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Abstract  

The use of an electrically conductive membrane has attracted significant interest in water 

treatment technology due to remarkable performance in fouling mitigation domain. In 

electrochemical systems, when external potential is applied, water electrolysis occurs and the 

generated gases efficiently clean the membrane surface. However, fabricating and integrating 

conductive membranes in current water treatment modules is challenging. The present work 

applies, for the first time, the electrolysis concept at the spacer component of the module rather 

than the membrane. Two types of materials were tested, a titanium metal spacer and a 

polymeric spacer.  The polymeric spacer was made conductive via coating with a carbon-based 

ink comprised of graphene nanoplates (GNPs). A membrane system composed of the carbon 

coated/titanium metal spacer attached to the surface of a polyvinylidene fluoride (PVDF) 

microfiltration membrane and was assembled to the case of membrane module. The conductive 

spacers worked as an electrode (cathode) in electrochemical set-up. The membrane system was 

subjected to fouling and then exposed to periodic electrolysis, wherein in-situ cleaning of 

membrane surface by hydrogen bubbles generation at the spacer is applied.  

 

Keywords: Membrane fouling; Conductive spacer; electrolysis; self-cleaning; bubble 

generation. 
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1. Introduction  

Membrane technology has been highlighted as a promising approach for water purification due 

to its essential advantages over other counterpart traditional technologies[1]. Constantly, a 

spacer is employed on the permeate side of the membrane in a module to improve the 

mechanical integrity of the membrane and allow efficient fluid flow[2]. The essential functions 

of a spacer mesh is to promote mass transfer and reduce concentration polarization [3]. In a 

study conducted by Vrouwenvelder et al.[4], it was demonstrated that in the presence of a feed 

spacer, the biofouling was much higher than when a feed spacer was absent. In a spiral-wound 

membrane systems, biofouling is dominantly a feed spacer problem. Many approaches have 

been reported on the modification spacers. Hausman et al. [5] stated their spacer modifications 

comprises engineering antibacterial polypropylene films via surface functionalization, in which 

a spacer charged with copper ions. Yang et al. [6] exhibited the coating both spacer and RO 

membrane with nano-silver, they stated that a higher permeate flux and rejection can be 

maintained. In addition, Araújo et al. [7] determined the potential of coated spacer and 

membrane with polydopamine and polydopamine-g-PEG as well as coated spacer with copper 

to control biofouling. They concluded that biofouling is not inhibited by employing 

polydopamine-coated, polydopamine-g-poly(ethylene glycol)-coated spacers and membranes, 

and a copper-coated spacer. In contrast, Miller et al. [8] evaluated by short-term batch protein 

and bacterial adhesion tests and employed the coated spacer and membrane by polydopamine 

and poly[ethylene glycol. Recently, Ronen et al. [9][10] revealed that biofouling could be 

restricted by modification of commercial polypropylene spacers via applying nano-zinc and/or 

nano-silver coated spacers sono-chemical deposition. An J. et al. [11]   prepared hydrophobic 

spacer-mesh by polyaniline (PANI) coating on stainless mesh which was fabricated through an 

electrodepositing process to enhance surface hydrophobicity. The fabricated coated mesh films 

can be employed for frequent separation of organics and oil from water with highly potential 

selectivity, they also modified spacer film from hydrophobic to hydrophilic by 

electrodepositing of polypyrrole(PPy) at various electric potential to enhance mesh surface 

morphology for selective absorption and purification. Sun et al.[12] reported an approach for 

the modification of commercially stainless-steel mesh, wherein a layer-by-layer graphene 

assembly technique was adopted. They stated that their approach may considerably enhance 

traditional separation system performance and improve removal of organic compounds and oil 

from water. Darmanin T. and Guittard F.[13] investigated computationally the performance of 

electrodeposition of nano-materials on metal mesh substrates and their impact on the surface 

hydrophilicity, which can employed in applications of water transportation and bio-sensing 

systems. A summary of modified coating spacers with materials shown in the literature is 

presented in Table 1. 
.  
Table 1:Modified coating spacer, to enhance traditional separation system performance. 

Material functionalization technique Application References 

Copper  functionalization of 

polypropylene (PP) films by 

a metal chelating spacer 

charged with copper ions 

copper ions were employed 

to disinfect water from 

microbial biofilms 

[5] 

Nano-sliver  Coating the RO membrane 

and spacer with nano-silver 

particles 

Permeate flux decline and 

salt rejection and the effect 

of silver-coated spacer on 

antimicrobial activity 

[6] 



Polydopamine  

polydopamine-

g-PEG 

copper 

(i) Polydopamine and 

polydopamine-g-PEG coated 

spacers and membranes, (ii) 

a copper-coated   spacer 

To control biofouling [7] 

Polydopamine 

polydopamine-

g poly 

(ethylene 

glycol) 

Polydopamine and 

polydopamine-g-PEG coated 

spacers and membranes 

To defouling bovine serum 

albumin, as a   model 

protein, and Pseudomonas 

aeruginosa, 

as model Gram-negative 

bacterium. 

[8] 

zinc oxide 

nanoparticles 

commercial polypropylene 

spacer modification through 

sono-chemical deposition 

To suppress biofilm -

formation 

[9] 

Nano-sliver 

partials  

commercial polypropylene 

spacer functionalization via 

sono-chemical deposition 

To hinder biofouling 

development 

[10] 

polyaniline 

(PANI) 

 

 

 

Polypyrrol 

(ppy) 

 

PANI- coating on stainless 

through an electrodepositing 

technique  

 

 

ppy-electrodeposition 

To enhance surface 

hydrophobicity and 

frequent separation of 

organics and oil from water 

 

To improve mesh surface 

morphology and selectivity  

[11] 

graphene layer-by-layer method 

graphene assembly via a dip-

coating method 

To improve separation or 

organic compounds 

selectivity absorption from 

water 

[12] 

PolyNaphDOT 

(Monomer) 

Employing electro-

polymerization method on 

stainless steel mesh 

substrates to induce the 

nanotubes 

This mechanism can be 

benefit in oil/water 

separation membranes 

[13] 

 

Among methods to enhance membrane de-fouling performance, much focus has been shifted 

towards a combined electrochemical system with membrane water treatment processes. An 

alternative non-destructive, affordable and energy efficient membrane fouling mitigation 

techniques are required to adopted. This relatively novel approach improved fouling control 

via either foulants oxidation [14][15] or bubble generation [16][17]. However, from the 

engineering view point, in-situ membrane fouling control is highly desirable but seems very 

challenging [18] . Electrolysis is a technique used to produce H2 bubbles from water, in which 

this is a procedure of decomposition water to the both hydrogen and oxygen, when a potential 

is applied across the cell. For this purpose, an electrochemical cell is used and it is composed 

of anode and cathode electrodes separated by solution, which acts as an electrolyte. 

Traditionally, the mechanism of cleaning during the electrolysis process is due to the micro-

bubbles generation at the surface of electrically conductive membrane surface, wherein 

electrolysis of an aqueous NaCl solution to hydrogen gas at the conductive membrane (at the 

cathode) and chlorine gas is produced at an electrode (at the anode), according to the following 

equations: 



 

2H2O+ 2e-    
   2OH + H2                                          (1)          

2Cl-                  Cl2 + 2e-  
                                                    (2) 

 
The formed hydrogen microbubbles detach the foulants out of the membrane surface to the 

feed stream [19]. For any additional electrical energy is demanded in terms of overcoming the 

over-potential that stemming from activation and losses of ohmic within the cell. Electrolysis 

can be performed with low temperatures less than 100 °C [20]. It was found that the  bubbles, 

generated at the conductive membrane surface (at cathodic electrode), performance, as a 

physical barrier and can mitigate the foulants deposited at membrane surface during filtration 

processes[21][22][23]. Figure 1 illustrates the mechanism of self-cleaning conductive substrate 

via bubble generation. 
 

 

 Figure 1: Mechanism of defouling by generated bubbles, (a) fouling drop adsorption, (b) 

electrochemical treatment and (c) generated bubble defouling [21]. 

Ahmid et al [24] stated through the electrolysis process at the solid-liquid (electrode-electrolyte 

interface), gas bubbles generate at the electrode surface and when their size be appropriate, 

they begin to move away from the electrode surface. The gas bubble long stay on the electrode 

surface lowers the charge transfer reaction at the solid -liquid interface and eventually leads to 

reduction in the electrolysis process efficiency. Sun et al.[25] presented a comparison by 

adopting three kinds of electrically-driven anti-fouling mechanisms for the horizontally aligned 

CNT membranes, so-called electro-reduction electro-oxidation, and ionic-pump in. Both of 

(BSA) and napthalene (protein solutions) were employed as foulants model. In term of using 

foulant model, they found that both electrochemical oxidation and/or reduction reaction were 

effectively in-situ biomolecule de-foulants CNT-membranes. Nevertheless, they concluded 

that the electro-oxidation reaction is remarkably appropriate to the specific number of cycles 

when potently absorbed foulants are comprised. Wu et al. [21] stated that nanobubbles can be 

utilized to inhibit the adsorption of proteins as well as to remove the adsorbed foulants. 

Nanobubbles with a regular size and density were generated on graphite surfaces, wherein 

electrochemically controlled by the applied current. It was found that prior to exposure the 

surface to BSA solution, and with 20 s electrochemically pre-treatment for to the surface 

enhanced performance and lowered protein coverage to 26–34%. On a conductive surface, pre-

adsorbed protein was also prevented by generation of nanobubbles, in which the nanobubbles 

are produced at the substrate surface and performance as barrier to the foulants layer. 

Correspondingly, the adsorbed protein was pushed from the solid–liquid to the liquid–vapour 

interface because of the bubbles growing. Thus, with a lower shear water-stream, the foulants 

could be readily detached (Figure 1). Hashaikeh et al [19] proposed an approach allows in-situ 



membrane self-cleaning , in which inorganic and biological fouling categories mitigation have 

been achieved. These adopted cleaning mechanisms comprising micro-bubbles generation at 

MWCNTs coated membranes surface printed with nano sliver ink acts as a spacer during 

electrolysis. They stated that. in present of an aqueous NaCl solution, gas of hydrogen is formed 

at the conductive membrane surface, which performs as a cathode and at the same time gas of 

chlorine is formed at a stainless-steel electrode, which performance as an anode, wherein 

formed hydrogen microbubbles push back the deposited foulants away from the surface of 

membrane into the flow stream. The consequence of filtration cycle duration on the recovery 

of flux was studied by Lalia et al.[17] who tested the cleaning efficiency of an  electrically 

conductive nanocomposite CNS/PVDF membranes with filtration of a yeast suspension via 

applying  periodic electrolysis at 2 V for 2–3 min. They found that the flux was reduced to 40% 

of its initial value after 4.6 h filtration period time. Farah et al.[24] used periodic electrolysis 

technique with self-supporting NC/CNS membranes through cathodic hydrogen bubble 

generation that keeping flux higher than  100 L/ m2 h with 60%recovery  for MgSO4 and 47% 

for CaCl2 due to cathodic hydrogen bubbles generation. They found that bubble generation at 

the modified conductive membrane surface due to electro-reduction is considered optimum 

technique for self-cleaning membrane for a sizeable number of cycles, once it does not impair 

membrane surface. A summary of electrolysis applications for self-cleaning conductive 

substrate by hydrogen bubble formation technique is shown in Table 2.   

  
Table 2. Application electrolysis to produce hydrogen bubbles from water.  

 Cathode  Application  hydrogen bubbles 

Performance  

Reference  

graphite surfaces generation 

hydrogen 

bubbles  

via 

electrolysis 

process  

barrier to the foulants 

layer(protein-BSA)  

[21] 

MWCNTs coated 

membrane 

push back the deposited foulants 

(CaCO3 and yeast) away from 

the surface of membrane 

 [19] 

Nanocomposite CNS/PVDF 

membranes 

Cleaning membrane from a yeast 

suspension 

[17] 

self-supporting NC/CNS 

membranes   

Remove 60% for MgSO4 and 

47% for CaCl2 

[24] 

 

 

Despite huge focus devoted, so far, to the applications of electrolysis in pressure-driven 

membrane technologies using conductive membranes, no research has been reported in the 

literature on the use of  conductive spacers. In this study we report, for the first time, the use 

of conductive spacer in place of conductive membrane to achieve the in-situ fouling removal. 

The implementation of conductive spacer in the existing separation technology is quite simple 

compared to replacement of the conventional membrane with the conductive membrane which 

are not commercialized so far. In this paper, we have investigated the possibility of the 

application of the electrolysis technique via modified plastic spacer, which was employed for 

in-situ cleaning, when membrane modules located underneath it. The spacer-mesh has been 

coated with a thin nano-carbon black ink layer via a dip-coating method and acts as a cathode 



during the periodic electrolysis process. The efficiency of self-cleaning has been studied during 

filtration of sodium alginate suspension, which is typical organic membrane foulant for 

membrane-based water treatment processes. We demonstrate that at applied constant potential 

of -6 V for only 2 min on conductive spacer-PVdF/MF membrane, sodium alginate fouling can 

be reduced and the enhancement in relative flux can be noticed. The potentiostat instrument 

model CH760 E is employed for Cyclic Voltammetry (CV) and Linear Sweep Voltammetry 

(LSV) (see Figure 2). For any additional electrical energy is demanded during electrochemical 

experimental is in term of overcoming the over-potential that stemming from activation and 

losses of ohmic loses within the cell. 

                                    

 

(a)                                                                   (b) 

 Figure 2: The potentiostat instruments model CH760 E device is used for Cyclic Voltammetry 

(CV) and Linear Sweep Voltammetry (LSV).  

 

2. Materials and Method 

2.1 Materials 

Microfiltration PVDF membranes (Millipore, GSWP, 0.22 mm), sodium chloride, sodium 

alginate, sodium dodecylbenzene sulfonate –(SDBS) (Sigma Aldrich, UK) were used as 

received. Plastic mesh with aperture 3×3 mm, 450 (GE, USA) was used as a plastic spacer, 

titanium spacer (Good fellow company). 
 

2.2 Mesh Coating  

Plastic spacer with 3×3 mm apertures was pre-treated with SDBS-surfactant in ultrasonic bath 

for 15 min at 20 0C and dried in air.  The treated mesh was coated with the carbon ink high 

solids loading comprising Graphene Nano-Platelets (GNP’s) using dipped coating method, in 

a proprietary resin system where such system exhibit sheet resistance in the range of 118Ω/sq. 

Following the coating process, the spacer was hung in a Votsch VTL 60/90 convection oven 

set to 70°C for 10 minutes to evaporate any solvent remaining in the sample and act as a curing 

process making the coated layer conductive. The carbon coated spacer was kept at room 

temperature for a period of at least 12 hours prior to testing. An optical image of the coated 

spacer is shown in Figure 3. The coating method employed is easily scalable to mass 



manufacture if required and a volume manufacturing could be achieved using a reel to reel 

process design. 

 

 

 
                                                    (a)                                     (b) 

 

Figure 3: Optical image of (a) microfiltration PVdF membrane (b) the black carbon coated 

spacer combined with microfiltration PVdF membrane, wherein each mesh grid dimension of 

3×3 mm, 450. 

2.3 Electrochemical Analysis 

Electrolysis behaviour of the titanium mesh and conductive spacer was examined by linear 

sweep voltammetry (LSV) and cyclic voltammetry (CV) using CH 760E potentiostat. The 

three-electrode system have been employed to evaluated performance of coated spacer, 

conductive spacer acts as working electrode, platinum wire as a counter current electrode 

(anode), meanwhile Ag/AgCl (3.5 M KCl) acts as a reference electrode in 0.5 M H2SO4 acidic 

media with scanning rate of 0.05 V/s. Surface morphology of the coated carbon spacer before 

and after electrolysis has been studied with scanning electron microscope (SEM) (Hitachi-

S4800) as shown in Figure 4. It is clear from Figure 4-a that homogeneous coating was 

achieved due to the steady spread of coating on surface of the spacer. Comparison between 

both images, after application of electrolysis during self-cleaning process, shows is no damage 

to the structure of the coating observed on the surface even though it is known that   the current 

density is a factor leads to crack coating. It is also worth noting that the electrolysis has not 

affected the spacer coating.  

Membranes performance was estimated in terms of pure water flux WFT, organic solution flux, 

and organic foulants rejection. The permeation experiments of the MF membranes were carried 

out using a cross-flow filtration cell at 0.5 bar and at room temperature. The membranes were 

evaluated at a pressure of 0.5 bar for 1 h using distillate water to gain a constant flux. After that 

water flux (Jw) was determined at a trans-membrane pressure of 0.5 bar using filtration cell 

[26]. 

𝑱𝒘 =  
𝑽

𝑨 ∆𝒕
                                                    (1) 

Where V is the volume of filtrate collected, ∆t is the filtration time and A is geometric active 

area in electrochemical cell. Also, the typical organic fouling rejection (30 %) was calculated 

using[27]: 

 

 



Rj = (1 -  
Cp

Cf 
) ×100                                                (4) 

 . 

where Cp and Cf are the sodium alginate contents in the permeate and feed solutions, 

respectively (ppm) ; these were measured via using a TOC-L device . 

 

 
                                   (a)                                                                   (b) 

Figure 4: SEM surface morphology of the conductive coatings mesh (a) before and (b) after 

electrolysis process applied in filtration system. 

2.4 Cross-flow filtration Setup 

A customised a polycarbonate cross-flow filtration cell with an effective filtration area 10.2 

cm2 was designed by including an electrically conductive module as shown in Figure 5, a 

schematic of cross-flow filtration experiment is shown in Figure 6. Conductive spacer was 

served as a cathode in electrochemical system, the graphite electrode of diameter 15 mm as an 

anode. The electrolysis process was stated at constant potential of -6 V for 2 min, wherein the 

filtration process was stopped during electrolysis in every run. Sodium alginate was employed 

as model foulant to evaluate performance of antifouling in filtration system. The feed solution 

used in this study contains 20-ppm sodium alginate 10,000 ppm NaCl, NaCl solution was used 

to assist the electrolysis process during in-situ fouling mitigation. The feed solution was 

filtrated through conductive spacer-membrane at operating pressure of 0.5 bar with a flow rate 

of 0.58±0.01 L/min. The potential was applied for 2 min after 30, 45 and 60 interval time 

followed by another filtration, the collected permeate weighted with time to calculate the 

permeation flux. 

 



 

Figure 5: Enhanced filtration Cell is used for filtration process. 

Figure 6: Schematic representation of the enhanced cross-flow set-up. 

3. Results and discussion 

The electrochemical activity of the carbon coated spacer and titanium metal spacer is studied 

for both linear sweep and cyclic voltammetry technique. Figure 7 shows a comparison of the 

electrochemical behaviour between both Titanium metal spacer and carbon coated spacer. The 

figure reveals that hydrogen gas evolution on carbon coated spacer stated at -0.81 V (vs 

Ag/AgCl reference) compared to -0.5 V with the titanium metal spacer. The results indicated 

that a high overpotential is needed for the carbon coated spacer compared with titanium spacer. 

 



 

                                   (a)                                                                   (b) 

Figure 7: (a) Linear sweep voltammetry (LSV) of both conductive titanium metal and carbon 

coated spacer and (b) Cyclic voltammetry (CV) of both conductive titanium metal and 

carbon coated spacer. 

 

 

The in-situ cleaning behaviour of both carbon coated spacer and titanium metal spacer using 

typical sodium alginate suspension of 20 ppm as an organic foulant was evaluated at different 

interval filtration time at an operation pressure of 0.5 bar as a function of time (Figures8, 9, 

10). Figure 8-a demonstrates the performance of carbon coated spacer combined with PVDF 

membrane during filtration of sodium alginate aqueous solution. It can be noticed from this 

figure that the normalized flux declined from 1 to 0.0172 after a filtration period of 200 min 

without electrolysis. For in-situ cleaning experiment, the suspension was filtrated through 

carbon coated spacer/PVDF membrane for 30 min interval time and the relative flux declined 

to 0.668. The electrolysis cleaning was performed by applying a potential of -6 V for 2 min to 

the carbon coated spacer leading to an enhancement in the relative flux from 0.668 to 0.988. 

Again, after another 30-min filtration time the relative flux reached 0.108. However, when 

applied electrolysis for 2 min, the relative flux from 0.108 to 0.983. After 90 min of filtration, 

the relative flux declined to a value of 0.045 and again improved to 0.7492 with 2 min 

electrolysis. After 120 min (4th interval filtration time), the relative flux dropped to 0.0368 and 

again 2 min electrolysis enhanced it to 0.529. While for the 5th interval filtration time (150 

min), the relative flux declined to 0.03 and further application of electrolysis for 2 min 

increased it to 0.393. Finally, after completing the 6th interval filtration time (180 min), the 

relative flux reached to 0.025 and improved with 2min electrolysis to 0.272. The enhancement 

of relative flux is gained due to surface cleaning by applying electrolysis run for 2 min between 

each interval filtration. Similar trend is observed when using Titanium metal spacer for the 

same interval time as shown in Figure 8-b. 

 



 
                                   (a)                                                                   (b) 

Figure 8: Normalized flux versus filtration time duration at filtration of sodium alginate 

suspension through carbon coated spacer/PVDF membrane: without electrolysis, and with 2 

min electrolysis after filtration intervals of every 30 min (a) carbon coated spacer (b) titanium 

metal spacer. 

 

The effect of filtration cycle time on the flux recovery was also performed via electrolysis 

cleaning after 45 min and 60 min filtration intervals time as shown in Figure 9 and Figure 10. 

When employing the first electrolysis cleaning the relative flux increased from 0.062 to 0.857 

with 45 min interval filtration time and after the second cleaning from 0.033 to 0.563 with 90 

min. It also increased from 0.026 to 0.453 after third cleaning and from 0.02 to 0.248 after 

fourth cleaning.  

  

 
                                   (a)                                                                (b) 

Figure 9: Normalized flux versus filtration time duration at filtration of sodium alginate. 

suspension through combined carbon coated spacer/PVDF membrane: without electrolysis, 

and with 2 min electrolysis after filtration intervals of every 45 min (a) carbon coated Spacer 

and (b) Titanium metal spacer. 

 

Similar permeation flux improvement was detected, when the periodic electrolysis was applied 

after 60 min interval time as shown in Figure 10. Figure 10-a show results on the carbon coated 

spacer where a subsequent enhancement in relative flux from 0.039 to 0.49, from 0.024 to 0.49 

and from 0.01216 to 0.2576 were observed after 60, 120 and 180 min interval filtration period 

respectively when a 60-min filtration cycle experiment was employed. A comparison between 

the three filtration cycles (30, 45 and 60 min) reveals a higher flux recovery when shorter 

electrolysis cleaning cycle is applied.  This is most probably due to a loose foulant layer on the 

surface and therefore easier to mitigate from both membrane and spacer surfaces compared 

with the denser foulants deposited layers at pro-longed filtration.  



 
                                   (a)                                                                   (b) 

Figure 10: Normalized flux versus filtration time duration at filtration of sodium alginate 

suspension through combined carbon coated spacer/PVDF membrane: without electrolysis, 

and with 2 min electrolysis after filtration intervals of every 60 min (a) carbon coated spacer 

and (b) titanium metal spacer. 

 

Figure 11 shows the enhanced relative flux value gained after each interval (a:30 min, b:45 

min, c:60min) for both Titanium spacer and coated polymeric spacer.  The coated polymeric 

spacer relative flux shows higher value at 30 min and 60 min at interval time of 30 min at the 

beginning of the operation while the Titanium spacer shows better values at prolonged 

operation. This is more attributed to the fact that the Titanium spacer is more electrically stable 

than the coated polymeric spacer.   

                               

 
                     (a)                                         (b)                                      (c) 

Figure 11: Comparison between relative flux values gained after each interval for both 

titanium spacer and carbon coated spacer.  (a) 30 min interval filtration, (b) 45 min interval 

filtration and (c) 60 min interval filtration. 

 

 

4. Conclusion 

In this study, an in-situ cleaning technique was developed based on the concept of periodic 

electrolysis using commercial PVDF microfiltration membrane. Spacers were made of metal 

titanium or carbon coated polymeric mesh. A membrane/spacer system was assembled, where 

PVDF-MF membrane was attached to the spacer in cross-flow cell. The cleaning efficiency of 

the PVDF microfiltration membrane was investigated by filtration of a sodium alginate 

suspension. The membrane cleaning procedure was conducted in an electrochemical system, 

wherein the conductive spacer performed as a cathode and a graphite electrode acted as a 

counter electrode (anode). Applied potential leads to the generation of micro-bubbles on the 

spacer net, which allows the membrane to in-situ mitigate foulants and improve the flux via 

consequent cycles. The main advantage of this cleaning technique is that it tackles the 

membrane fouling problem with high efficiency with periodic treatment without addition to 



chemical reagents or need for backwash cleaning which shortens the life span of the membrane 

modules. Furthermore, electrically conductive spacers can be easily integrated with all pressure 

driven membrane types including: MF, UF, NF and RO modules. Application of electrically 

conductive spacer for in-situ self-cleaning membrane processes will enhance the membrane 

module performance.   
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