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Abstract 

This article tackles the topic of drag detection for flow past a sphere, focusing on response for 

viscoelastic shear-thinning fluids, in contrast to constant shear-viscosity forms, both with and without 

extensional-viscous dissipative contributions. The work extends that previously of Garduño et al. [1], 

where experimental levels of resultant drag-enhancement were captured for Boger-fluids, using a new 

hybrid dissipative viscoelastic model. This advance was based on Finitely Extensible Non-linear 

Elastic and White-Metzner constructs, where the level of extensional-viscous material time-scale had 

to be considerably raised to provide strong strain-hardening properties. The new dissipative model 

drag findings are: - for low-solvent systems, all such models reflect only significant drag-reduction, 

with barely any distinction from base-level dissipative-factor response. Such systems consistently gave 

considerably more pronounced decline in drag than for their high-solvent counterparts. Alternatively, 

under high-solvent systems (as in Boger fluids), the general observation for all four such dissipative 

models, is that after an initial-decrease in drag, a second-increasing trend can be extracted. This lies in 

stark contrast to base-level, null dissipative-factor drag findings, where only drag-reduction could be 

observed. Yet consistently, the inclusion of shear-thinning is reflected in the overall lowering of drag 

levels. Nevertheless, strong terminating drag-enhancement can be generated under larger dissipative-

factor setting for dissipative-EPTT (shear-thinning, strain-hardening/softening), only slightly 

suppressed from that for dissipative-FENE-CR (constant shear-viscosity, strain-hardening/hardening-

plateau). Other dissipative-{FENE-P, LPTT} variants, showed encouraging trends towards drag-

enhancement, but unfortunately suffered from premature solution stunting, and hence, were restricted 

in accessible range of deformation-rates. In addition, an increase in geometry aspect-ratio, generally 

provokes elevation of drag, but only under high-solvent state, and hence only then, leads to evidence 

for stimulating drag-enhancement. 

Keywords: Flow past a sphere, Boger fluid, shear-thinning fluid, dissipative time-scale, 

swanINNFM(q)-model 

                                                        
* Corresponding Author. E-mail address: m.f.webster@swansea.ac.uk 



 2 

1. Introduction 

This paper is a natural continuation to our earlier work in predicting flow past a sphere and capturing 

experimental levels of resultant drag for Boger fluids (see [1]). There, a new dissipative viscoelastic 

model was proposed, emerging from a combination of Finitely Extensible Non-linear Elastic (Chilcott 

and Rallison [2] and White and Metzner [3] models, termed swanINNFM(q). Constructively, such a 

model proved capable of generating considerable extensional viscosity response, and hence, 

counterpart drag-enhancement. In addition, variation of drag with respect to geometric aspect-ratio and 

solvent-fraction systems was also addressed, where both factors were found to influence and regulate 

drag-response. This new model has also been successfully trialed on other flow problems and 

deformation settings, such as on contraction-expansion flow and sharp-corner contraction flow, where 

experimental enhanced pressure-drops have been sharply captured ([4, 5]). Here, the major goal is to 

enter virgin territory, and pursue in contrast to constant viscosity fluids, the relative position on drag-

response for fluids with varying levels of shear-thinning. The implication from general findings is that 

if drag-enhancement is to be gathered for larger Weissenberg number flows, the level of extensional-

viscous material time-scale (dissipative base-factor parameter) must be considerably raised. In this 

respect, the fluid rheology plays a major role, and in particular, strong strain-hardening properties are 

crucially important.  

The present research compares and contrasts drag response for a variety of fluid compositions and 

geometry-ratio flow specifications. A principal aim here has been to examine the impact of rheology 

on drag - through first, shear-thinning influence, and then extensional response, whilst incorporating 

strain-hardening to strain-softening properties. That is, taken alongside high-solvent and low-solvent 

fluid constitutions. The whole is accomplished by suitable model combinations, with and without 

additional dissipative components, selected from constant viscosity FENE-CR, to shear-thinning 

offerings, from FENE-P and PTT (Exponential and Linear). In addition, three geometry aspect ratios 

are considered to address increased severity in extensional deformation, covering a computational-

benchmark base-case (aspect ratios of sphere:tube radii, 
0 5sphere .

 
 
, tightest-fit), and two others of 

0 4sphere .
 (medium-fit) and 

0 2sphere .
 (loosest-fit). 

In this area, a significant contribution was made to the subject by Tamaddon-Jahromi et al. [6], in 

selectively including the effects of shear-thinning, through suitably chosen models from the class of 

Phan-Thien/Tanner (PTT) [7] models, with cross-reference to FENE-CR and Oldroyd-B models. 

There, the authors argued that the drag-reduction observed through Linear LPTT predictions, could be 

primarily attributed to the influence of shear-thinning ( s ). 



 3 

One notes the literature coverage in Garduño et al. [1] on the constant shear-viscosity flow problem, 

and comparison therein, to the experimental Boger-fluid data of Jones et al. [8]. Consulting the 

literature more widely, a range of constitutive models have been employed in the prediction of drag, 

encountered as a consequence of flow past a sphere, of both analytical and computational form, whilst 

involving some depth of comparison to counterpart experimental findings; see for example, Walters 

and Tanner [9], Owens and Phillips [10], Tanner [11], and McKinley [12]. In an alternative set of 

experimental studies, Chen and Rothstein [13] measured the flow field around a sphere (aspect ratios 

of 0.0625 and 0.125) falling in a column of a wormlike micelle fluid-solution. For this purpose, the 

working fluid was characterized in both shear and transient homogeneous uniaxial extension. There, 

initially and at low deformation-rates, the fluid showed drag-reduction upon increasing Deborah 

number, which was attributed to shear-thinning effects. Yet, as the Deborah number was increased 

somewhat further, the establishment of a strong extensional flow in the wake of the sphere stimulated 

drag to increase, and to exceed that of an equivalent zero-shear-viscosity Newtonian fluid. Moreover, 

concerning the related problem of flow of Newtonian and non-Newtonian fluids around a circular 

cylinder, Coelho and Pinho [14] reported measurements of pressure on the cylinder surface. There, the 

non-Newtonian fluids were composed of aqueous solutions of CMC and tylose, that displayed varying 

degrees of shear-thinning and elasticity, at weight concentrations of 0.1–0.6%. Such experiments 

incorporated the transition to and with shear-layer transition regimes. These authors found that, for low 

Reynolds numbers flows, elasticity within the shear layers was responsible for an increase in drag 

reduction with rise in polymer concentration. Accordingly, the increase in wake-angle and pressure-

rise coefficient for the more concentrated solutions, reduced the consequent drag-coefficient by 

narrowing the near-wake. For the case of the tylose solutions, good correlation was detected between 

the elasticity number and the mean pressure-rise coefficient. Furthermore, in the experimental work of 

Mendoza-Fuentes et al. [15], drag-correction factors were calculated for the creeping motion of 

spheres descending in various associative polymers. Different polymer concentrations were tested, for 

various sphere-container ratios and flow Weissenberg numbers. There, no increase in the drag-

correction factor could be deduced, which was argued to be due to the simultaneous and opposing 

effects of extension-thickening and shear-thinning viscosity.  

Furthermore, in experiments with a PAA/CS Boger fluid¸ Chhabra and Uhlherr [16] has found that for 

small values of 
0 3sphere a R . 

 
 
(ratio of sphere to tube radius), increasing fluid elasticity resulted in 

a reduction in the wall-drag and a rapid increase in the settling velocity at moderate Deborah number 

which asymptotically approached the value observed in the unbounded domain. In addition, in Arigo et 

al. [17], both experimental measurements and numerical predictions indicated that the wall correction 

factor for the motion of a sphere through a viscoelastic fluid is a sensitive function of the geometric 
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aspect-ratio and the Deborah number (more than one ratio). These authors showed that non-Newtonian 

response, in the strong extensional flow near the rear stagnation-point, results in the formation of a 

pronounced viscoelastic wake (extending up to 30 sphere radii behind the sphere) and a downstream 

shift in the streamlines. The measurements of the drag correction factor for 
0 25sphere a R . 

 
confirm 

the trends observed in earlier measurements with PIB/PB Boger fluids of Jones et al. [8] and Becker et 

al. [18]. Their measurements of the wall correction factor and fluid velocity field at high 0 4a R .  

also corroborated the conjecture of Jones et al. [8] - that the wall correction factor apparently decreases 

below the Newtonian value. It was argued that this was due to the rapid non-linear reduction in the 

settling velocity at high a/R, and the resultant lowering of the effective strain-rates, near the rear 

stagnation-point and in the downstream wake of the sphere. 

Concerning other major findings on Boger fluids, Rasmussen and Hassager [19] used a Lagrangian 

finite element method and a Rivlin-Sawyers constitutive equation, to simulate the transient 

sedimentation of spheres in polymeric liquids. Calibrated against experiments with a PIB/C14/PB test-

fluid (of Becker et al. [18]), computational solutions over-predicted observed drag, noting about 21% 

drag increase at a Deborah number of 4.55, on account of the elongational flow in the wake region. Jin 

et al. [20] presented an extended EEME/SUPG formulation covering UCM and the PTT steady 

solutions in the absence of solvent viscosity. Findings for the UCM model agreed well with those of 

Lunsmann et al. [21], up to a Weissenberg number 2. Solution reported for the PTT model, up to a 

Weissenberg number of about 4.5 displayed only drag-reduction, argued as due to shear-thinning 

response. Song et al. [22] used commercial software (COMSOL) to solve the same flow problem for 

four constitutive models (Newtonian, Carreau, Oldroyd-B and PTT), establishing good agreement 

between their calculations and the literature. Incorporation of either shear-thinning or elasticity led to a 

decrease in drag-coefficient. Moreover, a velocity-overshoot was observed in the wake on the flow-

centreline, resulting from interaction between contributions from shear-thinning and elasticity. Zheng 

et al. [23, 24] used a boundary element method to examine the influences of inertia (Reynolds numbers 

from 0 to 150), shear-thinning and fluid-elasticity (with a PTT model), contrasting predictions against 

those for inertial Newtonian fluids and inelastic non-Newtonian fluids. Relatively speaking, shear-

thinning and elasticity led to drag-reduction, whilst inertia (Reynolds number rise) promoted drag-

enhancement. 

Abedijaberi and Khomami [25] employed multiscale flow simulation for a highly-elastic dilute 

polymeric solution. Through comparisons with Boger Fluid steady-state experimental measurements 

(of solvent fraction 0.59), they demonstrated the predicted growth-evolution of drag coefficient as a 

function of fluid elasticity (for various models, multiscale and single-scale). The experimental data 

was accurately predicted at high Wi (beyond 4), when using realistic multi-segment micromechanical 
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models; noting the early dip for Wi<1 and subsequent rise to enhanced levels for Wi>2. Notably, 

macromolecular dynamics is described under such micromechanical models, whilst also the transient 

extensional viscosity of the experimental fluid is closely captured (theoretically) at high extension 

rates. Some shear-thinning predictions with FENE-P were also provided, but these indicated only 

modest rise in drag coefficient beyond their Wi~1, approaching the unity drag coefficient reference 

line, whilst plateauing by Wi~6. 

 

A recent contribution to this topic on shear-thinning/viscoelastic fluids is by Housiadas and Tanner 

[26]. Their analytical work consists of high-order perturbation solutions for steady sedimentation of a 

sphere in a viscoelastic fluid. Key conclusions drawn from that work lie in agreement with present 

findings in that: after an initial decrease in drag force, predicted at small Deborah numbers (De), 

subsequently there is significant drag enhancement, at larger Deborah numbers. Nevertheless, for large 

De>0.8, and values of PTT
>0.3 ( PTT

, PTT rheological parameter), these analytic perturbation 

solutions were found to predict negative wakes around the equator (which were taken as analytically 

invalid, according to their positive definiteness criteria supplied in [26]). Our experience on this issue 

is that, when a full-solution evolution is attempted, as in López-Aguilar et al. [27, 28], such a localised 

loss of positive definiteness may arise consistently within complex inhomogeneous flow. This may be 

stimulated by a flow singularity, for example as here, without destroying the global steady-state 

solution. Indeed, this is necessary to support intermediate Wi-solution development through steady-

states, see López-Aguilar et al. [27, 28]. 

 

2. Governing equations and flow problem 

Under incompressible isothermal conditions, the behaviour of viscoelastic flow is governed by the 

fundamental principles of conservation of mass and momentum. In non-dimensional form, these are 

respectively given as: 

0 u           (1) 

 


   


Re Re p .
t

u
T u u

       (2) 

Here, a spatial-temporal bounded domain is considered, with x and t taken as the associated spatial and 

time coordinates; field variables , pu  and T represent fluid velocity, hydrodynamic pressure and stress 

tensor expressed as:  

solvent
2   p s p  d .T   

       (3) 
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The stress tensor decomposes into two parts, a polymeric extra-stress contribution (p) and a 

Newtonian stress contribution (s). Here, 
 † 2  d u u

 represents the rate of deformation tensor, 

where superscript † denotes tensor transpose. In addition, the non-dimensional group number of 

Reynolds number may be defined as 
 0char charRe U L  

, with characteristic scales of charU
 on fluid 

velocity (terminal velocity of the sphere), and charL a
 (sphere radius) on spatial dimension. In 

addition,   represents the material density and reference viscosity 
 

 is characteristic viscosity 

taken as a zero shear-rate viscosity ( 0 p s   
). Here, p is a polymeric viscosity and s  is a 

solvent viscosity component, so that a solvent-fraction can be expressed as ( solvent 0s  
). 

2.1 Constitutive modelling: FENE-CR, FENE-P, PTT, FENE/PTT, swanINNFM(q) [sIq] models 

Chilcott and Rallison [2], and Phan-Thien and Tanner [7] constitutive models can be solved in two 

forms, either stress tensor or configuration tensor form. In our earlier study (Tamaddon-Jahromi et al. 

[6], the LPTT fluids utilised the stress tensor form and critical stress states achieved were for much 

lower elasticity levels (Wi≤4.5, see below for definition). As a consequence, the current work utilises a 

configuration tensor form of the PTT and FENE-CR models, in contrast to the specific stress tensor 

form. Moreover, one seeks a constitutive model that leads to a constant shear viscosity (FENE-CR) 

and the influence of shear-thinning (hence advent of PTT) in the context of strain-hardening/softening 

properties. Strain-softening is introduced via EPTT solutions in contrast to strain-hardening properties 

of LPTT and FENE-CR. Following Garduño et al. [1], Tamaddon-Jahromi et al. [4, 29], and López-

Aguilar et al. [5], and the constitutive equation for the FENE-CR and PTT models (see associated 

rheometrical functions in Figure 1) provide the following expression through a conformation 

transformation and a configuration tensor A, as: 

( ( ))( ) 0.A A I


  Wi f Tr        (4) 

Here, 



  is the upper-convected material derivative of stress (A), defined by  

†
( ( ).u u) u


        
t

 
   

       (5) 

The corresponding ( ( ))Af Tr  for the FENE-CR, FENE-P (Chilcott and Rallison [2], and PTT (Phan-

Thien and Tanner [7]) are given by: 

 

2

1
( ( ))

1 ( )
A

A



FENE

f Tr
Tr / L

   FENE-CR, FENE-P  (6) 
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 ( ( )) 1 3A A- 
LPTT

f Tr Tr
   LPTT,    (7) 

and 
  ( ( )) 3A A -

EPTT
f Tr exp Tr

  for EPTT.   (8) 

Above, I is the identity tensor,
 

FENEL
 is extensibility parameter for FENE-CR model, and PTT

 is the 

constant parameter for PTT model, which governs the non-linear function ( ( ))Af Tr . Both parameters 

mainly dictate severity in strain-hardening. 

One notes that, for the FENE-P model eq. (4) is amended to: 

( ( )) 0 .A A I


    Wi f Tr
       (9) 

Then, typically, the following Kramers’ expressions relate stress and configuration tensors Garduño et 

al. [1]: 
solvent

solvent

for FENE - CR

for FENE - P

(1 )
(Tr( )(

(1 )
( (Tr( )

A A - I)

A A -I)







f
Wi

f
Wi








.               (10) 

Furthermore, following [1, 4, 5, 29], a combination of FENE-CR and PTT models with the extensional 

White-Metzner model, has also been investigated (see related rheometrical functions in Figure 1). The 

new resulting class of swanINNFM(q) models may be expressed as: 

solvent

solvent

(1 )
f (Tr( ))( ( ),

,

2 ( )

A A - I)







 



p

p s

s

Wi


 

  

T

d,



 


                (11) 

Where  is the invariant extensional strain rate defined as 3 d d/


  III II , with second (
IId ) and third 

(
IIId ) invariants of the rate-of-deformation tensor taken as, 

 
   

1
tr

2
 

d d
, det2II d III d

.                 (12) 

Here, 
  

 is taken as a quadratic truncated-approximation of the full cosh-exponential form, defined 

as 
   

2
1 D    

, with a dissipative material time-scale parameter of 
 D  as in [1]; see [4] for 

alternative dissipative function forms. 
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The swanINNFM(q) model was originally developed to tackle various key unsolved benchmark 

viscoelastic flow problems, via a continuum-based differential formalisation, whilst seeking validation 

against existing well-founded experimental evidence. The benefits and advantages of this proposed 

new swanINNFM(q) model are: it displays the desired rheometric properties of: constant shear 

viscosity, finite extensibility (with a bounded extensional viscosity reaching an ultimate plateau), and a 

first-normal stress-difference weaker than quadratic. It has already proven well capable of capturing 

the elevated levels of some experimental data constituting enhanced pressure drops in contraction 

flows [4, 5] and drags in settling flows [1]; to date, this has not proven possible with any other 

continuum-based model. The model is derived from two highly reputable rheological models (FENE, 

White-Metzner). By necessity, an additional rheometric parameter, 
 D , is required, which may be 

derived from extensional rheometry. 

The non-dimensional group Weissenberg number is defined as 1 charWi U L 
, with dependency upon a 

single relaxation time ( 1 ), charU
 is a characteristic velocity (terminal velocity of sphere, U ) and L  is 

a characteristic length-scale (generally interpreted as the radius of sphere). In this form, one might 

increment the Weissenberg number (Wi) in numerical computations, by raising U a  at fixed fluid 

relaxation time, 1 .  

In addition, taking sphere 0 5.
 as a base-instance of geometry and whilst adjusting geometric aspect-

ratio through the length-scale (sphere-radius, or equivalently, of tube), one may obtain a functional 

relationship between the Weissenberg numbers for the three independent geometric aspect-ratios 

employed, to derive a common reference and basis for interpretation. So that with, 

spheresphere
0.50.5 1 U  Wi a 

, 

spheresphere
0.40.4 1 U  Wi a 

,                (13) 

sphere sphere0.2 0.21 UWi a 
 


.
 

Then, it follows that: 
sphere sphere

spheresphere

0.5 0.5

0.40.4

U 1
1.25

U 0.8

 



  
Wi a

Wi a

 


,
 

sphere sphere

spheresphere

0.5 0.5

0.20.2

U 1
2.5

U 0.4

 



  
Wi a

Wi a

 


.
                (14)

 



 9 

2.2 Material functions: PTT/FENE-swanINNFM(q) models 

The rheometrical response for the base-models, LPTT, EPTT, FENE-CR, FENE-P, and new models, 

FENE/PTT swanINNFM(q), are displayed in Figures 1 and 2. The particular model parameters 

selected for consideration are those covering high and low solvent-fraction fluids, solvent
={0.9, 1/9}, 

and those for dissipative factor 
 0 0  0 1  0 2D . , . , .

. Here, the present study isolates and resolves 

rheological differences, where the parameters selected are used to draw out the individual influences of 

shear-thinning, strain-hardening, strain-softening and strength of solvent-fraction, respectively. This is 

accomplished by appealing to comparative results for FENE-CR (constant shear-viscosity), FENE-P 

and PTT (shear-thinning viscosity) models (see Figure 1a). In this respect, matching extensional 

viscosity response has been configured, for both FENE-CR(L=5) and FENE-P(L=5) models, against 

that for the PTT models, at a parameter value of PTT
=0.042 (moderate-hardening scenario). The 

FENE-P response is employed as somewhat of a ‘tracker’ of LPTT response, under viscometric flows. 

Initially, solutions for EPTT and LPTT models were generated with solvent
=0.9 (90%, Figure 1a), at a 

peak plateau-level of extensional viscosity characterized by 
 0 042PTT .

. In terms of shear 

viscosity, the LPTT (and FENE-P) fluid possesses almost the same characteristics as an EPTT fluid 

(same parameters), with the exception that EPTT response thins a little faster than with LPTT; the key 

distinguishing feature lies in their respective extensional viscosities. Then, the switch of solvent-

fraction to solvent
=1/9 (~10%, Figure 1b), reduces the second-plateau of shear-viscosity to relatively 

low-levels, thus stimulating a considerable increase in the rate of shear-thinning. In addition with 

change of solvent-fraction, there is a reduction in the second-plateau of EPTT extensional viscosity, 

which exaggerates the rate and degree of strain-softening. Note that under LPTT solutions, any strain-

softening characteristics are suppressed, so that extensional viscosity level increases up to a 

terminating plateau at high extension-rates, where the level depends on the PTT
–parameter selected. 

This level is itself amplified by one decade with switch of solvent-fraction to solvent
=1/9. 

Typical rheometric behaviour is also matched in first normal stress-difference (see Figure 1b). Here, 

noted differences arise in 1N
 at rates above {5x100 units, solvent

=0.9} and {101 units, solvent
=1/9}, 

when comparing the four base-models of EPTT, LPTT, FENE-P and FENE-CR. Above these rates, 

significantly larger 1N
-values (by one decade) are observed at higher rates under the highly-polymeric 

state of solvent
=1/9, when compared against that for solvent

=0.9. The peaks and limiting high-rate 1N
-



 10 

values vary, and are weakest for EPTT, less than LPTT, which itself is weaker than FENE-CR. Note 

that, almost identical 1N
-values are observed between LPTT and FENE-P models.  

Furthermore for the new proposed models, only extensional viscosity response is affected. This is 

shown in Figure 2, comparatively between values of D =0.1 and D =0.2, and also with cross-reference 

to base-response with D =0.0 at each individual level of D . This also implies that for any given fluid 

and its rheometric data, that the D -parameter may be determined by fitting to the extensional 

viscosity. Again, both solvent-fraction data are represented, that display up-scaling by one order from 

solvent
=0.9 to solvent

=1/9, following trends as above. Here, an increasing trend in e  is clearly apparent 

for new swanINNFM(q) forms, when compared to their base-forms, FENE-CR and PTT. Focusing on 

the more exaggerated comparison between D =0.2 and D =0.0 data, one observes departure from e -

plateau limiting-form to ultimate strain-hardening, at rates of {101 units, solvent
=1/9} and {100 units, 

solvent
=0.9} with FENE and LPTT variants. At comparable rates, the switch in EPTT-response is from 

strain-softening to strain-hardening; hence, more striking. Then, with elevation of dissipative factor 

from D =0.1 to D =0.2, essentially only the hardening-level is raised, to ultimately about half a 

decade. For larger values of 
0 5D .

 and 
1 5D .

, one may refer to Garduño et al. [1] for more detail 

on material response under swanINNFM(q) with FENE-CR. 

3. Problem specification and numerical approximation 

In this work, three different geometric-problems are selected for study, with sphere-to-tube wall radii 

aspect-ratios of 
 sphere 0 5  0 4  0 2. , . , .

. Here, sphere radius (size/mass) is considered as constant and 

tube-radius is the actual length-scale adjusted, to provide the relevant aspect-ratios. Corresponding 

schematic diagrams for the various geometric configurations are provided in Figure 3a. The 

sphere 0 5.
 meshing used reflects 2687 quadratic elements and 5610 nodes with 35122 degrees of 

freedom. One may refer to Garduño et al. [1] for further detail on meshing for the falling sphere 

problem, which provides a mesh refinement analysis for some typical base-case studies (see Figure 3b, 

Table 1); and below, under the refined mesh solutions of Figure 5. In addition, two values of 

sphere 0 9.
 and sphere 1 9

 are also considered. Steady creeping flow is assumed (Re≈10−2) and as a 

result, the momentum convection term contribution is negligible. The flow is assumed to be 

axisymmetric and the frame of reference is moving with the sphere. Hence, for ease of computational 

implementation, the tube wall is assumed to move past the sphere at a constant velocity. In this work, 



 11 

the dimensionless drag force on the sphere is evaluated by integrating the pressure and stress 

components over the sphere surface that may be represented as: 

        2

s rz zz

0

D 2 R T sin T p cos sin d



       
              (15)  

The so-called Stokes drag force on a sphere falling in an unbounded Newtonian fluid is given by 

sD 6 R U  
. Here, sR a

 is the sphere radius, whilst   is the viscosity of the fluid and 
U  is 

the fluid velocity far from the sphere. The drag coefficient is then defined through 
K D D

. Note 

that, the drag correction factor (K/KN) shown in the results section is due to adjustment in base KN-

values (Newtonian-drag). 

3.1 Numerical discretisation 

Hybrid finite element/finite volume scheme: The numerical technique employs a hybrid combination of 

semi-implicit Taylor-Galerkin/incremental pressure-correction algorithm, to discretise and solve the 

momentum-continuity governing equations, with a cell-vertex finite volume sub-cell technique for 

stress. The base finite element technique has appeared previously in Carew et al. [30] in its various 

stages of derivation; the novel algorithmic aspects here centre around the finite volume stress 

approximation. Herein, only a brief description of the procedure and steps is presented. The scheme 

incorporates a time-stepping procedure and a fractional-staged equation methodology over each time-

step. The fractional equation procedure is represented in some three phases: first, a mass-matrix form; 

second, a Poisson-equation type; and third, a corrected mass-matrix form. The numerical solvers 

include a Jacobi iteration method for the first, third stage, performing three mass-matrix iterations per 

step, and a direct Choleski decomposition method at stage two. For a reasonable balance between 

accuracy and stability, a time-step of 10-4 is adopted throughout all calculations. The velocity field 

introduces a finite-element piecewise continuous approximation based on quadratic shape functions, 

and the pressure field is approximated similarly by linear shape functions.  

Sub-cell finite volume stress discretisation: For the configuration stress-variable tensor, a triangular-

subcell cell-vertex finite volume approach is developed (Wapperom and Webster [31]; Aboubacar and 

Webster [32]; Webster et al. [33]; Belblidia et al. [34, 35]), where a parent-triangular finite-element is 

sub-divided into four finite-volume subcells (child-triangles). The individual components of the 

configuration stress-variable tensor are then approximated by linear shape functions over each 

subtended triangular finite-volume (fv) child-subcell. This is accomplished via integral flux and source 

term evaluation over each finite volume triangular sub-cell. Contributions over the full fv-child-subcell, 

are then allocated proportionally by the selected cell-vertex distribution scheme (LDB-method 
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upwinding) to the three vertices of that fv-child-subcell. Likewise, contributions on the subtended 

median-dual-cell (MDC) zone of the fv-child-subcell are also allocated to the designated MDC-node of 

that subcell. In this manner, nodal configuration-variable values ( lA
) are computed at the vertices ( l ) 

of each fv-child-subcell (cell-vertex oriented form).  

The corresponding configuration-variable nodal update is then derived by summing all contributions 

from its control volume, which is composed of all fv-triangles surrounding a particular node. This is 

illustrated through the generalised time-accurate nodal-update stencil for configuration-variable (CT3-

scheme of Aboubacar and Webster [32]), which has become a standard basis for such schemes. Such a 

form incorporates both flux and source terms (split), with appropriate area-weighting between 

fluctuation-distribution and MDC-contributions. Fluctuation-distribution upwinding factors are 

themselves denoted through the 
T

l -dependency.  

Further to the above, two additional and most recent strategies are introduced, as discussed at length 

elsewhere in López-Aguilar et al. [27, 28] under the context of thixotropic modelling - that is ABS-f-

correction and VGR-correction. The former avoids the possibility of the dissipation function becomes 

negative, thus predicting negative values of the f-functional during flow evolution. The latter refers to 

the particular velocity-gradient recovery-correction procedure (VGR-correction), imposed solely on 

the centreline, which prevents build up of spurious numerical noise in solution evolution. Note that, at 

the first non-zero Wi-solution stage, simulations commence from a quiescent initial state for all 

variables. Subsequently, continuation in Weissenberg number is employed (through increase of sphere 

velocity). The inlet boundary condition (shear-flow) for the conformation tensor A are taken to be 

 2 2 2

11A 1 Wi * f  
, A22= A33= 1, and 

 12A 1 Wi* f  
, where   is the shear rate. This 

differentiates between the various models in pure shear flow. In addition, use of the configuration 

tensor generally ensures that positive definiteness is satisfied within the solution evolution (see [27]). 

4. Drag Results for individual geometries: Fixed geometry sphere 0 5.
 

4.1 Drag for four base models: FENE-CR, FENE-P (L=5), LPTT, EPTT ( PTT
=0.042), ( solvent

=0.9, 

1/9), D =0.0 (Figure 4) 

First, a comparison is conducted on drag results, across model options with rheological variations, 

within the context of a single fixed geometry-ratio, that of the base-reference of sphere 0 5.
, a 

computational benchmark. This offers direct back-reference, between shear-thinning response and that 

derived earlier with constant-viscosity approximations (FENE-CR). Figure 4 provides such data on 

drag correction factor against increasing Weissenberg number (Wi). Here, two levels of solvent 
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fraction are considered, grouped as shown, solvent
=0.9 (high-solvent, low-solute) and solvent 1 9

 

(low-solvent, high-solute), whilst contrasting the variety of response due to rheological variation over 

the four-base constitutive models, (FENE-CR, FENE-P, LPTT, and EPTT) ( D =0.0).  

High-solvent ( solvent
=0.9) findings: Here, all models display an initial declining trend in drag, which 

persists up to Wi=6.0. Quantitatively, the drag correction factor has dropped to around ~3% below the 

Newtonian reference line with constant-viscosity FENE-CR; under shear-thinning counterparts 

(FENE-P and PTT), the associated drop doubles to ~7%, a common finding and experience reported in 

general. On drag variation over 0.1≤Wi≤4, between LPTT and FENE-P, with matching peak-plateaux 

in extensional viscosity response - here, FENE-P supports lower drag-values than does LPTT, 

attributable to the lower degree of hardening (and slightly lower s ) for FENE-P at low-rates (see 

Figure 1, zoomed sections). Note that, both models show almost an identical shear viscosity ( s ) 

beyond rates ~100, and first normal stress difference ( 1N
) uniformly. Furthermore, the FENE-P drag-

results overlap with those for the EPTT fluid for high-solvent ( solvent
=0.9) fluids. This would indicate 

that high-solvent options do not enter deformation-rate regimes of rheological distinction, in contrast 

to their low-solvent counterparts (see below) One notes the ( e , 1N
) zones of influential dominance 

between these two models [6]. 

Low-solvent ( solvent
=1/9) findings: With the switch from high-to-low solvent content (same 

sphere 0 5.
), there is a major impact on overall drag-level, reflected in Figure 4. As anticipated, high-

solute ( solvent
=1/9) solutions show considerably more pronounced decline in drag than for their high-

solvent counterparts. This is due to the relative proportions of solvent-to-polymeric components within 

each fluid-system. Amongst this data, the FENE-CR drag (Boger fluid) proves to be the least 

suppressed, and is found to reach to its limiting solution-level of Wi (~Wicrit=2.5), somewhat earlier 

than for shear-thinning alternatives. In addition, the exponential PTT (EPTT) model, with strain-

hardening/softening properties, provides a considerably wider solution-range of elasticity (up to 

Wi=6); noticeably so, when compared to its linear counterpart LPTT (Wicrit=3.5), that displays 

substantial strain-hardening response. Moreover, drag results reveal only modest departure between 

both forms of PTT at the same Wi-levels, with slightly deeper decline in EPTT-drag (attributable to its 

slightly more exaggerated shear-thinning).  

In a similar fashion, the critical level of solution Wi number for the FENE-P (Wicrit=2.5) appears earlier 

than for the LPTT (Wicrit=3.5). Here, and in this limiting instance of shear-thinning behaviour, FENE-P 
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shows a significant decline in drag up to Wi=1.0 (due to its slightly lower s  at low rates), as 

compared against the performance of other shear-thinning models (LPTT and EPTT). Nevertheless, 

over the larger elasticity range 2≤Wi≤2.5, findings ultimately tend to coincide, as all three shear-

thinning models approach practically the same levels of drag (Figure 4, solvent
=1/9).  

4.2 Drag for dissipative models: swanINNFM(q) [sIq] - FENE-CR, FENE-P (L=5), LPTT, EPTT 

( PTT
=0.042) ( solvent

=0.9, 1/9), ( D =0.0, 0.1, 0.2) (Figure 5) 

High-solvent ( solvent
=0.9) findings, dissipative: Next, one proceeds by comparison to consider drag 

response amongst the four counterpart dissipative-viscoelastic swanINNFM(q) [sIq] models, first for 

high-solvent category fluids. As such, Figure 5 displays drag outcome for the four possible candidates 

from the class of swanINNFM(q) models, with three values of D , the dissipative extensional-viscous 

material time-scale D ={0.0, 0.1, 0.2}. Mesh refined drag-solutions are also included in Figure 5a,e, 

for [sIq]-FENE-CR]-( D =0.2), drawing upon coarse, medium and refined meshing levels. This data 

indicates the overall consistency of such solutions in drag, and the acceptable quality of solution 

representation under the medium mesh, adopted henceforth [e.g. see 31, 33]. This evidence is further 

supported with normal stress configuration-difference data (A11-A22), extracted along the centreline of 

the flow over the associated three levels of refinement. Again this confirms solution consistency and 

trends, as above, with close agreement upheld, bar from the anticipated localised differences near the 

stress peak, where stronger gradient representation is influenced by mesh location and spacing, that 

vary from mesh to mesh. 

For each model in turn, the key distinguishing features to discern are: the relative rise in drag above 

the ( D =0.0)-level; the location of minimum drag (in Wi), upturn or plateau behaviour; detection of an 

intercept with the Unity-Newtonian reference and subsequent extent of drag-rise (drag-enhancement). 

As above, all [sIq]-( D =0.0) forms, display limiting drag correction factor ( NK K
) asymptotic 

behaviour (no minima/upturn), with drag-reduction values at Wi=6 of {0.97, 0.93, 0.93, 0.93} for 

variants {FENE-CR, FENE-P, LPTT, EPTT}. 

The general finding for all four models with ( D >0.0) is as follows. When increasing beyond base-

form, to larger values of first, D =0.1, then D =0.2, the trend-in-drag of an initial-decrease and 

second-increase can be appreciated. Overall, [sIq]-FENE-CR provides larger drag outcomes against 

comparable shear-thinning alternatives. So certainly, the inclusion of shear-thinning is reflected in the 
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lowering of drag levels. Comparing drag findings across shear-thinning variants - trends for [sIq]-

FENE-P largely mimic those for [sIq]-LPTT; whilst sIq-EPTT can produce large drag levels, only 

slightly suppressed from [sIq]-FENE-CR (due to e -suppression), with strong drag-enhancement 

displayed under D =0.2. The explanation for such flow response, lies in e -behaviour and the larger 

protracted deformation-rate ranges accessible for [sIq]-{FENE-CR, EPTT}, which are prematurely 

stunted under [sIq]-{FENE-P, LPTT} variants, with their earlier solution termination properties. Here, 

the lack of shear-thinning of the [sIq]-FENE-CR form is the only discernible rheological difference 

from [sIq]-{FENE-P, LPTT}, that all share close response in e . Note, there is no departure from 

equivalent-model base-form response in 1N
 in any of these model instances, that all share common 

behaviour at low deformation-rates of 
 5O

, see Figure 1. 

Specifically on ( D =0.1) data, sIq-FENE-CR drag (Figure 5a) intercepts the Unity-Newtonian 

reference line (red line) at Wi=4; a feature suppressed under all three alternative shear-thinning fluids, 

providing – no intercept with [sIq]-{FENE-P, LPTT}, and delayed intercept at Wi=6 under [sIq]-EPTT, 

the strain-hardening/softening/hardening variant (Figures 5b-d). 

For larger dissipative parameter ( D =0.2), sIq-FENE-CR drag intercepts the Newtonian reference 

somewhat earlier, at Wi=1. Comparably, at this relatively low-level of Wi=1, drag-values for shear-

thinning models of [sIq]-{FENE-P, LPTT, EPTT} are almost {4%, 3%, 3%} below unity-reference 

(manifesting drag-reduction). Reporting on maximum drag-outcome, for [sIq]-FENE-CR( D =0.2) - 

this proves to be significant, with 25% drag-enhancement at Wi=6. This is almost replicated with sIq-

EPTT( D =0.2), in 20% at Wi=6. In stark contrast for [sIq]-{FENE-P, LPTT}, drag-enhancement is 

hugely stunted to ~3%, as argued above, generating 3% for [sIq]-FENE-P( D =0.2) at Wi=3.5, and 2% 

for [sIq]-LPTT( D =0.2) at Wi=3. 

On limiting Wicrit and solution convergence with ( D >0.0):- [sIq]-FENE-P reaches Wicrit~3.5 for both 

D =0.1 and D =0.2 solutions. Similarly for [sIq]-LPTT, Wicrit={5.0, 3.0} for D ={0.1, 0.2}. Whilst, 

[sIq]-{FENE-CR, EPTT} forms do not encounter a limit for Wi≤6 (see Table 2a).  

Low-solvent ( solvent
=1/9) findings, dissipative: Figure 6 presents counterpart dissipative drag-data for 

low-solvent, high-solute fluids. At this level of high-polymeric concentration, the drag-data for all sIq-

models reflect significant drag-reduction only; lying well below the Unity-Newtonian reference line, 
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with barely any distinction from base-level ( D =0)-response, as reported above. The only prominent 

feature is the earlier Wicrit encountered, under shear-thinning options and with D –rise per model. In 

the low-solvent context, these findings can be related to extensional viscosity properties relative to all 

four models, which follow the base-models ( D =0.0). Here, there is absence of sharp departure in e  

from base-form response until larger rates of ~10 are reached, see Figure 2. This stands in direct 

contrast to the high-solvent context, described above, where such departure in extensional viscosity 

properties appears a decade earlier in rate. 

5. Drag Results for alternative geometries: sphere 0 4.
 and sphere 0 2.

 

5.1 Fixed geometry: sphere 0 4.
  

swanINNFM(q) [sIq]-FENE-CR(L=5), LPTT, EPTT ( PTT
=0.042) models) : Corresponding drag 

results are presented in Figure 7 for the alternative medium-fit aspect-ratio sphere 0 4.
. One can 

proceed here by addressing drag-outcomes for each model in turn, [sIq]-{FENE-CR, LPTT, EPTT}, 

and with direct back-reference to the tighter-fit aspect-ratio results for ( sphere 0 5.
) per model. In this, 

the common reference for Weissenberg number interpretation is retained, as that based on sphere 0 5.
, 

but with the adjustment to U/a required by the length-scale switch  

First for { sphere 0 4.
, solvent 0 9.

}: In Figure 7, and for with [sIq]-FENE-CR, the only noticeable 

feature is a down-shift in drag-enhancement: at D =0.2 to { NK K
=1.18, Wi=4.8}, representing 

{25%, sphere 0 5.
} to (18%, sphere 0 4.

}; at D =0.1 to { NK K
=1.03, Wi=4.8}, representing {5%, 

sphere 0 5.
} to (3%, sphere 0 4.

}. With modest up-shift in drag-reduction at D =0.0 to 

{ NK K
=0.97, Wi=4.8, -3%, sphere 0 4.

} from { NK K
=0.96, Wi=6.0, -4%, sphere 0 5.

}. 

Next turning to sIq-LPTT, the most outstanding feature of contrast in aspect-ratio adjustment is the 

impact on drag-upturn and rate-of-rise subsequently: at D =0.0 upturn occurs at { NK K
=0.92, 

Wiup=2.6}, rising to { NK K
=0.98, Wicrit=4.8}, representing drag-reduction of {-8%, sphere 0 5.

} to 

{-2%, sphere 0 4.
}; at D =0.1 upturn occurs at { NK K

=0.95, Wiup=2.5}, intercept at Wiinter=4.0, 

rising to { NK K
=1.03, Wicrit=4.4}, representing drag-reduction of {-4%, sphere 0 5.

, Wicrit=5.0} to 

drag-enhancement of {3%, sphere 0 4.
, Wicrit=4.4}; at D =0.2 premature early termination occurs 
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prior to upturn at { NK K
=0.98, Wicrit=2.0} for sphere 0 4.

, in contrast to upturn, intercept and 

enhancement for sphere 0 5.
. 

The third model [sIq]-EPTT, shows only minor change with aspect-ratio adjustment, and that only for 

the largest value of D =0.2, with upturn delayed to around Wiup=1.5 and intercept at Wiinter=2.3 

(Wiup=1.0, Wiinter=2.5, previously with sphere 0 5.
). Here, only modest down-shift in drag-

enhancement is noted from { NK K
 =1.21, sphere 0 5.

, Wicrit=6} to { NK K
=1.16, sphere 0 4.

, 

Wicrit=4.8}. At D =0.1, the drag coefficient now lies marginally below the Newtonian reference 

{ NK K
=0.996, sphere 0 4.

, Wicrit=4.8}. 

On data for { sphere 0 4.
,
 

sphere 0 2.
, solvent 1 9

}: In the high-solute context, and for D ={0.0-0.2} 

across the [sIq]-models, only drag reduction is observed with little change across D -data, with only 

slight up-shift in drag from ( sphere 0 5.
) to ( sphere 0 4.

) to sphere 0 2.
 case; see Table 2b-c. 

5.2 Fixed geometry sphere 0 2.
 

swanINNFM(q) [sIq]-FENE-CR(L=5), LPTT, EPTT( PTT
=0.042) models) : As above, drag data with 

still further reduction in aspect ratio to sphere 0 2.
, is provided in Figure 8. Here, there are mixed 

findings to review over the D -data analysed. An overall summary from sphere 0 4.
 to sphere 0 2.

 

would indicate the following. With solvent
=0.9, and for [sIq]-{FENE-CR, EPTT}, D ={0.0, 0.1}-data 

are slightly elevated, whilst limiting { NK K
, D =0.2}-data is reduced by about 10%. Turning to 

[sIq]-LPTT, in D ={0.0, 0.1}-data no data upturn is detected, in fact is replaced with limiting 

downturn. Correspondingly with ( D =0.2)-data, the declining-to-flat drag-trend of sphere 0 4.
, is 

completely adjusted to sphere 0 2.
, now showing upturn, intercept (Wiup=0.48, Wiinter=1.0), and drag-

enhancement with limiting { NK K
=1.009, Wicrit=1.34}.  

5.3 Comparison across geometry aspect-ratios: sphere0 2 0 5. . 
 

Garduño et al. [1], provides drag-data that tightly matches the Boger Fluid experimental data of Jones 

et al. [8]. This is extracted with the single [sIq]-FENE-CR (Boger-like, constant viscosity model) 

under variable dissipative time-scale (
0 35 0 62D. . 

), and across each of the three geometric aspect-
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ratios (see also, Figure 9a with D =0.2). Accordingly, one notes the general trend, that for smaller 

sphere
 values, larger D -values are required to match the more exaggerated experimental drag-

correction measurements. One may refer to Garduño et al. [1], Jones et al. [8] and Arigo et al. [17] for 

more detail and discussion on - the impact of settling velocity and its adjustment, downstream wake, 

stagnation-point dynamics, early drop below Newtonian drag, and thus, ultimate drag outcome at 

larger rates. Note, that an early drop below the Newtonian drag-level is apparent for sphere
>0.4, as 

reported in [15].  

Figure 9 provides a direct summary on the fixed maximum ( D =0.2) data, over all three geometry 

aspect-ratios, provided per model and for the more responsive high-solvent solvent
=0.9 instance. Here, 

suitable scaling is required to retain consistency across the geometric aspect-ratios, on relative drag-

values ( NK
) and Weissenberg number interpretation. As a consequence, it is clearly apparent, that 

increase in aspect-ratio in the range sphere0 2 0 5. . 
, generally provides suppression in drag 

coefficient across the deformation-rate range.  

Note, on raw drag of Figure 10, for a fixed value of D =0.2, the converse is true.  Here, for the three 

different and increasing geometry aspect-ratios, the elevated differences in raw drag values are clearly 

apparent. Such raw drag data now lies in distinct contrast against the drag correction factors ( NK K
) 

reported in Figure 9a. One notes that, the computed values of Stokesian drag force used are given by 

NK
={5.931, 3.592, 1.688} for sphere

={0.5, 0.4, 0.2}, see also Happel and Brenner [36].  

Yet on terminating drag correction factor, this still leads to overall drag-enhancement. Such an 

observation is upheld ultimately for [sIq]-{FENE-CR, EPTT}, with some early-rate switch-over 

occurring, that is more prominent with [sIq]-EPTT. Additionally, the [sIq]-LPTT data does indicate 

significant drag cross-over with the sphere 0 4.
 geometry. 

 

6. Conclusions 

This analysis begins with comparison against base-level, null-dissipative ( D =0.0), drag findings over 

two levels of fluid solvent-fraction. There, high-solvent/low-solute ( solvent
=0.9) drag coefficient 

reached around ~3% drag-reduction for constant-viscosity FENE-CR; the drop doubles to ~7%, for the 
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shear-thinning FENE-P and PTT models. This would indicate that high-solvent options do not enter 

deformation-rate regimes of rheological distinction, compared to their low-solvent counterparts. In 

contrast, low-solvent/high-solute ( solvent
=1/9) solutions show considerably more pronounced decline in 

drag than for their high-solvent counterparts. Noticeably, the exponential PTT (EPTT) model, with its 

strain-hardening/softening properties, provides a much wider solution-range of elasticity (up to Wi=6). 

Advancing to consider dissipative model findings: Under high-solvent ( solvent
=0.9) systems and for 

each model in turn, the key distinguishing features to discern are: the relative rise in drag above the 

( D =0.0)-level; the location of minimum drag (in Wi), upturn or plateau behaviour; detection of an 

intercept with the Newtonian reference-line and subsequent extent of drag-rise (drag-enhancement). 

The general observation for all four models with ( D >0.0), is that by increasing beyond base-form, to 

larger values of D =0.1 and D =0.2, produces an initial-decrease and subsequent second-increase for 

trend-in-drag. The sIq-FENE_CR fluid data (devoid of shear-thinning, Fig.5a), indicates that a 

high‐solvent system would response similarly in trend to a (generalized) Newtonian fluid, but that as 

extensional dissipation is gradually introduced (via D ), extensional stress contributions (viscous 

dominant over polymeric) raise drag expectations to match those found experimentally for Boger 

fluids. Overall, the inclusion of shear-thinning is reflected in the lowering of drag levels. Comparing 

drag findings across shear-thinning variants - trends for [sIq]-FENE-P largely mimic those for [sIq]-

LPTT; whilst [sIq]-EPTT can produce large drag levels, only slightly suppressed from [sIq]-FENE-CR 

(due to e -suppression), with strong drag-enhancement displayed under D =0.2. The explanation for 

such flow response, lies in e -behaviour and the larger protracted deformation-rate ranges accessible 

for [sIq]-{FENE-CR, EPTT}; which are equivalently and prematurely stunted under [sIq]-{FENE-P, 

LPTT} variants, with their earlier solution termination properties. One notes, in the case of [sIq]-

FENE-CR, the only discernible rheological difference from [sIq]-{FENE-P, LPTT}, is its lack of 

shear-thinning.  

For low-solvent ( solvent
=1/9) counterpart dissipative systems - all sIq-models reflect only significant 

drag-reduction, with barely any distinction from base-level ( D =0)-response, consistent in form to that 

frequently reported in the computational literature for this solvent-fraction range. Here, even though 

one might expect drag enhancement, with more dominant polymeric over viscous stress contributions, 

extensional contributions do not impact strongly enough at the rates reported. The explanation for this 

low solvent-fraction finding, is due to the absence of sharp departure in e  from base-level response, 
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until significantly larger rates of O(10) have been reached. One also notes the early stunting of 

solutions to Wi~3 (bar under sIq-EPTT). This observation stands in distinct contrast to that for high 

solvent-fraction systems, where such e -departure occurs at rates that are one order lower (O(1) units). 

Adjustment over three geometric aspect-ratios: Over all three geometry aspect-ratios studied in the 

range sphere0 2 0 5. . 
, a direct summary on the fixed maximum ( D =0.2)-data and for high-solvent 

solvent
=0.9 instance, indicates that increase in aspect-ratio, generally provokes suppression of drag 

coefficient across the deformation-rate range; yet the overall evidence leads to stimulating ultimate 

drag-enhancement with rising rate. In particular, under the shear-thinning/strain-hardening-softening 

[sIq]-EPTT option, there is evidence for relatively pronounced drag-enhancement, with only modest 

down-shift from that produced by the constant-viscosity [sIq]-FENE-CR model. To gather more 

precise matching to experimental drag-levels across geometric aspect-ratios, experience would indicate 

that a variable dissipative time-scale D  is required, suitably elevated to reach the more exaggerated 

drag levels of the experiments. 

Experimental data are presently not readily available on the falling sphere problem for shear-thinning 

viscoelastic fluids. Hence as such, much work on this problem yet remains outstanding, to attain truly 

quantitative agreement with experiments. The present study stands as a significant predictive step 

forward towards this ultimate goal. 
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Figure captions 

 

Table 1. Mesh characteristics: different sphere aspect ratios, sphere
=a/R=0.5 (coarse, medium, 

refined), sphere
=0.4, sphere

=0.2 

Table 2a. Drag correction factor (K/KN max), various λD, βsolvent=0.9, 1/9, sphere
=0.5 

Table 2b. Drag correction factor (K/KN max), various λD, βsolvent=0.9, 1/9, sphere
=0.4 

Table 2c. Drag correction factor (K/KN max), various λD, βsolvent=0.9, 1/9, sphere
=0.2 

Fig 1. Material functions, base-models, a) βsolvent=0.9, b) βsolvent=1/9 

Fig 2. Extensional viscosity; base and [sIq]-models 

Fig 3. a) Schematic diagram, flow past a sphere geometry; mesh patterns around sphere: b) 

sphere
=a/R=0.5, sphere

=0.4, sphere
=0.2 c) sphere

=a/R=0.5, coarse, medium, and refined 

Fig 4. Drag correction factor βsphere=0.5, base-models 

Fig 5a-d. Drag correction factor βsphere=0.5, βsolvent=0.9; dissipative [sIq]-models, 0.0≤D≤0.2; 

Newtonian reference 

Fig 5e. (A11-A22) at centerline (refined, medium, coarse meshes), dissipative [sIq]-models, D=0.2 

Fig 6. Drag correction factor βsphere=0.5, βsolvent=1/9; dissipative [sIq]-models, 0.0≤D≤0.2; 

Newtonian reference 

Fig 7. Drag correction factor βsphere=0.4, βsolvent=0.9; dissipative [sIq]-models, 0.0≤D≤0.2 

Fig 8. Drag correction factor βsphere=0.2, βsolvent=0.9; dissipative [sIq]-models, 0.0≤D≤0.2 

Fig 9. Drag correction factor, βsphere comparison: dissipative [sIq]-models, βsolvent=0.9, λD=0.2; 

Newtonian reference 

Fig 10. Drag (K) values, βsphere comparison, [sIq]-FENE-CR model, D=0.2; βsolvent=0.9  
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Meshes Elements Nodes 

Degree of freedom 

 , ,p u
 

sphere 0.5 
 

1600 3381 21177 

2687 5610 35122 

7400 15191 95042 

sphere 0.4 
 3306 6861 42944 

sphere 0.2 
 3986 8229 51496 

 

 

 

 

 

 

Table 1. Mesh characteristics: different sphere aspect ratios, 

sphere
=a/R=0.5 (coarse, medium, refined), sphere

=0.4, sphere
=0.2 

 

coarse 

medium 

refined 
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βsphere Model βsolvent λD Wicrit K/KN max 

0.5 

 

[sIq]-FENE-CR 

0.9 

0.0 6.0 0.9591 

0.1 6.0 1.0528 

0.2 6.0 1.2466 

1/9 

0.0 2.5 0.6555 

0.1 2.5 0.7249 

0.2 2.5 0.7056 

[sIq]-FENE-P 

0.9 

0.0 6.0 0.9287 

0.1 3.5 0.9555 

0.2 3.5 1.0294 

1/9 

0.0 2.5 0.4742 

0.1 2.0 0.4549 

0.2 2.0 0.4885 

[sIq]-LPTT 

0.9 

0.0 6.0 0.9212 

0.1 5.0 0.9583 

0.2 3.0 1.0216 

1/9 

0.0 3.5 0.3751 

0.1 2.4 0.4192 

0.2 1.0 0.6726 

[sIq]-EPTT 

0.9 

0.0 6.0 0.9176 

0.1 6.0 1.0033 

0.2 6.0 1.2138 

1/9 

0.0 6.0 0.2841 

0.1 3.5 0.3708 

0.2 1.0 0.7044 

Table 2a. Drag correction factor (K/KN max), various λD, βsolvent=0.9, 1/9, sphere
=0.5 
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βsphere Model βsolvent λD Wicrit K/KN max 

0.4 

[sIq]-FENE-CR 

0.9 

0.0 4.8 0.9722 

0.1 4.8 1.0304 

0.2 4.8 1.1832 

1/9 

0.0 2.8 0.7293 

0.1 2.8 0.7218 

0.2 2.4 0.6876 

[sIq]-LPTT 

0.9 

0.0 4.8 0.9860 

0.1 4.4 1.0362 

0.2 2.0 0.9816 

1/9 

0.0 1.8 0.4923 

0.1 1.6 0.5251 

0.2 1.6 0.7913 

[sIq]-EPTT 

0.9 

0.0 4.8 0.9315 

0.1 4.8 0.9962 

0.2 4.8 1.1606 

1/9 

0.0 4.8 0.3209 

0.1 4.8 0.3388 

0.2 4.8 0.7799 

 

Table 2b. Drag correction factor (K/KN max), various λD, βsolvent=0.9, 1/9, sphere
=0.4 
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βsphere Model βsolvent λD Wicrit K/KN max 

0.2 

[sIq]-FENE-CR 

0.9 

0.0 4.8 1.0077 

0.1 2.4 1.0321 

0.2 4.0 1.0660 

1/9 

0.0 1.4 0.9396 

0.1 1.4 0.9606 

0.2 1.4 0.9521 

[sIq]-LPTT 

0.9 

0.0 2.4 0.9330 

0.1 2.2 0.9637 

0.2 1.4 1.0086 

1/9 

0.0 1.8 0.4792 

0.1 1.4 0.6649 

0.2 1.0 0.8044 

[sIq]-EPTT 

0.9 

0.0 2.4 0.9462 

0.1 2.4 0.9636 

0.2 2.4 1.0464 

1/9 

0.0 2.4 0.4857 

0.1 2.4 0.5349 

0.2 1.2 0.7432 

 

Table 2c. Drag correction factor (K/KN max), various λD, βsolvent=0.9, 1/9, sphere
=0.2 
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Fig 1a. Material functions, base-models; βsolvent=0.9 
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Fig 1b. Material functions, base-models; βsolvent=1/9 

 



 31 Fig 2. Extensional viscosity; base and [sIq]-models  
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Fig 3. a) Schematic diagram, flow past a sphere geometry; mesh patterns around sphere: b)
 

sphere
=a/R=0.5, sphere

=0.4, sphere
=0.2 c) sphere

=a/R=0.5, coarse, medium, and refined  
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Fig 4. Drag correction factor βsphere=0.5, base-models  
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High-solvent sIq, base-geometry βsphere=0.5 

 

Fig 5a-d. Drag correction factor βsphere=0.5, βsolvent=0.9; dissipative [sIq]-models, 0.0≤D≤0.2; 

Newtonian reference 
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Fig 5e. (A11-A22) at centerline (refined, medium, coarse meshes), dissipative [sIq]-models, D=0.2 

High-solvent sIq, base-geometry βsphere=0.5 
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Low-solvent sIq, base-geometry βsphere=0.5 

 

Fig 6. Drag correction factor βsphere=0.5, βsolvent=1/9; dissipative [sIq]-models, 0.0≤D≤0.2; 

Newtonian reference 
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High-solvent sIq, aspect-ratio βsphere=0.4 

 

Fig 7. Drag correction factor βsphere=0.4, βsolvent=0.9; dissipative [sIq]-models, 0.0≤D≤0.2 
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High-solvent sIq, aspect-ratio βsphere=0.2 

 

Fig 8. Drag correction factor βsphere=0.2, βsolvent=0.9; dissipative [sIq]-models, 0.0≤D≤0.2 
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High-solvent sIq, comparison across geometries, fixed λD 

 

Fig 9. Drag correction factor, βsphere comparison: dissipative [sIq]-models, βsolvent=0.9, λD=0.2; 

Newtonian reference 
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Fig 10. Drag (K) values, βsphere comparison, [sIq]-FENE-CR model, D=0.2; βsolvent=0.9  
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