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A PERSISTENCE LANDSCAPES TOOLBOX FOR TOPOLOGICAL

STATISTICS

PETER BUBENIK AND PAWE L D LOTKO

Abstract. Topological data analysis provides a multiscale description of the geometry and

topology of quantitative data. The persistence landscape is a topological summary that can be

easily combined with tools from statistics and machine learning. We give efficient algorithms
for calculating persistence landscapes, their averages, and distances between such averages. We

discuss an implementation of these algorithms and some related procedures. These are intended

to facilitate the combination of statistics and machine learning with topological data analysis.
We present an experiment showing that the low-dimensional persistence landscapes of points

sampled from spheres (and boxes) of varying dimensions differ.

1. Introduction

We provide some algorithms and computational tools for statistical topological data analysis.
In particular, we give algorithms for calculating the persistence landscape, a functional summary
of persistence modules. We also give algorithms for calculating the averages of such summaries,
and for calculating distances between such averages. These tools also provide an alternative com-
putational approach for calculating distances between topological summaries that may be useful
when other methods are computational prohibitive. In addition, we specify an implementation of
these algorithms and some related tools that we have made publicly available.

We are motivated by topological data analysis [30, 8]. Its main tool, persistent homology pro-
vides a multiscale description of the topology of the data of interest, called either a barcode or a
persistence diagram. Unfortunately this summary is difficult to work with from the point of view
of statistics and machine learning. For example, it is not feasible to calculate averages. For these
purposes, it is convenient to replace these summaries with a linear summary, that is, a finite- or
infinite-dimensional vector. In a linear space it is easy to calculate averages. One such vector which
does not lose any information is the functional summary called the persistence landscape [6]. Since
this summary may be thought of as lying in a Hilbert space, in the language of machine learning,
it is a feature map. There is an associated kernel [42] to which standard machine learning tools
may be applied.

1.1. Background. In the simplest computational setting for topological data analysis, the data
of interest is encoded in a finite filtered complex,

(1) K0 ⊂ K1 ⊂ . . . ⊂ Kn.

This is a filtration of the complex K = Kn and it is sometime convenient to add K−1 = ∅.
Persistent homology [24, 49] gives a multiscale representation of the topology of this complex. To
be precise, one applies homology in some degree with coefficients in some field to (1) to obtain a

Key words and phrases. topological data analysis, persistent homology, statistical topology, topological machine
learning, intrinsic dimension.
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2 PETER BUBENIK AND PAWE L D LOTKO

sequence of finite-dimensional vector spaces and linear maps,

(2) H(K0)→ H(K1)→ . . .→ H(Kn),

called a persistence module. It turns out that the persistence module can be completely described
by a finite sequence of pairs {(bi, di)}, with bi < di. For each such pair (bi, di) there is a choice of
a nonzero homology class αi ∈ H(Kbi) that is not in the image of H(Kbi−1) and whose image is
nonzero in H(Kdi−1) but is zero in H(Kdi). One sometimes says that αi is born at bi and dies at
di. Furthermore, the homology classes {αi} and their nonzero images under the maps in (2) give
a basis for the vector spaces in (2). Considering these pairs as points in the plane, one obtains
the persistence diagram. Considering them as intervals [bi, di) on obtains the barcode. We will
often refer to them as birth-death pairs. In the simple setting of (1), we have bi, di ∈ {0, 1, . . . , n}.
However we can generalize to bi, di ∈ R by associated a corresponding increasing sequence of
real numbers with (1). This summary is stable [16, 18, 13] in that small perturbations of the
data will lead to small perturbations of these pairs, under suitable choices of distance. Successful
applications of topological data analysis include breast cancer data [39], sensor networks [20],
orthodontic data [29], signal analysis [41], target tracking [4], and brain artery data [5].

Now let us define the persistence landscape [6]. First, for a birth-death pair (b, d), let us define
the piecewise linear function f(b,d) : R→ [0,∞].

(3) f(b,d) =


0 if x 6∈ (b, d)

x− b if x ∈ (b, b+d2 ]

−x+ d if x ∈ ( b+d2 , d)

The persistence landscape of the birth-death pairs {(bi, di)}ni=1 is the sequence of functions λk : R→
[0,∞], k = 1, 2, 3, . . . where λk(x) is the k-th largest value of {f(bi,di)(x)}ni=1. We set λk(x) = 0 if
the k-th largest value does not exist; so λk = 0 for k > n. Equivalently, the persistence landscape
is a function λ : N× R→ [0,∞], where λ(k, t) = λk(t). In this definition we have assumed that b
and d are finite. In the appendix we show that this definition extends to the cases where b and/or
d are infinite.

Given a set of persistence landscapes, λ(1), . . . , λ(N), their average, λ̄, is defined pointwise,

λ̄k(t) = 1
N

∑N
i=1 λ

(i)
k (t). Distances between persistence landscapes and between average persistence

landscapes can be given using the L∞ norm,

‖λ− λ′‖∞ = sup
k,t
|λk(t)− λ′k(t)| ,

or the Lp norm, for 1 ≤ p <∞,

‖λ− λ′‖p =

[ ∞∑
k=1

∫
|λk(t)− λ′k(t)|p dt

] 1
p

.

In [6] it is shown that the persistence landscape is stable with respect to the Lp distance for
1 ≤ p ≤ ∞. That is, under suitable hypotheses, sufficiently small perturbations of a function
under the supremum norm lead to small changes of the persistence landscape of the persistent
homology of the sublevel sets of that function under the Lp norm.

In addition to the persistence landscape, other functional summaries of the persistence module
can also be easily averaged and used for statistics and machine learning. The simplest of these is
the ranks of the maps in the persistence module (called the persistent Betti number function or the
rank function). To help keep distance finite, one can smooth the persistence diagram [22, 28, 14] or
integrate with respect to a weight function [43]. The most sophisticated such smoothing is given in
[42]. Variants of the persistence landscape such as silhouettes [12] also work. The representation
of persistence diagrams as complex polynomials [21] has been used for shape classification. In [10]
the authors construct stable (with respect to the Bottleneck distance) feature vectors based on the
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persistence diagram. Those vectors are used later to compare points in 3d shapes. In addition,
one can use the lengths of the N longest bars [5] or algebraic functions on barcodes [1].

1.2. Relation to other software. The main aim of most persistent homology software is to start
with a finite filtered complex (or perhaps something used to generate such as a complex, such as a
finite set of points in Euclidean space) and to produce a set of birth-death pairs. Examples include
JavaPlex [45], Dionysus [36], Perseus [38], PHAT [3], and GUDHI [34]. These birth-death pairs
are the input for our software.

Other recent software developed concurrently to ours is the R package TDA [26]. This package
provides R users with tools for topological data analysis. For example, it provides an interface to
GUDHI, Dionysus and PHAT. It calculates persistence landscapes using grids and also calculates
confidence intervals. Future versions of TDA may include an interface to our code.

The software described in this paper performs exact computations of persistence landscapes. It
also implements grid-based computations, such as the ones provided in the TDA [26] package. Since
the grid-based computations are straightforward, they are not discussed in this paper. One may
switch from the (default) exact computations to the grid-based ones, by making a small change
in the self-explaining config file in the library’s main folder. Pros and cons of grid and exact
computations of landscapes along with some description of the limitations of both approaches are
provided in Section 6.

1.3. Prior work and related work. It has been shown [18] that the set of persistence diagrams
with the Wasserstein distance is a complete and separable metric space, and thus provides a
suitable setting for probability and statistics. Unfortunately the Fréchet mean is not necessarily
unique. For a slightly adjusted metric, there is an algorithm [46] that converges to an element of
the Fréchet mean set, though it does not have good computational properties. The discontinuity
of this procedure can be remedied by using a probabilistic approach [37].

Persistence diagrams can be used for statistical inference. Hypothesis testing using persistence
diagrams has been considered for brain MRI data in [15] and more abstractly in [44]. Furthermore,
confidence sets for persistence diagrams have been obtained in [27].

The persistence landscape allows the use of more statistical machinery. The bootstrap has been
applied to obtain confidence bands for the persistence landscape [12] and the average persistence
landscape of subsamples has been studied [11]. The persistence landscape has been used to study
protein binding [40] and as a kernel for topological machine learning and compared to the recent
multi-scale kernel for persistence diagrams [42].

1.4. Our work. We present an algorithm for calculating the persistence landscape corresponding
to n birth-death pairs in time O(n2) and show that this time complexity is optimal. Given
N persistence landscapes, each obtained from n birth-death pairs, we calculate their average
persistence landscape in time O(n2N logN). We show how to calculate the Lp distances for
1 ≤ p ≤ ∞ between two such averages in time O(n2N logN).

If we are willing to slightly perturb our birth and death times, then we give algorithms that are
much faster for large n or large N . To be precise, instead of associating an arbitrary increasing
sequence of real numbers with each of our filtered simplicial complex, we round these numbers so
that they lie on an equally-spaced grid of size m. By the stability theorem of [16], this will perturb
the resulting persistence diagram by at most δ

2 in the bottleneck distance, where δ is the spacing of
the grid. Under this assumption, we give an algorithm for calculating the persistence landscape in
time O(mn log n) and calculating the average landscape in time O(mnN). We can also calculate
the distance between two such averages in time O(mnN).

We describe an implementation of these algorithms that we have made publicly available. In
addition to the above algorithms, we have also implemented a number of procedures that we hope
will be helpful to practitioners interested in using these methods for topological data analysis.
For example, we have procedures for plotting persistence landscapes and their averages. Given a
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number of classes of birth-death pairs, we allow the user to calculate the distance matrix of the
corresponding average persistence landscapes, and also to perform pairwise permutation tests for
these classes, using the Lp distance, with 1 ≤ p ≤ ∞, between their respective average persistence
landscapes. In addition, we provide two nearest-neighbor classifiers, one using the persistence
landscape in a single degree, and the other using multiple degrees. Also, one can compute the
inner product of landscapes with the presented software, thus allowing them to be used with
kernel methods.

In Section 2 we describe the input and output for our algorithms. In Section 3 we give our main
algorithms and calculate their time complexities. We also show why calculating the persistence
landscape is not the same as the n-th envelope problem. In Section 4 we give a few simple numerical
experiments demonstrating our implementation of our algorithms. In Section 5 we describe our
implementation of our algorithms and some related procedures.

2. Data structures

In this section, we describe the inputs and outputs of our main algorithms.

2.1. Input. The initial input to our algorithms consists of a list of n pairs of numbers (b, d) with
b < d. Each of these pairs represents the birth and death times of a persistent homology class.
Thinking of these pairs as points we obtain a persistence diagram [23], and considering them to
be intervals we obtain a barcode [30]. We will give two algorithms for calculating persistence
landscapes from these birth-death pairs.

In Algorithm 1, for simplicity, we assume that b and d are finite. In the appendix, we extend this
algorithm to Algorithm 4 which also accommodates infinite intervals. Reduction to the finite case
can be achieved by removing or truncating infinite intervals or by using extended persistence [17],
where extended persistence is used to obtain a persistence module which is eventually zero [7].

In our implementation, the user is asked to define a number i (which can be set to the maximal
representable double number) at which infinite intervals will be truncated. This choice will depend
on the application and/or the persistent homology calculation. For example, the persistent ho-
mology calculation of a filtered Vietoris-Rips complex is often truncated at some filtration value,
because of the exponential growth in size of the complex. It is then sensible to truncate infinite
intervals at this maximum filtration value.

In Algorithm 2, we assume that each b and d is an element of a finite, evenly-spaced grid,
a, a + d, a + 2d, . . . , a + md. Such birth-death pairs are often the output of Perseus [35, 38] or
Plex [45]. In fact, by rescaling, we assume without loss of generality that values of b and d are
elements of {0, 2, 4, . . . , 2m}.

2.2. Output. In this section, we describe our encoding of persistence landscapes and linear com-
binations of persistence landscapes.

As defined in Section 1, a persistence landscape is a function λ : N×R→ [0,∞], or equivalently,
a sequence of functions λk : R → [0,∞] where k ≥ 1. For every fixed k, λk is a piecewise-linear
function.

Since the input consists of n birth-death pairs, λk = 0 for k greater than some fixed K ≤ n.
We will represent λk by a vector Lk of the points (x, λk(x)) such that λk is not differentiable in
x, which is sorted to have increasing values of x. For clarity, we include in Lk the points (−∞, 0)
and (∞, 0). The projection of Lk onto its first coordinate is the vector of critical numbers and the
projection on the second coordinate is the vector of critical values. We refer to the elements of
Lk as critical points. Clearly, λk can be recovered from Lk by linearly interpolating consecutive
points. This is therefore an exact representation of a persistence landscape. Therefore from now
on these two objects will be used interchangeably. Note that when a landscape is represented on
a discrete grid, this property do not hold in general.
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Let P denote the total number of critical points in the Lk, not including the points (±∞, 0),
which are not strictly necessary. In Section 3.2 we show that P = O(n2).

In Algorithm 2, the input numbers are in the set {0, 2, 4, . . . , 2m}. It follows that the critical
numbers and critical values are elements of {0, 1, 2, . . . , 2m}. We represent the persistent land-
scape by a two-dimensional array V satisfying V [k][i] = λk(i), with i ∈ {0, 1, 2, . . . , 2m} and
k ∈ {1, . . . ,K}, where K is the largest k such that λk is not identically equal to 0. Note that the
persistence landscape can be obtained from V by linear interpolation. It is also fruitful to consider
V as a vector of size K(2m+ 1).

Notice that a linear combination of persistence landscapes is also a sequence of piecewise linear
functions. So we encode it in the same way as we do a persistence landscape.

Remark 1. We remark that K is the largest rank of the linear maps in (2).

3. Algorithms

In this section, we describe our main algorithms, which compute persistence landscapes, linear
combinations of such persistence landscapes, and distances between such linear combinations.

3.1. Persistence landscape. In this section, we present two algorithms to construct the persis-
tence landscape from a list of birth-death pairs. For simplicity, Algorithm 1 assumes the input
consists of finite numbers. For a variation without this assumption and with the same complexity,
see Algorithm 4 in the appendix. The computational complexity is O(n log(n) + nK), where n
denotes the number of input pairs and K the number of nonzero landscapes. Since K ≤ n, this
algorithm is O(n2). If we do not need all of the persistence landscape, then there are faster vari-
ations, described below. Algorithm 2 assumes that the input coordinates are elements of a finite,
evenly-spaced grid of size m + 1. Its computational complexity is O(mn + mK logK) which is
O(mn log n).

An example of the steps in Algorithm 1 is given in Figure 1.
In Algorithm 1, we first sort the input list, A, in a way that we will be able to pass through A

exactly once in order to construct each list Lk. This takes time O(n log n). We denote the last pair
in Lk by Lk. last. Each iteration of the outer while loop constructs one of the lists Lk. Denote
the number of these by K. The length of A is initially n. At the start of the outer while loop,
the length of A is decreased by one. The inner while loop does not increase the length of A. So
K ≤ n. In each non-terminal iteration of the inner while loop, the position of p in the list A
advances, so it repeats at most n times. Thus the algorithm terminates. Furthermore, in each
iteration of the outer while loop, each pair in A is only considered once, so it takes time O(n).
Therefore, Algorithm 1 takes time O(n log n+Kn).

The following faster variations of Algorithm 1 might be of interest for some applications. If we
only want L1, . . . ,Ldlogne, then the algorithm takes time O(n log n). If we only want L1, . . . ,Lκ,
for some fixed κ, then the algorithm also takes O(n log n). If in addition A is already sorted, then
the algorithm takes O(n).

In Algorithm 2, we add each birth-death pair’s contribution to the persistence landscape to
an array of lists W . This takes time O(mn). Next we sort each of the lists, which takes time
O(mK logK). Finally we copy this data to V , which takes time O(mK). So the algorithm has
time complexity O(mn+mK logK). Since K ≤ n, this is O(mn log n).

3.2. Persistence landscapes and the n-th envelope problem. The problem discussed in this
paper, may at first glance may look like the problem of finding envelopes of a set of line segments,
which is well known in computational geometry. In this section, we discuss the finding-envelopes
problem from computational geometry and show why the problem of computing the persistence
landscape is different. Also we will give a worst case estimate of the spatial complexity of the



6 PETER BUBENIK AND PAWE L D LOTKO

Algorithm 1: Compute the persistence landscape.

Input: A = {(bi, di)}ni=1 – a list of birth-death pairs, −∞ < bi < di <∞.
Output: {Lk} – the persistence landscape, a list of lists of critical points (x, y).
Sort A first according to increasing b and second according to decreasing d;

k ← 1;

while A 6= ∅ do
Initialize Lk;

Pop the first term (b, d) from A; Let p point to the next term;

Add (−∞, 0), (b, 0), ( b+d
2
, d−b

2
) to Lk;

while Lk. last 6= (0,∞) do
if d maximal among remaining terms in A starting at p then

Add (d, 0), (∞, 0) to Lk;

else
Let (b′, d′) be the first of the terms starting at p with d′ > d;

Pop (b′, d′) from A; Let p point to the next term;

if b′ > d then
Add (d, 0) to Lk;

end

if b′ ≥ d then
Add (b′, 0) to Lk;

else

Add ( b′+d
2
, d−b′

2
) to Lk;

Push (b′, d) into A in order, starting at p; Let p point to the next term;

end

Add ( b′+d′

2
, d′−b′

2
) to Lk;

(b, d)← (b′, d′);

end

end

++k;

end

Return {Lk};

persistence landscape which will later guarantee the optimality of the algorithms used in this
paper.

The upper envelope of a set of line segments {Li}ki=1 is defined as those parts of the line segments
which are visible from the point (0,+∞). Equivalently if we consider Li to be a piecewise-linear
functions set to −∞ outside the line segments, the upper envelope in the point x ∈ R is defined
as maxi∈{1,...,k}Li(x). Due to the practical importance of this problem, there are many efficient
algorithms available to compute upper envelopes [31] practically in linear time. Let us have a
family of persistence intervals {(ai, bi)}ni=1. For every interval let us define the line segment L2i−1

starting at (ai, 0) and ending at (ai+bi2 , bi−ai2 ) and the line segment L2i starting at (ai+bi2 , bi−ai2 )

and ending at (bi, 0). The first landscape λ1 is the upper envelope of the family {Li}2ni=1. However,
from the classical upper envelope computations we are not able to get the λk’s for k > 1. There
are algorithms available in which successive upper envelopes are computed, as presented in [32].
However in this case, once part of a line segment Li belongs to the k-th envelope, then the whole
of Li is removed from the search of (k + 1)-st envelope, which is not what is required in the
calculation of the persistence landscape. Alternatively, one can find all the intersections between
the mentioned lines. However, in this case, we will get O(n2) lines segment in the worst case.

Even though standard results on the n-th envelope problem do not apply directly, Michael
Kerber has recently pointed out to us that an adaptation of a line sweep algorithm can indeed be
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Figure 1. Algorithm 1 is used to construct the persistence landscape correspond-
ing to the birth-death pairs {(1, 5), (2, 8), (3, 4), (5, 9), (6, 7)}. (a) The functions (3)
corresponding to the birth-death pairs and their corresponding critical points. (b-
d) Steps through the while loop to construct L1. (e) The graph of λ1. (f) The
graph of the functions corresponding to the remaining pairs in the list A. (g-i)
The second iteration of the while loop constructs L2. (j) The graph of λ2. (k)
The graphs of the functions corresponding to the remaining pairs on the list A.
(l) The graph of λ3.

applied to calculate persistence landscapes. The time complexity of this adaptation may be a bit
worse than the one presented in this paper, but there are examples for which it is faster. This
approach will be explored and compared to one presented here in a subsequent paper.

To end this section, let us determine the complexity of the persistence landscape structure.
Clearly the size of the structure and therefore the computational time required to construct the
structure is bounded from below by P , the number of critical points of persistence landscape. This
number can be quadratic in n in the worst case as shown in the Figure 2. This analysis shows that
the algorithms presented in this section are optimal in the worst case. In fact, it is easy to see
that if n is the number of intervals given by the birth-death pairs, and p is the number of pairwise
non-empty intersections of these intervals, then P = 3n+ 2p. Since p ≤

(
n
2

)
, we have P ≤ n2 + 2n.

3.3. Averages and linear combinations. In this section, we present algorithms for calculating
linear combinations of persistence landscapes.
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Algorithm 2: Compute the persistence landscape using a grid.

Input: {(bi, di)}ni=1 – a list of pairs bi < di which are elements of 0, 2, 4, . . . , 2m;

Output: V – the persistence landscape, a two-dimensional array of size K × (2m+ 1);

Initialize W , an array of size 2m+ 1 of empty lists of integers;

for i = 1 to n do

for j = 1 to di−bi
2

do
Append j to W [bi + j];

end

for j = 1 to di−bi
2
− 1 do

Append j to W [di − j];
end

end

for i = 0 to 2m do
Sort W [i] in decreasing order;

end

K ← maxi∈{0,...,2m} length of W [i];

Initialize V as a K × (2m+ 1) zero matrix;

for i = 0 to 2m do
for k = 0 to length of W [i] do

V[k][i] = W[k][i];

end

end

Figure 2. The worst case scenario for the complexity of the persistence land-
scapes occurs when all the pairs of persistence intervals have nonempty intersec-
tion. Suppose n persistence intervals having nonempty intersection are given.
Then there are n nonzero persistence landscapes and the landscape λk has
2n + 3 − 2k critical points. That gives n2 + 2n = O(n2) critical points in to-
tal.

In Section 3.1 we encoded a persistence landscape λ = {λk : R → R} by lists {Lk} of pairs of
extended real numbers. Fix k. Define Xk and Yk to be the vectors of critical numbers and critical
values obtained from the first and second coordinates of elements of Lk. Then Yk = λk(Xk), and
λk can be obtained from Xk and Yk by linear interpolation.

Now suppose that we have persistence landscapes λ1, . . . , λN and we wish to calculate the linear

combination f =
∑N
j=1 ajλ

j , where aj ∈ R. Important special cases are the average of a list of

persistence landscapes, λ =
∑N
j=1

1
N λ

j , and the difference between the averages of two groups of

persistence landscapes, λ− λ′ =
∑N
j=1

1
N λ

j +
∑N ′

j=1
−1
N ′ λ

′j .

Let fk(t) = f(k, t). Then fk =
∑N
j=1 ajλ

j
k. First we give a naive algorithm for calculating a

representation of fk from the representations (X1
k,Y1

k), . . . , (XNk ,YNk ) of λ1
k, . . . , λ

N
k . First we sort



A PERSISTENCE LANDSCAPES TOOLBOX FOR TOPOLOGICAL STATISTICS 9

Algorithm 3: Linear combination of persistence landscapes.

Input: (X1
k,Y1

k), . . . , (XN
k ,YN

k ), for some fixed k, and a1, . . . , aN ;

Output: (Xk,Yk) ;

Merge the sorted lists Xj
k, removing duplicates. Call this vector Xk;

for j = 1 to N do

Calculate Ȳj
k = λj

k(Xk) by linear interpolation;

end

Yk ←
∑N

j=1 ajȲ
j
k; return (Xk,Yk)

the union of the elements of X1
k, . . . ,XNk , removing repetitions. Call this vector Xk. For each

1 ≤ j ≤ N , define Ȳjk = λjk(Xk). Now we represent λjk by Xk and Ȳjk. Again, λjk can be obtained

from Xk and Ȳjk by linear interpolation. By definition, fk(Xk) =
∑N
j=1 ajλ

j
k(Xk) =

∑N
j=1 ajȲ

j
k.

Also, fk can be recovered from Xk and fk(Xk) by linear interpolation. See Algorithm 3. In
summary, vector space operations on λ1

k, . . . , λ
N
k are obtained from vector space operations on

Ȳ1
k, . . . , ȲNk .
Let us consider the time complexity of this algorithm. Let n be the maximum number of birth-

death pairs used to construct each of λ1, . . . , λN . Let Pk be the sum of the number of the critical
points of the λ1

k, . . . , λ
N
k . Note that Pk = O(Nn). Then fk has at most Pk critical points, and

constructing Xk takes O(Pk). Since the length of Xk may be at most Pk, calculating each Ȳjk takes
O(Pk) and calculating Yk = fx(Xk) takes O(NPk). So Algorithm 3 has time complexity O(nN2).

Now if we repeat Algorithm 3 for all k we obtain a linear combination of the full persistence
landscape. Let P be the sum of the number of critical points of λ1, . . . , λN . Then constructing
{Lk} has time complexity O(NP ) = O(n2N2).

The complexity of the naive algorithm can be improved to O(n2N logN) by merging landscapes
in a binary tree fashion (this is sometimes referred to as divide-and-conquer). Here we describe this
for the case of calculating the average landscape1. Suppose a collection of persistence landscapes
(X1

k,Y1
k), . . . , (XNk ,YNk ) is given. Let us assume that N is even. Then this collection is transformed

to a new collection (M1X1
k,M1Y1

k), . . . , (M1X
N
2

k ,M1Y
N
2

k ) where (M1Xik,M1Yik) = (Xik,Yik) +

(Xi+1
k ,Yi+1

k ) for i ∈ {1, . . . , N2 }. In the case that N is odd, additionally set (M1X
N+1

2

k ,M1Y
N+1

2

k ) =

(XNk ,YNk ). This merging procedure is repeated for the obtained sequence until the sequence con-

tains only one element (Xfk ,Y
f
k). The average persistence landscape is then 1

N (Xfk ,Y
f
k). Note that

the number of landscapes at level i is of the order N
2i . The complexity of each of these is 2in2.

Therefore, the cost of merging neighboring persistence landscapes at level i is 2in2N
2i = n2N , which

does not depend on i. Number of levels is log2(N) , and therefore the total cost of computing
average persistence landscape is O(n2Nlog(N)).

For the case where all of the birth-death pairs have endpoints on an evenly-spaced grid of size
m+ 1, we can obtain a linear combination of the persistence landscapes by simply taking a linear
combination of the N corresponding vectors of size K × (2m + 1), which has time complexity
O(KmN) which is O(mnN).

3.4. Distances. In this section, we compute the Lp and L∞ distances between two linear com-
binations of persistence landscapes L = {Lk} and L′ = {L′k}. Let P be the maximum number of
critical points of L and L′. Let {(Xk,Yk)} be the representation of the difference between these
two persistence landscapes as described in Section 3.3.

1In the general case of computations of weighted sums of landscapes, when merging in the first level we compute

weighted sums (M1Xi
k,M1Yi

k) = ai(Xi
k,Y

i
k) + ai+1(Xi+1

k ,Yi+1
k ) instead of unweighted ones (M1Xi

k,M1Yi
k) =

(Xi
k,Y

i
k) + (Xi+1

k ,Yi+1
k ). Also, at the end of computations we do not multiply the last landscape by 1

N
.
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The L∞ distance between L and L′ is

‖L− L′‖∞ = max
k
|Yk| .

This calculation has time complexity O(P ).
The Lp distance between L and L′ is given by the formula:

‖L− L′‖p =

[
K∑
k=1

∫
‖Lk − L′k‖

p
p

] 1
p

The norm ‖Lk − L′k‖
p
p can be computed from (Xk,Yk) by summing integrals over intervals given

by consecutive elements of Xk. These have the form
∫ d
c
|ax+ b|p dx which can be written as one or

two integrals of the form
∫ d
c

(ax + b)pdx = (ax+b)p+1

a(p+1) |
d
c . This calculation also has time complexity

O(P ).
Now assume that we start with two persistence diagrams, each of which has at most n birth-

death pairs. Since P = O(n2) we can calculate the L∞ and Lp distances between the corresponding
persistence landscapes in O(n2).

For the case where the points in the birth-death pairs lie on an evenly-spaced grid of size
m, the calculation of distance between linear combinations of persistence landscapes is O(Km),
where K be the maximum k for which either {Lk} or {L′k} is nontrivial. So starting with two
persistence diagrams, each of which has at most n birth-death pairs which lie on a grid of size m,
we can calculate the L∞ and Lp distances between their persistence landscapes in O(Km) which
is O(mn).

We can combine the results of this section with those of the previous section to calculate the L∞

and Lp distances between f and g, two linear combinations of at most N persistence landscapes,
each of which in obtained from at most n birth-death pairs. An important special case of this is
the calculation of the distance between two average persistence landscapes. Let P be the total
number of critical points in the two sets of persistence landscapes. Then the representation of
f − g, {(Xk,Yk)}, has at most P critical points, and can be constructed in time O(n2N logN).

From this, the distance between f and g can be calculated in O(P ) = O(n2N) so the total
computation time is O(n2N logN). For the case were the endpoints of the intervals lie on a grid
of size m + 1, constructing f and g is O(mnN), and calculating the distance between f and g is
O(mn), so the total computation has time O(mnN).

4. Experiments

In this section, we present the results of some experiments used to test our implementation of
our algorithms.

4.1. Points sampled from Sd. Our first experiment is motivated by the following questions.
Suppose we are given a set of points in RD that lie on a lower dimensional sphere Sd. How well
can we determine d using persistent homology?

For d ∈ {2, 3, . . . , 10}, we sampled 100 points from Sd using the uniform distribution. This
was done by sampling 100 points from the (d + 1)−dimensional Gaussian distribution and then
projecting those points to Sd. For an example of such normalization in topological data analysis,
see [9]. This was repeated 1000 times. To refute the charge that our detected differences are only
due to the increase of the average distance between points in higher dimensions, we rescale the
sphere on which the points has been projected so that the average distance between points is one.

For each point cloud generated as described above we computed the persistent homology of
the corresponding Vietoris-Rips complex. The parameter values for the radius ranged from 0 to
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Figure 3. Average persistence landscapes in degree 0 of points sampled from Sd

for d ∈ {2, . . . , 10}. The spheres have been scaled so that the average distance
between points is one.

a radius for which all inessential 0, 1, and 2 dimensional cycles are killed, which was 0.7 for this
range of dimensions.

Remark 2. In this example and all subsequent examples, the filtration values have been rescaled
to the range from 0 to 100. For simplicity, we have chosen to leave all subsequent calculation in
this new scale. If desired, it is easy to rescale the results back to the original scale.

The resulting average persistence landscapes for degree zero, one and two are in Figure 3, Fig-
ure 4, and Figure 5, respectively. The L1, L2 and L∞ distances between these average landscapes
given in Figure 6.

To determine the significance of these distances between average landscapes we performed a
permutation test [47], which we now explain. First choose a significance level α = 0.05. For
every pair i, j ∈ {2, . . . , 10} with i 6= j, the two corresponding sets of 1000 persistence landscapes
were combined in a set of cardinality 2000. Then this set was randomly split into two subsets
A1, A2 of cardinality 1000 each. Next the average landscapes λ1 and λ2 were computed based on
the landscapes in A1 and A2, respectively. Let δ denote the distance between the original average
landscapes in dimensions i and j. The distance between λ1 and λ2 is compared to δ. This described
process is repeated 10, 000 times. The p value equals the proportion of cases in which the distance
between λ1 and λ2 is greater than δ. For every pair i 6= j, it never happened that the distance
between λ1 and λ2 was greater than the corresponding δ. Therefore we can conclude that there is
very strong statistical difference between the persistence landscapes in various dimensions.

We believe that the ability to easily perform such calculations will be useful in topological data
analysis.
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Figure 4. Average persistence landscapes in degree 1 of points sampled from Sd

for d ∈ {2, . . . , 10}. The spheres have been scaled so that the average distance
between points is one.

4.2. Points sampled from [0, 1]d. Given the success of the experiment presented in the Sec-
tion 4.1 it is natural to ask analogous question for the case of points sampled from a d-dimensional
box [0, 1]d. Theorems on the random Vietoris-Rips and Čech complexes can be found in [33]. The
results presented there indicate that Betti numbers of random complexes “do not live together”;
see Figure 1 in [33]. Here we focus not on the Betti numbers and their limit distribution, but on
a task of dimension detection based on persistent homology.

For d ∈ {2, 3, . . . , 10}, to get a single point cloud, we sampled 100 points from [0, 1]d by sampling
each coordinate of each of the points independently from an interval [0, 1]. For each dimension
d ∈ {2, 3, . . . , 10}, we sampled 1000 point clouds. As in the previous section, to refute the charge
that our detected differences are only due to the increase of the average distance between points in
higher dimensions, we rescaled the boxes so that the average distance between points in each box
is 1. We computed persistent homology in dimension 0 and 1 of the resulting Rips complexes. We
obtained 1000 persistence diagrams in dimension 0 and 1 for each dimension d ∈ {2, 3, . . . , 10}.

The permutation test was run for 10, 000 permutations for the obtained persistence intervals
separately in dimension 0 and in dimension 1. In all cases, it never happened that the distance
between shuffled sets was greater than between the original ones.

This experiment, together with the one presented in the Section 4.1, show that low dimensional
persistent homology can be a good tool for estimating the intrinsic dimension of data sets. Knowing
the intrinsic dimension of the dataset is important, since when working with point clouds embedded
in high dimensional spaces, it is typically assumed that the intrinsic dimension of the data is low
and under this assumption one can overcome the curse of dimensionality. The presented techniques
may eventually allow one to explicitly estimate the intrinsic dimension of the considered dataset.
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Figure 5. Average persistence landscapes in degree 2 of points sampled from Sd

for d ∈ {2, . . . , 10}. The spheres have been scaled so that the average distance
between points is one.

4.3. Distance computations. Here we compare our implementations of the persistence land-
scape distance algorithms with implementations of the bottleneck distance and Wasserstein dis-
tance in current use. For each N ∈ {100, 200, . . . , 1000} we sampled two random persistence
diagrams consisting of N birth-death pairs (b, d) chosen independently from the uniform distri-
bution on {0 ≤ b ≤ d ≤ 1}. The pairs are chosen in the following way: we sample two points
a, b from [0, 1] interval. The smaller one became the birth time, the larger one, the death time.
This was repeated 5 times. For each N the distance between all pairs of persistence diagrams was
computed by using the Bottleneck, 1- and 2-Wasserstein metrics and the L∞, L1 and L2 persis-
tence landscape metric. We used [36] for the Bottleneck and Wasserstein distance computations.
These implementations are known to use sub-optimal/slow algorithms. We are aware of efforts to
implement the faster algorithms of [25, 2], but we are unaware of any that are currently available.
We consider the average computation time for each N . The comparison of these times is presented
in Figure 7.

4.4. Computing distance matrices on a random set of persistence intervals. In this
experiment, for each N ∈ {100, 200, . . . , 1000}, we generated 1000 random collections of N birth-
death pairs, where the pairs (b, d) chosen independently from the uniform distribution on {0 ≤ b ≤
d ≤ 1} as in Section 4.3. Our aim was to compute the persistence landscape distance matrix for
each of these and to see how the computation time scales with the number of birth-death pairs.
The computation times are illustrated in the Table 8.



14 PETER BUBENIK AND PAWE L D LOTKO

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1  0  1  2  3  4  5  6  7  8  9
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1  0  1  2  3  4  5  6  7  8  9
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1  0  1  2  3  4  5  6  7  8  9
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1  0  1  2  3  4  5  6  7  8  9
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1  0  1  2  3  4  5  6  7  8  9
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1  0  1  2  3  4  5  6  7  8  9
 0

 2

 4

 6

 8

 10

 12

 14

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1  0  1  2  3  4  5  6  7  8  9
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1  0  1  2  3  4  5  6  7  8  9
 0

 1

 2

 3

 4

 5

 6

 7

 8

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1  0  1  2  3  4  5  6  7  8  9
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Figure 6. Color plots of L1 (top), L2 (middle) and L∞ (bottom) distance ma-
trices for average persistence landscapes for points sampled from spheres in di-
mensions {2, . . . , 10} normalized so that average distance between points is 1, for
homological degree 0 (left), 1 (middle) and 2 (right).
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5. Specification of the implementation

An implementation of the presented procedures is available at the web page http://hans.

math.upenn.edu/~dlotko/persistenceLandscape.html.
The library is available as a programming tool and can be easily maintained by users who know

C++. However our aim is also to provide easy to use tools for users who are not familiar with
programming. Therefore a number of programs that use the library have been created for the
user’s convenience. Also in the future, when there is such demand, we plan to add new programs
to this collection. In this section, we describe the programs currently available and illustrate how
to use them on a toy example.

These programs have been compiled for Linux, Windows and OS X operating systems, and are
also available in the package. All the results described in this Section were obtained by using these
programs.
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5.1. Input and output files. The input data to these programs has one of three forms. It may
be a file containing a persistence diagram – a list of birth-death pairs. For example, the barcode
{(1, 4), (2, 3)} is encoded as follows.

1 4

2 3

It may also be a file containing a persistence landscape encoded as a sequence of critical points
in the following form. The first integer denotes the degree of the persistence diagram from which
the landscapes have been created. Then the sequence of critical points of λi follows after a string
#lambda_i. Below, is an example of the file format for the persistence landscape corresponding to
the persistence diagram {(1, 4), (2, 3)} in degree zero.

0

#lambda_0

1 0

2.5 1.5

4 0

#lambda_1

2 0

2.5 0.5

3 0

More generally, such an input file may encode a linear combination of persistence landscapes.
Finally it may be a file containing a list of names of files containing either birth-death pairs or
linear combinations of persistence landscapes. Due to its generality, this is a typical input for
programs presented in this library.

The output files consist of persistence landscapes and linear combinations of persistence land-
scapes as described above.

5.2. Toy example. Our toy test example for these programs is a set of files consisting of birth-
death pairs, which we now describe. For n ∈ {1, 2, . . . , 5}, let An denote the union of the circles
of radius one centered at (0, 0), (2, 0), . . . , (2n, 0). From An we sampled 50n points independently
using the uniform measure. To each of these points we added a uniform error sampled from
[−0.15, 0.15]2, see Figure 9 for example.
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Figure 9. Sample point cloud from 5-circle directory.

From this set of points, we calculated the persistent homology in degrees zero and one of the
corresponding Vietoris-Rips complex using Perseus [35]. This was repeated 11 times for each n.
The results are encoded in 5 directories (named 1circle,. . . ,5circle) each of which contains
2 × 11 = 22 files that each encode a persistence diagram of either degree zero or one. For the
further use in the programs the files containing homology in a particular degree are listed in a files
1circle_dim1.txt,...,5circle_dim1.txt . For example, the file 1circle_dim1.txt lists the
following files, each of which contains a persistence diagram.

1circle/points_1circle_example_0_persistence_1.txt

1circle/points_1circle_example_1_persistence_1.txt

1circle/points_1circle_example_2_persistence_1.txt

1circle/points_1circle_example_3_persistence_1.txt

1circle/points_1circle_example_4_persistence_1.txt

1circle/points_1circle_example_5_persistence_1.txt

1circle/points_1circle_example_6_persistence_1.txt

1circle/points_1circle_example_7_persistence_1.txt

1circle/points_1circle_example_8_persistence_1.txt

1circle/points_1circle_example_9_persistence_1.txt

1circle/points_1circle_example_10_persistence_1.txt

5.3. Average Persistence Landscapes. Let us describe ComputeAverage. The input parameter
is a file containing a list of files containing either persistence diagrams or persistence landscapes
from which an average landscape will be calculated. For example, one can call the program
computeAverages 1_circle_dim1.txt. As a result, a file containing the average landscape is
produced. The same procedure is tested for the remaining files and as a result we obtain ten files
with average landscapes.

5.4. Plots of landscape(s). In this section, we demonstrate how to generate output that can
be used to plot landscapes. The presented software does not have a built-in graphical engine, so
it instead creates gnuplot-readable files. To plot these, the user should install gnuplot [48]. The
program PlotOfLandscape takes as its first parameter the file name of a file containing either a
persistence diagram, a persistence landscape, or a linear combination of persistence landscapes.
The remaining two parameters give the range of landscapes which should be plotted. For a range
a, b, where a, b ∈ N and a < b the functions λa, λa+1, . . . , λb−1 will be plotted.

This program was used for each of the average landscapes computed in the Section 5.3 to obtain
the plots in Figure 10.

The program PlotsOfLandscapes has as its first parameter the name of a file listing files
containing persistence landscapes, with the remaining parameters the same as PlotOfLandscape.
It was used to produce Figures 3, 4 and 5.

5.5. Norms of landscapes. The program normsOfLandscapes computes norms of persistence
landscapes and linear combinations of persistence landscapes. The parameters of the program are:
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Figure 10. Average persistence landscapes in degree 1 from the toy example in
Section 5.2.

(1) the name of a file containing names of files containing persistence diagrams, persistence
landscapes, or linear combinations of persistence landscapes; and

(2) a real p ≥ 1, or p = −1 indicating which norm we want, where p = −1 represents the
supremum norm.

The output of the program is a list of the p-norms of the input landscapes.
Here we compute the p-norms of the average landscapes in degree one from Section 5.3.

p = 1 p = 2 p =∞
1-circle 846.959 126.715 27.3333
2-circle 1610.31 174.102 29.0833
3-circle 2462.29 214.864 29.6667
4-circle 3421.15 256.394 31.3333
5-circle 4080.41 278.459 30.5833

5.6. Distance matrix. In this section, we illustrate the usage of the program DistanceMatrix.
The parameters of the program are:

(1) A file with names of files containing persistence diagrams or persistence landscapes or
linear combinations persistence landscapes.

(2) An integer p. If p ≥ 1, then the Lp distance between landscapes will be computed. If
p = −1, the L∞ distance will be computed.

The output is a distance matrix in a text file.
For example, calling the program DistanceMatrix with the parameters 1_circle_files.txt 2

produces the following.

0 106.729 161.55 207.872 239.638

106.729 0 104.46 160.555 199.336

161.55 104.46 0 105.577 152.975

207.872 160.555 105.577 0 97.8873

239.638 199.336 152.975 97.8873 0

5.7. Permutation test. The permutation test was explained in the Section 4.1. Our program
PermutationTest performs a permutation test for each pair in a list of lists of persistence diagrams
or persistence landscapes, and outputs a matrix of p-values. Its parameters are
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(1) a positive integer M being the number of files with the input persistence intervals or
landscapes;

(2) M names of files with the input persistence diagrams or persistence landscapes. Each file
is supposed to contain data from the same class, two different files are supposed to contain
data from two different classes,

(3) Positive integer N indicating the number of tries in the permutation test,
(4) An real number p ≥ 1 indicating which distance is to be used in the procedure (or p = −1

for the L∞ distance).

Please note that this procedure usually takes a lot of time. Therefore, after each step a message is
outputted to the screen so the user can verify that the program is progressing.

As a sample test we have used all the files with persistence intervals for the Ncircle for N ∈
{1, . . . , 5}. In this case all p-values are 0 which is what one should expect given how different the
persistence landscapes of the different classes are.

5.8. A classifier based on a single dimension. In this section, present a simple implementation
of a nearest-neighbor classifier based on persistence landscapes. This is just one possible example
of topological statistics in classification. There are many other ways to perform this task using the
software described here. For example, one may apply a support vector machine (SVM) [19] to our
distance matrix. Our classifier is implemented in the program ClassifierBasedOnSingleDimension.

The classifier proposed in this paper is based on the following idea. Suppose we are given a
training set consisting of N sets of persistence diagrams or persistence landscapes T1, . . . , TN . To
start, we calculate the average landscape Av1, . . . , AvN for each of these classes. Then a sequence
of M landscapes l1, . . . , lM are given to classification. We give two options:

(1) for lj the program can return an index i ∈ {1, . . . , N} such that the Lp distance, for a
chosen p, between lj and Avi is the smallest one; or

(2) for lj the program can return a vector of pairs (distance, number of class) sorted according
to the first coordinate.

The usage of the program ClassifierBasedOnSingleDimension is determined by the first
parameter which is one of -construct, -classify, or -both.

If the first parameter of the program is -construct, the program will construct the average
landscape of each class and write it to a .lan file in the same folder where the program is located.
In this case the parameters of the program are:

(1) An integer N indicating the number of classes in the training set,
(2) N names of files with each listing files for one of the classes in the training set.

In this case the program will write N .lan files with the average landscapes of the N input
classes. Those average landscapes can be later used by the program to perform classification when
the -classify parameter is used.

If the first parameter of the program is -classify, it is assumed that the average landscapes
have already been created (by using -construct option). In this case the parameters of the
program are:

(1) A positive integer N indicating how many classes there are in the considered data,
(2) The name of a file listing with names of files which are to be classified,
(3) A real number p ≥ 1 indicating which norm is to be used in classification (with p = −1 for

the supremum norm),
(4) A parameter q valued 0 or 1. If q = 0, then for each input persistence diagram or persistence

landscape the best matching cluster will be computed. If q = 1, the distances to all averages
will be calculated.

If the first parameter of the program is -both, then the program both computes the averages of
the training set and classifies the test set in one run. In this case the parameters of the program
are:
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(1) A positive integer N indicating how many classes there are in the considered data,
(2) N names of files with each listing files for one of the classes in the training set,
(3) The name of file listing the names of the files which are to be classified,
(4) A real number p ≥ 1 indicating which norm is to be used in classification, with p = −1

indicating the supremum norm,
(5) A parameter q valued 0 or 1 as above.

In the latter two cases the result of the classification is written to the output file classification.txt.

In order to test the classifier we have used the persistence diagrams in degree 1 calculated in
Section 5.2. For each class, half of the persistence diagrams were used as a training set and the
other half were later classified.

The file listing the files to classify contains the names of all the files which not used in the training
set. The files come from 1circle, . . . , 5circle, in order. The results of the classification which
outputs only the best matching element are presented below (the formatting has been adjusted to
make the interpretation easier).

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 3 4 4 4 4

5 5 5 5 5 5

Clearly the classification works very well except from the second case in 4circle where we get the
wrong result. To understand the reason for the mismatch we went back to the data and it turned
out that one of the intervals corresponding to a circle lived for relatively short time.

When we ask for all the matchings sorted from the best to the worst, we obtain the following.

(1,25.7761) (2,112.082) (3,157.937) (4,221.667) (5,245.942)

(1,12.6717) (2,106.274) (3,153.505) (4,217.975) (5,242.595)

(1,30.1331) (2,113.974) (3,159.168) (4,222.937) (5,246.981)

(1,28.2563) (2,103.435) (3,151.521) (4,214.832) (5,240.057)

(1,8.75305) (2,105.84) (3,153.331) (4,217.686) (5,242.4)

(1,16.3392) (2,102.7) (3,151.279) (4,214.909) (5,240.174)

(2,14.6244) (3,94.3967) (1,103.247) (4,171.567) (5,201.18)

(2,15.1085) (3,92.8038) (1,110.353) (4,169.847) (5,199.583)

(2,31.1131) (3,95.2895) (1,114.885) (4,172.342) (5,201.316)

(2,18.2292) (3,91.73) (1,119.7) (4,168.167) (5,198.167)

(2,18.1967) (3,97.6503) (1,102.252) (4,175.141) (5,204.504)

(2,7.55125) (3,95.2824) (1,104.178) (4,172.385) (5,202.242)

(3,32.8958) (2,111.348) (4,119.572) (5,159.077) (1,164.645)

(3,47.7613) (2,105.823) (4,133.652) (1,147.63) (5,170.639)

(3,24.6762) (2,108.863) (4,112.403) (5,153.737) (1,168.976)

(3,30.7744) (4,111.813) (2,117.509) (5,153.46) (1,169.289)

(3,51.5379) (4,106.492) (2,134.136) (5,148.542) (1,188.623)

(3,56.3067) (4,107.379) (2,137.143) (5,148.599) (1,191.934)

(4,48.5611) (3,93.7973) (5,110.772) (2,146.115) (1,194.061)

(3,70.4748) (2,82.7482) (4,125.726) (1,141.654) (5,163.054)

(4,28.5243) (5,100.564) (3,112.561) (2,161.836) (1,206.81)

(4,42.9319) (5,102.437) (3,149.733) (2,199.963) (1,240.67)

(4,29.0048) (5,98.0904) (3,134.157) (2,184.933) (1,231.01)

(4,21.3686) (5,98.1081) (3,121.138) (2,171.799) (1,217.63)

(5,40.7872) (4,100.327) (3,139.263) (2,180.146) (1,223.318)

(5,47.0829) (4,119.938) (3,191.276) (2,234.445) (1,272.311)
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(5,28.9991) (4,91.9347) (3,154.484) (2,196.559) (1,234.49)

(5,38.7583) (4,117.984) (3,172.077) (2,212.901) (1,249.565)

(5,44.8902) (4,86.6282) (3,131.766) (2,180.086) (1,220.9)

(5,24.9582) (4,105.167) (3,162.33) (2,203.913) (1,238.713)

So except for the one outlier, the results are exactly as one would expect.

5.9. A classifier based on all dimensions. We have another classifier, ClassifierBasedOnAllDimensions,
similar to the one presented in Section 5.8 that uses persistence data from more than one degree.

6. Exact versus grid based computations.

In this section, we discuss the pros and cons of exact and grid-based computations of persistence
landscapes. We do not provide comparison times, since it is not clear what dataset is the right
benchmark for such comparisons. For a persistence diagram with a great number of points concen-
trated in a small region, then a grid-based implementation should be faster. On the other hand,
for a persistence diagram in which points appears at a wide range of birth and death parameters,
an exact implementation will be superior. This is because representing such a landscape with a
reasonable grid spacing (i.e. reasonable accuracy) will require a very large grid. We encourage
the users of the Persistence Landscape Toolbox to experiment with both strategies and to pick
the better one for the data at hand. To change a software mode from exact computations to a
grid-based computations, please modify the self-explanatory file configure in the main folder of the
library.

We now discuss error bounds for grid-based estimates of persistence landscapes. The persistence
landscape and average persistence landscape are piecewise-linear functions with slopes between −1
and 1. Therefore for each point (x, y) in the plot of a landscape, the landscape will lie between
the lines through (x, y) having slope ±1. Now consider two points in the landscape (x0, y0) and
(x1, y1) such that x0 and x1 are consecutive points in the grid. Then the persistence landscape
between those two points will lie in the intersection of the cones for (x0, y0) and (x1, y1). These
intersecting cones are illustrated in Figure 11. We assume that the grid-based estimate of the
persistence landscape is a piecewise linear function through the points obtained by evaluating the
persistence landscape on the grid.

Figure 11. Exact versus grid-based estimate of the persistence landscape. The
underlying persistence landscape is given by the black lines. The blue dots in
the x-axis indicate the grid points. The corresponding red dots in the plot of the
persistence landscape give the values at the grid points. The dashed line is the
estimated persistence landscape. The blue regions indicate the intersection of the
cones in which the persistence landscape is guaranteed to be located.

From the grid and the corresponding values of the persistence landscape one can bound the
error. If the grid has spacing δ, then the L∞ error is bounded by δ

2 . The L1 error is bounded by
half the sum of the areas of the rectangles described above. If the grid has size m and there are

K nonzero persistence landscape functions, then this is bounded by K(m− 1) δ
2

4 .
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Even though the slope of an average landscape may be any real number between −1 and 1, in
our experience, the slope is often far from the extreme possible values. Therefore the error bounds
above may be large overestimates.

7. Configuration of the library.

The Persistence Landscape Toolbox library is a collection of C++ programs. Each file with the
.cpp extension contains a ready-to use program. For a description of its functionality and required
parameters, please run the program without any parameters. There is a configure file which needs
to be present in the folder in which a program is run. This file contains basic configuration
parameters for the library. In this file one can set up the constant which represents infinity. The
library assumes that the input file consists of a collection of numbers as described in the Section 5.1.
To encode infinite intervals, the infinities have to be changed to a ”magic number” which is defined
in the configure file. There one can find various options for what can be done with the infinite
intervals. This file also allows one to switch the library from the default exact mode to a grid-
based mode. If a grid-based mode is used, the user should set up the parameters of the grid in the
configuration file.

8. Conclusion

To conclude, we have provided asymptotically optimal algorithms for computing persistence
landscapes, averaging them and calculating distances between (average) persistence landscapes.
We have implemented these algorithms and demonstrated how they may be used for hypothesis
testing and classification. We hope that they will of use to the (topological) data scientist.

Furthermore, this is not intended to be the end of the story. In future work, we aim to improve
these algorithms and related software and increase their usefulness.

Appendix A. Persistence landscapes for barcodes with infinite intervals

We can extend the definition of the persistence landscape in Section 1 to birth-death pairs (b, d)
with −∞ ≤ b < d ≤ ∞ using the following definitions.

f(−∞,d) =

{
0 if x 6∈ (−∞, d)

−x+ d if x ∈ (−∞, d)

f(b,∞) =

{
0 if x 6∈ (b,∞)

x− b if x ∈ (b,∞)

f(−∞,∞)(x) =∞

Algorithm 4 is a generalization of Algorithm 1 that constructs the persistence landscape from
a barcode that may contain infinite intervals.
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