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ABSTRACT: Mammalian dihydrofolate reductases (DHFRs)
catalyze the reduction of folate more efficiently than the equivalent
bacterial enzymes do, despite typically having similar efficiencies
for the reduction of their natural substrate, dihydrofolate. In
contrast, we show here that DHFR from the hyperthermophilic
bacterium Thermotoga maritima can catalyze reduction of folate to
tetrahydrofolate with an efficiency similar to that of reduction of
dihydrofolate under saturating conditions. Nuclear magnetic
resonance and mass spectrometry experiments showed no
evidence of the production of free dihydrofolate during either
the EcDHFR- or TmDHFR-catalyzed reductions of folate,
suggesting that both enzymes perform the two reduction steps
without release of the partially reduced substrate. Our results imply that the reaction proceeds more efficiently in TmDHFR than
in EcDHFR because the more open active site of TmDHFR facilitates protonation of folate. Because T. maritima lives under
extreme conditions where tetrahydrofolate is particularly prone to oxidation, this ability to salvage folate may impart an advantage
to the bacterium by minimizing the squandering of a valuable cofactor.

Dihydrofolate reductase (DHFR) is an essential enzyme in
many organisms; it catalyzes the NADPH-dependent

reduction of 7,8-dihydrofolate (H2F) to 5,6,7,8-tetrahydrofolate
(H4F). Tetrahydrofolate is required for many one-carbon
transfer reactions, most notably in the production of purines,
deoxythymidine, glycine, methionine, and (in prokaryotes)
pantothenic acid. As such, DHFR is an important drug target
and is a clinical target for antibacterial, antimalarial, and
anticancer therapies. Almost all known chromosomal DHFRs
are monomeric enzymes; the structure, dynamics, and kinetics
of the prototypic enzyme from Escherichia coli (EcDHFR)
(Figure 1A) have been extensively studied.1−20 However,
DHFR from the hyperthermophilic bacterium Thermotoga
maritima (TmDHFR) forms an extremely stable homo-
dimer21,22 (Figure 1B) with a catalytic efficiency lower than
that of monomeric DHFRs.23,24 Dimerization is important for
the high thermostability of TmDHFR, but by itself,
dimerization is not responsible for the catalytic activity of
TmDHFR being lower than that of monomeric DHFRs.25−27

Instead, the more open nature of the active site renders the
active site less protected from solvent, which leads to the
reduction in catalytic activity.21,25−28

Interestingly, vertebrate DHFRs can reduce folate in addition
to their natural substrate dihydrofolate.29 This allows the more
stable folate to be used in the supplementation of foods to
reduce the incidence of neural tube defects.30 Bacterial DHFRs,
on the other hand, typically do not reduce folate efficiently.29

The folate specificity of EcDHFR can be increased by the
introduction of loop regions from chicken DHFR.31

In X-ray single-crystal structures of DHFR, folate and
dihydrofolate bind almost identically to the enzyme.4 There-
fore, both molecules present the re face of the pterin at C6 as
the most likely candidate for attack by the C4 pro-R hydride of
NADPH (Figure 1B). Nuclear magnetic resonance (NMR)
studies with DHFR from Lactobacillus casei (LcDHFR) indeed
showed that when folate is fully reduced, both transferred
hydrides are present on the same face of the product
tetrahydrofolate.32,33 Because initial reduction at C7 would
require both an unfavorable hydride transfer geometry and
protonation at the solvent-inaccessible N8, it has been
suggested that the initial product of folate reduction is 5,6-
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dihydrofolate, rather than the natural substrate 7,8-dihydrofo-
late, and that 5,6-dihydrofolate rearranges to form the more
stable 7,8-dihydrofolate, presumably without leaving the active
site of the enzyme, prior to the second reduction step.34−36

This is supported by neutron diffraction studies, which suggest
that N5 of folate is protonated in the EcDHFR·NADP+·folate
complex.37 It has been noted, however, that this does not solve
the problem of N8 protonation,34,36 which is still required for
the rearrangement of 5,6-dihydrofolate to 7,8-dihydrofolate,
and that such apparently unavoidable difficulties in chemistry
are the likely cause of the rates of folate reduction being lower
than those of dihydrofolate reduction. Here, however, we show
that in contrast to other bacterial DHFRs, TmDHFR catalyzes
reduction of folate with an efficiency similar to that of reduction
of dihydrofolate.

■ MATERIALS AND METHODS
Chemicals. NADPH, NADP+, and isopropyl β-D-thiogalac-

topyranoside (IPTG) were purchased from Melford. Folate and
[2H8]isopropanol were purchased from Sigma. 7,8-Dihydrofo-
late was prepared by dithionite reduction of folate.38

EcDHFR,39,40 TmDHFR,24,26 NADPD,39 and TbADH39 were
prepared as described previously. Reactant concentrations were
determined spectrophotometrically using extinction coefficients
of 6200 cm−1 M−1 at 339 nm for NADPH and NADPD and
28000 cm−1 M−1 at 282 nm for folate and dihydrofolate.41

Steady-State Kinetic Measurements. Steady-state turn-
over was monitored spectrophotometrically using a JASCO V-
660 spectrophotometer by following the decrease in absorbance
at 340 nm [ε340(NADPH + substrate) = 11800 M−1 cm−1 in
both cases]31,42 in 100 mM potassium phosphate (pH 7.0)
containing 100 mM NaCl and 10 mM β-mercaptoethanol. The
enzyme (0.05 μM EcDHFR or 0.1−1 μM TmDHFR) was
preincubated at the desired temperature with NADPH (1−100
μM) for 1 min to prevent hysteresis prior to addition of
dihydrofolate or folate (1−100 μM). The change in initial rate
with concentration was fit to the Michaelis−Menten equation

using SigmaPlot 10. For KIE measurements on kcat, 100 μM
substrate and 100 μM cofactor were used. Each data point is
the result of three independent measurements.

Pre-Steady-State Kinetic Measurements. Single-turn-
over experiments were performed on an Applied Photophysics
stopped-flow spectrophotometer, exciting the sample at 292 nm
and observing the loss of fluorescence resonance energy
transfer from the enzyme to NADPH during the reaction
using a 400 nm cutoff output filter. The enzyme (final
concentration of 20 μM) was preincubated with NADPH or
NADPD (final concentration of 8 μM) for at least 5 min in 100
mM potassium phosphate buffer (pH 7.0) containing 100 mM
NaCl and 10 mM β-mercaptoethanol. To determine the pH
dependence of the single-turnover rate constants, MTEN buffer
(50 mM morpholinoethanesulfonic acid, 25 mM Tris, 25 mM
ethanolamine, 100 mM NaCl, and 10 mM β-mercaptoethanol)
was used. The reaction was initiated by rapidly mixing in folate
(final concentration of 200 μM) in the same buffer at 20 °C.
Varying the concentrations of the reagents showed that the
measured rate constants were limiting values. Each data point is
the result of three independent measurements.

NMR Experiments. All NMR experiments were performed
at 37 °C on a Bruker AVANCE III 600 MHz (1H)
spectrometer with a QCI-P cryoprobe. Spectra were recorded
in 100 mM potassium phosphate buffer (pH 7.0) containing 1
mM NaCl and 10% D2O, using excitation sculpting for solvent
suppression (pulse program zgesgp). Reference spectra were
recorded for NADPH, NADP+, folate, and dihydrofolate. A
reference spectrum of a mixture of tetrahydrofolate and NADP+

was recorded following incubation of dihydrofolate and
NADPH with EcDHFR for 5 min.
The TmDHFR-catalyzed reaction was monitored by mixing

folate (2.5 mM), NADPH (5 mM, 2 equiv), and TmDHFR
(125 μM, 0.05 equiv) in the NMR tube. For the EcDHFR-
catalyzed reaction, 10 mM folate, 20 mM NADPH, and 1 mM
(0.1 equiv) EcDHFR were used. Solvent-suppressed one-
dimensional (1D) 1H spectra (zgesgp) were recorded until no
significant change in resonance intensity was observed, and a
1H−13C HSQC spectrum was then recorded. The reaction
catalyzed by TmDHFR was performed in 50 mM Tris buffer
(pH 7.0) containing 1 mM NaCl and 10% D2O.
The high salt content of our NADPD led to low-quality

NMR spectra. Therefore, to determine the hydride transfer
face, a coupled enzyme assay was used to generate NADPD in
situ. Folate (2.5 mM), TmDHFR (125 μM, 0.05 equiv),
TbADH (1 mg of freeze-dried enzyme39), and [2H8]-
isopropanol (25 μL, ∼570 μM, 0.23 equiv; also used to
provide the lock signal) were mixed in 50 mM Tris buffer (pH
7.0) containing 1 mM NaCl (final volume of 500 μL). Larger
volumes of [2H8]isopropanol caused precipitation over time,
which led to poor NMR spectra. The reaction was initiated by
addition of NADP+ (250 μM, 0.1 equiv), and solvent-
suppressed 1D 1H spectra (zgesgp) and 1H−13C HSQC
spectra were recorded over 3 h. Reference 1H and 1H−13C
HSQC spectra of 6-[2H]tetrahydrofolate were recorded using
this coupled assay with dihydrofolate and EcDHFR instead of
folate and TmDHFR.

Liquid Chromatography−Mass Spectrometry (LC−
MS) Analysis. The reaction was also monitored by LC−MS
using a Waters Synapt G2-Si time-of-flight mass spectrometer
coupled to a Waters Acquity UPLC system with an Acquity
C18 reverse phase column held at 40 °C throughout the run.
Reactions were performed by mixing folate (50 μM), NADPH

Figure 1. Cartoon representations of the crystal structures of (A)
EcDHFR (PDB entry 1RX24) and (B) TmDHFR (PDB entry
1D1G21), with bound ligands (MTX = methotrexate) shown as sticks,
and (C) the DHFR-catalyzed reduction of dihydrofolate and folate to
form tetrahydrofolate.

Biochemistry Article

DOI: 10.1021/acs.biochem.6b01268
Biochemistry 2017, 56, 1879−1886

1880



(100 μM), and TmDHFR (2.5 μM, 0.05 equiv) or EcDHFR (5
μM, 0.1 equiv) in 50 mM Tris buffer (pH 7.0) containing 1
mM NaCl and 10 mM β-mercaptoethanol. Reactions were
allowed to proceed to ∼50% completion (as determined by UV
at 340 nm) before the enzyme was removed using a 12 kDa
cutoff filter and 1 μL of the filtrate was injected onto the
column. UV spectroscopy showed that folate, dihydrofolate,
and tetrahydrofolate concentrations were not affected by the
filtration step. Compounds were eluted using a gradient from 5
to 95% aqueous acetonitrile (containing 0.1% formic acid) over
10 min, and mass spectra were recorded from m/z 100 to 1000
in ESP+Ve mode. The reactions and analysis were performed in
duplicate. All processing was performed using MassLynx
version 4.1. Extracted ion chromatograms were taken with
ions at m/z 442 and 446 for folate and tetrahydrofolate,
respectively. For dihydrofolate, ions at m/z 444 and 297 were
sought, but not detected, in all chromatograms. To confirm that
dihydrofolate was detectable, dihydrofolate (10 μM) was added
to a post-LC−MS sample and the analysis repeated.

■ RESULTS AND DISCUSSION
Steady-State and Single-Turnover Kinetics. Michaelis−

Menten kinetics for folate and dihydrofolate were measured
with EcDHFR and TmDHFR at 20 °C and pH 7 (Figure S1).
Although, in line with previous observations, EcDHFR gave a
kcat with folate ∼5000-fold lower than that with dihydrofolate,31

the kcat for TmDHFR-catalyzed folate reduction was only ∼3-
fold lower than for dihydrofolate (Table 1). The primary

kinetic isotope effect (KIE) on TmDHFR-catalyzed transfer of
hydride to folate, obtained by comparing the kcat observed with
NADPH with that observed with 4R-(2H)-NADPH (NADPD),
was 3.56 ± 0.52. In addition, the single-turnover rate constant
kH for TmDHFR-catalyzed folate reduction, which reports
predominantly on the chemical step of the catalytic cycle, was
only slightly higher than the steady-state rate constant (Table
1). This demonstrates that the chemical step of the catalytic
cycle is predominantly rate-limiting, as seen previously for
dihydrofolate.24 Under saturating conditions, TmDHFR can
therefore reduce folate with an efficiency similar to that of
dihydrofolate. However, as the KM for folate with TmDHFR is
substantially higher than that of dihydrofolate (Table 1), the
kcat/KM for folate is lower than that for dihydrofolate. The
reduced affinity for folate relative to that for dihydrofolate seen
for TmDHFR is consistent with results obtained with
LcDHFR43 and EcDHFR.31

The temperature dependence of the primary kinetic isotope
effect (KIE) on TmDHFR-catalyzed hydride transfer to folate
was also determined at pH 7. Single-turnover rate constants
observed with NADPH as a cofactor were compared with those
observed with NADPD. At all temperatures, the KIE with folate
as a substrate was not significantly different from that observed

previously with dihydrofolate44 (Figure 2 and Tables S1−S3).
Furthermore, the apparent pKa for the reaction with folate was

5.77 ± 0.03, similar to the value of 5.83 ± 0.06 observed with
dihydrofolate25 (Figure 2 and Table S4). In EcDHFR, the pH
dependence of the single-turnover rate constant is determined
by the pKa of protonated dihydrofolate within the active site of
the enzyme (6.5), which is elevated substantially from its
solution value.45 Although the pKa of protonated dihydrofolate
within the active site of TmDHFR has not been experimentally
verified, the pH dependence of the TmDHFR-catalyzed
reaction is likely also to be determined by this value. We
have previously suggested that the lower apparent pKa for the
TmDHFR-catalyzed reaction is due to the more open,21 and
therefore solvent-accessible, active site, which prevents such
extensive modulation of the substrate pKa.

28 As both proposed
mechanisms require N8 protonation before the second
reduction event, the similar pKa values for the reactions with
folate and dihydrofolate suggest that TmDHFR can modulate
the pKa at N8 of folate quite efficiently. It may be that the more
solvent-accessible active site in TmDHFR actually facilitates N8

Table 1. Kinetic Parameters at 20 °C for EcDHFR and
TmDHFR with H2F and Folate

enzyme,
substrate KM (μM) kcat (s

−1) kH (s−1)

EcDHFR, H2F 0.90 ± 0.06 11.1 ± 0.1 159.8 ± 7.918

EcDHFR, folate 8.77 ± 0.70 0.0022 ± 0.0005 not determined
TmDHFR, H2F <0.5 0.091 ± 0.02 0.122 ± 0.00344

TmDHFR,
folate

6.23 ± 0.70 0.0332 ± 0.001 0.053 ± 0.001

Figure 2. (A) Arrhenius plots for the transfer of hydride (circles) and
deuteride (triangles) from NADPH/D to H2F (red)44 and folate
(blue) catalyzed by TmDHFR under single-turnover conditions at pH
7. (B) Plots of the KIE on a logarithmic abscissa vs the inverse
temperature at pH 7 for H2F (red)44 and folate (blue). (C) pH
dependence of the hydride transfer rate constant at 25 °C for H2F
(red)55 and folate (blue).
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protonation, by providing solvent-mediated routes to proto-
nation and cation stabilization not available in DHFRs with
more tightly closed active sites. A number of crystallographic
water molecules are seen in the folate-binding site of TmDHFR
in complex with NADP+ and methotrexate (PDB entry 1D1G),
including some buried within the active site pocket.21 Given the
low flexibility and paucity of histidine residues in TmDHFR,21 a
pH-dependent conformational change, as seen for apo-
EcDHFR,46 seems less likely.
It was not possible to obtain a value for kH from single-

turnover kinetic data with EcDHFR. Although a small loss of
fluorescence was observed over short time scales, with a rate
constant of 571.5 ± 43.0 s−1 at 20 °C, a kinetic isotope effect of
1 was observed, demonstrating that the event causing this loss
of fluorescence was not the chemical step of the catalytic cycle.
A subsequent increase in fluorescence at longer time scales
meant that kH could not be determined.
NMR Experiments. NMR experiments were performed to

confirm that EcDHFR and TmDHFR convert folate to
tetrahydrofolate and to determine whether any free dihydro-
folate is produced. EcDHFR-catalyzed reduction of dihydrofo-
late led to a loss of the strong singlet resonances for the two H7
protons and the two H9 protons, and the appearance of four
new multiplets for H6, H7R, H7S and the two H9 protons of
tetrahydrofolate as expected32,33 (Figure 3A).
Incubation of folate and NADPH in the presence of 0.05

equiv of TmDHFR led to loss of resonances corresponding to
these compounds and growth of resonances corresponding to
tetrahydrofolate and NADP+ (Figure 3B), confirming that
tetrahydrofolate was formed by the TmDHFR-catalyzed
reduction of folate. For EcDHFR, 4-fold higher concentrations
of folate and NADPH and 0.1 equiv of the enzyme were
required before useful results could be obtained. Tetrahy-
drofolate and NADP+ resonances were visible after a few hours,
although the intensities of the folate and NADPH resonances
were not greatly diminished (Figure 3C), as expected from the
poor efficiency of EcDHFR-catalyzed folate reduction. Addi-
tional time led to a further decrease in the intensity of the folate
and NADPH resonance and an increase in the intensity of the
NADP+ resonance, although the intensity of the tetrahydrofo-
late resonance did not increase further and spectral quality was
diminished, presumably because of oxidation of the tetrahy-
drofolate. For both enzymes, the decrease in the integral for
NADPH and folate loss, and the increase in the integral for

NADP+, are proportional to one another (Figure 3B,C). As
NADPH and folate are present in a 2:1 ratio, this shows that
they are depleted in a 2:1 ratio as expected.
No resonances corresponding to dihydrofolate were

observed for either enzyme at any time during the experiment
(Figure 3). As the reactions were performed with saturating
concentrations of NADPH and folate, then if dihydrofolate
were released from the enzyme during the catalytic cycle, the
high folate concentration would favor folate binding over
dihydrofolate rebinding, and consequently reduction of folate
that was more rapid than that of dihydrofolate. This in turn
would lead to a buildup of dihydrofolate. When a 1:1 folate/
dihydrofolate mixture was used, both enzymes preferentially
catalyzed reduction of dihydrofolate (Figure S2), as expected
from our kinetic results. However, the dihydrofolate released
from the enzyme is unlikely to successfully compete with the
saturating folate for the active site under the experimental
conditions. The NMR experiments therefore strongly suggest
that dihydrofolate is not released from the active site of the
enzyme.
To determine the face of folate on which the two hydride

transfers take place, a coupled enzyme assay was used to
generate NADPD in situ. TmDHFR was incubated with folate
in the presence of NADP+, [2H8]isopropanol, and alcohol
dehydrogenase from Thermoanaerobacter brockii (TbADH). On
the basis of our previous work with TmDHFR in organic
cosolvents, isopropanol is not expected to have a significant
impact on TmDHFR catalysis at the concentrations used,47

although reaction rates were reduced because of the KIE on the
reaction (vide supra), leading to poorer tetrahydrofolate signals.
As observed previously for LcDHFR,32,33 signals corresponding
to H6 and H7 resonances were not seen in the 1H NMR
spectrum or the 1H−13C HSQC of the tetrahydrofolate product
(Figures 3D and 4), confirming that the transfer of hydride to
both sites on folate occurred on the same face.

LC−MS Analysis. LC−MS analysis was used to provide
further evidence of tetrahydrofolate production without
formation of free dihydrofolate. Following incubation of folate
and NADPH with TmDHFR and EcDHFR, peaks correspond-
ing to NADP+ and tetrahydrofolate could clearly be observed,
although retention times were varied slightly between runs
(Figure 5 and Figures S3−S6). Extracted ion chromatograms
revealed no evidence of dihydrofolate (Figures S7−S9).
However, repetition of the LC−MS analysis following addition

Figure 3. Key regions of the (A) 1H NMR spectra of folate (black), H2F (blue), NADPH (green), and a mixture of NADP+ and H4F (red), and of
1H NMR spectra acquired during reduction of folate using NADPH in the presence of (B) TmDHFR and (C) EcDHFR, and (D) using in situ-
generated NADPD in the presence of TmDHFR. In panels B and D, the sharp singlet at ∼3.6 ppm is a 13C satellite from the buffer resonance. The
region from 3.25 to 3.65 ppm, which contains the H4F H6, H7, and H9 resonances, is shown at 4× magnification in panels B−D.
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of dihydrofolate showed that this compound could be easily
detected by our system (Figure 5C and Figures S7−S9). The
sensitivity of LC−MS compared to NMR confirms that no free
dihydrofolate is produced during the reduction of folate by
either enzyme. As, like the NMR experiments described above,
these reactions were performed with saturating concentrations
of NADPH and folate, this demonstrates that dihydrofolate is
not released from the active site of the enzyme.

Reduction of Folate by EcDHFR and TmDHFR. For both
enzymes, no free dihydrofolate was observed during the
reaction. This strongly suggests that dihydrofolate is not
released from the active site of either enzyme but that the
catalytic cycle continues via release of NADP+ to form the
DHFR:H2F binary complex followed by rebinding of NADPH
to form the DHFR:NADPH:H2F Michaelis complex. This is to
be expected for EcDHFR from published kinetic data (Figure
6)1,31 and from the fact that folate and NADPH were both
present at high concentrations in our reactions. In E. coli, the
concentration of NADPH is 12 μM,48 higher than the
dissociation constant and the Michaelis constant of
NADPH,1,49 and likely still sufficient for NADPH rebinding
to be preferred to dihydrofolate loss. Although concentrations
of folates50−52 are likely to be below the Michaelis constant for
dihydrofolate,1,53 this will not affect the preferred catalytic cycle
if NADPH concentrations are sufficiently high. Although the
intracellular concentrations of NADPH and dihydrofolate in T.
maritima are not known, TmDHFR has an affinity for the
reactants higher than that of EcDHFR, making it more likely
that the NADPH concentration will be saturating. In addition,
the rate constants for binding events in TmDHFR will be even
higher than those of release events. The data obtained here also
suggest that, as seen for EcDHFR,1,31 the rate constants for the
release of product from the TmDHFR:NADP+:H2F and
TmDHFR:NADP+:H4F complexes are substantially smaller
than those for NADP+ release.
There are a number of possible explanations for the greater

rate of folate reduction by TmDHFR compared to that of
EcDHFR. If the initial reduction occurs at C6, then TmDHFR
must be better able to catalyze the rearrangement of 5,6-
dihydrofolate to 7,8-dihydrofolate (by N5 deprotonation, 1,2-
hydride shift from C6 to C7, and N8 protonation) prior to the
second reduction. As both reduction steps show a substantial
primary KIE on NADPH oxidation, this rearrangement must be
fast compared to the hydride transfer events. Alternatively, if
the initial reduction occurs at C7, then TmDHFR must be
better able to support the arrangement of reactants required for
this, and/or better able to support protonation at N8. The
common feature is protonation of N8. As discussed above, the
similarity in the apparent pKa values for the two reduction steps
suggests that TmDHFR can modulate the pKa at N8 of folate
quite efficiently. It may therefore be that, with its less solvent-
accessible active site, EcDHFR fails to modulate the pKa of
folate so efficiently, and rates of folate reduction will be greater
at lower pH. Unfortunately, as we were unable to measure a
rate constant for EcDHFR-catalyzed hydride transfer to folate,
we cannot test this.

■ CONCLUSIONS
TmDHFR catalyzes the reduction of folate to tetrahydrofolate
with an efficiency similar to that of the reduction of
dihydrofolate under saturating conditions. The similar primary
KIE on hydride transfer and its temperature dependence
suggest that the nature of the chemical step is similar to those
of the two substrates. Furthermore, no evidence of the
production of free dihydrofolate was seen for the EcDHFR-
or TmDHFR-catalyzed reduction of folate, suggesting that both
enzymes perform the two reduction steps without release of the
partially reduced substrate. It had previously been shown that
EcDHFR may be engineered to increase specificity for folate,
although this does not increase the kcat,

31 likely because the
necessary protonation of folate at N8 is unfavorable within the

Figure 4. 1H−13C HSQC spectra of the H6/H7/H9 region of
tetrahydrofolate produced using TmDHFR with folate and NADPH
(blue), EcDHFR with dihydrofolate and NADPD (red), and
TmDHFR with folate and NADPD (black). The 1H projection
shown is for tetrahydrofolate produced using NADPH, with
assignments taken from refs 32 and 33. The sharp singlet at ∼3.6
ppm in the projection is a 13C satellite from the buffer resonance,
coincident with the H7S resonance, and is not responsible for the
observed cross-peak.

Figure 5. LC−MS analysis of DHFR-catalyzed folate reduction.
Chromatograms are shown at ∼50% completion (by UV) for the
reaction catalyzed by (A) EcDHFR and (B) TmDHFR and (C) for
reinjection of the TmDHFR postreaction sample with addition of
dihydrofolate. Extracted ion chromatograms and mass spectra are
shown in Figures S3−S9.
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active site. While our results do not shed light on whether initial
reduction of folate occurs at C6 or C7, they suggest that the
reaction proceeds more efficiently in TmDHFR than in
EcDHFR because the more open active site of TmDHFR
facilitates protonation of folate.
The only likely source of folate for T. maritima is oxidation of

reduced folates. T. maritima lives in deep-sea vents and thermal
springs, often at temperatures above 90 °C,54 and under these
conditions, the oxidation-prone tetrahydrofolate is particularly
vulnerable to degradation. Given that oxidation may also be
mediated by species other than O2, the increased efficiency of
folate reduction may therefore represent a salvage pathway
allowing the bacterium to minimize squandering of this valuable
cofactor, thereby gaining an additional competitive advantage
under these challenging conditions for life.
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