σ12

σ12 σ22

]}
, z = a, r, i = 1, ..., n.

In Subsection 3.1.1 the expectation of Rubin’s MI variance estimator for the treatment estimate,

under the MAR assumption, was derived in this setting. To derive the expectation of Rubin’s

MI variance estimator for the treatment estimate using the ‘δ-method’ we follow a similar ap-

proach, employing separate imputation models by randomised arm. An appropriate imputation

distribution for the missing outcomes at time 2 is required, with a suitable posterior for the

included parameters. To simplify subsequent calculations we define Y ∗ai1 = Yai1 − Ȳa1,o where

Ȳa1,o = 1
no

∑
i∈O Yai1.

Under MAR, our imputation model is formed from the regression of Yai2 on Y ∗ai1 for the set of com-

pleters in the active arm (i ∈ O). Subsection 3.1.1 summarised the ordinary least squares estimates

for this fitted model. We assume the data is normal, the variance is known and improper priors

for the missing observations themselves, so the posterior of the model parameters is approximately

normal and let the observed data dominate the prior. Thus, as presented in Subsection 3.1.1, the

MAR imputation model for patient i and imputation k is,

Ỹai2,k = Ȳa2o + uk + (r/q + bk)
(
Yai1 − Ȳa1o

)
+ ei,k, for i ∈ D, k = 1, ...,K,

where,

uk ∼ N
(
0, n−1

o σ2.1

)
bk ∼ N

(
0, q−1σ2.1

)
ei,k ∼ N (0, σ2.1) .

Ȳa2,o = 1
no

∑
i∈O Yai2, r =

∑
i∈O

(
Yai1 − Ȳa1,o

) (
Yai2 − Ȳa2,o

)
and q =

∑
i∈O

(
Yai1 − Ȳa1,o

)2
. For

imputation using the ‘δ-method’ we must now add δk to the model, where δk represents the change

in response post-deviation for imputation k. With the additional assumption that δk ∼ N(δ, σ2
δ )

174



we have the required imputation model as,

Ỹai2,k = Ȳa2o + δk + uk + (r/q + bk)
(
Yai1 − Ȳa1o

)
+ ei,k, for i ∈ D, k = 1, ...,K.

We are interested in the expectation of Rubin’s MI estimator and variance estimator for the average

treatment group difference at time 2, which we denote respectively as θ̂δ, MI and Vδ, MI. Firstly,

E(θ̂δ, MI) = E

(
1

K

K∑
k=1

θ̂δ,k

)
.

From the imputation model, we obtain the sample mean treatment difference, at time 2 in the kth

imputation set, θ̂δ,k as,

θ̂δ,k = µ̂a2,k − µ̂r2 =
no
n
Ȳa2o +

nd
n
Ȳa2d,k − Ȳr2,

where,

Ȳa2d,k =
1

nd

∑
i∈D

Ỹai2,k = Ȳa2,o + δk + uk +

(
r

q
+ bk

)(
Ȳa1d − Ȳa1,o

)
+ ēk,

and ēk = 1
nd

∑
i∈D ei,k and Ȳa1d = 1

nd

∑
i∈D Yai1. Averaging the sample mean estimate for the kth

imputation, over the imputation set, K, gives Rubin’s MI point estimator as,

θ̂δ, MI =
no
n
Ȳa2o +

nd
n

[
Ȳa2,o + δ̄ + ū+

(
r

q
+ b̄

)(
Ȳa1d − Ȳa1,o

)
+ ē

]
− Ȳr2,

where δ̄ = 1
K

∑K
k=1 δk, ū = 1

K

∑K
k=1 uk, b̄ = 1

K

∑K
k=1 bk and ē = 1

K

∑K
k=1 ēk. Taking the necessary

expectations reveals,

E(θ̂δ, MI) =
no
n
µa2 +

nd
n

(µa2 + δ)− µr2 = µa2 +
nd
n
δ − µr2.
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Rubin’s treatment estimator is unbiased for the δ-adjusted treatment estimate. This is unsurprising

given the results of the previous chapters. The imputation incorporates δk and additive terms

which have an expectation of zero, thus taking the average treatment effect over the imputation

set provides an unbiased estimator. Going forward we therefore focus our evaluations on the

variance estimator. For Rubin’s MI variance estimator we require,

E (Vδ, MI) = E
(
Ŵ
)

+

(
1 +

1

K

)
E
(
B̂
)
,

where, Ŵ and, B̂ are defined as in (1.7) and (1.8). First we consider E
(
Ŵ
)

,

E
(
Ŵ
)

= E
(
σ̂2
k

)
=E

(
1

n−1

∑n
i=1 (Yri2 − µ̂r2)

2

n

)

+ E


1

n−1

[∑
i∈O (Yai2 − µ̂a2,k)

2
+
∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
]

n

 . (5.1)

We define the first component on the RHS of (5.1) as W1 and the second component on the RHS

of (5.1) as W2. Expanding these sums where required and taking the necessary expectations, (see

Appendix F.2 for detailed calculations) for time 1 a baseline, where µa1 = µr1, πd = nd/n and

ρ2 = σ2
12/(σ11σ22) (the correlation between time 1 and time 2 squared) gives,

E (W1) =
σ22

n
,

E (W2) =
σ22

n
+

2ndσ22

(
1− ρ2

)
n(no − 1)(n− 1)

+
noπd

(
δ2 + σ2

δ

)
n(n− 1)

. (5.2)

We now consider
(
1 + 1

K

)
E
(
B̂
)

. Taking the necessary expectations reveals,

(
1 +

1

K

)
E
(
B̂
)

=

(
1 +

1

K

)(
σ22

(
1− ρ2

)
nd

n (no − 1)
+ π2

dσ
2
δ

)
. (5.3)

Assuming that n is sufficiently large so that we may take (n − 1) to be n and (no − 1) to be no

this gives Rubin’s variance estimator asymptotically as,
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E [Vδ, MI] =
2σ22

n
+

2σ22

(
1− ρ2

)
πd

n2 (1− πd)
+
πd (1− πd)

(
δ2 + σ2

δ

)
n

+

(
1 +

1

K

)(
σ22

(
1− ρ2

)
πd

n (1− πd)
+ π2

dσ
2
δ

)
.

For infinite K this is equivalent to,

E [Vδ, MI] = σ22

[
1

n
+

1

no

]
− σ2

12

σ11

πd
n (1− πd)

+
2σ22

(
1− ρ2

)
πd

n2 (1− πd)
+
πd (1− πd)

(
δ2 + σ2

δ

)
n

+ π2
dσ

2
δ .

(5.4)

Table F.1 summarises Rubin’s derived variance with δ-adjustment alongside simulation results.

Derived results correspond with the simulation results (within 2 MCSE). Under the fixed δ as-

sumption, that is under the assumption that δk ∼ N(δ, 0) for Rubin’s MI variance estimator we

have,

E (W1) =
σ22

n
+

2ndσ22

(
1− ρ2

)
n(no − 1)(n− 1)

+
noπdδ

2

n(n− 1)
.

For the between imputation variance,

(
1 +

1

K

)
E
(
B̂
)

=

(
1 +

1

K

)
σ22

(
1− ρ2

)
nd

n (no − 1)
.

Assuming that n is sufficiently large so that we may take (n − 1) to be n and (no − 1) to be no

this gives Rubin’s estimate asymptotically as,

E [Vδ, MI] =
2σ22

n
+

2σ22

(
1− ρ2

)
πd

n2 (1− πd)
+
πd (1− πd) δ2

n
+

(
1 +

1

K

)
σ22

(
1− ρ2

)
πd

n (1− πd)
.

For infinite K this is equivalent to,

E [Vδ, MI] = σ22

[
1

n
+

1

no

]
− σ2

12

σ11

πd
n (1− πd)

+
2σ22

(
1− ρ2

)
πd

n2 (1− πd)
+
πd (1− πd) δ2

n
.

Table F.2 summarises Rubin’s derived variance with fixed δ adjustment alongside simulation re-
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sults. Derived results again correspond with simulation results (within 2 MCSE).

5.3.2 Information anchoring

The required information anchored variance, that preserves the information loss seen in the primary

analysis under MAR in δ-adjusted sensitivity analysis, is given by,

Vanchored =
VDJ, MI

VDJ, full

× Vδ, full.

As derived in Subsection 3.1.1, the expectation of the MI MAR variance for K →∞ is,

E [VDJ, MI] = σ22

[
1

n
+

1

no

]
− σ2

12

σ11

πd
n (1− πd)

+
2σ22

(
1− ρ2

)
πd

n2 (1− πd)
.

As in Section 3.2, to simplify subsequent calculations we take up to the O(n−2) terms for E [VDJ, MI]

since this is equivalent to the MAR ML variance. The expectation of VDJ, full using standard normal

distribution results is,

E [VDJ, full] =
2σ22

n
.

In the current δ-adjusted setting the expected value of the design based variance estimator, were

we able to observe the post-deviation data is (see Appendix F.1 for detailed calculations),

E [Vδ, full] =
2σ22

n
+
nondδ

2

n3
.

Therefore the expectation of the information anchored variance is,

E [Vanchored] =
2σ22

n
+
nondδ

2

n3
+
δ2
(
1− ρ2

)
π2
d

2n
+
σ22

(
1− ρ2

)
πd

n(1− πd)
. (5.5)

The difference between Rubin’s MI variance estimator for the δ-adjusted (non-fixed) treatment

effect and the information anchored variance, (5.4) - (5.5) is,
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E [Vδ, MI]− E [Vanchored] = σ2
δπ

2
d +

2σ22

(
1− ρ2

)
πd

n2 (1− πd)
−
δ2
(
1− ρ2

)
π2
d

2n
.

Which up to the order π3
d/n

2 terms is,

E [Vδ, MI]− E [Vanchored] = σ2
δπ

2
d +

2σ22

(
1− ρ2

)
n2

[
πd + π2

d + π3
d

]
−
δ2
(
1− ρ2

)
π2
d

2n
.

We see the largest term in the difference between Rubin’s MI variance estimator and the infor-

mation anchored variance under δ-adjustment is, σ2
δπ

2
d = σ2

δn
2
d/n

2. We therefore see that the

approximation is principally driven by the assumed variance for δk. Using Rubin’s variance esti-

mator, we will lose information relative to the information anchored variance if σ2
δ is large. The

approximation is sharper for smaller σ2
δ . The other two terms are at least an order of n smaller.

That is O(π2
dn
−1) or O(n−2) and they form the difference when δk is fixed, i.e. δk ∼ N(δ, 0). To

see this explicitly, when δk is fixed the two largest terms in the difference are,

2σ22(1− ρ2)πd
n2

− δ2(1− ρ2)π2
d

2n
.

Therefore the difference is of a smaller order when δk is fixed. In this case it is at most up to

O(π2
dn
−1). The difference depends on the size of the trial (n), the amount of missingness in the

active arm (nd), the correlation between the time 1 and time 2 measurement (ρ2), the variance of

the data at time 2 (σ22) and the specified size of δ. However, it is always of a very small magnitude.

The information anchoring variance we are targeting is dominated by the 2σ22/n term which is

O(n−1). These terms are tiny in comparison.

Thus with fixed δ the difference between Rubin’s variance and the information variance is practi-

cally negligible. When δ is not fixed the information anchoring performance of Rubin’s variance

estimator is dependent on the proportion of missing data and the variance of δk. If there is a great

deal of uncertainty surrounding the proposed difference between the deviators and those observed

with the same history, i.e. large σ2
δ then the approximation will not be so sharp. Information

anchoring will be better when δk has a small variance and there is a small proportion of missing

data. In both cases (fixed or not fixed δ), Rubin’s MI treatment estimate is unbiased.

5.4 General theory for Rubin’s variance estimator;

baseline and single follow-up

We now present a general theory on Rubin’s variance estimator and how it anchors the information

loss across the primary and sensitivity analysis in the baseline and single follow-up δ-adjusted

setting. This consolidates the results of the derivation presented in Section 5.3. The more formal
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theory also applies to the baseline adjusted treatment effect. We denote Rubin’s variance estimator

for the treatment effect in the design based sensitivity analysis where post-deviation data are

unobserved but imputed with δ-adjustment as Vδ, MI. For ease of exposition the proposition focuses

on the setting with deviation in one arm only. In Section 5.8 we show how the result holds with

deviation in both arms, with and without a different δ-adjustment by trial arm.

5.4.1 Setting for Proposition 4

Consider a two arm trial consisting of 2n patients with a single continuous follow-up outcome and

baseline. n patients have been randomised to an active arm and n to a reference arm. Y is the

(2n×1) vector of continuous outcome data, and x, is the corresponding (2n×p) matrix of observed

baseline covariates, including baseline outcome and treatment. The estimated treatment effect can

be written aTY where a may or may not incorporate x.

We assume Y is normally distributed and has known variance Σ. The variance of the data is

assumed to be known without any serious loss of generality, following inference by Carpenter and

Kenward in [44]. As discussed in Section 4.1, because of the conditional argument underlying the

derivation this doesn’t have a profound impact on the exposition asymptotically.

Suppose all n reference patients and no of the active arm are observed without deviation at baseline

and follow-up. The remaining nd active arm patients deviate post-baseline such that no + nd = n.

Let D and O define the sets of indices for the deviators and completers in the active arm respectively.

πd denotes the proportion of deviators in the active arm, i.e. nd/n.

Further δk ∼ N(δ, σ2
δ ) and Vδ, full = VDJ, full +O(πd(1−πd)n−1). Typically, although not necessarily,

some form of regression model will be the substantive model of interest, used to make inferences

about the treatment effect in the population of interest. Appendix F.1 shows equation (5.7) holds

for the mean treatment difference, adjusted and unadjusted for baseline.

5.4.2 Proposition 4

For sensitivity analyses of a two arm trial with baseline and a single follow-up performed by MI

using the ‘δ-method’ as outlined in [44], the difference between Rubin’s variance estimator and the

information anchored variance for the treatment effect is,

−π2
dσ

2
δ +

E
[
B̂DJ

]
E
[
ŴDJ

]O(πd(1− πd)
n

)
.

In other words,
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VDJ, MI

VDJ, full

=
Vδ, MI

Vδ, full

− π2
dσ

2
δ +

E
[
B̂DJ

]
E
[
ŴDJ

]O(πd(1− πd)
n

)
.

When δk ∼ N(δ, 0), the difference between Rubin’s variance estimator and the information an-

chored variance is,

E
[
B̂DJ

]
E
[
ŴDJ

]O(πd(1− πd)
n

)
.

In other words,

VDJ, MI

VDJ, full

=
Vδ, MI

Vδ, full

+
E
[
B̂DJ

]
E
[
ŴDJ

]O(πd(1− πd)
n

)
.

5.4.3 Proof of Proposition 4

Let z = a, r index the randomised active arm or reference arm allocation for each patient i with

follow-up outcome denoted by Yzi. The outcome data for the reference patients are contained

in the vector Yr = (Yr1, ...Yrn)
T

. The outcome data for the non-deviating active patients are

contained in the vector Ya,o = {Yai; i ∈ O}T .

We suppose that each deviating patient has two potential outcomes: the one that would occur if

they remain on active treatment (de-jure) and the other that would occur if they had a better/worse

response than if they remained on active treatment, i.e. plus/minus some amount δ. The potentially

observable de-jure data for the nd deviating patients are contained in the vector Ya,DJ,d and the

alternative δ-adjusted outcome data in the vector Ya,δ,d. Define the collection of observed and

potentially observable outcome data as Y = (Yr,Ya,o,Ya,DJ,d,Ya,δ,d)
T

which has dimensions

[(n+ no + 2nd)× 1].

For each deviating patient we can only observe one of the potential outcomes, either de-jure or

δ-adjusted. Consider two [(n+ no + 2nd)× (n+ no + 2nd)] matrices of 0’s and 1’s, DDJ and Dδ,

arranged such that DDJY gives the [(n + no + 2nd) × 1 de-jure data (with zero entries for the

potential δ adjusted outcomes). DδY gives the [(n + no + 2nd) × 1 δ-adjusted data (with zero

entries for the potential de-jure, here MAR outcomes).

Let a be a [(n+ no + 2nd)× 1] vector such that aTDDJY returns the de-jure treatment estimate

and aTDδY returns the δ-adjusted treatment estimate. When deviating patients experience de-

jure behaviour post-deviation and their follow-up outcome data are observed the expectation of

the variance estimator for the de-jure on-treatment estimand can be expressed as,
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E [VDJ, full] = E [ V
(
aTDDJY

)]
= E

[
aTDDJ V (Y)DT

DJa
]

= aTDDJΣDT
DJa. (5.6)

We use the proposed condition that the expectation of the variance estimator for the δ-adjusted

estimand can be expressed as,

E [Vδ, full] = aTDDJΣDT
DJa +O

(
πd(1− πd)

n

)
. (5.7)

We now suppose that post-deviation data are unobserved, i.e. the potentially observable de-facto

and δ-adjusted entries in Y are missing for the nd active patients. We alternatively impute these

outcomes, using de-jure imputation and δ imputation. This gives K ‘complete’ data samples Yk, of

size [(n+ no + 2nd)× 1]. For this we need an appropriate imputation distribution for the missing

data under each scenario, with a suitable posterior for the included parameters.

Under our de-jure assumption (on treatment MAR) our imputation model is formed from the

regression of Ya,o on Pa,o where Pa,o is the [no × p] design matrix for the imputation model,

which contains the values of the (p-1) covariates included in the imputation model (including the

baseline outcome but excluding the treatment indicator since we perform imputation separately by

arm) with a vector of 1’s to include an intercept term in the model, for observed active patients.

The parameter estimates for the de-jure imputation model are found using,

β̂a,o = (PT
a,oPa,o)

−1PT
a,oYa,o with known covariance matrix Va,o = (PT

a,oPa,o)
−1σ2. We assume

the large sample posterior for the parameter estimates of the de-jure imputation model, denoted

as β̂DJ , is normal and centered on the ML estimator β̂a,o with covariance matrix Va,o. That is,

β̂DJ |Ya,o ∼ N(β̂a,o; Va,o).

The de-jure imputation model for patient i and imputation k can therefore be expressed as,

Ỹai,k|Ya,o = Pa,d,i

[
β̂a,o + ba,o,k

]
+ ei,k for i ∈ D,

where ba,o,k ∼ N(0,Va,o), ei,k ∼ N(0, σ2) and Pa,d,i is the covariate data for each deviating

patient i (excluding treatment group but including a 1), of dimensions [1× p].

For δ-adjusted imputation we must add δk into the imputation model. The δ-adjusted imputation

model for patient i and imputation k can therefore be expressed as,
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Y̆ai,k|Ya,o = Pa,d,i

[
β̂a,o + ba,o,k

]
+ δk + ei,k for i ∈ D,

where ba,o,k ∼ N(0,Va,o), δk ∼ N(δ, σ2
δ ), and ei,k ∼ N(0, σ2). We are interested in imputation

inference for, 1
K

∑K
k=1 aTDDJYk or 1

K

∑K
k=1 aTDδYk. Letting the number of imputations, K →

∞, the variance of our MI treatment estimate as estimated by Rubin’s rules is, VDJ, MI = ŴDJ +B̂DJ

or Vδ, MI = Ŵδ + B̂δ where,

E
[
ŴDJ

]
= E

[
1

K

K∑
k=1

aTDDJΣ̂kDT
DJa

]
→ aTDDJΣDT

DJa,

and,

E
[
Ŵδ

]
= E

[
1

K

K∑
k=1

aTDδΣ̂kDT
δ a

]
→ aTDDJΣDT

DJa +O

(
πd(1− πd)

n

)
.

Under de-jure,

B̂DJ =
1

K − 1

K∑
k=1

[
πd (ēk − ē) + πd

(
P̄a,dba,o,k − P̄a,db̄a,o

)]2
,

where ēk = 1
nd

∑
i∈D ei,k, ē = 1

K

∑K
k=1 ēk, P̄a,d = 1

nd

∑
i∈D Pa,d,i and b̄a,o = 1

K

∑K
k=1 ba,o,k. This

has expectation,

E
[
B̂DJ

]
= π2

d

[
σ2 + ndP̄a,dVa,oP̄T

a,d

nd

]
.

With δ-adjustment,

B̂δ =
1

K − 1

K∑
k=1

[
πd (ēk − ē) + πd

(
P̄a,dba,o,k − P̄a,db̄a,o

)
+ πd

(
δk − δ̄

)]2
,

where δ̄ = 1
K

∑K
k=1 δk. This has expectation,
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E
[
B̂δ

]
= π2

d

[
σ2 + ndP̄a,dVa,oP̄

T
a,d

nd
+ σ2

δ

]
.

Which can also be expressed as,

E
[
B̂δ

]
= E

[
B̂DJ

]
+ π2

dσ
2
δ .

The information anchored variance is,

E [Vanchored] =
E [Vδ, full]

(
E
[
ŴDJ

]
+ E

[
B̂DJ

])
E [VDJ, full]

= E [Vδ, full]

1 +
E
[
B̂DJ

]
E
[
ŴDJ

]
 .

Since E
[
ŴDJ

]
= E [VDJ, full] this is,

E [Vanchored] = aTDDJΣDT
DJa +O

(
πd(1− πd)

n

)
+ E

[
B̂DJ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]O(πd(1− πd)
n

)
.

If Rubin’s variance estimator is information anchoring and preserves the information loss seen in

the primary analysis under MAR then,

E
[
Ŵδ

]
+ E

[
B̂δ

]
≈ aTDDJΣDT

DJa +O

(
πd(1− πd)

n

)
+ E

[
B̂DJ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]O(πd(1− πd)
n

)
.

That is,

aTDDJΣDT
DJa +O

(
πd(1− πd)

n

)
+ E

[
B̂δ

]
≈aTDDJΣDT

DJa +O

(
πd(1− πd)

n

)
+ E

[
B̂DJ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]O(πd(1− πd)
n

)
.

After simplification and rearrangement this becomes,
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0 ≈ E
[
B̂DJ

]
− E

[
B̂δ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]O(πd(1− πd)
n

)
.

Which is,

0 ≈ −π2
dσ

2
δ +

E
[
B̂DJ

]
E
[
ŴDJ

]O(πd(1− πd)
n

)
. (5.8)

These results confirm the observation made in Section 5.3, that the approximation between Rubin’s

variance estimator and the information anchored variance is principally driven by the variance of

δk. If there is a great deal of uncertainty surrounding the proposed value of the difference between

the deviators and those observed with the same history, i.e. large σ2
δ then the approximation will

not be so sharp. We will loose information relative to the information anchored variance using

Rubin’s variance estimator. We note that when B̂DJ ≈ B̂δ we will obtain a superior approximation

of the ideal information anchored variance with Rubin’s variance estimator. That is when σ2
δ is

small.

Fixed delta

We now suppose δk ∼ N(δ, 0), i.e. δ is known in imputation. In this case we infer that B̂DJ = B̂δ

since VAR(x+δ) =VAR(x) using standard variance sum rules. After simplification and rearrange-

ment in this special case the criteria for information anchoring becomes,

0 ≈
E
[
B̂DJ

]
E
[
ŴDJ

]O(πd(1− πd)
n

)
.

�

Since B̂DJ = B̂δ, we obtain better agreement between Rubin’s and the information anchored

variance estimate when δ is fixed. The difference will be of a relatively small magnitude, in

comparison to the information anchored variance. It consists of a quantity of O
(
πd(1− πd)n−1

)
multiplied by E

[
B̂DJ

]
/E
[
ŴDJ

]
. Since E

[
B̂DJ

]
is typically much smaller than E

[
ŴDJ

]
for realistic

trial scenarios i.e. with small to moderate proportions of missing data as discussed in Section 4.1,

the second term on the RHS will also be of a relatively small size to the information anchored

variance, which is O(n−1). To demonstrate this further we now conduct a simulation study.
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5.5 Simulation study; baseline and single follow-up

This section reports the results of a simulation study conducted to assess the information anchoring

properties of Rubin’s MI variance estimator following δ-adjustment, in a variety of trial scenarios

with baseline (time 1) and a single follow-up (time 2). The baseline and 12 week FEV1 data from

the asthma trial formed the motivating example for generating the baseline and follow-up data.

We consider simulations with a fixed and non-fixed δ-adjustment, where δk represents the change

in response post-deviation for imputation k.

5.5.1 Methods

Baseline (time 1) and follow-up (time 2) data were generated using an underlying bivariate normal

distribution with means and covariance matrices similar to those obtained in the asthma study at

baseline and week 12 as,

µplacebo = [2, 1.9] , µactive = [2, 2.2] ,

Σplacebo = Σactive =

[
0.4 0.2

0.2 0.6

]
.

We consider scenarios with 10–70% missing data in the active arm only at time 2 where the

unobserved data is postulated to be worse/greater by a fixed amount δ = ±{0, 0.1, 0.5, 1}. One

thousand independent complete datasets were generated for each δ and missingness scenario, with

a sample size of n=500 patients (n=250 placebo, n=250 active) for all simulations.

Interest lies in the mean treatment group difference at time 2. For each setting, the treatment

effect (average treatment group difference in FEV1 at time 2) and variance were computed using

the full data. The analysis model was a linear regression of the time 2 response on randomised

treatment group. Within the active arm, a MCAR missingness mechanism, was then imposed on

the FEV1 outcome at time 2. This was achieved by independently sampling a binary indicator from

a Bernoulli distribution with success probability equal to the proportion of missing data required.

If the indicator equalled one then the corresponding outcome at week 12 was set missing.

The ‘δ-method’ outlined in Section 5.1 and in [44] was applied to each incomplete dataset with

50 imputations. Post-deviation data was regenerated using the appropriate conditional normal

distributions to compute the treatment effect and its variance had we observed the post-deviation

data under the particular δ setting (Vδ, full).

The main outcomes of interest were Rubin’s MI estimate of variance for the treatment effect,

and the ideal information anchored variance computed as detailed in Section 5.2. Estimates were

averaged over the 1000 simulations in each scenario for comparison.

Additional simulations were run utilising the same set-up as above, but with a normally distributed
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prior distribution on δ in imputation with mean values {0,−0.1,−0.5,−1} and a variance of σ2
δ =

0.012 or σ2
δ = 0.052.

5.5.2 Results

In all scenarios the mean of Rubin’s δ-adjusted treatment estimator over 1000 simulations was

within 2 MCSE’s of the true δ-adjusted treatment effect. Table 5.1 summarises the true treatment

effect and the mean of Rubin’s δ-adjusted treatment estimator (θ̂δ, MI) over 1000 simulations for

δk = {0, 0.1, 0.5, 1.0}. As expected, Rubin’s treatment estimator is unbiased.

δk = 0 δk = 0.1 δk = 0.5 δk = 1

Missing Data True θ θ̂δ, MI True θ θ̂δ, MI True θ θ̂δ, MI True θ θ̂δ, MI

10% 0.300 0.297 0.310 0.307 0.350 0.348 0.400 0.401
20% 0.300 0.298 0.320 0.321 0.400 0.403 0.500 0.499
30% 0.300 0.297 0.330 0.330 0.450 0.447 0.600 0.601
40% 0.300 0.303 0.340 0.340 0.500 0.501 0.700 0.697
50% 0.300 0.301 0.350 0.350 0.550 0.549 0.800 0.802
60% 0.300 0.299 0.360 0.360 0.600 0.601 0.900 0.908
70% 0.300 0.302 0.370 0.365 0.650 0.647 1.000 1.003

Table 5.1: Rubin’s MI treatment estimate (θ̂δ, MI, mean over 1000 simulations) vs. true treatment
effect using the ‘δ-method’.

We now consider the performance on Rubin’s variance estimator. Over the range of fixed δ =

±{0, 0.1, 0.5, 1.0} simulations show an excellent approximation of the information anchored vari-

ance by Rubin’s variance estimator for all missingness scenarios, see Figures 5.1 and 5.2. For

absolute values of δk up to and including 0.5 the information anchoring by Rubin’s variance esti-

mator looks practically perfect. It is only with a larger δk = ±1.0 when very marginal differences

start to appear for high proportions of missing data and Rubin’s variance estimator slightly un-

derestimates the information anchored variance. This is anticipated from the theory above. But

the approximation is still excellent. We note that in the current setting δk = ±1.0 is very large.

The baseline data in both arms is generated with a mean of 2 and the response for the observed

active cases at time 2 with mean 2.2. Thus δk = ±1.0 corresponds to a postulated mean response

of 3.2 or 1.2 at time 2 for the deviators.

Rubin’s variance estimator is always greater than the variance estimate when the postulated δ

scenario is true and the deviators are observed (Vδ, full, labelled Deviators observed in Figures 5.1

and 5.2). Further Rubin’s variance reflects the increased uncertainty for greater proportions of

missing data.

In the δ-adjusted setting we also see that Rubin’s variance estimator not only approximates the

information anchored variance, but also corresponds with the empirical long-run sampling variance

of the MI estimate (which is equivalent to the empirical long-run sampling variance of ML estimate)

as expected. In each scenario, the computed sampling variance of the MI/ML estimates over the

1000 simulations, closely agrees with the average of Rubin’s variance estimator. This is as expected

since as discussed δ MI does not introduce an unwanted covariance between the patients of opposing

treatment arms. This is unlike reference based MI where we borrow information from within the

trial for imputation.
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Figure 5.1: Rubin’s +δ variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates. ∆ = 0.3, n=250 per arm.
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Figure 5.2: Rubin’s −δ variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates. ∆ = 0.3, n=250 per arm.

Results from simulations with a normal prior distribution on δk in imputation are shown in Figures

5.3 to 5.4. As expected the approximation between Rubin’s variance estimator and the information

anchored variance is not quite as sharp when δk is no longer fixed. From Proposition 4, we expect

an extra small component in the difference between Rubin’s variance estimator and the information

anchored variance which revolves around the proposed variance of δk. We indeed see the smaller the

variance on δk the closer the approximation. In comparison to the fixed δk settings, with a larger
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variance of 0.052 on δk Rubin’s slightly over estimates the required variance due to the additional

variance on δk. This over estimation corresponds with Proposition 4. However Figure 5.4 indicates

that overall we still see excellent approximation of the information anchored variance by Rubin’s

variance estimator with a variance of 0.052. For larger variances of δk the approximation will not

be so strong. When there is uncertainty in δk, we expect greater uncertainty surrounding our

treatment estimate.

Although not shown here we also conducted simulations which examined the variance estimator

for the baseline adjusted treatment effect, in the same settings as above. Results were the same,

as anticipated following Proposition 4. Adjustment for baseline in the substantive model does not

have a profound impact on the approximation.
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Figure 5.3: Rubin’s −δ variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with σ2
δ = 0.012. ∆ = 0.3, n=250 per arm.
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Figure 5.4: Rubin’s −δ variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with σ2
δ = 0.052. ∆ = 0.3, n=250 per arm.

5.5.3 Discussion

The simulations confirm Rubin’s treatment estimator is unbiased and Proposition 4. That is, the

negligible difference between Rubin’s variance estimator and the information anchored variance

in the fixed δ-adjusted MI setting. Rubin’s variance estimator keeps the information constant

across primary and sensitivity analysis. When δ is not fixed, the approximation will depend on

the assumed variance for δ.

In the fixed δ-adjustment setting where σ2
δ = 0, Rubin’s variance estimator and hence the in-

formation anchored variance match the empirical long-run sampling variance of the MI estimate

(which is equivalent to that of the δ adjusted ML estimate). In this setting the sampling variance

of the treatment estimate is not unnatural, since we do not impose a covariance between patients

in opposing arms by borrowing within trial data for imputation. This provides further support

for the use of MI with Rubin’s variance estimator in the reference based settings. Although as

discussed the long-run empirical sampling variance is not correct in the reference based setting,

since Rubin’s variance estimator has the same behaviour as in the δ-adjusted setting —in that it

approximates the information anchored variance— we infer further justification.

We are not gaining or loosing any information relative to MAR, as desired, when using the fixed

δ sensitivity analysis approach. When looking at differences in the mean response profiles for

deviators and completers we want to keep the information constant.
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5.6 General theory for Rubin’s variance estimator;

longitudinal setting

We now extend Proposition 4 and present a general theory on Rubin’s variance estimator following

δ-adjustment and how it anchors the information loss across the primary and sensitivity analysis for

longitudinal trials. Our focus is on the treatment effect at the final time point. We also restrict our

attention to monotone missingness patterns. As in the previous section, the proposition considers

deviation in one arm only. The impact of deviation in both arm is explored in Section 5.8.

5.6.1 Setting for Proposition 5

Consider a two arm trial consisting of 2n patients. n patients have been randomised to an active

arm and n patients to a reference arm, with a continuous outcome measured repeatedly over a

series of visits, j = 1, ..., J (including baseline). The (2n×1) vector of continuous outcome data at

the final visit time J is denoted by Y. A corresponding (2n× p) matrix x, consists of the observed

baseline covariates including baseline outcome and treatment. The estimated treatment effect can

be written aTY where a may or may not incorporate x.

We assume Y is normally distributed and has known variance Σ. The variance of the data is

assumed to be known without any serious loss of generality, following inference by Carpenter and

Kenward in [44]. As discussed in Section 4.1 because of the conditional argument underlying the

derivation this doesn’t have a profound impact on the exposition asymptotically.

Suppose all n reference patients are observed at baseline and up to time J without deviation.

However among the n active treatment patients, only no patients are observed without deviation

at all time points. Amongst the deviating nd active arm patients, we observe nd,j patients who

deviate in a monotone fashion following time j, for j = 1, ..., J − 1. For simplicity we assume

there is no interim missing data. Let D and O define the indices for the patients who do and do

not deviate in the active arm respectively. Further DJ denotes the index for deviating patients

who deviate following time j, so that nd =
∑J−1
j=1 nd,j . πd = nd/n denotes the total proportion of

deviators in the active arm. πd,j = nd,j/n denotes the proportion of active deviators who deviate

following time j for j = 1, ..., J − 1.

Typically, although not necessarily, some form of regression model will be the substantive model of

interest, used to make inferences about the treatment effect in the population of interest. Appendix

F.3 shows that,

Vδ, full = VDJ, full +Q, (5.9)

where,
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Q =

J−1∑
j=1

nond,j (J − j)2
δ2

n3
+

J−1∑
p=1

(J−1,q 6=p)∑
q=1

nd,pnd,q ((J − p) δ − (J − q) δ)2

n3
, (5.10)

for the mean treatment difference at time J , adjusted and unadjusted for baseline. We assume

(5.9) holds and δk ∼ N(δ, σ2
δ ).

5.6.2 Proposition 5

For sensitivity analyses of a two arm longitudinal trial with monotone missingness performed by

MI using the ‘δ-method’, where δ represents the change in rate of decline post-deviation as outlined

in [44], the difference between Rubin’s variance estimator and the information anchoring variance

for the treatment effect at time J is,

−
J−1∑
j=1

π2
d,j (J − j)2

σ2
δ +

E
[
B̂DJ

]
E
[
ŴDJ

]Q.

That is,

VDJ, MI

VDJ, full

=
Vδ, MI

Vδ, full

−
J−1∑
j=1

π2
d,j (J − j)2

σ2
δ +

E
[
B̂DJ

]
E
[
ŴDJ

]Q.

When the change in rate of decline post-deviation is fixed, i.e. δk ∼ N(δ, 0) the difference between

Rubin’s variance estimator and the information anchoring variance is,

E
[
B̂DJ

]
E
[
ŴDJ

]Q.

In other words,

VDJ, MI

VDJ, full

=
Vδ, MI

Vδ, full

+
E
[
B̂DJ

]
E
[
ŴDJ

]Q.
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5.6.3 Proof of Proposition 5

Let z = a, r index the randomised active arm or reference arm allocation for each patient i with

follow-up outcome at time J denoted by YziJ . The outcome data at the final time point for the

reference patients are contained in the vector YrJ = (Yr1J , ...YrnJ)
T

. The final visit outcome data

for the non-deviating active patients are contained in the vector YaJ,o = {YaiJ ; i ∈ O}T .

We suppose that each deviating patient has two potential outcomes at time J : the one that would

occur if they remain on active treatment post-deviation (de-jure/MAR) and the other that would

occur with δ-adjustment.

The potentially observable de-jure data for the nd deviating patients at time J are contained in

the vector YaJ,DJ,d and the alternative δ-adjusted outcome data in the vector YaJ,δ,d. Define Y =

(YrJ ,YaJ,o,YaJ,DJ,d,YaJ,δ,d)
T

as the collection of observed and potentially observable outcome

data, which has dimensions [(n+ no + 2nd)× 1].

For each deviating patient we can only observe one of the potential outcomes, either de-jure or

δ-adjusted. Consider two [(n+ no + 2nd)× (n+ no + 2nd)] matrices, DDJ and Dδ of 0’s and

1’s, arranged such that DDJY gives the [(n+ no + 2nd)× 1] de-jure data and DδY gives the

[(n+ no + 2nd)× 1] δ-adjusted data at time J .

Let a be a [(n+ no + 2nd)× 1] vector such that aTDDJY returns the de-jure treatment estimate

and aTDδY returns the treatment estimate, with unobserved outcomes adjusted by δ. When the

deviating patients experience de-jure behaviour post-deviation and are observed the expectation

of the variance of the de-jure on-treatment estimand can be expressed as in (5.6). We consider

settings where the expectation of the variance of our δ-adjusted estimand can then be expressed

as in (5.7).

We now suppose that post-deviation data are unobserved, i.e. the potentially observable de-jure

and δ-adjusted entries in Y are missing for the nd active patients. We alternatively impute these

outcomes, using de-jure imputation and δ-adjusted imputation. This gives K ‘complete’ data

samples Yk, of size [(n+ no + 2nd)× 1]. For this we need appropriate imputation distributions for

each missing data pattern under each scenario, with suitable posteriors for the included parameters.

Under our de-jure assumption (on-treatment MAR), the imputation model for patients deviating

following time j, for j = 1, ..., J − 1 is formed from the regression of YaJ,o on Pa,o,j where Pa,o,j

is the design matrix for the imputation model, which contains the values of the 1, ..., j outcomes

and covariates included in the imputation model for the no observed active patients, along with

a vector of 1’s to include an intercept in the model. This forms the required imputation models

since we are only considering monotone missing patterns and interested in the treatment effect at

time J . We do not need to impute any missing outcomes before time J .

The parameter estimates for the de-jure imputation model for the nd,j patients missing outcomes

j + 1, to J are found using β̂a,o,j = (PT
a,o,jPa,o,j)

−1PT
a,o,jYaJ,o with known covariance matrix

Va,o,j = (PT
a,o,jPa,o,j)

−1σ2
j . We assume the large sample posterior for the parameter estimates of

the de-jure imputation model, denoted β̂DJ,j , is normal and centered on the ML estimator β̂a,o,j

with known covariance matrix Va,o,j . That is,
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β̂DJ,j |YaJ,o ∼ N(β̂a,o,j ; Va,o,j).

The de-jure imputation model for active patient i deviating following time j, for j = 1, ..., J − 1

and imputation k can therefore be expressed as,

ỸaiJ,k|YaJ,o = Pa,d,j,i

[
β̂a,o,j + ba,o,j,k

]
+ ei,j,k for i ∈ DJ,

where, ba,o,j,k ∼ N(0,Va,o,j), ei,j,k ∼ N(0, σ2
j ) and Pa,d,j,i contains the values of the 1, ..., j out-

comes and covariates included in the imputation model (excluding treatment plus a 1 for the

intercept) for each deviating patient i, who deviates following time j.

For δ-adjusted imputation we must add (J − j)δk into the imputation model. The δ imputation

model for active patients deviating following time j, for j = 1, ..., J can be expressed as,

ỸaiJ,k|YaJ,o = Pa,d,j,i

[
β̂a,o,j + ba,o,j,k

]
+ (J − j)δk + ei,j,k for i ∈ DJ,

where, ba,o,j,k ∼ N(0,Va,o,j), δk ∼ N(δ, σ2
δ ) and ei,j,k ∼ N(0, σ2

j ). We are interested in imputation

inference for, 1
K

∑K
k=1 aTDDJYk or 1

K

∑K
k=1 aTDδYk. For Rubin’s variance estimator, under the

conditions of the theorem,

E
[
ŴDJ

]
= E

[
1

K

K∑
k=1

aTDDJΣ̂kDT
DJa

]
→ aTDDJΣDT

DJa,

and,

E
[
Ŵδ

]
= E

[
1

K

K∑
k=1

aTDδΣ̂kDT
δ a

]
→ aTDDJΣDT

DJa +Q.

Under de-jure,

B̂DJ =
1

K − 1

K∑
k=1

J−1∑
j=1

(
πd,j (ēj,k − ēj) + πd,j

(
P̄a,d,jba,o,j,k − P̄a,d,jb̄a,o,j

))2

.
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where ēj,k = 1
nd,j

∑
i∈DJ ei,j,k, ēj = 1

K

∑K
k=1 ēj,k, P̄a,d,j = 1

nd,j

∑
i∈DJ Pa,d,j,i and

b̄a,o,j = 1
K

∑K
k=1 ba,o,j,k. Which has expectation,

E
[
B̂DJ

]
=

J−1∑
j=1

π2
d,j

[
σ2
j + nd,jP̄a,d,jVa,o,jP̄

T
a,d,j

nd,j

]
.

Under δ-adjustment,

B̂δ =
1

K − 1

K∑
k=1

J−1∑
j=1

(
πd,j (ēj,k − ēj) + πd,j

(
P̄a,d,jba,o,j,k − P̄a,d,jb̄a,o,j

)
+πd,j(J − j)

(
δk − δ̄

))]2

where δ̄ = 1
K

∑K
k=1 δk. Which has expectation,

E
[
B̂δ

]
=

J−1∑
j=1

π2
d,j

[
σ2
j + nd,jP̄a,d,jVa,o,jP̄

T
a,d,j + nd,j(J − j)2σ2

δ

nd,j

]
.

This can also be expressed as,

E
[
B̂δ

]
= E

[
B̂DJ

]
+

J−1∑
j=1

π2
d,j (J − j)2

σ2
δ .

The information anchored variance is,

E [Vanchored] = aTDDJΣDT
DJa +O

(
πd(1− πd)

n

)
+ E

[
B̂DJ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]Q.

If Rubin’s variance estimator is information anchoring then,

aTDDJΣDT
DJa +Q+ E

[
B̂δ

]
≈aTDDJΣDT

DJa +O

(
πd(1− πd)

n

)
+ E

[
B̂DJ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]Q.
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After simplification and rearrangement this becomes,

0 ≈ E
[
B̂DJ

]
− E

[
B̂δ

]
+
E
[
B̂DJ

]
E
[
ŴDJ

]Q,

which is,

0 ≈ −
J−1∑
j=1

π2
d,j (J − j)2

σ2
δ +

E
[
B̂DJ

]
E
[
ŴDJ

]Q.

Similar to the baseline and single follow-up setting we see the approximation between Rubin’s

variance estimator and the information anchored variance is principally driven by the variance of

δk. If there is a great deal of uncertainty surrounding the difference in the decline/improvement

in response between the deviators and those observed with the same history, i.e. large σ2
δ then the

approximation will not be so sharp. Specifically with longitudinal data, we see the impact of the

σ2
δ also depends on observed deviation patterns, since the σ2

δ term is multiplied by (J − j)2
. If

a number of patients deviate early in the trial there will be a greater difference between Rubin’s

variance estimator and the information anchored variance, in comparison to similar settings with

deviations observed nearer the end of follow-up. If patients deviate later in the trial the impact

of σ2
δ will not be as great. If we are more uncertain about the rate of change in response post-

deviation, it is logical that there will be more uncertainty in our treatment estimate, thus the

approximation wont be as strong.

We additionally note here that if one applies a blanket δ-adjustment to all imputed outcomes,

regardless of the time since deviation (rather than incorporating δ as a rate of change) then the

result becomes,

0 ≈ −
J−1∑
j=1

π2
d,jσ

2
δ +

E
[
B̂DJ

]
E
[
ŴDJ

]Q.

The approximation does not depend on the initial time of deviation in the same way. This result

is a natural extension of the result in the baseline and single-follow up setting described in Section

5.4.

For both blanket δ adjustment and where δ represents a rate of change in response, the second

term in the difference consists of a quantity which is Q (5.10) multiplied by E
[
B̂DJ

]
/E
[
ŴDJ

]
.

Q is a term that is O(πd,j(1 − πd)n−1)+O(πd,pπd,pn
−1). The second term therefore has a small

magnitude since, as previously discussed in Section 4.1, E
[
B̂DJ

]
is typically smaller than E

[
ŴDJ

]
.

The information anchored variance we are seeking is much larger in comparison. This is O(n−1).
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Fixed delta

Suppose δk ∼ N(δ, 0). In this case we infer that B̂DJ = B̂δ since VAR(x+ δ) =VAR(x) (i.e. using

standard variance sum rules). Since B̂DJ = B̂δ we obtain a better approximation of the information

anchored variance by Rubin’s variance estimator when δ is fixed. Whether we adjust by a simple

δ at all time points or multiples of δ to represent a change in rate of decline post-deviation, when

δ is fixed we get,

0 ≈
E
[
B̂DJ

]
E
[
ŴDJ

]Q.
�

There is improved information anchoring by Rubin’s variance when δ is fixed. Following the above

inferences the difference will be of a practically negligible size. We now conduct a simulation study

to confirm this.

5.7 Simulation study; longitudinal setting

Here we present the results of a simulation study, performed to evaluate the information anchoring

properties of Rubin’s MI variance estimator in the δ-adjustment sensitivity analysis setting, with

a continuous baseline (time 1) and two follow-up outcomes (time 2 and time 3) subject to non-

response. The baseline, week 4 and week 12 data from the asthma trial (described in Subsection

1.7.2) formed the motivating example for generating the datasets. We consider simulations with

a fixed and non-fixed δ-adjustment, where δk represents the change in rate of response post-

deviation for imputation k. Therefore for patients who deviated following baseline their MAR

imputed observation at time 2 is altered by δk and at time 3 by 2δk for imputation k. For patients

who deviated following time 2 their MAR imputed observation at time 3 is altered by δk.

5.7.1 Methods

Baseline (time 1), time 2 and time 3 data were generated using an underlying MVN distribution

with means and covariance matrices similar to those obtained in the asthma trial at baseline, week

4 and week 12 as,

µplacebo = [2, 1.95, 1.9] , µactive = [2, 2.21, 2.2] ,

Σplacebo = Σactive =

 0.4 0.2 0.2

0.2 0.5 0.2

0.2 0.2 0.6

 .
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We consider a range of scenarios with 5–35% of active patients missing data at week 4 and week 12

and a further 5–35% of active patients missing week 12 only, corresponding to a total of 10–70%

missing data at week 12 in the active arm. Table E.1 summarises the specific proportions of missing

data at each time point in each scenario. The unobserved data is postulated to be worse/greater

by a fixed postulated amount δ which takes values ±{0, 0.1, 0.5, 1}. One thousand independent

complete datasets were generated for each δ and missingness scenario, and a sample size of n=500

patients (n=250 placebo, n=250 active) was drawn for all simulations.

The analysis model was a linear regression of the time 3 response on randomised treatment group.

The key parameter of interest was the the mean treatment group difference at time 3. For each

setting, the treatment effect (average treatment group difference in FEV1 at time 3) and variance

were computed using the full data.

A MCAR monotone missingness pattern was then imposed within the active arm by independently

sampling a binary indicator from a Bernoulli distribution with success probability equal to the

proportion of missing data required at time 2 for each active patient. If the indicator equalled

one at time 2 then the corresponding outcomes at time 2 and time 3 were set missing. A second

binary indicator was independently sampled for active patients observed at time 2 from a Bernoulli

distribution with success probability equal to the proportion of additional missing data required

at time 3 to obtain the second missingness pattern.

The ‘δ-method’ outlined in Section 5.1 and in [44] was applied to each incomplete dataset with

50 imputations. Post-deviation data were regenerated using the appropriate conditional normal

distributions so that the treatment effect and its variance when we observe post-deviation data

under the particular δ scenario could be computed (Vδ, full).

The main outcomes of interest were Rubin’s MI estimate of variance for the treatment effect, and

the ideal information anchored variance computed as in Section 5.2. Estimates were averaged over

the 1000 simulations in each scenario for comparison. Subsequent simulations were run utilising

the same set-up as above, but with a normal prior distribution on δ in imputation, with mean

values {0,−0.1,−0.5,−1} and a variance of σ2
δ = 0.012 or σ2

δ = 0.052.

5.7.2 Results

Simulations show excellent information anchoring by Rubin’s variance estimator for all missingness

scenarios, over the range of fixed delta (δk = ±{0, 0.1, 0.5}), see Figures 5.5 and 5.6. For large

δk = ±1.0 the approximation is excellent for up to 40–50% missingness. For greater amounts of

missingness the approximation is not quite as strong, but still good. In this setting, for patients who

deviated following time 2, their MAR imputed outcome at the second follow-up (time 3) is adjusted

by δk = ±1.0. For patients deviating post-baseline, their MAR imputed outcome at the second

follow-up time point (time 3) is adjusted by 2δk = ±2.0. We therefore note that this adjustment

is very large and highly unrealistic. δk = ±1.0 is an extreme case scenario corresponding to a

postulated mean response of 4.2 or 0.2 at week 12 for patients who deviated following baseline.

In practice we would not anticipate such big δk. Here a large value still shows good agreement

indicating the appropriateness of Rubin’s variance estimator.

In the longitudinal δ-adjusted setting we also see that Rubin’s variance estimator corresponds with
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the empirical long-run sampling variance of the MI estimate (which corresponds the empirical long-

run sampling variance of the ML estimate) as expected.
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Figure 5.5: Rubin’s +δ variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, in the longitudinal setting. ∆ = 0.3, n=250 per arm.
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Figure 5.6: Rubin’s −δ variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, in the longitudinal setting. ∆ = 0.3, n=250 per arm.
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Figure 5.7: Rubin’s −δ variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, in the longitudinal setting, with σ2
δ = 0.012. ∆ = 0.3, n=250 per arm.
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Figure 5.8: Rubin’s −δ variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, in the longitudinal setting, with σ2
δ = 0.052. ∆ = 0.3, n=250 per arm.

As expected, the agreement between Rubin’s variance estimator and the information anchored

variance is better when δk is fixed. Results from simulations with a prior distribution on δk are

shown in Figures 5.7 and 5.8. We see that generally, the smaller the variance of δk the stronger

the approximation, corresponding with Proposition 5. Unless a very large unrealistic δk = 1.0 is

used. In this case we see better agreement between Rubin’s variance formula and the information

anchored variance with σ2
δ = 0.052 than with σ2

δ = 0.012. In this setting the impact of the large
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δk happens to balance with the impact of σ2
δ = 0.052. Proposition 5 indicates the variability of

δk, σ2
δ , has a negative impact on the difference, whilst the magnitude of δk has a positive impact.

Generally we loose information relative to the information anchored variance using Rubin’s variance

estimator when σ2
δ is large.

Although not show here we also conducted simulations where the baseline adjusted treatment

effect was of interest, for which results were the same. In all simulation settings, as expected,

Rubin’s treatment estimator was additionally confirmed as unbiased (within 2 MCSE’s of the true

δ adjusted treatment effect).

5.7.3 Discussion

The simulation results show that Rubin’s variance estimator keeps the information constant across

primary and sensitivity analysis in realistic longitudinal trial settings with monotone missingness

patterns and fixed δ adjustment. The results correspond with the theory outlined in Section 5.6.

The information anchoring performance of Rubin’s variance estimator is excellent, even with high

proportions of missing data.

The desired information anchored variance, which matches the empirical long-run sampling vari-

ance more closely, is achieved using Rubin’s variance estimator. This supports the use of Rubin’s

variance estimator not only in the δ-adjusted MI setting, but additionally in the reference based MI

setting, where the information anchored variance is also obtained using Rubin’s variance estimator.

If δ is not fixed and specifically there is a large variance on δk, i.e. there is a great deal of uncertainty

surrounding the difference in outcome between those who deviation and those who do not with

similar history then the approximation of the information anchored variance will not be as strong.

Rubin’s variance estimator will loose information relative to the information anchored variance.

Trialists should therefore carefully consider the proposed variance for δ a-priori.

5.8 Extension for deviation in both arms

The proofs of Proposition 4 and 5 show Rubin’s variance estimator approximates the information

anchored variance in the δ-adjustment sensitivity analysis setting with deviation in one arm only.

We now explore the impact of deviation in both arms and show how the results hold with deviation

in both arms. With deviation in both arms we can apply the same δ-adjustment for all deviating

patients, regardless of their randomised treatment arm. Alternatively we can vary the δ-adjustment

by trial arm, that is adjust using δz ∼ N(δz,k, σ
2
δz

) for treatment arm z and imputation k.

We first re-consider the baseline and single follow-up setting in Proposition 4, but now with devi-

ation in both arms where the same δ-adjustment is made, regardless of the patients randomised

arm. We assume δz ∼ N(δk, σ
2
δ ) for z = a, r.

Suppose in addition to the conditions already laid down in Proposition 4, among the n reference

patients, only nr,o are actually observed, whilst the remaining nr,d deviate post-baseline. Let RD

and RO define the sets of indices for patients who do and do not deviate in the reference arm re-
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spectively. πr,d denotes the proportion of deviators in the reference arm, i.e. nr,d/n. The outcome

data for the observed reference patients are contained in the vector Yr,o = {Yri; i ∈ RO}T . The

potentially observable de-jure data for the nr,d deviating reference patients are contained in the

vector Yr,DJ,d and the alternative δ-adjusted outcome data in the vector Yr,δ,d. The full collection

of observed and potentially observable outcome data is now defined as,

Y = (Yr,o,Yr,DJ,d,Yr,δ,d,Ya,o,Ya,DJ,d,Ya,δ,d)
T

which has dimensions [(nr,o + 2nr,d + no + 2nd)].

We assume Y is normally distributed and has known variance Σ.

We redefine the two matrices DDJ and Dδ so that DDJY and DδY now each give the de-jure

data or δ-adjusted data across both treatment arms.

When the treatment effect of interest is the mean difference in the follow-up outcome, Appendix

B.1 shows that with deviation in both arms,

E [Vδ, full] = aTDDJΣDT
DJa +O

(
πd(1− πd)

n

)
+O

(
πr,d(1− πr,d)

n

)
. (5.11)

We focus this exposition on settings where (5.11) holds. Following the inference in Section 3.4, this

will also be true for the baseline adjusted treatment estimator. We follow the same developments

as in Section 5.4 to establish our de-jure (on-treatment MAR) and δ-adjusted imputation models

for the deviating active arm patients. For the reference arm, under our de-jure assumption the

imputation model is formed from the regression of Yr,o on Pr,o where Pr,o is the [nr,o × p] design

matrix for the imputation model, which contains the values of the (p-1) covariates included in the

imputation model (including the baseline outcome but excluding the treatment indicator since we

perform imputation separately by arm) with a vector of 1’s to include an intercept term in the

model, for observed reference patients.

The parameter estimates for the de-jure imputation model, denoted β̂DJ,r, are found using,

β̂r,o = (PT
r,oPr,o)

−1PT
r,oYr,o with known covariance matrix Vr,o = (PT

r,oPr,o)
−1σ2. We assume the

large sample posterior for β̂DJ,r is normal and centered on the ML estimator β̂r,o with covariance

matrix Vr,o, that is,

β̂DJ |Yr,o ∼ N(β̂r,o; Vr,o).

The de-jure imputation model for patient i and imputation k in the reference arm can therefore

be expressed as,

Ỹri,k|Yr,o = Pr,d,i

[
β̂r,o + br,o,k

]
+ er,i,k for i ∈ RD,

where br,o,k ∼ N(0,Vr,o), er,i,k ∼ N(0, σ2) and Pr,d,i is the covariate data for each deviating

reference patient i (excluding treatment group but including a 1), of dimensions [1× p].
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For δ-adjusted imputation we must add δk into the imputation model. The δ imputation model

for patient i and imputation k in the reference arm can therefore be expressed as,

Y̆ri,k|Yr,o = Pr,d,i

[
β̂r,o + br,o,k

]
+ δk + er,i,k for i ∈ RD,

where additionally δk ∼ N(δ, σ2
δ ). We are interested in imputation inference for,

1
K

∑K
k=1 aTDDJYk or 1

K

∑K
k=1 aTDδYk. Letting the number of imputations, K → ∞, the vari-

ance of our MI treatment estimate as estimated by Rubin’s rules is, VDJ, MI = ŴDJ + B̂DJ or

Vδ, MI = Ŵδ + B̂δ where under the conditions described,

E
[
ŴDJ

]
= E

[
1

K

K∑
k=1

aTDDJΣ̂kDT
DJa

]
→ aTDDJΣDT

DJa,

and,

E
[
Ŵδ

]
= E

[
1

K

K∑
k=1

aTDδΣ̂kDT
δ a

]
→ aTDDJΣDT

DJa +O

(
πd(1− πd)

n

)
+O

(
πr,d(1− πr,d)

n

)
.

Under de-jure,

B̂DJ =
1

K − 1

K∑
k=1

[πd (ēk − ē) + πd
(
P̄a,dba,o,k − P̄a,db̄a,o

)
− πr,d (ēr,k − ēr)

−πr,d
(
P̄r,dbr,o,k − P̄r,db̄r,o

)]2
,

where ēr,k = 1
nr,d

∑
i∈RD er,i,k, ēr = 1

K

∑K
k=1 ēr,k, P̄r,d = 1

nr,d

∑
i∈RD Pr,d,i and

b̄r,o = 1
K

∑K
k=1 br,o,k. This has expectation,

E
[
B̂DJ

]
= π2

d

[
σ2 + ndP̄a,dVa,oP̄

T
a,d

nd

]
+ π2

r,d

[
σ2 + nr,dP̄r,dVr,oP̄

T
r,d

nr,d

]
.

With δ-adjustment,
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B̂δ =
1

K − 1

K∑
k=1

[ πd (ēk − ē) + πd
(
P̄a,dba,o,k − P̄a,db̄a,o

)
+ πd

(
δk − δ̄

)
−πr,d (ēr,k − ēr)− πr,d

(
P̄r,dbr,o,k − P̄r,db̄r,o

)
− πr,d

(
δk − δ̄

)]2
.

This has expectation,

E
[
B̂δ

]
= π2

d

[
σ2 + ndP̄a,dVa,oP̄

T
a,d

nd

]
+ π2

r,d

[
σ2 + nr,dP̄r,dVr,oP̄

T
r,d

nr,d

]
+

(
nd − nr,d

n

)2

σ2
δ .

This can also be expressed as,

E
[
B̂δ

]
= E

[
B̂DJ

]
+

(
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The information anchored variance is,
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If Rubin’s variance estimator preserves the information loss seen in the primary analysis under

MAR then,
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After simplification this is,
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Which is,
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. (5.12)

With deviation in both arms, the difference between Rubin’s variance estimator and the information

anchored variance remains dominated by the variance of δ. In comparison to the result for the

same setting, with deviation in the active arm only (5.8) we see there is an additional component

in the difference, which depends on the variance of δ for the reference deviators. However, if there

is a similar number of active deviators and reference deviators, i.e. nd ≈ nr,d there will be a closer

approximation of the information anchoring variance by Rubin’s variance estiamtor. In this case

the largest term of the difference, which is also driven by σ2
δ (first term on the RHS of (5.12)) will

be zero. The information anchoring is driven by how similar the proportion of deviation is in each

arm and the variance of σ2
δ .

The second term on the RHS of (5.12) will remain negligible in practice, since as discussed pre-

viously E
[
B̂DJ

]
is typically much smaller than E

[
ŴDJ

]
. Further the E

[
B̂DJ

]
/E
[
ŴDJ

]
term is

multiplied by other terms with an order than is less than n−1.

We now consider a different δ-adjustment in each arm. That is we adjust by δz,k ∼ N(δz, σ
2
δz

) for

patients in arm z = a, r. We assume the covariance between δa and δr is zero. When a different

δ-adjustment is made in each arm,
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where δ̄z = 1
K
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For information preservation,

0 ≈ −π2
dσ

2
δ,a − π2

r,dσ
2
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]
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In this case the sharpness of the approximation will depend on the different variance’s of δ in both

arms. If the covariance between δa and δr is not zero then there will be an additional term in

the difference between Rubin’s variance estimator and the information anchored variance. This

will represent the covariance between δa and δr. Thus the information anchoring performance of

Rubin’s variance estimator will also depend on the covariance between δa and δr.

We can similarly follow Proposition 5 through with the above amendment for differential δ-

adjustment in each arm to show that the information anchoring performance of Rubin’s variance

estimator depends on the assumed variance of δ in both arms and the covariance between δa and

δr.

It follows that if δ is fixed, Rubin’s variance estimator will be excellent at information anchoring

in the longitudinal trial setting with deviation in both arms.

Throughout this chapter we have assumed separate imputation models by treatment arm. If

this is not the case then naturally not all of the imputation parameters for patients in arm a

will be independent of the imputation parameters for patients in arm r, for both de-jure and δ

imputation. Rubin’s variance estimator will however still be information anchoring up to the same

order. The same additional terms, representing the covariance between the imputation parameters

of the different arms, will be incorporated in the expected value of the de-jure and δ between

imputation variance. When looking at the difference between these quantities, the additional

covariance components will cancel out and the results presented above will thus still follow.

As in Chapter 4, for simplicity we have also focussed attention on the setting with infinite impu-

tations, that is for K →∞. Following the discussions in Section 4.6 we conclude that Proposition

4 and 5 also hold with finite K. Only smaller terms, additionally multiplied by (1/K), will be

incorporated in the approximation.

5.9 Summary

The ‘δ-method’ is widely used by trialists [16] (see for example [61, 62]). It is accessible to all

members of the trial team and others with a stake in the trial since assumptions are framed with

respect to how the data for the deviators differs to those observed. It can also be used for tipping

point analysis, to establish under what circumstances alternative inference would be obtained.

Rubin’s treatment estimator is unbiased and Rubin’s variance estimator provides an excellent

approximation for the gold standard information anchored variance we desire in the δ-adjusted MI

sensitivity analysis setting. That is the design based variance we would observe if all δ-adjusted

deviation data were present, adjusted for the loss of information seen in the primary MAR analysis.
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The approximation is better when δ has a small variance, or indeed none and is a fixed quantity.

A large variance on δ reflects uncertainty on the difference in response between observed cases and

deviators, hence it is unsurprising that the approximation is better when we are more certain of

the difference. When δ is not fixed Rubin’s variance estimator looses information relative to the

information anchored variance i.e. it will overestimate the information anchored variance. When

δ varies by treatment arm and is not fixed, the information anchoring performance of Rubin’s

variance estimator will further depends on the covariance of the δ’s in the different arms.

This highlights the importance of the elicitation of the sensitivity analysis parameters. This is

notoriously difficult, as described in [28]. In some cases trialists may be confident of a set of

fixed δ adjustments, which correspond to credible scenarios for the unobserved patients, to use

in sensitivity analysis. When exact values of δ are uncertain, to be information anchoring in

sensitivity analysis a greater number of fixed δ adjustment should be made over plausible values

of δ. If a prior for δ with a large variance on δ is alternatively used the variance of the resulting

treatment estimator will not be information anchored. Exploring the uncertainty of δ via a greater

range of fixed δ will ensure the information lost due to missing data in the primary analysis is

preserved in the sensitivity analysis, with no additional loss of information.

Often in practice, in a single trial setting, a group of clinical experts can be approached to provides

values of δ to use in sensitivity analysis. That is the differences in the expected mean response

between those observed and those unobserved. If one or more clinician provides a value of δ that is

considerably higher or lower than the others this could result in large variance in δ over the experts.

Incorporating this information into a single prior for δ will then lead to a loss of information in the

sensitivity analysis. If alternatively one runs a number of fixed δ-adjusted analyses, covering the

range of proposed δ’s, an information anchored variance estimate will be obtained in each case.

The fact that the information anchoring behaviour of Rubin’s variance estimator is seen in both

the δ-adjusted and reference based MI settings only further supports the use of Rubin’s variance

estimator in the reference based MI settings. Whilst Rubin’s variance estimator does not match

the long-run sampling variance of the reference based MI estimator —appropriately as the long-run

sampling variance is unnatural and artificially small due to borrowing data from within the trial

for sensitivity analysis— it does have the same information anchoring behaviour as that observed

in the δ setting. In the δ setting when the long-run sampling variance is not unnatural, the

information anchored variance approximates the long-run sampling variance.
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Chapter 6

Software and application

Despite the increasing volume of research on more sophisticated statistical methods for dealing with

missing data and sensitivity analysis in high impact journals [1, 63, 64], a recent review by Bell et

al. found relatively little of these methods in practice [5]. Out of 77 RCTs published in four top

leading medical journals in 2013, 73 (95%) reported missing outcome data and the most commonly

used method in the primary analysis was complete case analysis 33 (45%). Simple imputation

was performed by 20 (27%) trials, 15 (19%) used model based methods and only 6 (8%) used MI.

Further only 25% of the trials with missing data conducted sensitivity analysis that altered the

missing data assumption made in the primary analysis. Many reasons can be postulated for this.

As discussed by Bell et al.

“Perhaps the reluctance to use more sophisticated approaches is due to a lack of knowledge or

experience on the parts of applied researchers and/or biostatisticians. Perhaps it is due to the time

lag between reports of methods and software to implement them.”[5]

A cross-sectional survey of members of the Statistical Society of Canada (SSC) in 2014 investigating

barriers to the uptake of new statistical methods also identified lack of suitable software as a key

factor (selected by 81% statisticians) [65]. We agree that the availability of user friendly software

to implement novel techniques along with practical examples demonstrating their application is

fundamental.

Although the use of more developed statistical techniques for handling missing data, such as MI,

still falls behind simpler methods of analysis, a review of RCTs published in four leading medical

journals by Mackinnon, from the earliest date each journal offered searches until the end of 2008,

shows MI has gained popularity over the years [66]. The review highlights a substantial increase

in use from 2005 to 2008. A more recent review of publications in two leading medical journals

from 2008 to 2013 by Rezvan et al. [67], identified a continuing increasing trend in the number of

RCTs using MI over time.

This positive trend is encouraging and highlights the impact of accessible software, since it coincides

with the introduction of implementations of MI in mainstream statistical software packages, such as

the MICE implementation in Stata by Royston in 2004 [68]. This was followed by the introduction

of a suite of inbuilt MI commands in Stata release 11 in 2009 [69], which was updated in Stata
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release 12 in 2011 to incorporate the MICE implementation [70]. SAS introduced MI in version

8.2 in 2001 [71] using the MVN model, which was updated in version 9.3 in 2011 [72] to include

the MICE approach. MICE was also introduced in SPSS version 17.0 in 2008 [73]. Various

implementations of MI were also introduced in R during this time period.

In this thesis we have seen MI is a valuable technique for trial analysis not only under the MAR

assumption but in sensitivity analysis, under MNAR assumptions. However of the 103 papers

reviewed by Rezvan [67] between 2008 and 2013 that used MI, only 3 (3%) performed a sensitivity

analysis following MI to investigate the robustness of the MI estimate to departures from the MAR

assumption. Of these only one paper provided details about the sensitivity analysis approach. The

review highlights a “lack of explicit guidelines in the literature for conducting sensitivity analyses

within the MI framework.”

Carpenter, Roger and Kenward (2013) address this need with the introduction of the reference

based MI procedures evaluated in this thesis [13]. The procedures were introduced with a SAS

macro written by Roger, freely available at www.missingdata.org for implementation [74]. Aiming

to increase the uptake of their approach a user friendly Stata programme named mimix has been

created [56]. Stata is a statistical software package, used globally by statisticians in the medical

and other industries.

In the next section we introduce the new Stata command mimix. In Section 6.2 we demonstrate

the use of mimix, using data from the asthma trial. These two sections form part of a manuscript

published in the Stata journal by myself and my supervisors [55]. In Section 6.3 we present a second

application and analyse the reviewer study data. Stata code is presented for all the anlayses to

facilitate adoption. We finish with a discussion and presentation of the download statistics for

mimix, up to the time of writing of this thesis in Section 6.4.

6.1 Introducing mimix

The mimix command conducts reference based MI under the five distinct treatment arm based

assumptions for missing data outlined in Section 2.1 (MAR, CR, J2R, CIR and LMCF). The user

can specify the required imputation method for all individuals, or is able to specify individual-

specific imputation methods. Additionally an alternative imputation method can be specified for

all interim missing values; where the individual has later observed data. Often it may be desirable

to impute interim missing data under randomised-arm MAR. Or the interim missing data can be

treated in the same way as missing post-deviation data.

Optionally, two substantive analysis models can be fitted to each imputed dataset, and the results

summarised using Rubin’s rules, by mimix. The two analysis options in mimix are (a) a linear

regression of the outcome at the final time point on treatment and baseline, or (b) a saturated

repeated measures model (i.e. including treatment crossed with visit and baseline crossed with

visit), with separate covariance matrices for each treatment arm. Other substantive analysis models

can be fitted to the imputed data in the usual way using the usual Stata mi estimate commands

post-completion of mimix.

mimix is freely available for download at,
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https://ideas.repec.org/c/boc/bocode/s457983.html [56].

6.1.1 Syntax

The syntax of the mimix command is the following:

mimix depvar treatvar, id(varname) time(varname)
[

clear covariates(varlist)

interim(string) iref(string) method(string) methodvar(varname) mixed refgroup(string)

refgroupvar(varname) regress saving(filename[,replace]) burnbetween(#) burnin(#)

m(#) seed(#)
]

Data are required in long format with one record per individual per time point, where depvar is

the numeric outcome variable with missing data in the existing dataset and treatvar identifies the

treatment group variable in the existing dataset and may be either a numeric or string variable.

6.1.2 Options

Here we describe the options available when using the command.

id(varname) specifies the variable identifying individuals in the existing dataset. This is a required

option and may be either a numeric or string variable.

time(varname) specifies the variable identifying units of time in the original dataset. This is a

required option and must be a numeric variable.

clear specifies that the original data in memory be cleared and replaced by the imputed dataset.

The imputed dataset must then be saved manually if required. clear and/or saving() is required.

covariates(varlist) specifies any additional baseline covariates to be included in the imputation

model, and analysis if either the regress or mixed options are specified. Any specified covariates

must be fully observed numerical variables. Dummy variables must be generated for any factor

covariates.

interim(string) specifies an alternative imputation method for all interim missing values; where

the individual has later data observed. Values must be one of “mar”, “j2r”, “lmcf”, “cir” or “cr”

(not case sensitive). See Subsection 6.1.4 for further details on specifying the imputation method.

iref(string) specifies the level of treatvar chosen for the reference for all interim missing values;

where the individual has later data observed. Required when using the “j2r”, “cir” and “cr”

imputation methods. See Subsection 6.1.4 for further details on specifying the imputation method.

method(string) defines the imputation method for all individuals. Values must be one of “mar”,

“j2r”, “lmcf”, “cir” or “cr” (not case sensitive). See Subsection 6.1.4 for further details on specifying

the imputation method.
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methodvar(varname) specifies the variable in the original dataset containing individual specific

imputation method(s). This option should be used if different imputation methods are required

for different individuals. methodvar() must be a string variable containing values of “mar”, “j2r”,

“lmcf”, “cir” or “cr” (not case sensitive). methodvar() and method() are mutually exclusive;

specifying both will return an error message. See Subsection 6.1.4 for further details on specifying

the imputation method.

mixed uses mi estimate with Stata’s default options to fit a saturated repeated measures model

using restricted maximum likelihood—with a separate mean for each treatment and time together

with full covariate–time interactions for any included covariates() and a separate unstructured

covariance matrix for each arm— to each of the imputed datasets and combines results using

Rubin’s rules for inference. It should be noted that this option may add substantially to the

post-imputation computation time if a large number of imputations have been specified.

refgroup(string) specifies the level of treatvar chosen for the reference for all individuals. Required

when using the “j2r”, “cir” and “cr” imputation methods. See Subection 6.1.4 for further details

on specifying the imputation method.

refgroupvar(varname) specifies the variable in the original dataset which identifies the level of

treatvar chosen for the reference for each individual. Required when using the “j2r”, “cir” and “cr”

imputation methods. refgroupvar() and refgroup() are mutually exclusive; specifying both will

return an error. See Subsection 6.1.4 for further details on specifying the imputation method.

regress uses mi estimate with Stata’s default options to fit a linear regression of depvar at the

final time point on treatvar, and any included covariates(), to each of the imputed datasets and

combines results using Rubin’s rules for inference.

saving(filename [,replace]) saves the imputed datasets. A new file name is required unless

replace is also specified. replace allows the filename to be overwritten with new data and may

not be abbreviated. clear and/or saving() is required.

burnbetween(#) specifies the number of iterations between pulls for the posterior in the MCMC.

The default is 100.

burnin(#) specifies the number of iterations in the MCMC burn in. The default is 100.

m(#) specifies the number of imputations required. The default is 5.

seed(#) specifies the seed for the random number generator. The default is 0 meaning that no

seed is specified by the user and the current value of Stata’s random number seed will be used; this

will consequently result in different sets of imputations for multiple programme runs. To reproduce

a set of imputations the same random number seed should be used with the original data sorted

in exactly the same order.
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6.1.3 Implementation details

Baseline covariates

Any additional baseline covariates that are included are required to be complete. Individuals with

missing covariate information will be highlighted to the user by the command and discarded in the

imputation process and any requested analysis.

Potential error with sparse data

Stata’s mi impute mvn command, which uses the MCMC method initialised by the EM algorithm

to impute missing values, is utilised to complete steps 1 and 2 of the general procedure, as detailed

in Section 2.1. If the response variable of interest is measured at an occasion with only a very few

complete cases mi impute mvn may terminate with an error if there is not enough information in

the observed data to reliably estimate aspects of the covariance structure in the required MVN

model. If this is the case we advise the user to explore an alternative viable MVN model for

the data using the mi impute mvn command. The response at the occasion with few observed

outcomes may potentially need to be excluded from the analysis and mimix re-run.

Data output

The imputed datasets are produced in long format, with one record per individual per time point

per imputation, and are mi set in Stata’s flong style, ready to analyse using mi estimate in

Stata. The imputed datasets are output in memory if clear is specified and/or saved in file-

name.dta if saving() is specified.

Analysis options

If the regress or mixed analysis options are specified Stata’s mi estimate command is utilised to

fit the specified analysis model to each imputed dataset and combine results using Rubin’s rules.

The usual MI output will be displayed in the results window. If other substantive analysis models

are required following the completion of mimix, mi estimate can be used in the usual way for

further analysis.

Use of data preserve

Due to extensive manipulation of the data mimix uses Stata’s preserve and restore commands.

Whilst mimix can be successfully run on data that are already preserved, we recommend users

cancel any previous data preserve using restore, not to ensure the clear and saving() options

of mimix work as intended.
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6.1.4 Specifying the imputation method

Either the method() option, to indicate which imputation method should be employed for all

individuals, or the methodvar() option, to indicate which imputation method should be employed

for each individual must be used. method() and methodvar() are mutually exclusive options;

specifying both will return an error.

If the method() option is used to request the same imputation method for all individuals, then

values specified in method() must be one of those presented in Table 6.1 (not case sensitive). If

the methodvar() option is used to request different imputation methods for different individuals,

then a new variable that contains individual specific imputation methods must be generated and

specified in methodvar(). The variable that holds the individual imputation methods must only

contain values presented in Table 6.1 (not case sensitive) and the method specification cannot vary

within an individual over time.

If either of the J2R, CIR or CR options are used then either the refgroup() option must also be

used to specify the reference level of the treatvar for all individuals, or the refgroupvar() option

to indicate the reference level of the treatvar for each individual. Together these variables allow for

the required assumptions outlined in Section 2.1 [13]. If one of the imputation methods that in-

cludes a reference group is specified for all individuals (or for specific individuals via methodvar())

missing data for individuals in that reference group (with the reference imputation specification)

are imputed under randomised-arm MAR.

The interim option specifies the imputation method for all interim missing values, that is where

individuals have later data observed. If this option is not selected any interim missing values will

be imputed following the method specified by the methodvar() or method() option, in the same

way as missing post-deviation data.

Method name Name to specify in
method() or methodvar()

Randomised-arm Missing At Random mar
Jump to reference j2r
Last mean carried forward lmcf
Copy increments in reference cir or ciir
Copy reference cr

Table 6.1: Specifying the imputation method using mimix. Names to specify are not case
sensitive.

6.2 Sensitivity analysis of the asthma trial

We now conduct reference based sensitivity analysis using the mimix command for the randomised

double-blind placebo controlled trial of budesonide delivered by Turbuhaler for the treatment of

adult patients with chronic asthma described in Subsection 1.7.2. Analysis was performed using

Stata version 14.1 [75].
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The observed mean FEV1 profiles by treatment arm (active vs. placebo) and the various missing

data patterns are shown in Figure 1.3. Only 38 of the 92 individuals in the placebo arm (41%) and

72 of the 91 individuals in the active arm (79%) remained in the trial at 12 weeks; 3 individuals

(2 placebo and 1 active) had interim missing data.

The primary analysis of the original trial consisted of a linear regression of the 12 week FEV1

outcome on treatment group, adjusted for baseline FEV1, using data from the 110 individuals

measured at week 12 (complete case analysis under MAR). This gives a treatment effect of 0.239

L, p = 0.017. We will use mimix to assess the robustness of the results to the various post-deviation

assumptions outlined in Section 2.1. The interim missing outcomes will be imputed under MAR.

In the following output we describe the variables in the asthma trial dataset and list their contents

for one arbitrarily selected deviating individual.

. use asthma, clear

. describe

Contains data from asthma.dta

obs: 732

vars: 5 12 Feb 2015 10:18

size: 11,712

storage display value

variable name type format label variable label

id int %8.0g Patient ID

time byte %9.0g Measurement time (weeks)

treat byte %8.0g treat1 Randomised treatment assignment

base double %12.0g Baseline FEV1 (L)

fev float %9.0g FEV1 (L)

Sorted by: id

. list in 37/40, noobs sepby(id)

id time treat base fev

5030 2 Placebo 1.14 .85

5030 4 Placebo 1.14 1.51

5030 8 Placebo 1.14 .

5030 12 Placebo 1.14 .

id is the unique individual identifier and treat is the randomised treatment assignment, to placebo

(treat = 2) or active (treat = 3). fev is the post-baseline FEV1 measurement (recorded in

Litres) and time is the time of the FEV1 measurement in weeks. base is the baseline FEV1

measurement. We can see that the selected individual deviated sometime between week 4 and

week 8; consequently, the individual has missing outcomes for weeks 8 and 12. We also note that

the dataset is already in long format with one observation per individual per time point, as required

for mimix.

We first analyse the data under a more realistic MAR assumption using previously observed out-

comes for all individuals; in other words a de-jure assumption that—post-deviation—individuals

continued on their randomised treatment as specified in the protocol. We create 50 imputations

and take the default MCMC burn-in of 100 and burn-between of 100 iterations. We include the

baseline FEV1 measure in the imputation model as a covariate, but if this fully observed variable

214



were used as an outcome, the results would be stochastically identical. We use the regress op-

tion to specify that the substantive analysis is a linear regression of 12-week FEV1 on randomised

treatment and baseline FEV1. Imputation with the MAR option automatically means the interim

missing values will be imputed under MAR in each treatment group. The command required and

produced results are shown in the following output.

. mimix fev treat, id(id) time(time) method(mar) covariates(base) regress m(50)

> clear seed(101)

Performing imputation procedure for group 1 of 2...

Performing imputation procedure for group 2 of 2...

Performing regress procedure ...

i.treat _Itreat_2-3 (naturally coded; _Itreat_2 omitted)

Multiple-imputation estimates Imputations = 50

Linear regression Number of obs = 183

Average RVI = 0.4106

Largest FMI = 0.3495

Complete DF = 180

DF adjustment: Small sample DF: min = 91.39

avg = 99.15

max = 105.79

Model F test: Equal FMI F( 2, 149.8) = 40.69

Within VCE type: OLS Prob > F = 0.0000

fev Coef. Std. Err. t P>|t| [95% Conf. Interval]

_Itreat_3 .3230728 .1042794 3.10 0.002 .1163241 .5298215

base .7240691 .0861441 8.41 0.000 .5531672 .8949709

_cons .3959986 .1971734 2.01 0.048 .0043602 .787637

Imputed dataset now loaded in memory

Imputed data created in variable fev using mar

The output displays the results from the MI linear regression analysis requested, along with a

description of the variable which now contains imputed data. Under MAR MI, using the previously

observed outcomes, the treatment estimate is increased from the complete case regression reported

above, to 0.323 L, with a p-value of 0.002. The results of this analysis are shown in the top

panel of Figure 6.1. The complete case analysis makes a stronger assumption that the conditional

distributions of missing and observed 12 week responses given treatment and baseline are the same.

Whilst the MI MAR analysis assumes the conditional distributions of missing and observed 12 week

responses given treatment, baseline and previous observed responses are the same, which is more

likely to be realistic.

As the clear option was specified, the imputed dataset is stored in memory. The imputed data

are output mi set in flong format, using mi set flong. We note that the imputed dataset has

not yet been saved. If the saving() option is specified when using mimix then the imputed data

will be saved when the command is executed.

We now re-impute the asthma trial, under the J2R assumption for all individuals, with the placebo

arm (treat =2) first set as the reference. The interim option is included to impute the interim

missing values under MAR. We note that inclusion of the interim option here does not actually

effect the results since our substantive model of interest considers the treatment effect at the final

time point. Imputation of interim values under MAR (or another reference based approach) will

have an impact when the mixed option is specified to fit a saturated repeated measures model,

215



using all follow-up outcomes, to estimate a separate baseline adjusted treatment effect at each

follow-up time.

. mimix fev treat, id(id) time(time) method(j2r) refgroup(2) covariates(base) i

> nterim(mar) regress m(50) clear seed(101)

Performing imputation procedure for group 1 of 2...

Performing imputation procedure for group 2 of 2...

Performing regress procedure ...

i.treat _Itreat_2-3 (naturally coded; _Itreat_2 omitted)

Multiple-imputation estimates Imputations = 50

Linear regression Number of obs = 183

Average RVI = 0.4483

Largest FMI = 0.3510

Complete DF = 180

DF adjustment: Small sample DF: min = 91.07

avg = 109.09

max = 140.18

Model F test: Equal FMI F( 2, 156.9) = 32.45

Within VCE type: OLS Prob > F = 0.0000

fev Coef. Std. Err. t P>|t| [95% Conf. Interval]

_Itreat_3 .2261827 .1028346 2.20 0.029 .0228754 .42949

base .6894261 .0933944 7.38 0.000 .5040403 .8748119

_cons .4669997 .2112431 2.21 0.030 .0473954 .8866041

Imputed dataset now loaded in memory

Imputed data created in variable fev using j2r

Interim missing data imputed using mar

The results of the J2R analysis with placebo as the reference are summarised in Table 6.2 along

with results of a J2R analysis with active as the reference. These address the de-facto assumption,

when post-deviation individuals not randomised to the reference treatment change to the reference

treatment. Both these analyses result in a reduced treatment estimate relative to the de-jure MAR

assumption. However, while J2R with placebo as the reference still gives a treatment effect that is

statistically significant at the 5% level, J2R with active as the reference does not. This is because

more individuals deviate in the placebo arm than the active arm (Figure 1.3) and they tend to be

individuals whose lung function is lower. The effect of this versus analysis under MAR is shown

in Figure 6.1. The change in placebo individuals under J2R-active reduces the treatment estimate

by the greatest amount.
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Figure 6.1: Mean FEV1 against time, by treatment arm, for the four different deviation
(withdrawal) patterns under MAR (top panel) and J2R (bottom panel). Solid lines join observed

means before deviation and dashed lines join the means of the imputed data for that pattern.

Our next analysis is LMCF. Figure 1.3 shows that the arm-specific means begin to stabilise quite

early in the follow-up. It is therefore to be expected that LMCF gives a slightly reduced estimate

relative to MAR, with a slightly higher p-value (Table 6.2). If we wish to assume that individuals’

lung function at deviation is broadly maintained post-deviation, LMCF would be appropriate.

The next two analyses are both CIR. In the first, the reference is the placebo, and in the second,

the reference is the active arm. Because more individuals deviate in the placebo arm than the

active arm, and the placebo arm profiles tend to decrease while those of the active arm increase,

we again see a slightly larger treatment estimate when the reference arm is placebo (Table 6.2).

CIR—when the reference is placebo—is appropriate if, post-deviation, we wish to assume that

active individuals’ lung function starts to decline from its current value at the same rate as seen

in the placebo arm. The converse—when the reference is active—is appropriate if, post-deviation,

we wish to assume that placebo individuals access an active treatment and their lung function

increases from its current value at the rate seen in the active arm.

Finally, we consider CR, with placebo and active reference. Under this assumption, an individual’s

post-deviation data are imputed as if they had always belonged to the reference arm (in effect,

received the reference arm treatment). CR with placebo reference may be an appropriate de-facto

assumption for individuals who could not tolerate the active treatment. Under CR, pre-deviation

individual-specific residuals about the mean are typically greater than under J2R. This means that

post-deviation profiles typically change less abruptly than with J2R. This is what we observe here

(Table 6.2). For CR with active reference, the treatment estimate is greater than both treatment

estimates under J2R, but less than the treatment estimates for all the other de-facto assumptions.
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Analysis Treatment Est. (L) Std. Err. p-value

De-jure

Primary Analysis (ANCOVA) 0.239 0.099 0.017

Randomised-arm MAR 0.323 0.104 0.002

De-facto

Jump to placebo 0.226 0.103 0.029

Jump to active 0.128 0.095 0.181

Last mean carried forward 0.296 0.096 0.003

Copy increments in placebo 0.281 0.103 0.007

Copy increments in active 0.277 0.082 0.001

Copy placebo 0.289 0.101 0.005

Copy active 0.251 0.082 0.003

Table 6.2: Sensitivity analysis results for the asthma trial. K = 50 imputations.

We therefore conclude that if post-deviation medication has a comparable effect to the lowest active

dose, then individuals will have comparable lung function at the end of the study. Otherwise the

sensitivity analysis is consistent with the primary analysis of the trial, in identifying a significant

beneficial effect of treatment relative to placebo.

The results in Table 6.2 demonstrate the information anchoring behaviour of Rubin’s variance

estimator in a real setting. We see the information loss in the MI MAR analysis is generally

held reasonably constant over the sensitivity analyses, which also condition on previously observed

outcomes. The standard errors of the treatment estimates in the de-facto imputation scenarios

are not drastically different in any of the analyses. The standard error does tend to be marginally

smaller for reference based methods where the active group is the reference arm. Only 38 of the 92

individuals in the placebo arm (41%) and 72 of the 91 individuals in the active arm (79%) remained

in the trial at 12 weeks. Since there were more deviators in the placebo arm of this trial this small

difference is not surprising given the theory in Chapter 4. There will be a greater proportion of

reference based deviation when the active group is the reference arm. The approximation between

Rubin’s variance estimate and the information anchored variance is not as sharp as the components

which form the difference between Rubin’s variance and the information anchored variance will be

slightly larger than when the reference group is the placebo arm.

6.3 Sensitivity analysis of the reviewer study

We now conduct sensitivity analysis for the reviewer study described in Section 1.7.1. The primary

analysis of the original trial, performed under the MAR assumption (consisting of a linear regression

of review quality on treatment group, adjusted for baseline) gave a statistically significant treatment

effect of 0.237 improvement in quality, 95% CI [0.099-0.376], p = 0.001. However 46 participants

dropped out the self-taught group compared with only 11 in the no training group. Moreover those

who dropped out in the self-taught group had a significantly poorer review quality at baseline. It

is therefore important to assess how robustness the conclusions are to the MAR assumption.
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Carpenter and Kenward [44] have previously conducted sensitivity analysis of the reviewer data

using the ‘δ-method’. A questionnaire was developed to elicit experts (20 editors and other staff

at the BMJ) prior opinion about the average difference in review quality index between those who

were observed and those who were not [28]. The resulting distribution was N(−0.21, 0.462). We

first replicate the δ-adjusted sensitivity analysis performed by Carpenter and Kenward assuming

δ ∼ N(−0.21, 0.462). We then conduct a further δ-adjusted sensitivity analysis which assumes δ is

fixed at -0.21 i.e. we ignore the variability across the experts and take into account just the average

anticipated difference in review quality index by completer status. We then establish what the

results would look like if we assume the reviewers who did not return paper 2 behaved like those

in the no training group.

In the following output we describe the variables in the reviewer dataset and list their contents for

a randomly selected individual.

. use reviewer, clear

. describe

Contains data from reviewer.dta

obs: 339

vars: 4 16 Jan 2009 15:57

size: 5,424

storage display value

variable name type format label variable label

id float %9.0g Reviewer identifier

inter float %19.0g intervention

Training package

base float %9.0g Paper 1 (baseline) mean review quality

resp float %9.0g Paper 2 (response) mean review quality

Sorted by:

. list in 6, noobs sepby(id)

id inter base resp

25 no training 1.714286 2.928571

id is the unique reviewer identification number, inter indicates the randomly assigned intervention

package of no training (inter= 0) or self-taught package (inter= 1), base is the baseline mean

review quality and resp is the mean review quality response for paper 2. We conduct the original

primary analysis of the trial, a standard MI analysis under MAR and the original δ-adjusted

sensitivity analysis using the below code. For each of the imputation analyses, 50 imputations were

run. The analysis model was a linear regression of review quality on treatment group, adjusted for

baseline as in the original primary analysis.

· regress resp base inter

· mi set flong

· mi register impute resp

· mi impute mvn resp=base, add(50) rseed(23) by(inter)

· mi estimate: regress resp base inter

· set seed 32

· bysort mi m: gen delta k=(-0.21 + 0.46*invnormal(uniform())) if n==1
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· bysort mi m (delta k): replace delta k=delta k[1]

· mi passive: gen imputed= mi miss

· replace imputed=1 if imputed==.

· gen resp delta=resp+imputed*delta k

· mi estimate: regress resp delta base inter

For the fixed δ-adjusted sensitivity analysis (δ ∼ N(−0.21, 0)) we replicated the above code with

delta k=-0.21 in place of delta k=(-0.21 + 0.46*invnormal(uniform())). We use mimix to

establish the treatment effect if the reviewers who did not return paper 2 copied the no training

arm behaviour (inter= 0). The commands required are as follows.

· use reviewer, clear

· gen time = 2

· mimix resp inter, id(id) time(time) covariates(base) method(cr) refgroup(0)

m(50) regress clear seed(23)

Results from analyses of the peer review study are summarised in Table 6.3. We see the intervention

effect under copy no training behaviour is slightly reduced at 0.172, compared with 0.237 from

complete case analysis and 0.234 from standard MI analysis (both under MAR), but remains

statistically significant. We obtain an information anchored variance estimate in the copy control

analysis with a standard error of 0.069 versus 0.071 under MAR MI and 0.070 from a complete

case MAR analysis.

When taking into account the experts view, the effect of the self-taught intervention is no longer

significant. The treatment effect is reduced to 0.195 and the standard error increased to 0.132.

Allowing for the anticipated worse response from participants who dropped out, and the variability

across the experts in their opinion on this, there is no evidence that the intervention improves the

quality of peer review. The increased standard error represents the increased uncertainty about

the effect of the dropout mechanism under the MNAR mechanism, relative to MAR. When this

is taken into account the treatment effect is not statistically significant. We no longer obtain an

information anchored variance estimate.

When we ignore the variability across the experts and just take into account the mean expert

opinion we see the treatment effect is similarly decreased to 0.189. However, it remains significant

with a standard error of 0.072. When δ is fixed we obtain an information anchored variance

estimate in the sensitivity analysis. The standard error of the treatment estimate under fixed delta

(0.072) is in close agreement with the standard of the treatment estimate under MAR (0.071 using

MI and 0.070 from a complete case analysis).

These results corresponds with the theory presented in Chapters 4 and 5. In Chapter 5 we es-

tablished that the information anchoring performance of Rubin’s variance estimator in δ-adjusted

sensitivity analysis is driven by the assumed variance for δ. This is why we no longer get an

information anchored estimate when we take into account the variability across the experts and

assume a variance of 0.462 for δ. This demonstrates the importance the assumed variance for δ

has in sensitivity analysis.
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Analysis Treatment Est. Std. Err. p-value

Complete case (MAR) 0.237 0.070 0.001

MI, ‘on-treatment MAR’ 0.234 0.071 0.001

MI, copy no training 0.172 0.069 0.013

MI, expert opinion 0.195 0.132 0.145
δ ∼ N(−0.21, 0.462)

MI, mean expert opinion 0.189 0.072 0.009
δ ∼ N(−0.21, 0)

Table 6.3: Sensitivity analysis results for the reviewer study. K = 50 imputations.

6.4 Discussion

We have demonstrated the information anchoring properties of Rubin’s variance estimate in two

real life scenarios. The results correspond with the theory developed in this thesis for reference

based sensitivity analysis and δ-adjusted sensitivity analysis. The results also highlight the impact

of allowing for uncertainty in δ, in δ-adjusted sensitivity analysis. In the peer review study example

when the variability across experts on the proposed difference between the completers and deviators

was taken into account, the resulting variance estimate was no longer information anchored. The

inference from the primary analysis was consequently completely overturned.

In practice trailists should consult with experts in their field to determine plausible values of

δ a-priori for sensitivity analysis. Trialists must ensure they carefully consider the sensitivity

parameters to investigate. If a number of experts are asked about the difference in outcome

between those observed and those who deviate, in many cases most may be in consensus. But one

or two experts with an extreme opinion may result in a large uncertainty surrounding the true

value for δ. As we have seen, this can greatly effect whether the treatment estimator variance in

sensitivity analysis is information anchored. Careful elicitation of sensitivity analysis parameters

should be undertaken to ensure the most appropriate values are used. An advantage of reference

based analysis is that no formal specification of sensitivity analysis parameters is required. When

conducting reference based analysis using MI we also obtain an information anchored treatment

estimator variance, as shown for the asthma and peer review RCTs.

The Stata program mimix successfully automates the reference based MI algorithm of Carpenter,

Roger and Kenward [13] thus provides a computationally accessible tool for reference based sensi-

tivity analysis. We hope that this implementation will remove a barrier to busy trialists performing

sensitivity analysis in practice. The analysis of the asthma trial illustrates just how relevant and

accessible the methodology is using mimix. The reference based sensitivity analysis of the reviewer

study also demonstrates the utility of the approach. Stata code was presented for trialists to adopt

and tailor to their own analysis needs.

Different qualitative assumptions can be made for different individuals, or similar groups of indi-

viduals, and the software allows this flexibility through the methodvar() option. This gives great

flexibility for contextually plausible sensitivity analyses. Throughout this chapter we have focused
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on the two-arm randomised trial setting, however this is not a constraint. mimix can be used to

conduct reference arm-based imputation for trials with more than two arms.

Figure 6.2 illustrates downloads of mimix over time, from when it was made available for download

in March 2015 until October 2016 (data beyond this not available at the time of writing). A total

of 502 downloads have been recorded during this time period. On average mimix has received 26

downloads per month. A clear spike in downloads is evident in Figure 6.2 in June 2015. The

increased demand corresponds with the teaching of an advanced missing data course at LSHTM

where the mimix command has been successfully incorporated into a taught practical session. We

are encouraged by these statistics which suggest mimix is currently making an impact and enabling

relevant accessible sensitivity analysis of trials with missing data. We hope mimix will contribute

to an increased use of the reference based sensitivity analysis methodology.
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222



Chapter 7

Discussion

Undoubtedly the best way to handle missing data is to prevent its occurrence. However, realistically

in clinical trials there will always be developments beyond the control of the investigators which

result in missed patient visits or unrecoverable outcome measures. Primary analysis should be

conducted under the most credible assumption for the missing data. Since we will never definitively

know the exact mechanisms resulting in the missing data, it is important to perform sensitivity

analysis under alternative plausible assumptions for the missing data. Regulatory guidelines stress

the importance of this [11, 12], however they also highlight a need for accessible and relevant

methods of sensitivity analysis.

In this thesis we have investigated and illustrated what have been termed controlled MI techniques,

for sensitivity analysis of longitudinal RCT’s with continuous missing data. Specifically the novel

reference based MI procedures of Carpenter, Roger and Kenward [13] and the ‘δ-method’ presented

in Carpenter and Kenward [7]. Both approaches retain the design based analysis model used in

primary analysis in the sensitivity analysis, in order to asses purely the impact of alternative

missing data assumptions on the primary outcome of interest. Rubin’s rules are used to combine

results across imputed data sets and provide one overall treatment estimate and an associated

estimate of variance.

Rubin’s variance estimator requires the imputation and analysis models to be congenial. That is

the imputation and analysis model must have the same content and structure and thus be formed

around the same assumptions. The assumptions of the design based analysis model however do not

necessarily correspond with the assumptions made in imputation for both of the outlined controlled

MI techniques. In each setting we therefore focussed on the evaluation of Rubin’s variance estimator

for the resulting treatment effect. This prompted us to first think about principles for variance

estimation in sensitivity analysis of the type proposed, where the design based analysis model is

retained.
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7.1 Principles for sensitivity analysis

In sensitivity analysis we have to specify a distribution for the missing data. With continuous

data this requires use to specify a mean and variance. It is possible that we could then have more

information in the sensitivity analysis than we would have had, if we had actually observed the

data. On the other extreme, it is quite possible to be so imprecise there is much less information

in the sensitivity analysis than in the primary analysis. Conclusions from the primary analysis can

then be overturned. Sensitivity analyses should not be injecting information ‘by the back door’ or

taking it away. This is a concern of regulators and those in industry and other trial settings. This

led to two key principles:

1. Lower bound for variance estimation: The expected value of the design based variance

estimator if we were able to observe all the post-deviation data under the specified

scenario provides a natural lower bound for the expectation of the variance estimator

in sensitivity analysis.

2. Information anchoring principle: The information loss due to missing data in the pri-

mary analysis should equal the loss of information due to missing data in all sensitivity

analyses.

That is firstly we cannot have more information in the sensitivity analysis than when the deviation

data is actually observed under the postulated scenario. A loss of information is inevitable with

missing data. We must account for this. Our estimate of variance must be scaled up to account for

the missing information. Secondly a natural principle for the treatment estimator variance is to

keep the information loss due to missing data constant across primary and all sensitivity analyses.

Anchoring the information loss in the primary analysis provides a natural reference point.

Rubin’s variance estimator was subsequently evaluated against the information anchored variance

in the reference based and δ-adjusted MI settings. We now outline our methodological findings

for each approach. We then compare and contrast our approach to variance estimation in the

sensitivity analysis context with alternative proposals put forward for variance estimation following

reference based analysis.

7.2 Reference based sensitivity analysis via multiple

imputation

In Chapter 2 the reference based MI procedures of Carpenter, Roger and Kenward [13] were intro-

duced as a novel approach to sensitivity analysis in the RCT setting. Missing values are imputed

by reference to other patient groups in the trial. Consequently the specification of potentially

numerous sensitivity analysis parameters is not required.

However, borrowing information between trial arms produces unwanted behaviour in the empirical

long-run sampling variance of the reference based treatment effect. The strong assumption that

deviators behave exactly like those in an opposing reference arm creates a covariance between the

estimated means of these two groups. This reduces the long-run sampling variance of the reference
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based treatment estimate, below that seen under MAR (typically the primary analysis assumption).

Equally unappealingly, the sampling variance of the reference based treatment estimate becomes

smaller than what would be obtained, were the deviation data observed in the given scenario.

Further it becomes smaller and smaller as more data are missing. A simulation study in Section

2.3 confirmed the undesirable behaviour of the long-run sampling variance of the reference based

MI estimator (equivalent to that of the ML estimator). Clearly this behaviour indicates this is not

the variance we should be targeting.

The same simulation study revealed Rubin’s MI treatment estimator is unbiased and Rubin’s

variance estimator behaves differently and appears to have more desirable behaviour. Rubin’s

variance estimator is always larger than the estimated variance we would obtain had the deviation

data been observed, fulfilling our first principle. Rubin’s variance estimator also increases as the

proportion of missing data increases. These findings form part of a letter published in the Journal

of Biopharmaceutical Statistics in response to comments published by Seaman et al. on Carpenter,

Roger and Kenward’s original paper proposing the reference based sensitivity MI framework [13,

57, 17].

In Chapter 3 we evaluated Rubin’s variance estimator against our information anchoring principle.

That is for sensitivity analysis which retains the primary design based analysis model and varies

only the missing data assumption, the information loss due to missing data should be kept constant

across primary and all sensitivity analysis. Exploration in a simple baseline and single follow-up

setting, where Rubin’s variance estimator could be derived exactly, revealed Rubin’s variance

estimator for the treatment effect, approximates the information anchored variance very closely.

Simulation studies confirmed the approximation is excellent in a variety of realistic trial scenarios

with baseline and single follow-up.

This led to a general theorem on the information anchoring properties of Rubin’s variance estimator

in the baseline and single follow-up trial setting in Chapter 4. The general result was then extended

for the longitudinal trial setting, first with missingness at the final time point only and then with

a more general monotone pattern of missingness in both arms. That is,

For all scenarios where the design based variance estimator, were we able to observe the

post-deviation data under the specified de-facto scenario, can be expressed as the design

based variance estimator were we able to observe all the post-deviation data under on-

treatment/MAR behaviour plus a small component which is O(n−2), Rubin’s variance

estimator is to an excellent approximation, information anchoring.

Simulations again confirmed that the approximation is excellent in a variety of realistic clinical trial

settings. It is only with very high proportions of missing data or considerably different proportions

of missing data across arms (> 40% in both arms or > 50% in one arm and 0% in the other)

when the approximation is not so sharp. Depending on the trial scenario, results show there may

be more or less information on the treatment estimator i.e. a greater or smaller variance estimate

with high proportions of missing data, in comparison to the information anchored variance. The

magnitude and direction of the difference depends on the difference between the variance of the

imputation parameters that would be used under MAR and in the particular de facto setting of

question.
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Indeed with 50% or more missing data a greater amount of information is unobserved than observed,

therefore one would be cautious of over interpreting the resulting treatment effect and variance.

The analysis depends on untestable assumptions for more patients than are observed. Therefore

the resulting treatment effect may not be so reliable in itself, as well as the variance. Therefore

whilst the presented techniques can be used with more than 50% missing data, in the same way as

standard MI under MAR [19, 44], in such circumstances we advise results should be presented with

extreme caution. Just as we would with any other method of statistical analysis in the presence

of such high proportions of data, which will also result in a strongly assumption-led treatment

estimate and variance.

With large proportions of missing data (> 50%) a detailed investigation into why there is so

much missingness should be undertaken. The results of this investigation could indeed be more

useful than the results of any analysis based on a strong untestable assumption for more than half

the patients, which are likely to be biased. For example, perhaps an experimental drug was not

well tolerated. Reasons why this occurred may help the drugs development more than a highly

assumption dependent treatment estimate.

In practice however, such high proportions of missing data are unlikely in well designed trials. The

results therefore provide a solid justification for using Rubin’s treatment and variance estimate in

reference based sensitivity analysis.

Chapter 6 illustrated just how useful and easily accessible the evaluated methodology is. Ref-

erence based sensitivity analysis for two RCT’s was conducted using the newly developed Stata

command, mimix. The analyses demonstrated the information anchoring properties of Rubin’s

variance estimator in real life settings.

7.3 The ‘δ-method’

In Chapter 5 attention focussed on the ‘δ-method’ for sensitivity analysis in the RCT setting.

Missing values are essentially imputed under MAR but then adjusted by δ to reflect a worse or

better response post-deviation.

The ‘δ-method’ shares some similarities with the reference based approach; the mean of the MAR

imputation distribution is altered to reflect departures from MAR. However information that is

external to the main trial data set is used to alter the imputed values, via sensitivity analysis

parameter δ, rather than borrowing information from opposing trial arms.

As we are not borrowing information from within the trial data, the empirical long-run sampling

variance of the δ-adjusted MI estimate does not exhibit the strange behaviour observed in the

reference based setting. The long-run sampling variance does not violate our first principle so

markedly. Simulations confirmed this. However, as the primary design based analysis model is

retained in sensitivity analysis we still desire the information anchored variance estimate in the

δ-adjusted context. That is we desire to keep the information loss due to missing data constant

across primary and sensitivity analysis.

Exploration in a simple baseline and single follow-up trial setting where Rubin’s treatment effect
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and variance estimator could be derived exactly revealed Rubin’s treatment effect is unbiased and

the variance estimator does approximately preserve the information loss following δ-adjustment.

Simulations confirmed the theoretical results. This led to a general theorem on the information

anchoring properties of Rubin’s variance in the δ-adjusted baseline and single follow-up setting

and more complex longitudinal setting. For fixed δ-adjusted sensitivity analysis, Rubin’s variance

estimator is to an excellent approximation, information preserving. A better approximation is

obtained than in the reference based case. Simulations confirmed the approximation is excellent

in realistic trial settings, and more unrealistic settings with very high proportions of missing data.

When a prior distribution is placed on δ in imputation, i.e. for imputation k, δk ∼ N(δ, σ2
δ ), the

sharpness of the approximation depends on the variance of δk, σ2
δ . Simulations demonstrated that

Rubin’s variance estimator provides a sharper information anchored variance for smaller σ2
δ . In

Chapter 6 we conducted δ-adjusted sensitivity analysis for a peer review study. Results showed

the excellent information anchoring property of Rubin’s variance estimator in fixed δ-adjusted

sensitivity analysis. The results also demonstrated how the assumed variance for δ affects the

information anchoring performance of Rubin’s variance estimator when this is not fixed at zero.

The resulting variance estimate is not necessarily information anchoring. This illustrates just how

important this parameter is when designing sensitivity analysis and how careful elicitation of the

sensitivity parameters should be undertaken. To be information anchoring in δ-adjusted sensitivity

analysis a variety of fixed δ adjustments should be made over plausible values of δ.

Rubin’s variance estimator, which also matches the empirical long-run sampling variance of the MI

estimate in the δ-adjusted setting, is approximately information anchoring. It is encouraging that

Rubin’s variance estimator, the information anchored variance and the long-run sampling variance

of the MI estimate all agree in the δ-adjusted setting. In the reference based setting where the long-

run sampling variance of the MI estimate is unnatural, due to the imputation manipulation, we are

obtaining a variance estimate which has the same appropriate information anchoring properties.

We note that whilst the ‘δ-method’ can also be used with more than 50% missing data, in the same

way as standard MI under MAR, we advise results should be interpreted with extreme caution in

such cases. As discussed in the previous section, results will be highly dependent on assumptions

with > 50% missing data.

7.4 Generalisability

The theoretical results in Chapters 3–5 demonstrate unequivocally how, for the treatment effect

of interest, Rubin’s MI treatment effect is unbiased and Rubin’s MI variance estimate provides

an excellent approximation for the information anchored variance. The results apply to two arm

baseline and single follow-up trial settings and longitudinal settings with either non-response at the

final follow-up only or monotone missingness patterns, where interest lies in the treatment effect

at the final follow-up. The general nature of the results are a key strength.

We focused on the longitudinal setting with monotone missingness since this is the most com-

monly observed pattern of non-response in longitudinal trials. In practice non-monotone missing

data patterns may occur, for example where patients miss a planned follow-up visit but are later

observed. When interest lies in the treatment effect at the final follow-up, as considered in this
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thesis and is most often the case, the addition of interim missing data will not have a large im-

pact, since interim missing data values will not affect the resulting treatment estimate. Further

extensions of the results reported here are however required for longitudinal trials where interest

lies in an alternative measure of the treatment effect, recorded over the course of the trial, e.g. an

area under the curve and we are not prepared to assume MAR (we note if interim missing data are

imputed under MAR the current results would not be impacted). If VDF, full = VDJ, full +O(n−2) or

indeed a component which is smaller than O(n−2) it is plausible that the information anchoring

argument we present can be extended to this situation.

Throughout this thesis we assumed the outcome was continuous and approximately normally dis-

tributed. It is also plausible that the information anchoring argument we present can be extended

for other types of data. Again if VDF, full = VDJ, full + O(n−2) holds and an appropriate transfor-

mation can be obtained to establish normality then results may naturally follow. For Generalized

Linear Models (GLM), if we perform reference based imputation on the linear predictor scale,

then we can apply the theory developed here on the linear predictor scale. This suggests that

for GLMs, reference based simulation will be approximately information anchored. We do note,

however, that issues may arise with non-collapsability when combining the component models in

this setting which need investigation.

We also focused on the two arm trial setting. For trials with more than two arms it is natural how

the results in Chapter 4 will extend for each treatment group comparison, again providing the key

condition VDF, full = VDJ, full +O(n−2) holds. For different trial designs additional components may

be involved in the difference between Rubin’s variance estimate and the information anchoring

variance. Careful exploration of the theory outlined in Chapter 4 would need to be undertaken

in the specific scenario to establish the precise difference. For example, in a cluster randomised

trial there is not only individual level variability but between cluster variability. It is conceivable

that the information anchoring performance will depend on the difference in the between cluster

variability by arm, as well as the individual level variability by arm with deviation in both arms.

Following the inference in this thesis we envisage the difference between Rubin’s variance and the

information anchoring variance will not be largely impacted in alternative scenarios for realistic

proportions of missing data i.e. < 50% missing. The within variance component of Rubin’s variance

estimate, which averages the estimated treatment variance over the imputation set asymptotically

approaches the variance of the treatment estimator were we able to observed the post deviation

data. It is the proportion of missing data combined with the difference in the between imputation

variance of the treatment estimator under MAR imputation and the required de facto imputation

which impacts the information anchoring performance. For realistic amounts of missing data

(< 50%) the combined impact of these factors is not anticipated to be too large, relative to the

information anchored variance we desire.

It was important to explore the derived results in realistic trial settings, inspired by real data. The

two case studies analysed in Chapter 6 enabled the information anchoring properties of Rubin’s

variance to be observed in real life scenarios. The asthma trial also provided a suitable structure

for the simulation investigations. Using a real dataset to provide structure avoids arbitrary choices

and aids the generalisability of the result. We note that the simulations were not an exact replica of

the original study but a simplified version, with similarities for an underlying realistic framework.

Simulations inspired by the asthma trial confirmed the theoretical findings in a variety of real life

scenarios. We also considered more extreme scenarios i.e. higher/lower covariance structures with
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high amounts of missingness to demonstrate the generalisability of the results. While we were

limited in the number of scenarios we could explore within simulations, we were able to assess the

approximation in a number of the most likely settings to support the theoretical findings.

Throughout this thesis the controlled imputation methods we have investigated assume the primary

analysis is conducted under MAR. This assumption is often most plausible and departures from

MAR can be better evaluated via sensitivity analysis. It can be hard to justify a particular MNAR

model. Analysis under MAR does not require additional modelling of the dropout procedure.

Therefore MAR provides a natural starting point for subsequent MNAR exploration.

As explained by Carpenter, Roger, Kenward and myself in [57] “we envisage the typical situation

where a patient attends a scheduled clinic visit at which —after undergoing the planned clinical

measurements, discussing their progress with the clinical team and in consultation with the clinical

team— the patient decides to deviate from the protocol in a particular manner. Depending on the

clinical context the nature of these deviations will vary widely. Examples might include the addition

of rescue medication, reduction or discontinuation of the study drug, etc. In some studies this

deviation may be determined entirely by the clinical measurements recorded in the trial database.

For example, in a blood pressure reduction trial the patient’s blood pressure may have exceeded

a predefined level triggering a change of drugs. In such a setting the reason for deviation depends

only on fully observed data, so we can talk of deviation at random (defined by analogy to missing

at random, noting that this is conditional on that patient’s observed data).”

However, if this is not the case the reason for deviation may depend on unknown data and conse-

quently post-deviation data will not be MAR. If there are strong reasons to suggest otherwise then

one might consider that primary analysis under a pre-specified MNAR assumption is preferable.

One of the MNAR modelling approaches discussed in Section 1.3 could be employed to do so. Any

single MNAR analysis however depends heavily on an assumption which is not testable.

As no MNAR model can be considered definitive several MNAR models will still be required to as-

sess sensitivity. In such cases MAR can still be a suitable approximation assumption for estimating

parameters used later to impute post-deviation data for sensitivity analysis. The observed data

alone does not tell us anything about the missing data, so MAR provides a natural starting point

for subsequent alternative MNAR exploration. Therefore the use of the controlled imputation

methods discussed in this thesis can still be appropriate if reference based or δ based assumptions

are contextually relevant.

In all trials it is important that trialists only employ methods which make plausible assumptions

for the setting at hand. We acknowledge that in certain circumstances the assumptions made by

the reference based MI procedures may not be appropriate. For example, consider a surgical trial

comparing standard ankle replacement versus ankle fusion for end stage ankle arthritis. Patients

are randomised on the day of surgery to ensure minimal drop out pre-surgery. Planned follow-up

visits occur at 3 and 6 months post-surgery. In this setting it may not be appropriate to assume

that patients who deviate at 3 months post-surgery jump to follow the behaviour in the other arm.

Unlike in a drug trial the treatment schedule has already been completed, therefore this would not

be a realistic scenario. An assumption that the deviators experience an outcome that is a specified

amount worse than those observed could however be more realistic.

We advise trialists to carefully consider the assumptions behind the controlled multiple imputation

analyses to ensure each analysis undertaken is appropriate to the context at hand. Indeed the
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assumptions behind any method of statistical analysis should be relevant to the context at hand.

7.5 Information anchoring

For both of the evaluated controlled imputation approaches we have shown Rubin’s MI variance

estimator preserves the loss of information due to missing data in the primary analysis in the

sensitivity analysis to an excellent approximation. Rubin’s variance formula fulfills our information

anchoring principle which we believe is crucial in sensitivity analysis which retains the primary

design based analysis model.

Rubin’s variance estimator has generally been accepted for use in the δ-adjusted MI setting. We

have been unable to find any specific literature criticising its use or proposing otherwise. Since

Rubin’s variance estimator preserves the loss of information in the primary analysis in the δ-

adjusted setting, this further supports the justification for Rubin’s variance estimator in the more

recently proposed reference based settings, where Rubin’s variance estimate also has the same

information anchoring properties.

There cannot be more information on the treatment effect in the sensitivity analysis than when the

assumption is actually true, i.e. the deviation data is actually observed under the given scenario.

This principle is fundamental to the type of sensitivity analysis proposed. As discussed, the

conventional long-run sampling variance of the reference based treatment estimate does not meet

this principle. Thus it is inappropriate.

Alongside the production of this thesis, the differential behaviour between Rubin’s MI variance

estimate and the conventional long-run sampling variance of the reference based treatment effect

has been noted by Lu (2014) [76], Ayele et al. (2014) [77] and Seaman, White and Leacy (2014)

[17]. As discussed in Chapter 2 the borrowing of data from other trial arms results in a smaller

long-run sampling variance than the information anchored variance from Rubin’s variance estima-

tor. Consequently, confidence interval coverage greater than the nominal coverage rate is obtained

by Rubin’s variance estimate. This has therefore prompted the development of alternative im-

plementations of the reference based pattern mixture modelling approach, which obtain variance

estimates that match the long-run sampling variance of the reference based treatment effect.

Lu [76] introduced an analytical approach for the placebo based i.e. CR pattern mixture model

as an alternative to MI. He derived an analytical expression for the CR treatment effect based on

the parameters of the underlying MAR model using the product of conditional normal regression

models. A posterior simulation or a ML based approach to inference via the delta method for

variance estimation was proposed. Simulations confirmed that the resulting variance estimates

were consistent with the long-run sampling variance of the CR treatment estimate.

Recently in 2015 Tang [78] derived different but equivalent analytical expressions for the placebo

based (CR) pattern mixture model treatment effect and its variance via the likelihood based

approach. Rather than factoring the observed (MAR) data likelihood in its conditional form as

Lu did, Tangs formula were derived in matrix form from the likelihood of the mixed effects model

for repeated measures (MMRM).
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Both Lu and Tang’s formula are quite complex and do require special programing for each specific

analysis. Further these approaches are only available for the CR method.

Liu and Pang in 2015 [79] proposed a Bayesian method for reference based pattern mixture mod-

elling. They show the reference based treatment estimates for CIR, J2R and CR can be expressed

as linear combinations of the parameters derived from a MMRM analysis via a Bayesian approach.

Therefore the reference based treatment effect and its variance can can be obtained from MCMC

samples based on the MMRM analysis. Or an approximate pattern mixture model analysis can be

applied for variance estimation. A simulation study showed the variance estimates obtained from

the full Bayesian approach and approximate pattern mixture method coincided with the long-run

sampling variance for the CIR, J2R and CR reference based MI estimators.

The implementations of Lu, Tang and Liu and Pang all provide variance estimators which coincide

with the conventional long-run sampling variance of the reference based treatment effect (which

coincides with the conventional long-run sampling variance of the reference based MI treatment

effect). They do not consider the fact that they are obtaining a variance estimate which is actually

lower than if the reference based deviation data could be observed. They all miss this crucial point.

A sensitivity analysis cannot lead us to knowing more about a situation than we would do if that

situation was observed. We therefore do not believe their implementations are appropriate within

the context of sensitivity analysis, nor even in primary analysis, because they do not acknowledge

they are borrowing information.

We believe careful consideration still needs to be given in different contexts as to whether a variance

estimate that is less than if the deviation data were truly observed, under the given reference based

scenario, is actually meaningful.

7.6 Future work

The general results in Chapter 4 reveal that as long as the variance estimator for the treatment

effect in the design based analysis where deviations occur off-treatment but the deviation data

is fully observed (VDF, full) can be expressed as the variance estimator for the treatment effect

in the design based analysis with fully observed data if no deviations occur ( VDJ, full) plus a

O(n−2) term, then Rubin’s rules will provide an appropriate variance estimate which approximately

preserves the information loss in the primary analysis. There is thus great scope to extend the

MI options proposed by Carpenter, Roger and Kenward [13] and develop further contextually

relevant sensitivity analyses framed around key clinical assumptions of interest. A combination of

a reference based and δ-adjusted approach may be desirable in the trial setting, whereby deviators

are postulated to have a worse/better response than a reference group by an amount δ.

For settings where VDF, full = VDJ, full + O(n−2) does not follow, but one can specify an alternative

relationship between VDF, full and VDJ, full we believe the theory in Chapter 4 can be readily adapted

to establish the information anchoring performance of Rubin’s variance in that setting. Once the

form of the alternative relationship between VDF, full and VDJ, full is known the general theoretical

framework can be followed with the alternative relationship in place of VDF, full = VDJ, full +O(n−2)

to see how strong the information anchoring is. The general theoretical set-up provides a framework

for future exploration in other specific settings.

231



Within this thesis we have looked specifically at variance estimation following reference based MI

in the context of sensitivity analysis addressing departures from a primary MAR assumption. We

acknowledge that further investigation of the variance estimator is required outside the context of

sensitivity analysis. Particularly if reference based MI is to be committed for a primary analysis.

As detailed in Section 7.5, other researchers have introduced alternative approaches for reference

based pattern mixture modelling which target the conventional long-run variance of the reference

based treatment effect. But we have demonstrated this variance is lower than the variance obtained

if the reference based assumption were true and we observed the post-deviation data. We are not

sure when it would be appropriate to have more information in an analysis with partially observed

data based upon a strong assumption than when the assumption is actually true and all data is

observed. This needs to be carefully explored.

If reference based MI is employed for a primary analysis some penalisation for missingness may

alternatively be desired, but one might not want to impose the same penalisation for missingness as

observed under MAR. For example, a further inflation of the variance may be required to account

for the uncertainty. A loss of information is inevitable with missing data however more research is

required to establish the degree of penalisation required outside the context of sensitivity analysis

addressing departures from MAR. It is most conceivable that this will be situation specific and

based on prior knowledge.

We have seen that in using the observed reference data to build reference based imputation mod-

els Rubin’s variance formula provides an MAR information preserving variance estimate for the

standard reference based MI approach. In Chapter 4 we identified how the size of the reference

sample used to build the reference based imputation models could effect the resulting variance of

the treatment effect. Specifically in Subsection 4.1.4 we used this approach to obtain an improved

information anchoring variance estimate in more extreme trial scenarios with deviation in one arm.

The sample size for the imputation model influences the precision of the imputed data, hence the

overall treatment estimate, thus indicates a simple route to control the desired information loss.

A re-scaling of the variance of the parameters in the reference based approach could achieve the

same objective. For example, in some cases it may be conceivable that we wish to inflate the

variance by an extra 5% to allow for the information loss. The information anchoring approach

described here provides a natural starting point for discussions.

A more developed Bayesian modelling approach that allows moderation of the penalisation imposed

for missing data could potentially be desirable to formulate such an analysis. A full Bayesian

approach could formally influence how much weight is given to the observed reference data in

constructing the reference based pattern mixture models for the deviators –used for imputation or

directly in a full Bayesian analysis – to control the information loss as desired. We briefly outline

some further thoughts on how this may be achieved.

The power prior has been introduced as a general class of priors that enables weighting of historical

data [80, 81]. As detailed by Ibrahim [80], the power prior distribution is constructed by raising

the likelihood function of the historical data to the power a0, where 0 ≤ a0 ≤ 1. The parameter

a0 can essentially be interpreted as a precision parameter for the historical data. It quantifies the

uncertainty in the historical data by controlling the heaviness of the tails of the prior distribution.

When performing reference based analysis the reference data is essentially used twice. In a full

Bayesian modelling approach to reference based analysis the observed reference data is also used

to form the prior for the missing observations. By alternatively employing a power prior, based on
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the reference group data for the missing observations, raised to the power a0 and altering a0 one

could weight the influence of the observed reference data in the model for the deviators. Thus in

a principled manner, control the penalisation for missingness.

These very initial thoughts require much further exploration but suggest a potential for a more

structured route for variance estimation outside the current context of sensitivity analysis. How-

ever, the literature [80, 81] acknowledges that the power, α0, cannot be estimated from the data.

It requires an external assumption. The specification of α0 is essentially the same as choosing how

much larger or smaller the variance of the imputed data should be, via a re-scaling or bootstrapping

approach which ultimately have the same goal.

7.7 Concluding remarks

In conclusion we find a strong theoretical justification for using Rubin’s MI combining rules follow-

ing reference and δ based MI for sensitivity analysis of clinical trials with missing data. Rubin’s

MI treatment estimator is unbiased. Rubin’s variance estimator anchors the information loss due

to missing data over the primary (MAR) and sensitivity analysis to an excellent approximation.

We have introduced a Stata program which implements the reference based MI procedures (mimix)

and performed sensitivity analysis of two RCTs to illustrate the relevance and accessibility of the

approach.

The evaluated controlled imputation techniques address the need for understandable and applicable

methods of sensitivity analysis in the RCT setting, which was highlighted in the recent regulatory

guidelines from the EMA [11] and an FDA-mandated panel report from the US National Research

Council [12].

We hope this thesis will help facilitate more relevant accessible sensitivity analyses for busy trialists

across the medical field. Ultimately ensuring appropriate inferences can be drawn from clinical

trials, for improved patient care, despite the inevitable occurrence of missing data.
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Appendix A

Exploratory simulation study

details

We present the values of the α’s used in the models for the response in the exploratory simulation

study introduced in Section 2.3. For each missing data scenario there is a model for the response

at time point j, for j = 2, 3, 4. The value of α0 was calibrated to achieve the required missingness.

Table A.1: Values of α in the model for response in the exploratory simulation study

Proportion of missing j α0 α1 α2 α3

data at week 12 (j=4)
10% 2 0.155 1.705 -0.213 0.866

3 -0.212 1.362 -0.077 0.318
4 -0.091 1.201 -0.366 0.150

20% 2 0.782 1.705 -0.213 0.866
3 -1.067 1.362 -0.077 0.318
4 -0.462 1.201 -0.366 0.150

30% 2 1.312 1.705 -0.213 0.866
3 -1.790 1.362 -0.077 0.318
4 -0.774 1.201 -0.366 0.150

40% 2 1.705 1.705 -0.213 0.866
3 -2.327 1.362 -0.077 0.318
4 -1.006 1.201 -0.366 0.150
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Appendix B

Reference based computations;

baseline and single follow-up

B.1 The design based variance estimator when

post-deviation data is observed

Here we present additional details of the calculations involved in establishing the expectation of

the design based variance where post-deviation data is observed in Section 2.2.2. In the given

setting, as presented in the main text we require the expectation of,

σ̂22,r

nr
+
σ̂22,a

na
=

1
nr−1

∑nr
i=1

(
Yri2 − Ȳr2

)2
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+

1
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∑na
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.

For the first term we note,
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[
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Expanding the square and taking expectation term by term for the numerator of the second term

gives,
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Combining these terms gives,
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where ∆ = µa2 − µd2. Combining this result with the expectation for the first term gives (2.9) as

required.

Assuming that na and nr are sufficiently large so that we may take (na− 1) to be na and (nr − 1)

to be nr and na = nr = n and σa22 = σr22 = σd22 = σ22 i.e. assuming equally sized trial arms

with equal variance structure, the expected variance of the treatment estimate is,

2σ22

n
+
nond
n3

∆2.

Suppose that we also see deviation in the reference arm. That is only nr,o of the n reference arm

patients (i = r) are observed at both times without deviation. Post-baseline the remaining nr,d

reference arm patients deviate such that nr,o + nr,d = n.

With deviation in the reference arm Ȳr2 =
nr,o
n Ȳr2,o +

nr,d
n Ȳr2,d. Therefore for the reference arm

we require,
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Following the steps outlined above for σa22 = σr22 = σd22 = σd22,r = σ22 where nr − 1 = nr, we

obtain,
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where ∆r = µr2−µd2,r. Thus the overall expected variance for the treatment effect with deviation

in both arms will be,

2σ22

n
+
nond
n3

∆2 +
nr,onr,d
n3

∆2
r.

For a typical RCT powered at 80% with 5% statistical significance ∆2 ≈ 15.68σ22/n using (3.17).

Therefore VDF, full = VDJ, full +O(n−2).
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B.2 The design based variance estimator when

post-deviation data is unobserved;

maximum likelihood analysis result

We derive the variance of the treatment effect when post-deviation data is unobserved from a full

ML analysis following the approach of factored likelihoods presented in [22].

For the active arm we have complete data (Yai1, Yai2) for i = 1, ..., no patients and incomplete

data, (Yai1) for the remaining nd cases. Anderson [82] shows that the joint distribution of Yai1 and

Yai2 can be factored into the marginal distribution of Yai1 and the conditional distribution of Yai2

given Yai1 as follows,

f(Yai1, Yai2|µa,Σ) = f(Yai1|µa1, σ11)f(Yai2|β20.1 + β21.1Yai1, σ2.1),

where β20.1 = µa2 − β21.1µa1, β21.1 = σ12

σ11
and σ2.1 = σ22 − σ2

12

σ11
. Which implies, µa2 = β20.1 +

β21.1µa1, σ12 = β21.1σ11 and σ22 = σ2.1β
2
21.1σ11.

The data density can therefore be written as,
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no∏
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f(Yai2|β20.1 + β21.1Yai1, σ2.1).

Since the parameters of the two factors are distinct i.e. (µa1, σ11) and (β20.1, β21.1, σ2.1) are distinct,

ML estimates can be found by independently maximising the likelihoods which correspond to these

two factors. We achieve this by differentiating the corresponding log likelihoods. Since log is a

strictly increasing function the values of the parameters which maximise the likelihood will also

maximise the log likelihood.

Maximising the log likelihood for the first component gives, µ̂a1 = 1
n
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1
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2
.

The second component is a classical linear regression model so making use of standard regression

results we obtain, β̂21.1 = s12
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.

The variance of the parameters are found by calculating and inverting the information matrix (I),

which is itself found by differentiating the log likelihoods twice and taking the negative.

Differentiation of the first log likelihood with respect to (µa1, σ11) gives,

I(µ̂a1, σ̂11) =
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.

237



Differentiation of the second log likelihood with respect to (β20.1, β21.1, σ2.1) gives,
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Inverting these matrices and combining gives the large-sample covariance matrix for

(µa1, σ11, β20.1, β21.1, σ2.1) which we define as C,

C =
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Of main interest is µ̂a2. We recall µ̂a2 is a function of (µ̂a1, β̂20.1, β̂21.1), for which we already know

the ML estimates.

We make use of the following result presented in [22]: Let g(θ) be a function of the parameter θ.

If θ̂ if a maximum likelihood estimate of θ then g(θ̂) is a maximum likelihood estimate of g(θ).

Thus the parametrisation means the ML estimate µ̂a2 = β̂20.1 + β̂21.1µ̂a1 = Ȳa2,o − β̂21.1Ȳa1,o +

β̂21.1Ȳa1 = Ȳa2,o + β̂21.1

(
Ȳa1 − Ȳa1,o

)
.

The variance of µ̂a2 is found using the following result also presented in [22]: Let g(θ) be a monotone

differentiable function of θ and let C be the asymptotic covariance matrix of θ − θ̂ then the large-

sample covariance matrix of g(θ) − g(θ̂) is Dg(θ̂)CDg(θ̂)
T , where Dg(θ) = ∂g(θ)

∂θ is the partial

derivative of g with respect to θ.

As µa2 = β20.1 + β21.1µa1, D(µa2) = (β̂21.1, 0, 1, Ȳa1, 0). C is given above.

Calculating D(µa2)CD(µa2)T results in,
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For the reference arm Yr = (Yri1, Yri2) for i = 1, ..., n. We can therefore use standard results
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to establish µ̂r2 = 1
n

∑n
i=1 Yri2 = Ȳr2 with variance σ̂22

n . Taking expectation and combining this

result with the variance for the active arm, with a simple addition since the two arms consist of

independent patients, gives the result presented in the main text (3.7).

B.3 Reference based imputation models

To derive the reference based MI imputation models we utilise the properties of the conditional

normal distribution which we state here for reference.

Conditional normal distribution

Consider a generic 2 x 1 vector Y = (Y1, Y2)T , which follows a bivariate normal distribution with

mean µ = (µ1, µ2)T and variance-covariance matrix,

Σ =

[
σ11 σ12

σ12 σ22

]
.

Then the conditional distribution of Y2|Y1 is a multivariate normal distribution with mean,

µ2 + σ12

σ12
(Y1 − µ1) = µ2 + β21.1 (Y1 − µ1) = β20.1 + β21.1Y1 and variance, σ22 − σ2

12

σ11
.

In the main text we have presented the conditional distributions for Ya2,o|Y∗a1,o and Yr2|Y∗r1 and

derived the ordinary least squares estimates of the included parameters, along with their variances.

These ingredients, combined with the properties of the conditional normal distribution allow us to

construct the required imputation models.

MAR

Under MAR with deviation following time 1 Y = (Yai1, Yai2)T for i ∈ D is postulated to follow a

bivariate normal distribution with mean,

µ = (µa1, µa2)T ,

and variance,

Σ =

[
σ11 σ12

σ12 σ22

]
.

So the conditional distribution of Yai2|Yai1 for i ∈ D is multivariate normal with mean,

µa2 + β21.1 (Yai1 − µa1) ,

and variance,

σ22 −
σ2

12

σ11
.

For each imputation k we let the observed data dominate the prior and take a draw of the mean
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parameters (the variance we assume is known) from the posterior, thus for imputation k, the

conditional distribution of Yai2|Yai1 is multivariate normal with mean,

µ̂a2 + β̂21.1 (Yai1 − µ̂a1) .

Substituting in the ML estimate for µ̂a2 = β̂20.1 + β̂21.1µ̂a1 this is,

β̂20.1 + β̂21.1µ̂a1 + β̂21.1 (Yai1 − µ̂a1)

=β̂20.1 + β̂21.1Yai1,

which in substituting our posterior draws β̂20.1 = Ȳa2,o − β̂21.1Ȳa1,o + uk, and β̂21.1 = r
q + bk and a

flat improper prior for the missing observations themselves gives,

Ȳa2,o −
(
r

q
+ bk

)
Ȳa1,o + uk +

(
r

q
+ bk

)
Yai1 + ei,k

=Ȳa2,o + uk +
(r
r

+ bk

) (
Yai1 − Ȳa1,o

)
+ ei,k,

where,

uk ∼ N
(
0, n−1

o σ2.1

)
bk ∼ N

(
0, q−1σ2.1

)
ei,k ∼ N (0, σ2.1) ,

for r =
∑
i∈O

(
Yai1 − Ȳa1,o

) (
Yai2 − Ȳa2,o

)
and q =

∑
i∈O

(
Yri1 − Ȳr1

)2
.

Copy reference

Under CR with deviation following time 1 Y = (Yai1, Yai2)T for i ∈ D is postulated to follow a

bivariate normal distribution with mean,

µ = (µr1, µr2)T ,

and variance,

Σ =

[
σ11 σ12

σ12 σ22

]
.

So the conditional distribution of Yai2|Yai1 for i ∈ D is multivariate normal with mean,

µr2 + β21.1 (Yai1 − µr1) ,

and variance,

σ22 −
σ2

12

σ11
.

For each imputation k we let the observed data dominate the prior and take a draw of the mean

parameters (the variance we assume is known) from the posterior, thus for imputation k, the

conditional distribution of Yai2|Yai1 is multivariate normal with mean,

µ̂r2 + β̂21.1 (Yai1 − µ̂r1) .
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Substituting in the ML estimate for µ̂r2 = β̂20.1 + β̂21.1µ̂r1 this is,

β̂20.1 + β̂21.1µ̂r1 + β̂21.1 (Yai1 − µ̂r1)

=β̂20.1 + β̂21.1Yai1,

which in substituting our posterior draws β̂20.1 = Ȳr2 − β̂21.1Ȳr1 + uk, and β̂21.1 = r
q + bk and a

flat improper prior for the missing observations themselves gives,

Ȳr2 −
(
r

q
+ bk

)
Ȳr1 + uk +

(
r

q
+ bk

)
Yai1 + ei,k

=Ȳr2 + uk +

(
r

q
+ bk

)(
Yai1 − Ȳr1

)
+ ei,k,

where,

uk ∼ N
(
0, n−1σ2.1

)
bk ∼ N

(
0, q−1σ2.1

)
ei,k ∼ N (0, σ2.1) ,

for r =
∑n
i=1

(
Yri1 − Ȳr1

) (
Yri2 − Ȳr2

)
and q =

∑n
i=1

(
Yri1 − Ȳr1

)2
.

Jump to reference

Under J2R with deviation following time 1 Y = (Yai1, Yai2)T for i ∈ D is postulated to follow a

bivariate normal distribution with mean,

µ = (µa1, µr2)T ,

and variance,

Σ =

[
σ11 σ12

σ12 σ22

]
.

So the conditional distribution of Yai2|Yai1 for i ∈ D is thus multivariate normal with mean,

µr2 + β21.1 (Yai1 − µa1) ,

and variance,

σ22 −
σ2

12

σ11
.

For each imputation k we let the observed data dominate the prior and take a draw of the mean

parameters (the variance we assume is known) from the posterior, thus for imputation k, the

conditional distribution of Yai2|Yai1 is multivariate normal with mean,

µ̂r2 + β̂21.1 (Yai1 − µ̂a1) .

Substituting in the ML estimate for µ̂r2 this is,

β̂20.1 + β̂21.1µ̂r1 + β̂21.1 (Yai1 − µ̂a1) ,
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which after substituting in our posterior draws β̂20.1 = Ȳr2 − β̂21.1Ȳr1 + uk, β̂21.1 = r
q + bk,

µ̂r1 = Ȳr1 + rk and µ̂a1 = Ȳa1 + ak and flat improper prior for the missing observations themselves

gives,

Ȳr2 −
(
r

q
+ bk

)
Ȳr1 + uk +

(
r

q
+ bk

)(
Ȳr1 + rk

)
+

(
r

q
+ bk

)
Yai1 −

(
r

q
+ bk

)(
Ȳa1 + ak

)
+ ei,k.

Simplified this is,

Ȳr2 + uk +

(
r

q
+ bk

)(
Yai1 − Ȳa1

)
+

(
r

q
+ bk

)
(rk − ak) + ei,k,

where,

uk ∼ N
(
0, n−1σ2.1

)
bk ∼ N

(
0, q−1σ2.1

)
ak ∼ N

(
0, n−1σ11

)
rk ∼ N

(
0, n−1σ11

)
ei,k ∼ N (0, σ2.1) ,

for r =
∑n
i=1

(
Yri1 − Ȳr1

) (
Yri2 − Ȳr2

)
and q =

∑n
i=1

(
Yri1 − Ȳr1

)2
.

Copy increments in reference

Under CIR with deviation following time 1 Y = (Yai1, Yai2)T for i ∈ D is postulated to follow a

bivariate normal distribution with mean and variance,

µ = (µa1, µa1 + µr2 − µr1)T ,

Σ =

[
σ11 σ12

σ12 σ22

]
.

So the conditional distribution of Yai2|Yai1 for i ∈ D is thus multivariate normal with mean,

(µa1 + µr2 − µr1) + β21.1 (Yai1 − µa1) ,

and variance,

σ22 −
σ2

12

σ11
.

For each imputation k we again let the observed data dominate the prior and take a draw of the

mean parameters (the variance we assume is known) from the posterior, thus for imputation k, the

conditional distribution of Yai2|Yai1 is multivariate normal with mean,

(µ̂a1 + µ̂r2 − µ̂r1) + β̂21.1 (Yai1 − µ̂a1) .

Substituting in the ML estimate for µ̂r2 = β̂20.1 + β̂21.1µ̂r1 this is,

µ̂a1 + β̂20.1 + β̂21.1µ̂r1 − µ̂r1 + β̂21.1 (Yai1 − µ̂a1) .

Substituting in our posterior draws β̂20.1 = Ȳr2− β̂21.1Ȳr1 + uk, β̂21.1 = r
q + bk, µ̂r1 = Ȳr1 + rk and
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µ̂a1 = Ȳa1 + ak and flat improper prior for the missing observations themselves gives,

Ȳa1 + ak + Ȳr2 −
(
r

q
+ bk

)(
Ȳr1
)

+ uk +

(
r

q
+ bk

)(
Ȳr1 + rk

)
−
(
Ȳr1 + rk

)
+

(
r

q
+ bk

)(
Yai1 − Ȳa1 − ak

)
+ ei,k,

which is,

Ȳa1 + Ȳr2 − Ȳr1 + uk +

(
r

q
+ bk

)(
Yai1 − Ȳa1

)
+

(
r

q
+ bk

)
(rk − ak) + ak − rk + ei,k,

where,

uk ∼ N
(
0, n−1σ2.1

)
bk ∼ N

(
0, q−1σ2.1

)
ak ∼ N

(
0, n−1σ11

)
rk ∼ N

(
0, n−1σ11

)
ei,k ∼ N (0, σ2.1) ,

for r =
∑n
i=1

(
Yri1 − Ȳr1

) (
Yri2 − Ȳr2

)
and q =

∑n
i=1

(
Yri1 − Ȳr1

)2
.

Last mean carried forward

Under LMCF with deviation following time 1 Y = (Yai1, Yai2)T for i ∈ D is postulated to follow

a bivariate normal distribution with mean and variance,

µ = (µa1, µa1)T ,

Σ =

[
σ11 σ12

σ12 σ22

]
.

So the conditional distribution of Yai2|Yai1 for i ∈ D is thus multivariate normal with mean,

µa1 + β21.1 (Yai1 − µa1) ,

and variance,

σ22 −
σ2

12

σ11
.

For each imputation k we let the observed data dominate the prior and take a draw of the mean

parameters (the variance we assume is known) from the posterior, thus for imputation k, the

conditional distribution of Yai2|Yai1 is multivariate normal with mean,

µ̂a1 + β̂21.1 (Yai1 − µ̂a1) .

Substituting in our posterior draws for for µ̂a1 and β̂21.1 and flat improper prior for the missing

observations themselves this is,

Ȳa1 + uk +

(
r

q
+ bk

)(
Yai1 − Ȳa1 − uk

)
+ ei,k,
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where,

uk ∼ N
(
0, n−1σ11

)
bk ∼ N

(
0, q−1σ2.1

)
ei,k ∼ N (0, σ2.1) ,

for r =
∑
i∈O

(
Yai1 − Ȳa1,o

) (
Yai2 − Ȳa2,o

)
and q =

∑
i∈O

(
Yai1 − Ȳa1,o

)2
.

B.4 Imputation calculations

B.4.1 MAR imputation calculations

Here we present additional details of the calculations involved in establishing the expectation of

Rubin’s variance estimator in the MAR case in Section 3.1.1. As presented in the main text we

require E (VDJ, MI) = E
(
Ŵ
)

+
(
1 + 1

K

)
E
(
B̂
)

. First we consider E
(
Ŵ
)

,

E
(
Ŵ
)

= E
(
σ̂2
k

)
=
E (σ̂22,r)

n
+
E (σ̂22,a,k)

n
,

where,

(n− 1)E(σ̂22,r) = E

(
n∑
i=1

(Yri2 − µ̂r2)
2

)
= (n− 1)σ22,

(n− 1)E(σ̂22,a,k) = E

[∑
i∈O

(Yai2 − µ̂a2,k)
2

]
+ E

[∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
]
.

Decomposing the two-right hand components separately, over the observed cases we have,

E
[∑

i∈O (Yai2 − µ̂a2,k)
2
]

= E
[∑

i∈O
(
Yai2 − no

n Ȳa2o − nd
n Ȳa2d,k

)2]
= E

[∑
i∈O

(
Yai2 − no

n Ȳa2o − nd
n

[
Ȳa2o + uk +

(
r
q + bk

) (
Ȳa1d − Ȳa1o

)
+ ēk

])2
]

= E

[∑
i∈O

(
(Yai2 − Ȳa2o)− nd

n uk −
nd
n

(
r
q + bk

) (
Ȳa1d − Ȳa1o

)
− nd

n ēk

)2
]
.

Expanding the square and taking expectation term by term results in the following non-zero

components,

E
[∑

i∈O(Yai2 − Ȳa2o)
2
]

= (no − 1)σ22,

E
[∑

i∈O
(
nd
n

)2
u2
k

]
=
(
nd
n

)2
σ2.1,

E

[∑
i∈O

(
nd
n

)2 ( r
q + bk

)2 (
Ȳa1d − Ȳa1o

)2]
=
(
nd
n

)2
no

[
σ2

12

σ11
+ 2σ2.1

(no−1)

] [
1
nd

+ 1
no

]
,

E
[∑

i∈O
(
nd
n

)2
ē2
k

]
= ndno

n2 σ2.1.
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Over the deviators we have,

E

[∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
]

= E

[∑
i∈D

(
Ȳa2o + uk +

(
r
q + bk

)
(Yai1 − Ȳa1o) + ei,k − no

n Ȳa2o − nd
n Ȳa2d,k

)2
]

= E

[∑
i∈D

(
no
n uk +

(
r
q + bk

) (
Yai1 − Ȳa1o

)
− nd

n

(
r
q + bk

) (
Ȳa1d − Ȳa1o

)
− nd

n ēk + ei,k

)2
]
.

Expanding the square and taking expectation term by term results in the following non-zero

components,

E
[∑

i∈D
(
no
n

)2
u2
k

]
= nond

n2 σ2.1,

E

[∑
i∈D

(
r
q + bk

)2

(Yai1 − Ȳa1o)
2

]
=
[
σ2

12

σ11
+ 2σ2.1

(no−1)

]
nd

[
1 + 1

no

]
,

E

[∑
i∈D

(
nd
n

)2 ( r
q + bk

)2 (
Ȳa1d − Ȳa1o

)2]
=
(
nd
n

)2
nd

[
σ2

12

σ11
+ 2σ2.1

(no−1)

] [
1
nd

+ 1
no

]
,

E
[∑

i∈D
(
nd
n

)2
ē2
k

]
=
(
nd
n

)2
σ2.1,

E
[∑

i∈D e2
i,k

]
= ndσ2.1,

E

[∑
i∈D−2ndn

(
r
q + bk

)2 (
Ȳa1d − Ȳa1o

)
(Yai1 − Ȳa1o)

]
= −2

n2
d

n

[
σ2

12

σ11
+ 2σ2.1

(no−1)

] [
1
nd

+ 1
no

]
,

E
[∑

i∈D−2ndn ēkei,k
]

= −2ndn σ2.1.

Combining the results over the observed and deviating cases for time 1 a baseline where µa1 = µr1

results in (3.4). For
(
1 + 1

K

)
E
(
B̂
)

we require,

E
[
B̂
]

=
1

K − 1
E

[
K∑
k=1

(
θ̂DJ, k − θ̂DJ, MI

)2
]
,

where,

θ̂DJ, k =
no
n
Ȳa2o +

nd
n

[
Ȳa2o + uk +

(
r

q
+ bk

)(
Ȳa1d − Ȳa1o

)
+ ēk

]
− Ȳr2,

θ̂DJ, MI =
1

K

K∑
k=1

θ̂DJ, k.

That is,

E

[∑K
k=1

(
nd
n uk −

nd
n ū+ nd

n

(
r
q + bk

) (
Ȳa1d − Ȳa1o

)
− nd

n

(
r
q + b̄

) (
Ȳa1d − Ȳa1o

)
+ nd

n ēk −
nd
na
ē
)2
]
.

245



Expanding the square and taking expectation by term gives the following non zero components,

E
[∑K

k=1

(
nd
n

)2
u2
k

]
= K

(
nd
n

)2 σ2.1

no
,

E

[∑K
k=1

(
nd
n

)2 ( r
q + bk

)2 (
Ȳa1d − Ȳa1o

)2]
= K

(
nd
n

)2 [σ2
12

σ11
+ 2σ2.1

(no−1)

] [
1
nd

+ 1
no

]
,

E
[∑K

k=1

(
nd
n

)2
ē2
k

]
= K

(
nd
n

)2 σ2.1

nd
,

E
[∑K

k=1

(
nd
n

)2
ū2
]

=
(
nd
n

)2 σ2.1

no
,

E

[∑K
k=1

(
nd
n

)2 ( r
q + b̄

)2 (
Ȳa1d − Ȳa1o

)2]
= K

(
nd
n

)2 [σ2
12

σ11
+ σ2.1

(no−1)

(
K+1
K

)] [
1
nd

+ 1
no

]
,

E
[∑K

k=1

(
nd
n

)2
ē2
]

=
(
nd
n

)2 σ2.1

nd
,

E
[∑K

k=1−2
(
nd
n

)2
ukū

]
= −2

(
nd
n

)2 σ2.1

no
,

E
[∑K

k=1−2
(
nd
n

)2 ( r
q + bk

)(
r
q + b̄

) (
Ȳa1d − Ȳa1o

)2]
= −2K

(
nd
n

)2 [σ2
12

σ11
+ σ2.1

(no−1)

(
K+1
K

)] [
1
nd

+ 1
no

]
,

E
[∑K

k=1−2
(
nd
n

)2
ēkē
]

= −2
(
nd
n

)2 σ2.1

nd
.

Combining the results gives (3.5).

Tables B.1 and B.2 summarise Rubin’s derived variance versus simulated Rubin’s variance for the

MAR treatment effect for the asthma RCT inspired setting with,

(
Yai1

Yai2

)
∼ N

{(
2.0

2.2

)
;

[
0.4 0.2

0.2 0.6

]}
, i ∈ O,

(
Yri1

Yri2

)
∼ N

{(
2.0

1.9

)
;

[
0.4 0.2

0.2 0.6

]}
, i = 1, ..., n.

These parameters, inspired by the asthma RCT, are also used to assess the derived results for

Rubin’s variance estimate in the other reference based and δ adjusted settings, see Tables B.3 to

F.2.
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Proportion of Derived Average MCSE

Missing data Variance Variance

10% (N=25) 0.00503 0.00503 0.000011

20% (N=50) 0.00532 0.00532 0.000012

30% (N=75) 0.00569 0.00568 0.000015

40% (N=100) 0.00618 0.00619 0.000019

50% (N=125) 0.00687 0.00690 0.000026

60% (N=150) 0.00792 0.00792 0.000037

70% (N=175) 0.00966 0.00976 0.000058

Table B.1: Derived Rubin’s variance versus simulated Rubin’s variance (averaged over 1000
simulations) for the MAR treatment effect in the asthma RCT inspired setting with K=50.

Proportion of Derived Average MCSE

Missing data Variance Variance

10% (N=25) 0.00423 0.00422 0.000009

20% (N=50) 0.00452 0.00454 0.000010

30% (N=75) 0.00489 0.00489 0.000014

40% (N=100) 0.00538 0.00540 0.000018

50% (N=125) 0.00607 0.00612 0.000025

60% (N=150) 0.00712 0.00721 0.000036

70% (N=175) 0.00886 0.00897 0.000057

Table B.2: Derived Rubin’s variance versus simulated Rubin’s variance (averaged over 1000
simulations) for the MAR baseline adjusted treatment effect in the asthma RCT inspired setting

with K=50.

B.4.2 CR imputation calculations

Here we present additional details of the calculations involved in establishing the expectation of

Rubin’s variance estimator in the CR case in Section 3.2.1. As presented in the main text we

require E
(
Vdf, MI

)
= E

(
Ŵ
)

+
(
1 + 1

K

)
E
(
B̂
)

. First we consider E
(
Ŵ
)

,

E
(
Ŵ
)

= E
(
σ̂2
k

)
=
E (σ̂22,r)

n
+
E (σ̂22,a,k)

n
.

By breaking down the numerator we see,

(n− 1)E(σ̂22,r) = E

(
n∑
i=1

(Yri2 − µ̂r2)
2

)
= (n− 1)σ22,

(n− 1)E(σ̂22,a,k) = E

[∑
i∈O

(Yai2 − µ̂a2,k)
2

]
+ E

[∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
]
.
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Decomposing the two-right hand components for the active arm separately, over the observed cases

we have,

E
[∑

i∈O (Yai2 − µ̂a2,k)
2
]

= E
[∑

i∈O
(
Yai2 − no

n Ȳa2o − nd
n Ȳa2d,k

)2]
= E

[∑
i∈O

(
Yai2 − no

n Ȳa2o − nd
n

[
Ȳr2 + uk +

(
r
q + bk

) (
Ȳa1d − Ȳr1

)
+ ēk

])2
]

= E

[∑
i∈O

(
(Yai2 − Ȳa2o) + nd

n (Ȳa2o − Ȳr2)− nd
n uk −

nd
n

(
r
q + bk

) (
Ȳa1d − Ȳr1

)
− nd

n ēk

)2
]
.

Expanding the square results in the following non-zero required expectations,

E
[∑

i∈O(Yai2 − Ȳa2o)
2
]

= (no − 1)σ22,

E
[∑

i∈O
(
nd
n

)2 (
Ȳa2o − Ȳr2

)2]
=
(
nd
n

)2 [
σ22

(
1 + no

n

)
+ no (µa2 − µr2)

2
]
,

E
[∑

i∈O
(
nd
n

)2
u2
k

]
= no

(
nd
n

)2 σ2.1

n ,

E

[∑
i∈O

(
nd
n

)2 ( r
q + bk
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)2]
=
(
nd
n

)2
no

[(
σ12

σ11

)2

+ 2σ2.1

(n−1)σ11

] [
σ11

(
1
nd

+ 1
n

)
+ (µa1 − µr1)2

]
,

E
[∑

i∈O
(
nd
n

)2
ē2
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)2]
=
(
no
n

)2
nd

[
σ22

(
1
no

+ 1
n

)
+ (µa2 − µr2)

2
]
,

E
[∑

i∈D
(
no
n

)2
u2
k

]
= nd

(
no
n

)2 σ2.1

n ,

E

[∑
i∈D

(
r
q + bk

)2

(Yai1 − Ȳr1)2
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) (
r
q + bk

)
(Yai1 − Ȳr1)
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Ȳa1d − Ȳr1
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]
= −2ndn

[(
σ12

σ11

)2

+ 2σ2.1

(n−1)σ11

]
nd

[
σ11

(
1
nd

+ 1
n

)
+ (µa1 − µr1)

2
]
,

E
[∑

i∈D−2ndn ēkei,k
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Combining the results over the observed and deviating cases for time 1 a baseline where µa1 = µr1,

πd = nd/n and ∆ = µa2 − µr2 results in (3.11). For
(
1 + 1

K

)
E
(
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)

we require,
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Expanding the square and taking expectation by term gives the following non zero components,
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]
= −2

(
nd
n

)2 σ2.1

n ,

E
[∑K

k=1−2
(
nd
n

)2 ( r
q + bk

)(
r
q + b̄

) (
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Combining the results for time 1 a baseline where µa1 = µr1 and πd = nd/n results in (3.12).

Proportion of Derived Average MCSE

Missing data Variance Variance

10% (N=25) 0.00506 0.00504 0.000011

20% (N=50) 0.00536 0.00537 0.000012

30% (N=75) 0.00568 0.00567 0.000014

40% (N=100) 0.00604 0.00606 0.000016

50% (N=125) 0.00644 0.00644 0.000019

60% (N=150) 0.00687 0.00687 0.000021

70% (N=175) 0.00733 0.00734 0.000025

Table B.3: Derived Rubin’s variance versus simulated Rubin’s variance (averaged over 1000
simulations) for the CR treatment effect in the asthma RCT inspired setting with K=50.

Proportion of Derived Average MCSE

Missing data Variance Variance

10% (N=25) 0.00426 0.00425 0.000009

20% (N=50) 0.00456 0.00457 0.000010

30% (N=75) 0.00488 0.00487 0.000013

40% (N=100) 0.00524 0.00527 0.000015

50% (N=125) 0.00564 0.00564 0.000018

60% (N=150) 0.00607 0.00607 0.000020

70% (N=175) 0.00653 0.00654 0.000024

Table B.4: Derived Rubin’s variance versus simulated Rubin’s variance (averaged over 1000
simulations) for the CR baseline adjusted treatment effect in the asthma RCT inspired setting

with K=50.
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B.4.3 J2R imputation calculations

Here we present additional details of the calculations involved in establishing the expectation of

Rubin’s variance estimator in the J2R case in Section 3.2.2. First we consider E
(
Ŵ
)

, which

requires use to estimate under J2R,
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n Ȳa2d,k

)2]
= E

[∑
i∈O

(
Yai2 − no
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Expanding the square results in the following non-zero required expectations,
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Expanding the square results in the following required expectations,
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)2]
=
(
no
n

)2
nd

[
σ22

(
1
no

+ 1
n

)
+ (µa2 − µr2)

2
]
,

E
[∑

i∈D
(
no
n

)2
u2
k

]
= nd

(
no
n

)2 σ2.1

n ,

E

[∑
i∈D

(
r
q + bk

)2

(Yai1 − Ȳa1)2
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Combining the results over the observed and deviating cases for time 1 a baseline where µa1 = µr1,
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q ā−

nd
n

1
K

∑K
i=1 bkrk + nd

n
1
K

∑K
i=1 bkak −

nd
n ē
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ēkē
]

= −2
(
nd
n

)2 σ2.1

nd
.

Combining the results for time 1 a baseline where µa1 = µr1 and πd = nd/n results in (3.21).

Proportion of Derived Average MCSE

Missing data Variance Variance

10% (N=25) 0.00507 0.00505 0.000011

20% (N=50) 0.00539 0.00540 0.000012

30% (N=75) 0.00576 0.00575 0.000014

40% (N=100) 0.00618 0.00621 0.000017

50% (N=125) 0.00665 0.00666 0.000020

60% (N=150) 0.00717 0.00717 0.000024

70% (N=175) 0.00774 0.00776 0.000028

Table B.5: Derived Rubin’s variance versus simulated Rubin’s variance (averaged over 1000
simulations) for the J2R treatment effect in the asthma RCT inspired setting with K=50.

Proportion of Derived Average MCSE

Missing data Variance Variance

10% (N=25) 0.00427 0.00426 0.000009

20% (N=50) 0.00459 0.00460 0.000011

30% (N=75) 0.00496 0.00495 0.000013

40% (N=100) 0.00538 0.00541 0.000015

50% (N=125) 0.00585 0.00586 0.000019

60% (N=150) 0.00637 0.00637 0.000022

70% (N=175) 0.00694 0.00697 0.000026

Table B.6: Derived Rubin’s variance versus simulated Rubin’s variance (averaged over 1000
simulations) for the J2R baseline adjusted treatment effect in the asthma RCT inspired setting

with K=50.

B.4.4 CIR imputation calculations

Here we present additional details of the calculations involved in establishing the expectation of

Rubin’s variance estimator in the CIR case in Section 3.2.3. First we consider E
(
Ŵ
)

, which

requires use to estimate under CIR,

(n− 1)E(σ̂22,a,k) = E

[∑
i∈O

(Yai2 − µ̂a2,k)
2

]
+ E

[∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
]
.

Decomposing the two-right hand components for the active arm separately, over the observed cases

we have,

E
[∑

i∈O (Yai2 − µ̂a2,k)
2
]

= E
[∑

i∈O
(
Yai2 − no

n Ȳa2o − nd
n Ȳa2d,k

)2]
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= E
[∑

i∈O

(
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[
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(
r
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)
+
(
r
q + bk

)
(rk − ak) + (ak − rk) + ēk
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) (
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)
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(
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)
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)2
]
.

Expanding the square results in the same non-zero expectations as under J2R, plus the following

non-zero expectations,

E
[∑
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(
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n

)2 (
Ȳr1 − Ȳa1

)2]
= 2

(
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n

)2 no
n σ11,

E
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2
]

= 2
(
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n σ11,

E
[∑

i∈O 2
(
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)2 (
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) (
Ȳa2o − Ȳr2

)]
= −4

(
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E
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(
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)
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]
= −4

(
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n

)2 no
n σ12.

Over the deviators we have,

E
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(
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)2
]

= E
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(
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−non Ȳa2o − nd
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.

Expanding the square results in the same non-zero expectations as under J2R, plus the following

non-zero expectations,

E
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(
no
n

)2 (
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) (
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)]
= −4

(
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σ12
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E
[∑
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(
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)2 ( r
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)
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]
= −4

(
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)2
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σ12

n .

Combining the results over the observed and deviating cases for time 1 a baseline where µa1 = µr1,

πd = nd/n and ∆ = µa2 − µr2 results in (3.27). For
(
1 + 1

K

)
E
(
B̂
)

we require,

E
[
B̂
]

=
1

K − 1
E

[
K∑
k=1

(
θ̂CIR, k − θ̂CIR, MI

)2
]
,

where,
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θ̂CIR, k =
no
n
Ȳa2o +

nd
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[
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That is,
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−ndn
(
r
q + b̄

) (
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q ā−

nd
n

1
K

∑K
i=1 bkrk + nd

n
1
K

∑K
i=1 bkak −

nd
n ē
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n ā+ nd
n r̄
)2]

.

Expanding the square and taking expectation by term results in the same non-zero expectations

as under J2R, plus the following non-zero expectations,
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ā (rk − ak)

]
= 2

(
nd
n

)2 σ12

n ,

E
[∑K

k=1−2
(
nd
n

)2 r
q ā
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Combining the results for time 1 a baseline where µa1 = µr1 and πd = nd/n results in (3.28).
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Proportion of Derived Average MCSE

Missing data Variance Variance

10% (N=25) 0.00507 0.00505 0.000011

20% (N=50) 0.00539 0.00540 0.000012

30% (N=75) 0.00576 0.00575 0.000014

40% (N=100) 0.00618 0.00620 0.000016

50% (N=125) 0.00665 0.00665 0.000019

60% (N=150) 0.00717 0.00717 0.000023

70% (N=175) 0.00774 0.00776 0.000026

Table B.7: Derived Rubin’s variance versus simulated Rubin’s variance (averaged over 1000
simulations) for the CIR treatment effect in the asthma RCT inspired setting with K=50.

Proportion of Derived Average MCSE

Missing data Variance Variance

10% (N=25) 0.00427 0.00426 0.000009

20% (N=50) 0.00459 0.00460 0.000011

30% (N=75) 0.00496 0.00495 0.000013

40% (N=100) 0.00538 0.00540 0.000016

50% (N=125) 0.00585 0.00586 0.000019

60% (N=150) 0.00637 0.00637 0.000022

70% (N=175) 0.00694 0.00697 0.000026

Table B.8: Derived Rubin’s variance versus simulated Rubin’s variance (averaged over 1000
simulations) for the CIR baseline adjusted treatment effect in the asthma RCT inspired setting

with K=50.

B.4.5 LMCF imputation calculations

Here we present additional details of the calculations involved in establishing the expectation of

Rubin’s variance estimator in the LMCF case in Section 3.2.4. First we consider E
(
Ŵ
)

, which

requires use to estimate under LMCF,

(n− 1)E(σ̂22,a,k) = E

[∑
i∈O

(Yai2 − µ̂a2,k)
2

]
+ E

[∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
]
.

Decomposing the two-right hand components for the active arm separately, over the observed cases

we have,

E
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]
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+ ēk

])2
]

= E
[∑

i∈O

(
(Yai2 − Ȳa2o) + nd
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)
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Expanding the square results in the following non-zero required expectations,
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Ȳa1 − Ȳa2o
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n ēk + ei,k − no
n

(
r
q + bk

)
uk

)2
]
.

Expanding the square results in the following required expectations,
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) (
r
q + bk

) (
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Combining the results over the observed and deviating cases for time 1 a baseline where µa1 = µr1,

πd = nd/n and ∆ = µa2 − µa1 results in 3.34. For
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Ȳa2o +

nd
n

[
Ȳa1 + uk +

(
r

q
+ bk

)(
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]
= −2

(
nd
n

)2 σ11

n ,

E
[∑K

k=1−2
(
nd
n

)2 ( r
q + bk

)(
r
q + b̄

) (
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2
]

= −2
(
nd
n

)2 σ12

n ,

E
[∑K

k=1−2
(
nd
n

)2 r
q ūuk
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Combining the results for time 1 a baseline where µa1 = µr1 and πd = nd/n results in (3.35).
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Proportion of Derived Average MCSE

Missing data Variance Variance

10% (N=25) 0.00503 0.00500 0.000010

20% (N=50) 0.00526 0.00528 0.000011

30% (N=75) 0.00549 0.00549 0.000013

40% (N=100) 0.00574 0.00574 0.000014

50% (N=125) 0.00599 0.00601 0.000017

60% (N=150) 0.00625 0.00627 0.000020

70% (N=175) 0.00653 0.00656 0.000023

Table B.9: Derived Rubin’s variance versus simulated Rubin’s variance under LMCF

Derived Rubin’s variance versus simulated Rubin’s variance (averaged over 1000 simulations) for

the LMCF treatment effect in the asthma RCT inspired setting with K=50.

Proportion of Derived Average MCSE

Missing data Variance Variance

10% (N=25) 0.00422 0.00421 0.000009

20% (N=50) 0.00446 0.00448 0.000010

30% (N=75) 0.00469 0.00469 0.000012

40% (N=100) 0.00493 0.00494 0.000013

50% (N=125) 0.00518 0.00522 0.000016

60% (N=150) 0.00544 0.00547 0.000019

70% (N=175) 0.00571 0.00576 0.000023

Table B.10: Derived Rubin’s variance versus simulated Rubin’s variance (averaged over 1000
simulations) for the LMCF baseline adjusted treatment effect in the asthma RCT inspired setting

with K=50.
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Appendix C

Additional results from baseline

and single follow-up simulation

studies
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Figure C.1: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with ∆ = 0 and n=250 per arm.
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Figure C.2: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with ∆ = 1 and n=250 per arm.
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Figure C.3: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with ∆ = 0 and n=100 per arm.
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Figure C.4: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with ∆ = 1 and n=100 per arm.
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Figure C.5: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with ∆ = 0 and n=1000 per arm.
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Figure C.6: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with ∆ = 1 and n=1000 per arm.
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Figure C.7: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the
1000 MI estimates, with ∆ = 0, n=250 per arm and a low covariance structure (σ12 = 0.05).
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Figure C.8: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the
1000 MI estimates, with ∆ = 1, n=250 per arm and a low covariance structure (σ12 = 0.05).
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Figure C.9: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the
1000 MI estimates, with ∆ = 0, n=250 per arm and a high covariance structure (σ12 = 0.75).
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Figure C.10: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the
1000 MI estimates, with ∆ = 1, n=250 per arm and a high covariance structure (σ12 = 0.75).
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Figure C.11: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with ∆ = 0 and n=250 per arm.
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Figure C.12: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with ∆ = 1 and n=250 per arm.
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Figure C.13: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with ∆ = 0 and n=100 per arm.
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Figure C.14: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with ∆ = 1 and n=100 per arm.
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Figure C.15: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with ∆ = 0 and n=1000 per arm.
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Figure C.16: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with ∆ = 1 and n=1000 per arm.
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Figure C.17: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with ∆ = 0, n=250 per arm and a low covariance structure (σ12 = 0.05).
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Figure C.18: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with ∆ = 1, n=250 per arm and a low covariance structure (σ12 = 0.05).
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Figure C.19: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with ∆ = 0, n=250 per arm and a high covariance structure (σ12 = 0.75).
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Figure C.20: Rubin’s baseline adjusted variance estimator vs. the baseline adjusted information
anchored variance vs. baseline adjusted variance where deviators observed (all averaged over
1000 simulations) vs. long-run sampling variance of the 1000 baseline adjusted MI estimates,

with ∆ = 1, n=250 per arm and a high covariance structure (σ12 = 0.05).

272



Appendix D

Reference based computations;

longitudinal setting

D.1 The design based variance estimator when

post-deviation data is observed

D.1.1 Last measured variable subject to non-response

Consider a two arm trial comprising of n patients who have been randomised to an active arm

(z = a) and n patients to a reference arm (z = r) with a continuous outcome measured repeatedly

over a series of visits, j = 1, ..., J (including baseline) which we denote by Yzij for i = 1, ..., n. The

mean treatment group difference at the final visit J is the primary outcome of interest. Suppose

all n reference patients are observed at baseline and up to time J without deviation. However

amongst the n active patients, only no patients are observed without deviation at all time points.

The remaining nd active arm patients deviate following time J−1. For simplicity we assume there

is no interim missing data. Let D and O define the sets of indices for the patients who do and do

not deviate in the active arm respectively.

We assume the data comes from the following multivariate normal distributions with equal covari-

ance structures (by arm),


Yzi1

Yzi2
...

YziJ

 ∼ N



µz1

µz2
...

µzJ

 ;


σ11 σ12 · · · σ1J

σ12 σ22 · · · σ2J

...
...

...
...

σ1J σ2J · · · σJJ


 , i = 1, ...n for z ∈ r or i ∈ O for z ∈ a,
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
Yzi1

Yzi2
...

YziJ

 ∼ N



µz1

µz2
...

µzJ

 ;


σ11 σ12 · · · σ1J

σ12 σ22 · · · σ2J

...
...

...
...

σ1J σ2J · · · σJJ


 , i ∈ D.

Interest lies in the mean treatment group difference at time J . The expectation of the treatment

estimate at time J when the post-deviation data is observed is,

(no
n
µaJ +

nd
n
µd,J

)
− µr1.

To establish the expectation of the design based variance estimate when post-deviation data is

observed (E [VDF, full]) we require the expectation of,

1
n−1

∑n
i=1

(
YriJ − ȲrJ

)2
n

+
1

n−1

∑n
i=1

(
YaiJ − no

n ȲaJ,o −
nd
n ȲaJ,d

)2
n

,

where ȲrJ = 1
n

∑n
i=1 YriJ , ȲaJ,o = 1

no

∑
i∈O YaiJ and ȲaJ,d = 1

nd

∑
i∈D YaiJ . For the first term,

E

[
1

n− 1

n∑
i=1

(
YriJ − ȲrJ

)2]
= σJJ .

Following the same steps taken in Appendix B.1, for the second term we obtain,

E

[
1

n− 1

n∑
i=1

(
YaiJ −

no
n
ȲaJ,o −

nd
n
ȲaJ,d

)2
]

=
1

n− 1

[
(n− 1)

(no
n
σJJ +

nd
n
σJJ

)
+
nond
n

∆2
]
,

where ∆ = µaJ − µdJ . Combining this result with the expectation of the first term assuming that

n is sufficiently large so that we may take (n− 1) to be n gives,

E [VDF, full] =
2σJJ
n

+
nond
n3

∆2.

In the de-jure setting where the deviators remain on-treatment µdJ = µaJ and so we have,

E [VDJ, full] =
2σJJ
n

.

For a typical RCT powered at 80% with 5% statistical significance ∆2 ≈ 15.68σ22/n using (3.17).

Thus as required, E [VDF, full] = E [VDJ, full] +O(n−2).
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Following the derivations in Section 3.4 we infer that in the current setting for the baseline adjusted

treatment difference at time J ,

E [VDF, full] = 2σJ.1
n + nond

n3 ∆2 and E [VDJ, full] = 2σJ.1
n ,

where σJ.1 = σJJ − σ2
1J

σ11
. Thus in the baseline adjusted setting E [VDF, full] = E [VDJ, full] + O(n−2)

as required.

D.1.2 Monotone non-response

Suppose missingness is no longer restricted to the last follow-up time. Among the nd deviators in

the active arm we observe nd,j patients who deviate following time j, for j = 1, ..., J − 1 such that

nd =
∑J−1
j=1 nd,j . Our assumptions for the observed data remain as in Appendix D.1.1. For the

patients that deviate following time j we assume,


Yzi1

Yzi2
...

YziJ

 ∼ N



µz1

µd,j,2
...

µd,j,J

 ;


σ11 σ12 · · · σ1J

σ12 σ22 · · · σ2J

...
...

...
...

σ1J σ2J · · · σJJ


 , i ∈ DJ.

Interest lies in the mean treatment group difference at time J . The expected value of the treatment

estimate at time J when the post-deviation data is observed is,

no
n
µaJ +

J−1∑
j=1

nd,j
n
µd,j,J

− µr1.
The variance of this estimate is calculated using,

1
n−1

∑n
i=1

(
YriJ − ȲrJ

)2
n

+

1
n−1

∑n
i=1

(
YaiJ − no

n ȲaJ,o −
∑J−1
j=1

nd,j
n ȲaJ,d,j

)2

n
,

where ȲrJ = 1
n

∑n
i=1 YriJ , ȲaJ,o = 1

no

∑
i∈O YaiJ and ȲaJ,d,j = 1

nd,j

∑
i∈DJ YaiJ for j = 1, ..., J − 1.

Which, when assuming that n is sufficiently large so that we may take (n−1) to be n has expected

value,

E [VDF, full] =
σJJ
n

+
σJJ
n

+

J−1∑
j=1

nond,j∆
2
d,j

n3
+

J−1∑
p=1

(J−1,q 6=p)∑
q=1

nd,pnd,q (∆d,p,q)
2

n3
,

where ∆d,j = µaJ − µd,j,J ,∆d,p,q = µd,p,J − µd,q,J , µd,j,J is the mean proposed under the de-facto

scenario at time J , for patients who deviate following time j and µd,p,J and µd,q,J are the means
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proposed under the de-facto scenario at time J , for patients who deviate following times p and q

for p = 1, ..., J − 1 and q = 1, ..., J − 1.

In the de-jure setting where the deviators remain on-treatment µd,j,J = µaJ for j = 1, ..., J and so

we have,

E [VDJ, full] =
2σJJ
n

.

For a typical RCT powered at 80% with 5% statistical significance ∆2 ≈ 15.68σ22/n using (3.17).

Thus as required, E [VDF, full] = E [VDJ, full] +O(n−2).

Following the derivations in Section 3.4 we infer that in the current setting for the baseline adjusted

treatment difference at time J,

E [VDF, full] = 2σJ.1
n +

∑J−1
j=1

nond,j∆
2
d,j

n3 +
∑J−1
p=1

∑(J−1,q 6=p)
q=1

nd,pnd,q(∆d,p,q)
2

n3

and E [VDJ, full] = 2σJ.1
n ,

where σJ.1 = σJJ − σ2
1J

σ11
. Thus in the baseline adjusted setting E [VDF, full] = E [VDJ, full] + O(n−2)

as required.
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Appendix E

Longitudinal simulation studies

E.1 Imposed missing data patterns

Proportion of missing data
Scenario time 1 time 2 time 3

1 0% 5% 10%
2 0% 10% 20%
3 0% 15% 30%
4 0% 20% 40%
5 0% 25% 50%
6 0% 30% 60%
7 0% 35% 70%

Table E.1: Imposed missing data patterns for deviators in longitudinal simulations

Proportion of missing data
time 1 time 2 time 3

Scenario active reference active reference active reference

1 0% 0% 5% 2.5% 10% 5%
2 0% 0% 10% 5.0% 20% 10%
3 0% 0% 15% 7.5% 30% 15%
4 0% 0% 20% 10.0% 40% 20%
5 0% 0% 25% 12.5% 50% 25%
6 0% 0% 30% 15.0% 60% 30%
7 0% 0% 35% 17.5% 70% 35%

Table E.2: Imposed missing data patterns where deviation in reference arm was half that
observed for the active arm in longitudinal simulations
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E.2 Additional results
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Figure E.1: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with ∆ = 0 and n=250 per arm.
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Figure E.2: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with ∆ = 1 and n=250 per arm.
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Figure E.3: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with the asthma trial treatment effect, ∆ = 0.3, deviation in both treatment
arms and n=100 per arm.
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Figure E.4: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with the asthma trial treatment effect, ∆ = 0.3, deviation in both treatment
arms and n=1000 per arm.
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Figure E.5: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with the asthma trial treatment effect, ∆ = 0.3, deviation in both treatment
arms, n=250 per arm and a low covariance structure (σj,j∗ = 0.05).
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Figure E.6: Rubin’s variance estimator vs. information anchored variance vs. variance where
deviators observed (all averaged over 1000 simulations) vs. long-run sampling variance of the

1000 MI estimates, with the asthma trial treatment effect, ∆ = 0.3 deviation in both treatment
arms, n=250 per arm and a high covariance structure (σj,j∗ = 0.75).
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Appendix F

The ‘δ-method’ computations

F.1 The design based variance estimator when

post-deviation data is observed;

baseline and single follow-up

Generally, when post-deviation data is observed on-treatment aTDdjY returns the de-jure treat-

ment estimate and

E [ V
(
aTDdjY

)]
= E

[
aTDdj V (Y)DT

dja
]

= aTDdjΣDT
dja.

When post-deviation data is observed with a δ-adjustment, aTDδY returns the δ-adjusted treat-

ment estimate and

E [ V
(
aTDδY

)]
= E

[
aTDδ V (Y)DT

δ a
]

= aTDδΣDT
δ a.

In the two arm trial setting (z = a, r) with baseline (time 1) and a single follow-up outcome (time

2) interest lies in the unadjusted mean treatment group difference at time 2 where Yzi2 denote

the continuous outcome measure for patients at time 2 in arm z for i = 1, ..., n. We assume

Yzi2 ∼ N(µz, σ22) however nd active arm patients deviate such that Yai2 ∼ N(µd, σ22) for i ∈ D.

Following the steps in Appendix B.1, for when it is proposed that µd2 = µa + δ the expected

variance of the treatment estimate is,

E [Vδ, full] = aTDδΣDT
δ a =

2σ22

n
+
nondδ

2

n3
.

Under de-jure/on-treatment behaviour for deviators, µd2 = µa thus,
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E [VDJ, full] = aTDdjΣDT
dja =

2σ22

n
,

and we see Vδ, full = VDJ, full +O(πd(1− πd)/n).

Following the derivations in Section 3.4 we infer that in the current setting for the baseline adjusted

treatment difference at time 2,

E [Vδ, full] = 2σ2.1

n + nond
n3 δ2 and E [VDJ, full] = 2σ2.1

n ,

where σ2.1 = σ22 − σ2
12

σ11
. Thus in the baseline adjusted setting E [Vδ, full] = E [VDJ, full] + O(πd(1 −

πd)/n) as required.

F.2 The design based variance estimator when

post-deviation data is unobserved;

imputation calculations

Here we present additional details of the calculations involved in establishing the expectation of

Rubin’s MI variance estimator in the δ-adjusted case in Section 5.3. As presented in the main text

we require E (Vδ, MI) = E
(
Ŵ
)

+
(
1 + 1

K

)
E
(
B̂
)

. First we consider E
(
Ŵ
)

,

E
(
Ŵ
)

= E
(
σ̂2
k

)
=
E (σ̂22,r)

n
+
E (σ̂22,a,k)

n
,

where,

(n− 1)E(σ̂22,r) = E

(
n∑
i=1

(Yri2 − µ̂r2)
2

)
= (n− 1)σ22,

(n− 1)E(σ̂22,a,k) = E

[∑
i∈O

(Yai2 − µ̂a2,k)
2

]
+ E

[∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
]
.

Decomposing the two-right hand components separately, over the observed cases we have,

E
[∑

i∈O (Yai2 − µ̂a2,k)
2
]

= E
[∑

i∈O
(
Yai2 − no

n Ȳa2o − nd
n Ȳa2d,k

)2]
= E

[∑
i∈O

(
Yai2 − no

n Ȳa2o − nd
n

[
Ȳa2o + δk + uk +

(
r
q + bk

) (
Ȳa1d − Ȳa1o

)
+ ēk

])2
]

= E

[∑
i∈O

(
(Yai2 − Ȳa2o)− nd

n δk −
nd
n uk −

nd
n

(
r
q + bk

) (
Ȳa1d − Ȳa1o

)
− nd

n ēk

)2
]
.

Expanding the square and taking expectation term by term results in the same non-zero compo-

nents as in the MAR setting outlined in Section B.4.1, along with the following component,
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E
[∑

i∈O
(
nd
n

)2
δ2
k

]
=
(
nd
n

)2
no
(
δ + σ2

δ

)
.

Over the deviators we have,

E

[∑
i∈D

(
Ŷai2,k − µ̂a2,k

)2
]

= E

[∑
i∈D

(
Ȳa2o + δk + uk +

(
r
q + bk

)
(Yai1 − Ȳa1o) + ei,k − no

n Ȳa2o − nd
n Ȳa2d,k

)2
]

= E

[∑
i∈D

(
no
n δk + no

n uk +
(
r
q + bk

) (
Yai1 − Ȳa1o

)
− nd

n

(
r
q + bk

) (
Ȳa1d − Ȳa1o

)
− nd

n ēk + ei,k

)2
]
.

Expanding the square and taking expectation term by term results in the same non-zero compo-

nents as in the MAR setting outlined in Section B.4.1, along with the following component,

E
[∑

i∈D
(
no
n

)2
δ2
k

]
=
(
no
n

)2
nd
(
δ + σ2

δ

)
.

Combining the results over the observed and deviating cases for time 1 a baseline where µa1 = µr1

results in (5.2). For
(
1 + 1

K

)
E
(
B̂
)

we require,

E
[
B̂
]

=
1

K − 1
E

[
K∑
k=1

(
θ̂δ,k − θ̂δ, MI

)2
]
,

where,

θ̂δ,k =
no
n
Ȳa2o +

nd
n

[
Ȳa2o + δk + uk +

(
r

q
+ bk

)(
Ȳa1d − Ȳa1o

)
+ ēk

]
− Ȳr2,

θ̂δ, MI =
1

K

K∑
k=1

θ̂δ,k.

That is,

E
[∑K

k=1

(
nd
n δk −

nd
n δ̄ + nd

n uk −
nd
n ū+ nd

n

(
r
q + bk

) (
Ȳa1d − Ȳa1o

)
− nd

n

(
r
q + b̄

) (
Ȳa1d − Ȳa1o

)
+nd

n ēk −
nd
na
ē
)2
]
.

Expanding the square and taking expectation by term gives the same non-zero components as in

the MAR setting outlined in Section B.4.1, along with the following components,

E
[∑K

k=1

(
nd
n

)2
δ2
k

]
= K

(
nd
n

)2 (
δ2 + σ2

δ

)
,

E
[∑K

k=1

(
nd
n

)2
δ̄2
]

=
(
nd
n

)2
K
(
δ2 +

σ2
δ

K

)
,

E
[∑K

k=1−2
(
nd
n

)2
δk δ̄
]

= −2
(
nd
n

)2
K
(
δ2 +

σ2
δ

K

)
.

Combining the results gives (5.3).
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Proportion of Derived Average MSCE
Missing data Variance Variance

10% (N=25) 0.00506 0.00507 0.000011
20% (N=50) 0.00543 0.00544 0.000013
30% (N=75) 0.00593 0.00596 0.000015
40% (N=100) 0.00660 0.00664 0.000021
50% (N=125) 0.00752 0.00760 0.000029
60% (N=150) 0.00885 0.00892 0.000040
70% (N=175) 0.01092 0.01114 0.000062

Table F.1: Derived Rubin’s variance versus simulated Rubin’s variance (averaged over 1000
simulations) with δk ∼ N(0.1, 0.052) adjustment in the asthma RCT inspired setting with K=50.

Proportion of Derived Average MSCE
Missing data Variance Variance

10% (N=25) 0.00503 0.00503 0.000011
20% (N=50) 0.00532 0.00532 0.000012
30% (N=75) 0.00569 0.00570 0.000014
40% (N=100) 0.00619 0.00624 0.000019
50% (N=125) 0.00688 0.00693 0.000024
60% (N=150) 0.00792 0.00804 0.000036
70% (N=175) 0.00967 0.00983 0.000054

Table F.2: Derived Rubin’s variance versus simulated Rubin’s variance (averaged over 1000
simulations) with fixed δk = 0.1 adjustment in the asthma RCT inspired setting with K=50.

F.3 The design based variance estimator when

post-deviation data is observed;

longitudinal setting

Consider the baseline (time 1) and J follow-up setting with nd,j patients who deviate following time

j, for j = 1, ..., J − 1 such that nd =
∑J−1
j=1 nd,j . Interest lies in the unadjusted mean treatment

group difference at time J . Following the steps outlined in Appendix D.1.2, the expected value of

the treatment estimate at time J when post-deviation δ-adjusted data is observed is,

no
n
µaJ +

J−1∑
j=1

nd,j
n
µd,j,J

− µr1,
where µd,j,J = µaJ + (J − j)δ. The variance of this estimate is calculated using,

1
n−1

∑n
i=1

(
YriJ − ȲrJ

)2
n

+

1
n−1

∑n
i=1

(
YaiJ − no

n ȲaJ,o −
∑J−1
j=1

nd,j
n ȲaJ,d,j

)2

n
,

where ȲrJ = 1
n

∑n
i=1 YriJ , ȲaJ,o = 1

no

∑
i∈O YaiJ and ȲaJ,d,j = 1

nd,j

∑
i∈DJ YaiJ for j = 1, ..., J − 1.

Which, when assuming that n is sufficiently large so that we may take (n−1) to be n has expected

value,
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E [Vδ, full] =
σJJ
n

+
σJJ
n

+

J−1∑
j=1

nond,j (J − j)2
δ2

n3
+

J−1∑
p=1

(J−1,q 6=p)∑
q=1

nd,pnd,q ((J − p) δ − (J − q) δ)2

n3
.

In the de-jure setting where the deviators remain on-treatment δ = 0 for j = 1, ..., J and so we

have,

E [VDJ, full] =
2σJJ
n

.

Thus as required, E [Vδ, full] = E [VDJ, full]+O(πd,j(1 − πd)n
−1)+O(πd,pπd,pn

−1). Following the

derivations in Section 3.4 we infer that in the current setting for the baseline adjusted treatment

difference at time J ,

E [Vδ, full] = 2σJ.1
n +

∑J−1
j=1

nond,j(J−j)2δ2

n3 +
∑J−1
p=1

∑(J−1,q 6=p)
q=1

nd,pnd,q((J−p)δ−(J−q)δ)2

n3

and E [Vδ, full] = 2σJ.1
n , where σJ.1 = σJJ − σ2

1J

σ11
. Thus in the baseline adjusted setting E [VDF, full] =

E [VDJ, full]+O(πd,j(1− πd)n−1)+O(πd,pπd,pn
−1) as required.
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