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ABSTRACT 

Ghrelin is a metabolic hormone that has neuroprotective actions in a number of neurological 

conditions including Parkinson’s disease (PD), stroke and traumatic brain injury. Acyl ghrelin 

treatment in vivo and in vitro also shows protective capacity in Alzheimer's disease (AD). In 

this study, we used ghrelin knockout (KO) and their wildtype (WT) littermates to test whether 

or not endogenous ghrelin is protective in a mouse model of AD, in which human amyloid 

beta peptide (Aβ1-40) was injected into the lateral ventricles (icv). Recognition memory, using 

the novel object recognition task, was significantly impaired in ghrelin KO mice and after icv 

Aβ1-40 treatment. These deficits could be prevented by acyl ghrelin injections for 7 days. 

Spatial orientation, as assessed by the Y-maze task, was also significantly impaired in 

ghrelin KO mice and after icv Aβ1-40 treatment. These deficits could be prevented by acyl 

ghrelin injections for 7 days. Ghrelin KO mice had deficits in olfactory discrimination, 

however, neither icv Aβ1-40 treatment nor acyl ghrelin injections affected olfactory 

discrimination. We used stereology to show that ghrelin KO and Aβ1-40 increased the total 

number of glial fibrillary acidic protein expressing astrocytes and ionized calcium-binding 

adapter expressing microglial in the rostral hippocampus. Finally, Aβ1-40 blocked long-term 

potentiation induced by high frequency stimulation and this effect could be acutely blocked 
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with co-administration of acyl ghrelin. Collectively, our studies highlight ghrelin deletion 

affects memory performance and that acyl ghrelin treatment may delay the onset of early 

events of AD. This supports the idea that acyl ghrelin treatment may be therapeutically 

beneficial to restrict disease progression in AD.  

 

INTRODUCTION 

The stomach hormone ghrelin is best known for its effects on metabolism, including food 

intake, blood glucose regulation and adiposity (1, 2). However, additional studies show that 

ghrelin plays an important role in non-metabolic functions, including learning, memory, 

stress, anxiety, fear, pain, vascular function and neuroprotection. In the plasma, ghrelin 

exists in an acylated and des-acylated form with des-acyl ghrelin being the most abundant. 

Acyl ghrelin, but not des-acyl ghrelin, activates the only known ghrelin receptor (GHSR; 

Growth Hormone Secretagogue Receptor), which is located in several regions throughout 

the brain, including the hypothalamus, substantia nigra, olfactory bulb, brain stem and 

hippocampus (3).  

In terms of neuroprotection, numerous studies have identified that ghrelin prevents 

degeneration in animal models of Parkinson’s disease (PD). Recently, we demonstrated that 

ghrelin mediates the neuroprotective benefit of calorie restriction in PD by controlling AMPK 

in substantia nigra dopamine neurons (4). Of course, calorie restriction will impact upon 

numerous physiological systems and recent evidence shows that ghrelin may link calorie 

restriction with increased neurogenesis (5), blood glucose production (6, 7) and mood (8). 

Collectively these studies show that ghrelin is a signal of energy deficit to the brain and that 

the effective actions of ghrelin are greater in states of negative energy balance (2, 9).  

Alzheimer’s disease (AD) is another neurological disease that may benefit from forms of 

calorie restriction (10, 11). If ghrelin was a common neuroendocrine feedback signal linking 

metabolic state to neuroprotection, then it is expected that ghrelin would also promote 

neuronal resilience in different models of AD.  Indeed, human males with mild stage AD 

show significantly lower plasma ghrelin than aged matched controls, although no difference 

in females was observed (12). A single nucleotide polymorphism (Leu90Gln) in the ghrelin 

gene was associated with age of AD onset in a Japanese population (13). Moreover, a 

number of in vivo and in vitro studies show that ghrelin or GHSR agonists improve cognition 

and neuronal function in models of AD. For example, peripheral ghrelin improved T-maze 

footshock avoidance in a U-shaped dose response curve in young and old SAMP8 KO mice 

(14), which exhibit an age-related increase in amyloid beta (Aβ), the peptide involved in brain 
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amyloid plaques in AD and impaired learning and memory (14). Moon et al. reported that 

peripheral ghrelin injections rescue memory deficits, prevent microgliosis and neuronal or 

synaptic degeneration in an AD mouse model induced by intrahippocampal injections of Aβ 

(15). These results have been confirmed with a central infusion of acyl ghrelin, which 

improved memory function, hippocampal AMPK activation and decreased Aβ deposition (16). 

In cultured hippocampal neurons, ghrelin ameliorated Aβ-induced cell death by preventing 

mitochondrial dysfunction (17).  

In the 5XFAD AD mouse model, hippocampal neuroblast number is significantly reduced 

compared to WT controls and peripheral ghrelin injections restore this neurogenic capacity; 

whether or not this produced any functional recovery was not examined (18). However, these 

results are consistent with acyl-ghrelin-induced adult hippocampal neurogenesis via 

hippocampal GHSR activation in healthy lean mice (5) and rats (19). Long-term treatment 

with the GHSR agonist, LY444711, improves performance in a water maze and reduces 

microglial activation and amyloid beta (Aβ) (20). However, recent work from the same group 

using the same agonist failed to replicate this finding (21).  

While the studies above demonstrate that administration ghrelin improves outcomes in 

mouse or rat models of AD, or in vitro, there is no evidence to show that endogenous ghrelin 

provides a protective effect that prevents or restricts cognitive loss in models of AD. 

Therefore, in this study we have used ghrelin wild type (WT) and ghrelin knockout (KO) mice 

in order to determine whether or not endogenous ghrelin prevents cognitive decline after 

intracerebroventricular (icv) Aβ administration. We further examined the protective actions of 

acyl ghrelin administration in ghrelin WT and KO mice and explored the possible impact of 

ghrelin and Aβ in two processes known to critically impact on memory performance, namely 

neuroinflammation and synaptic plasticity. 

 

METHODS 

Animals 

All experiments were conducted in compliance with the guidelines of the Animal Ethics 

Committees of the Monash University and of the Center for Neuroscience and Cell Biology of 

the University of Coimbra. Mice were kept at standard laboratory conditions with free access 

to food and water at 23 oC in a 12-hour light/dark cycle unless otherwise stated. Male ghrelin 

KO on a C57/Bl6 background were obtained from Regeneron Pharmaceuticals (Tarrytown, 
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NY) and bred at the Monash Animal Services. All mice were group-housed to prevent 

isolation stress. All mice were 10-12 weeks of age at time of experimentation. 

 

Treatment 

Ghrelin KO mice that produce neither acylated nor des-acylated ghrelin (22, 23) were used to 

examine whether endogenous ghrelin prevents cognitive decline and neuroinflammation after 

icv injection of human amyloid-beta peptide 1-40 (Aβ1-40) (cat # A1075, Sigma, USA). Aβ1-40 

was prepared as a stock solution at 1 mg/ml in sterile phosphate buffered saline (PBS, 0.1 

M; pH 7.4) and Aβ1-40 protein fragments were aggregated for 4 days at 37°C, as previously 

described (24). Mice were anaesthetised with isofluorane/oxygen mixture and mounted in a 

stereotaxic apparatus (Stoelting Co, Wood Dale, IL, USA). Mice were injected icv with 400 

pmol of Aβ1-40 or PBS (1 µl injection volume) using the following coordinates; bregma 

anterior/posterior 0.2 mm, medial/lateral 0.8 mm and dorsal/ventral 2.1 mm according to a 

mouse brain atlas as a guide (Franklin and Paxinos). Acyl-ghrelin (0.3 mg/kg) was injected ip 

daily for 7 days after Aβ1-40 injection at approximately 9 am each morning. Food was removed 

immediately after ip injection for 6 hours after the injections, as performed previously to 

prevent immediate food intake (4, 25, 26), which alters metabolic feedback and negates 

ghrelin signaling properties. 

 

Behavioural testing 

Behaviour testing occurred between days 6-17 since the start of ghrelin injections and mice 

were tested for novel objection recognition, Y-maze performance and olfactory discrimination 

according to the timeline established in figure 1. All behavioural tests were conducted at least 

2 days apart to reduce any potential stress associated with behavioural testing. All 

behavioural testing was conducted between 9 am and 2 pm. 

All tests were performed in an experimental room with sound isolation and dim light. The 

animals were carried to the test room for at least 1 hour of acclimation. Behaviour was 

monitored using a video camera positioned above the apparatuses and the videos were later 

analyzed by an experienced blinded researcher using video tracking software (CleverSys 

Inc, Reston, VA, USA). 
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Novel object recognition (NOR): The NOR task exploits a mouse’s natural tendency to 

explore a novel object after previous exposure to two identical objects. At 10-12 weeks of 

age, mice (n=8) were habituated for 3 periods of 10 minutes each separated with 10 minutes 

in its home cage to reduce anxiety associated with the novel arena (plastic arena 30 x 30 x 

50 cm). After habituation, mice were ready for the NOR task, which was conduct using two 

trials (familarisation trial [T1] and test trial [T2]) separated by 30 minutes. During T1, mice 

were allowed to explore for 10 minutes two identical objects (plastic screw-top tubes) 

secured to the floor using a small amount of Blu Tack in habituated arenas. For T2, one 

identical object from T1 was replaced with a novel object (small green flask) and mice were 

allowed to freely explore for 5 minutes. T1 and T2 were recorded using a video camera and 

analyzed for the time spent interacting with the novel object. All arenas were washed and 

dried and then sprayed with 80% ethanol prior to experimentation. Novel object exploration 

was calculated in T2 by (Tnovel x 100)/(Tnovel + Tidentical) with exploration defined as the nose 

being less than 1 cm from the object when facing the object or actively engaging with the 

object by sniffing or paw touching. Climbing on the object was not considered exploration.   

Modified Y-maze: The modified Y-maze measures spatial memory, as spatial orientation 

cues facilitate rodents to explore a novel arm rather than returning to a previously visited 

arm. We used a Y-shaped grey Perspex maze (30 cm x 10 cm x 16 cm) and each arm could 

be isolated by blocking entry with a sliding door. Saw dust from a mouse’s home cage lined 

the maze during the trials and extra maze cues on the walls were placed 30-40 cm from the 

end of the arms to provide spatial orientation cues. Behaviour was tested across two trials, 

the first of which had one arm of the maze randomly blocked off. Mice were allowed to 

explore the reduced maze for 10 minutes and then returned to their home cage. The second 

trial was conducted 30 minutes after the first trial and both arms of the maze were opened. 

Mice were placed in the start arm and allowed to explore the full maze for 5 minutes. All 

behaviours were recorded and analyzed using tracking software. Novel arm exploration was 

record when all 4 feet of each mouse entered the novel arm. The apparatus was cleaned 

with 80% ethanol between each trial and each animal.  

Olfactory discrimination: The task is based on the fact that mice prefer places with their own 

odor (familiar compartments) instead of places with unfamiliar odors. In this test, mice have 

access to 2 adjacent identical chambers separated by an intermediate zone. One chamber 

contained familiar bedding from its home cage over the last 48 hours (familiar) whereas the 

other contained fresh bedding (non-familiar). Mice were placed into the intermediate zone 

and allowed to freely explore each chamber. Rodents are capable of discriminating familiar 

versus non-familiar chambers since they prefer their odour to no odour at all. The time spent 

in each chamber was recorded and analyzed. An olfactory discrimination index was 
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generated according to the following tfamiliar/(tfamiliar + tnon-familiar), where t equal time and 0.5 

equals no preference.  

 

Immunohistochemistry and stereology 

We collected every section (30 µm thickness) in sets of 4 through the rostral hippocampus 

from bregma -0.9 mm to -2.5 mm. Every 4th section was washed in 0.1 M PB and incubated 

with 1% hydrogen peroxide (H2O2) for 15 minutes to prevent endogenous peroxidase activity 

and blocked for 1 hour with 5% normal horse serum (NHS) in 0.1 M PB with 0.3% Triton. In 

order to assess neuroinflammation, we quantified astrocytosis by immunostaining for glial 

fibrillary acidic protein (GFAP; rabbit anti-GFAP antibody from Abcam, USA, Cat no. 7260) 

and the microglial marker ionized calcium-binding adapter molecule (Iba1; rabbit anti-Iba1 

antibody from Wako, Japan Cat no. #019-19741) all at 1:1000 in PB 0.1 M with 1% NHS and 

0.3% Triton. After incubation with the primary antibodies, the sections were washed and 

incubated with biotin-SP-conjugated goat anti-rabbit IgG (Jackson ImmunoResearch 

Laboratories, Inc. West Grove, PA, USA) at 1:200 in 0.1 M PB.  Sections were then washed 

and incubated with avidin-biotin complex (ABC, 1:200) for 90 minutes. To visualise 

immunoreactivity, sections were incubated with a solution containing 1% nickel ammonium 

sulfate, 1% Diaminobenzidine and 4 µl of 30% H2O2. Sections were then washed in 0.1 M 

PB, mounted and coverslipped. The non-specific staining of our antibodies used was 

confirmed with controls where we omitted the addition of the primary antibody.  

Stereology: We employed a design-based approach to quantify GFAP- and Iba1-positive 

cells in the rostral hippocampus using the Stereoinvestigator software (MicroBrightField, 

Williston, VT, USA). We used a Zeiss microscope with a motorised stage coupled with a 

MicroFibre digital camera to a computer. Cells were counted using the optical fractionator 

probe on both sides of the brain, controlled by Stereoinvestigator software in randomly 

positioned grids in a defined region to create a collection of 3 dimensional counting areas. 

Guard zones were set at 10% of the section thickness to account for damage during the 

staining procedure and to prevent overcounting. The counting frame width (X) and height (Y) 

was 40.2 µm producing a counting frame area (XY) of 1616 µm2. The dissector height (Z) 

was 20 um creating a dissector volume (XYZ) of 32320 µm3. With this counting frame area 

we discovered that we needed to sample approximately 150-200 sites throughout the entire 

rostral hippocampus and count approximately 200-250 labeled cells throughout the rostral 

hippocampus to obtain a coefficient of error (using the Gunderson method) of 0.1 using a 

smoothness factor m=1. Cells were only counted if they touched the inclusion border or did 

not touch the exclusion border of the sampling grid.  
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Electrophysiology 

Electrophysiological recordings were carried out as previously described (27). Briefly, mice 

(C57Bl/6) were deeply anesthetized under a halothane-saturated atmosphere (Sigma-

Aldrich, St Louis, MO, USA) before decapitation. Brains were quickly removed and placed in 

ice-cold standard artificial cerebrospinal fluid (aCSF) containing (in mM); 124 NaCl, 4.5 KCl, 

2 CaCl2, 1 MgCl2, 26 NaHCO3, 1.2 NaH2PO4 and 10 D-glucose, gassed with 95% O2 and 5% 

CO2. The hippocampi were cut in 400 μm thick transverse slices using a McIlwain tissue 

chopper (Mickle Lab Engineering, Guildford, UK) and kept in oxygenated aCSF at room 

temperature for at least 60 minutes, before being used. Individual slices were transferred to a 

recording chamber and superfused with oxygenated aCSF at 30.5 oC at a flow rate of 3 

mL/min. Bipolar stainless steel electrodes were placed on the Shaffer collateral/commissural 

fibers and test stimuli were delivered via a S44 stimulator (Grass Instruments, West Warwick, 

RI) with a stimulus isolation unit (PSIU6, Grass Instruments) at a frequency of 0.06 Hz. Glass 

microelectrodes (1–2 MΩ) filled with 4 M NaCl were used to record field excitatory 

postsynaptic potentials (fEPSPs) in the stratum radiatum of the CA1 region of hippocampus. 

Recordings were obtained using an ISO-80 amplifier (World Precision Instruments, 

Hertfordshire, UK) and digitized using an ADC-42 board (Pico Technologies, Pelham, NY, 

USA). Averages of 4 consecutive responses were continuously monitored on a personal 

computer with the LTP 1.0.1 software (28). 

An input-output curve was first carried out to evaluate the threshold to the maximum 

response and the working stimulus intensity was adjusted to evoke fEPSPs of half maximal 

amplitude (50%). Long-term potentiation (LTP) was induced with a protocol of high-frequency 

stimulation (HFS) with pulses delivered at 100 Hz during 1 second; the fEPSPs were 

recorded for an additional 60 minutes. The average slope of the fEPSP at baseline was set 

at 100%, and changes of the fEPSP slope calculated 50-60 minutes after delivery of the HFS 

train were expressed as percent of change from baseline to estimate the amplitude of LTP. 

Aβ1-40 (200 or 500 nM) and ghrelin (1 nM or 1 μM) were added through the superfusion 

system 30 minutes before LTP induction and kept in the superfusate until the end of the 

experiment. When testing the interaction between ghrelin (1 nM) and Aβ1-40 (200 nM) both 

were added simultaneously to the superfusion system 30 minutes before LTP induction.  
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Statistical analysis 

All data are represented as mean ± standard error of the mean (SEM). A three-way analysis 

of variance (ANOVA), or a two-way ANOVA, with Tukey’s post hoc tests for multiple 

comparsions were used to determine statistical significance between genotype, peptide and 

hormone treatment. p<0.05 was considered statistically significant. Data were plotted and 

analysed using Prism 7.0b for Mac OS X. 

 

RESULTS   

NOR 

The NOR is a highly-validated test for recognition memory and exploits a mouse’s natural 

tendency to explore a novel object after previous exposure to two identical objects. To 

examine the effect of icv Aβ1-40 on recognition memory, we measured NOR in ghrelin WT or 

KO mice injected with aCSF or Aβ1-40 icv and then injected daily ip with either saline or acyl 

ghrelin (Fig 2). A three-way ANOVA revealed a main effect of hormone treatment (F=12.33; 

p=0.001), genotype (F=22.03; p<0.0001) and peptide treatment (F=9.449; p=0.0035). There 

was a significant interaction between hormone treatment and genotype (F=4.05; p=0.0498) 

and a significant interaction between hormone treatment x genotype x peptide treatment 

(F=4.751; p=0.0342) (Fig 2).  

NOR was significantly reduced in ghrelin WT mice injected icv with Aβ1-40 and saline (ip), 

compared to ghrelin WT mice injected with icv aCSF and saline (ip) (Fig 2), indicating that 

Aβ1-40 reduces recognition memory. Daily acyl ghrelin injections for 7 days significantly 

improved NOR in ghrelin WT mice treated with icv Aβ1-40 and ghrelin KO mice treated with 

either aCSF or icv Aβ1-40 (main effect of hormone treatment), although it did not improve NOR 

in WT mice treated with icv aCSF (Fig 2). These results indicate acyl ghrelin can overcome 

the deficit in NOR caused by Aβ1-40, but it does not potentiate NOR in ghrelin WT mice 

without Aβ1-40-induced pathology (i.e. treated icv with aCSF). Ghrelin KO mice treated with 

either icv aCSF or Aβ1-40 and daily ip saline injections could not discriminate between novel 

and familiar objects based on 50% exploration time of both objects (Fig 2). However, daily 

acyl ghrelin injections for 7 days to ghrelin KO mice resulted in significantly increased 

recognition memory (NOR) in both ghrelin KO mice treated icv with aCSF or Aβ1-40. NOR was 

significantly reduced in ghrelin KO compared to ghrelin WT mice injected daily with saline, 

indicating that genotype alone significantly affects NOR (main effect of genotype). Aβ1-40 

reduced NOR to 50% in both ghrelin WT and KO mice (main effect of peptide treatment), 
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where 50% represents no ability to discriminate between novel and familiar objects. Thus, 

deletion of ghrelin or Aβ1-40 alone is sufficient to reduce recognition memory to chance, which 

can be overcome with acyl ghrelin treatment. This floor effect means that the combination of 

ghrelin KO mice and Aβ1-40 administration cannot further impair NOR.  

 

Modified Y-maze 

The modified Y-maze is a highly-validated test for spatial memory, which utilizes spatially 

orientated visual cues to help rodents explore a previously unexplored novel arm. To 

examine the effect of icv Aβ1-40 on spatial memory, we measured novel arm exploration 

(seconds) in ghrelin WT or KO mice injected icv with either aCSF or Aβ1-40 and then injected 

daily ip with either saline or acyl ghrelin (Fig 3). A three-way ANOVA revealed a main effect 

of hormone treatment (F=15.8; p=0.0002), genotype (F=16.79; p=0.0002) and peptide 

treatment (F=14.66; p=0.0004). There was a significant interaction between hormone 

treatment and genotype (F=5.232; p=0.0266), genotype and peptide treatment (F=13.56; 

p=0.0006) and a significant interaction between hormone treatment x genotype x peptide 

treatment (F=8.404; p=0.0056) (Fig 2).  

Novel arm exploration was significantly reduced in ghrelin WT mice injected icv with Aβ1-40 

and saline ip, compared to ghrelin WT mice injected icv with aCSF and saline ip (Fig 3), 

indicating that Aβ1-40 impairs spatial memory. Daily acyl ghrelin injections for 7 days 

significantly improved novel arm exploration in ghrelin WT mice treated icv with Aβ1-40 and 

ghrelin KO mice treated with either aCSF or icv Aβ1-40 (main effect of hormone treatment) but 

not in mice treated icv with aCSF (Fig 3). Similar to results from the NOR tests, these results 

suggest acyl ghrelin overcomes the deficit in novel arm exploration caused by Aβ1-40, but it 

cannot enhance novel arm exploration in ghrelin WT mice without Aβ1-40-induced pathology. 

Ghrelin KO mice treated icv with either aCSF or Aβ1-40 and injected daily with ip saline could 

not differentiate between the novel arm and the previously explored arm (Fig 3). However, 

daily ip acyl ghrelin increased novel arm exploration in both icv aCSF and Aβ1-40 treated 

ghrelin KO mice (Fig 3). Novel arm exploration was reduced in ghrelin KO mice without Aβ1-40 

treatment compared to ghrelin WT mice treated icv with Aβ1-40 (main effect of genotype; Fig 

3). Aβ1-40 reduces novel arm exploration in ghrelin WT mice to ghrelin KO mouse levels (main 

effect of peptide treatment), although Aβ1-40 has does not further reduce novel arm 

exploration when compared to ghrelin KO mice treated icv with aCSF (Fig 3C). Thus, 
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deletion of ghrelin or Aβ1-40 alone reduces novel arm exploration to a similar degree, which 

cannot be reduced further in ghrelin KO mice after Aβ1-40.  

 

Olfactory discrimination 

As deficits in olfactory processing are a common feature in early stages of AD (29) and 

ghrelin regulates olfactory processing in mice and humans (30), we used an olfactory 

discrimination test to determine whether Aβ1-40 affects olfactory discrimination in ghrelin WT 

and KO mice. We also tested whether exogenous acyl ghrelin could improve olfactory 

discrimination in ghrelin WT and KO mice. Specifically we chose to examine olfactory 

behaviour 10 days after the final acyl ghrelin ip injection since olfactory discrimination is 

reported to require olfactory neurogenesis (31-34) and this time frame influences 

hippocampal neurogenesis (35). A three-way ANOVA revealed a main effect of genotype 

(F=30.91; p<0.0001) and no effects of hormone treatment or peptide treatment were 

observed. Moreover, no significant interactions were observed. All WT groups of mice could 

discriminate between chambers paired with familiar and fresh bedding (i.e. discrimination 

index > 0.5; Fig 4). In contrast, ghrelin KO groups of mice could not discriminate between 

familiar and fresh bedding, as indicated by an index of 0.5, regardless of icv treatment or 

daily injection of saline or acyl ghrelin (main effect of genotype; Fig 4). These results indicate 

that ghrelin KO mice exhibit a deficit in olfactory discrimination irrespective of hormone or 

peptide treatment. 

 

Stereological analysis of GFAP and Iba1 in the rostral hippocampus 

In order to examine the effect of Aβ1-40 on neuroinflammation in ghrelin WT and KO mice, we 

performed a stereological analysis of GFAP and Iba1 cell number in the rostral hippocampus. 

Ghrelin KO mice had greater GFAP-positive cells compared to WT mice treated icv with 

aCSF (Fig 5A). Aβ1-40 administration significantly increased GFAP-positive cell number in 

ghrelin WT mice, whereas there was no further increase in GFAP-positive cell number in 

ghrelin KO mice treated icv with Aβ1-40 compared to ghrelin KO mice treated icv with aCSF 

(Fig 5A). A similar effect was seen in Iba1 microglial number, although absolute numbers of 

Iba1-positive cells were lower than GFAP-positive cells. The number of Iba1-positive cells 

was larger in ghrelin KO mice treated icv with aCSF compared to ghrelin WT mice treated icv 

with aCSF. Furthermore, Aβ1-40 treatment significantly increased Iba1-positive microglia cells 

in ghrelin WT mice, but not in ghrelin KO mice (Fig 5B). This indicates that ghrelin deletion 
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increases the number of GFAP-positive and Iba1-positive cells in the rostral hipoocampus. 

Likewise, icv treatment with Aβ1-40 also increases the number of GFAP-positive Iba1-positive 

cells in the rostral hippocampus in the presence, but not in the absence, of ghrelin. 

 

Hippocampal LTP 

The electrophysiological analysis in hippocampal slices revealed that Aβ1-40 (200 and 500 

nM) did not significantly modify basal (i.e. low frequency) synaptic transmission (P > 0.05) 

(data not shown), but decreased LTP amplitude (P < 0.05) (Fig 6A and B). Similarly, the 

administration of a low (1 nM) or a high concentration (1 μM) of ghrelin did not significantly 

modify basal synaptic transmission but increased (P < 0.05) the amplitude of HFS-induced 

LTP (Fig 6C and D).   

The possible interaction between the effects of ghrelin and Aβ1-40 on hippocampal LTP was 

investigated using the lower effective concentration of Aβ1-40 (200 nM) and ghrelin (1 nM). We 

found that the concomitant administration of ghrelin blunted (P < 0.05) the depressive effect 

of Aβ1-40 on the amplitude of HFS-induced LTP (Fig 6E and F).  

 

DISCUSSION 

Our results indicate 5 key findings; 1) ghrelin KO mice have deficits in spatial, recognition 

and olfactory memory based on the results from Y-maze, NOR and olfactory discrimination 

tests, respectively; 2) icv Aβ1-40 treatment reduces spatial and recognition memory 

performance in ghrelin WT mice, but not in ghrelin KO mice since memory performance is 

already impaired; 3) ip acyl ghrelin treatment recovers memory deficits in ghrelin KO treated 

icv with aCSF or Aβ1-40 and in ghrelin WT treated icv with Aβ1-40, but it does not enhance 

memory performance in control mice (ghrelin WT mice treated icv with aCSF); 4) ghrelin KO 

mice treated icv with aCSF or Aβ1-40 and ghrelin WT treated icv with Aβ1-40 show 

neuroinflammation, as indicated by an increased number of GFAP- and Iba1-positive cells in 

the rostral hippocampus; 5) acute Aβ1-40 depresses HFS-induced LTP, an effect prevented by 

acyl ghrelin.  

These findings indicate that the genetic deletion of endogenous ghrelin influences memory 

performance in a manner similar to Aβ1-40 icv injection and that the administration of 

exogenous acyl ghrelin prevented the decrease in NOR and Y-maze spatial memory in both 

Aβ1-40-treated mice and in mice lacking ghrelin. The combination of Aβ1-40 administration to 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

ghrelin KO mice did not worsen spatial and recognition memory performance beyond Aβ1-40 

administration alone. This is likely to represent a floor effect since ghrelin KO mice were 

already performing at 50% novel object exploration, where 50% represents no ability to 

discriminate between novel and familiar objects. Moreover, the equipotent effect of ghrelin 

deletion and Aβ1-40 on neuroinflammation and the ability of acyl ghrelin to prevent Aβ1-40-

induced hippocampal synaptic plasticity highlight that these two processes are tightly linked 

to memory performance. It is likely that these mechanisms underlie the observed effects of 

ghrelin and Aβ1-40 on memory performance. The particular ability of ghrelin deletion to 

dampen memory performance and, conversely, of exogenous acyl ghrelin to restore memory 

selectively when is it perturbed, strongly suggests a critical role of ghrelin to prevent memory 

deterioration rather than acting as a memory enhancer. This is supported by the 

observations that acyl ghrelin did not enhance memory performance in ghrelin WT mice 

without Aβ1-40 administration.  

Furthermore, based on the proposed detrimental role of soluble Aβ in early AD (36, 37), the 

reported findings consolidate the therapeutic potential of manipulating ghrelin signaling in the 

brain to manage early AD (15-17, 38). This is further heralded by the ability of ghrelin to 

control two key processes that we have previously shown to critically mediate the early 

memory dysfunction caused by the icv administration of Aβ, namely neuroinflammation (39) 

and synaptic dysfunction (40, 41). It still remains to be determined if ghrelin might also affect 

classical pathological features of late phases of AD such as the formation of amyloid plaques 

and the aggregation of phosphorylated tau since these two features are not recapitulated in 

the Aβ1-40 icv injection model (36, 37), which mostly mimics early AD, as validated in 

numerous studies (24, 36, 39, 42, 43).  

 

The spatial Y maze memory test is highly validated and depends on hippocampal function, 

whereas recognition memory is largely perirhinal-dependent but with a hippocampal 

component  (44-46). Our studies and the work by Diano and colleagues (14) supports a role 

for ghrelin in the hippocampus in object recognition, however the role of ghrelin in the 

perirhinal cortex, a key site for object recognition (47), needs to be addressed. We show for 

the first time that spatial memory is also dependent on endogenous ghrelin production, as 

ghrelin KO mice showed deficits in Y-maze (spatial memory) performance that could be 

reversed with acyl ghrelin treatment. These results are consistent with data obtained from 

GHSR KO mice or GHSR antagonism in the hippocampus, showing that ghrelin signaling 

requires the GHSR in the hippocampus to promote spatial memory performance (48, 49).  It 

should be noted however, that GHSR deficient rats showed a deficit in radial arm maze food 
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motivated task but not in the water maze (50), suggesting that ghrelin may control context-

dependent spatial memory via GHSR signaling (5), which are highly expressed in the 

hippocampus, particularly the rostral dentate gyrus (3, 19, 51). Considering the important role 

of ghrelin and GHSR signaling in conveying energy deficit, it is likely that ghrelin/GHSR 

signaling in the hippocampus enhances spatial learning to promote re-feeding and 

restoration of energy balance (52, 53). However, this ghrelin/GHSR signaling may operate 

differently in different brain regions, since contextual fear memory is also dependent on 

GHSR (5), but is independent of energy balance (54).  

Aβ1-40 treatment reduced both spatial and recognition memory performance in ghrelin WT 

mice, which was reversed by acyl ghrelin treatment, consistent with previous reports showing 

the neuroprotective potential of acyl ghrelin in AD (15-17, 20, 38). One possible mechanism 

through which ghrelin deletion or Aβ1-40 affects memory may be neuroinflammation. Indeed, 

our results show that the elimination of endogenous ghrelin and the exposure to icv Aβ1-40 

increases the number of GFAP- and Iba1-positive cells in the hippocampus, as assessed by 

unbiased stereological approach, the most reliable and robust methods to accurate estimate 

cell number within a large area (55). These results are consistent with the known roles of 

ghrelin in preventing neuroinflammation in models of AD and other neurological disorders 

(26, 56) and the ability of Aβ to induce neuroinflammation (57). The control of synaptic 

plasticity, which is the best neurophysiological correlate of memory (58), is another 

mechanism likely involved in the effects of Aβ1-40 and ghrelin on hippocampal-dependent 

memory. Indeed, the onset of memory impairment in early AD seems to depend on synaptic 

dysfunction (59) and we now report that the known deleterious effect of Aβ1-40 on 

hippocampal LTP (60) is prevented by the addition of ghrelin. This provides a 

neurophysiological basis for the ability of ghrelin to prevent Aβ1-40-induced dysfunction.  

We also showed that deletion of ghrelin significantly impairs olfactory discrimination, which 

has significant implication in AD, as deficits in olfactory processing are a common feature in 

early stage AD (29). To the best of our knowledge this is the first demonstration that 

endogenous ghrelin modulates olfactory function. Our results are consistent with the fact that 

ghrelin influences olfactory responsiveness to odors, which can be blocked by ghrelin 

receptor antagonism (61) and ghrelin increases sniffing frequency in mice and humans (30). 

Together with the high expression of the GHSR in the olfactory bulb (3), these results 

suggest endogenous ghrelin plays an important role in olfactory discrimination and learning. 

Nevertheless, neither icv Aβ1-40 treatment nor ip acyl ghrelin injections influenced olfactory 

learning in our experimental conditions. One possibility is that icv Aβ1-40 treatment was not 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

sufficiently localized to the regions of the brain processing olfactory information, such as the 

olfactory bulb and piriform cortex.  

Given the expression of the GHSR in the olfactory bulb and the strong effects of ghrelin in 

the olfactory responsiveness and sniffing frequency, the lack of olfactory learning in response 

to ip acyl ghrelin treatment was initially surprising. This is likely due to the different 

mechanisms of action of the ghrelin/GHSR signaling to control different memory domains 

encoded by different brain circuits. In contrast to the control of hippocampal-dependent 

spatial memory, which may involve neuroinflammation and synaptic plasticity based on our 

data, the ghrelin/GHSR-mediated control of the consolidation of contextual fear memory 

instead requires the down-regulation of GHSR in the amygdala (54). The effect of 

endogenous ghrelin on olfactory memory might involve a different mechanism, such as 

ghrelin-induced neurogenesis (5, 62), which is known to affect olfactory discrimination (31, 

32). This would explain the observed lack of effect of ip acyl ghrelin since the generation of 

functioning new adult born olfactory bulb neurons takes ~28 days (62) and acyl ghrelin would 

be ineffective following 11 days of treatment (63), when we analyzed olfactory memory. (5, 

31-34, 62). Future studies are required to address the relationship between ghrelin-induced 

olfactory bulb neurogenesis and olfactory learning. 

In this study, we have tested the cognitive effects of Aβ1-40 icv treatment in ghrelin WT and 

KO mice with or without acyl ghrelin treatment. Importantly, ghrelin KO mice lack both des-

acyl ghrelin and acyl ghrelin, as both forms are derived from the same proghrelin precursor. 

Thus, it is possible that the lack of des-acyl ghrelin may also contribute to the memory 

reported in this study. However, Kang et al, recently showed that acyl ghrelin rather than 

des-acyl ghrelin is neuroprotective in AD by activating AMPK (16), a result consistent with 

the neuroprotective actions of acyl ghrelin, and not des-acyl ghrelin, via AMPK signaling in a 

mouse model of PD (26, 64, 65). The activation of AMPK may drive downstream intracellular 

mitochondrial pathways to prevent degeneration in AD. Indeed, acyl ghrelin treatment 

reduces ROS production and prevents mitochondrial membrane depolarization in 

hippocampal and hypothalamic cells treated with Aβ oligomers (17, 38). These results are 

similar to the actions of acyl ghrelin in the hypothalamus, substantia nigra and in stroke 

models (25, 66, 67) suggesting common neuroprotective actions of acyl ghrelin involving the 

maintenance of mitochondrial homeostasis regardless of the neurological disease.  

In conclusion, we show that ghrelin deletion impairs spatial and recognition memory as well 

as olfactory discrimination. Treatment with Aβ1-40 icv significantly impairs spatial and 

recognition memory in ghrelin WT mice but does not further exacerbate the memory deficit in 

ghrelin KO mice suggesting that the loss of endogenous ghrelin signaling may be associated 
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with Aβ1-40-induced memory deficits. Furthermore, the ability of daily ip injections of acyl 

ghrelin to restore spatial and recognition memory performance as well as hippocampal 

synaptic plasticity highlight that enhancing ghrelin secretion may preserve cognitive ability 

and delay the onset of AD and further support the idea that acyl ghrelin treatment may be 

therapeutically beneficial to restrict disease progression in early AD.  

 

Figure Legends 

Figure 1. Experimental timeline. Mice were injected icv with Aβ1-40 (400 pmol) or vehicle 

(aCSF) on day 0 and then received ip acyl ghrelin (0.3 mg/kg) at 9 am daily, for 7 days. 

Novel object recognition (NOR), modified Y-maze, and olfactory discrimination behavioural 

task were evaluated on days 6, 8 or 17 after icv injection and mice were sacrificed on day 18. 

 

Figure 2. Novel object recognition (NOR). Novel object exploration is the time spent 

exploring the novel object in the test trial, where 50% represents no difference in exploratory 

time between the novel and familiar object. Aβ1-40 reduces novel object exploration in ghrelin 

WT mice treated with saline, however this reduction is prevented by daily administration with 

acyl ghrelin. A main effect of genotype was observed with ghrelin KO mice performing worse 

than ghrelin WT in NOR. Daily ip injection of acyl ghrelin increased novel object exploration 

in both ghrelin WT and KO mice (main effect of hormone treatment). In addition, a main 

effect of peptide treatment (icv Aβ1-40 treatment) was also observed indicating that icv Aβ1-40 

treatment worsened recognition memory performance. Significant interactions between 

hormone treatment and genotype, and between hormone treatment, genotype and peptide 

treatment were observed. Data are presented as mean +/- SEM, n=10 per group, three-way 

ANOVA with Tukey’s post hoc analysis to identify significant difference between groups. a, 

significant difference (p<0.05) between aCSF and Aβ1-40 treatment. The dotted line indicates 

50% in novel object recognition, which represents no ability to discriminate between novel 

and familiar objects (chance). 

 

Figure 3. Modified Y-maze where we quantified the time spent in the novel arm in the 

second visit to the Y-maze 30 minutes after a previous visit where this arm was closed. Aβ1-40 

reduces the time spent in the novel arm in ghrelin WT mice treated with saline, and this 

reduction is prevented by daily administration of acyl ghrelin. Daily ip acyl ghrelin treatment 

increased time spent in the novel arm relative to ip saline injections (main effect of hormone 
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treatment) and ghrelin KO mice performed worse in the Y-maze task compared to ghrelin WT 

mice (main effect of genotype). A main effect of peptide treatment (icv Aβ1-40 treatment) was 

also observed indicating that icv Aβ1-40 treatment worsened spatial memory performance. 

Significant interactions between hormone treatment and genotype; between genotype and 

peptide treatment; and between hormone treatment, genotype and peptide treatment were 

observed. Data are presented as mean +/- SEM, n=10 per group, three-way ANOVA with 

Tukey’s post hoc analysis to identify significant difference between groups. a, significant 

difference (p<0.05) between aCSF and Aβ1-40 treatment. 

 

Figure 4. Olfactory discrimination was determined by comparing the amount of time mice 

spent in a chamber with familiar bedding compared to the time spent in an adjoining chamber 

with non-familiar bedding. The olfactory discrimination index measures the preference for the 

familiar bedding with 0.5 being equal to no preference, as indicated by the dotted line. We 

observed a main effect of genotype on olfactory discrimination, but no effect of hormone or 

peptide treatment, indicating ghrelin KO mice performed worse than WT mice, independent 

of acyl ghrelin or Aβ1-40 treatment. Data are presented as mean +/- SEM, n=10 per group, 

three-way ANOVA with Tukey’s post hoc analysis to identify significant difference between 

groups. 

 

Figure 5. Stereological estimation of the number of GFAP- and Iba1-positive cells in the 

rostral hippocampus. (A) Ghrelin KO mice exhibited a significantly greater number of GFAP-

positive cells in the rostral hippocampus compared to ghrelin WT mice, both groups treated 

icv with aCSF. Aβ1-40 icv treatment increased the number of GFAP-positive cells in ghrelin 

WT but not in ghrelin KO mice. (B) Ghrelin KO mice exhibited a significantly greater number 

of Iba1-positive cells in the rostral hippocampus compared to ghrelin WT mice, both groups  

treated icv with aCSF. Aβ1-40 icv treatment increased the number of GFAP-positive cells in 

ghrelin WT but not in ghrelin KO mice. Data are presented as mean +/- SEM, n=10 per 

group, two-way ANOVA with Newman-Keuls post hoc analysis to identify significant 

difference between groups. a, significant difference (p<0.05) between groups, as indicated by 

the horizontal lines. 

 

Figure 6. Hippocampal LTP. Bath application of Aβ1-40 (either 200 or 500 nM) prevents LTP 

induced by HFS (A-B). Acyl ghrelin increases HFS-induced LTP as measured by the percent 
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increase in fEPSPs before and 60 minutes after HFS in the absence and presence of acyl 

ghrelin (1 nM or 1 µM; C-D). Co-application of acyl ghrelin with Aβ1-40 prevents the Aβ1-40-

induced suppression of hippocampal LTP. Data are presented as mean +/- SEM, n=4 per 

group, one-way ANOVA with Newman-Keuls post hoc analysis to identify significant 

difference between groups. a, significantly different (p<0.05) from control group; b, 

significantly different (p<0.05) from ghrelin 1nM + Aβ1-40 200 nM. 
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