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ABSTRACT
Kalman filter hasbeen successfully applied to fuse themotion capturedata collected fromKinect sen-
sor and a pair of MYO armbands to teleoperate a robot. A new strategy utilizing the vector approach
has been developed to accomplish a specific motion capture task. The arm motion of the operator
is captured by a Kinect sensor and programmedwith Processing software. TwoMYO armbands with
the inertialmeasurement unit embedded areworn on the operator’s arm,which is used to detect the
upper arm motion of the human operator. This is utilized to recognize and to calculate the precise
speed of the physical motion of the operator’s arm. User Datagram Protocol is employed to send the
humanmovement to a simulated Baxter robot arm for teleoperation. In order to obtain joint angles
for human limb utilizing vector approach, RosPy and Python script programming has been utilized.
A series of experiments have been conducted to test the performance of the proposed technique,
which provides the basis for the teleoperation of simulated Baxter robot.
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1. Introduction

With the rapid advancement of sensor and actuator
techniques, the robot technology has been investigated
to a great extent in wider areas, such as control sys-
tem design, data sensor innovation, bionics and artifi-
cial intelligence. According to Garcia, Jimenez, De San-
tos, and Armada (2007), following the accomplishment
of modern robots, industrial robots have now increas-
ingly attracted considerable interest in the past decades,
wherein, human–robot interaction (HRI) plays an increas-
ingly important role in industrial robot application. The
robot is thought to have the capacity to adjust to the
modern needs. Human beings are able to satisfy the vari-
ation of the surrounding environment, hence, it would
be effective if robot is operated by human depending on
their actual abilities and this is defined as teleoperation
(Tang,Wang, &Williams, 1998). The teleoperation innova-
tion with the connection between human and robot has
been widely investigated in Dautenhahn (2007). By using
robotic teleoperation system, operator is able to control
a remote robot conveniently through the internet.

However, there are some potential issues, such as gen-
uine missing information, signal transmission delay due
to the restrictions of transfer speed and system trans-
mission protocol in Li, Ma, Yang, and Fu (2014). Despite
these issues, it is still a critical and helpful instrument in
the fields of HRI research. Hence, numerous teleoperation
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applications have been reported in the literature. In
Ijspeert (2008), a mutual control strategy for Baxter robot
controller has been created. A strategy for emulating
humanwrittenwork aptitudes to aBaxter robot controller
has been dealt by Yang, Chang, Liang, Li, and Su (2015a).
Researchers are able to teleoperate a robot calligraphi-
cally by utilizing electromyography (EMG) signals and a
haptic device. In Yang, Chen, Li, He, and Su (2015b), sur-
face electromyography signals have been upgraded to
perform teleoperation. The human operators can detect
the situation in a haptic way and adjust muscle compres-
sion subliminally. Li et al. (2014) depict the improvement
of a simulated robot teleoperation stage in light of hand
signal acknowledgement utilizing visual data.

In addition, a direct approach to give robot a chance to
imitate the human motion is developed, which is known
as motion capture technology and it is a perfect strategy
to transfer human abilities to robot side (Breazeal, 2000).
To realize human motion capture, human body itself
ought to be followed first. In the literature, there are vari-
ousmethods to achievehumanmotion capture. Themost
widely used method is to estimate the markers from the
body of human operator, however, this may lead to a
number of inconveniences to the user. Another method
is utilizing image processing from typical cameras. How-
ever, this strategy is not reliable owing to the unsta-
ble body location capacities during the imaging process.

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Other methods include stereo-vision cameras that have
been applied to motion capture for depth data analy-
sis. Unfortunately, its processing time is long, without
effectiveness in real-time applications.

As one of the enabling techniques for teleoperation,
motion capture primarily incorporates two interfaces,
which are remotely wearable device input interface and
detecting interface based on vision system. Moreover,
a few sensors have been utilized for the visual system,
such as Leap Motion and Kinect. In Reddivari et al. (2014),
humanmotions are obtainedby Kinect sensor, andby uti-
lizing the vector approach, people can ascertain the joint
points of Baxter robot. In Liu, Zhang, Fu, and Yang (2013),
the welder-related work is caught by the Leap Motion
sensor, which is estimated by a soldering robot with tele-
operation networks. Moreover, the wearable devices, for
example, exoskeleton (Jo, Park, & Bae, 2013) or joystick,
or Omni haptic device (Ju, Yang, Li, Cheng, & Ma, 2014)
are normally used. In this paper, we investigate the wear-
able device, MYO Armband together with the motion
capture systemusing aKinect sensor to teleoperate a Bax-
ter robot optimized by Kalman filtering (KF) based sensor
fusion. In Yang, Wang, and Hung (2002), KF method was
used to overcome the shortcomings of Wiener filtering.
KF is widely used as it can estimate the past, current and
future state signal, even if the exact nature of the model
is not known.

Essentially, filtering is a procedure of signal processing
and transformation (removing or reducing undesirable
components and enhancing the required components).
People can implement the above steps either by software
or hardware. Wherein, KF is a software filtering method
minimizing mean square error, which is widely used as
the best estimation criterion. Furthermore, KF uses the
state space model of signal and noise to estimate the
value of the previous time, after that the observed values
of current time are updated. Based on the equations of
established and observation system, the algorithm esti-
mates the minimum mean square error of the signal to
be processed.

Some researchers proposed the strategies usingKinect
and MYO armbands to obtain the joints angles of human
arms and then teleoperated with robots, for example, in
Reddivari et al. (2014) and Yang, Chen, and Chen (2016).
However, the accuracy of calculation of angular data in
both the above strategies had issues owing to the exis-
tence of the noises. This paper develops an optimum
strategy to eliminate the influence of the noises using
KF-based sensor fusion. Precisely, the vector approach
was used to calculate the five required joints angles, then
the KF algorithm was applied to output a series of more
accurate datawith less errors. Additionally, we have effec-
tively applied the control systems to teleoperate the Bax-
ter robot. In order to do this, MYO armbands worn on
the operator’s lower arm and upper arm are utilized to
identify and measure the angular velocity of human arm
motion, and aKinect-basedbody tracking systemhas also
been utilized.

2. Preliminary

2.1. System configuration

To delineate the teleoperation of robot utilizing motion
capture, an illustrative system was assembled. It com-
prises the body tracking system, Baxter robot and MYO
armbands, as shown in Figure 1.

Motion capture is obtained by the Kinect sensor. In
spite of the fact that there are diverse types of Kinect,
it is utilized due to its low cost and it can provide the
data required for this research. The Kinect device is asso-
ciated with a remote computer, wherein, Processing pro-
gramming software was introduced and used to get the
position information from Kinect sensor.

This research utilizes Baxter, which is a semi-humanoid
robot with arms of seven DOF joints and has impact
avoidance abilities. Operators can control it for study
through torque, speed and position mode, respectively.
The overall experimental systemwas associated with and
controlled by the development workstation, a remote

Figure 1. The experimental teleoperation system, left: development Workstation, MYO armband, Kinect sensor and Remote PC; right:
MATLAB robotic toolbox based simulated Baxter robot.
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Figure 2. Diagram for the rule of research in total.

computer with Ethernet link, as well as a pair of MYO
armbands. The principle of teleoperation system is rep-
resented as Figure 2.

2.2. Kinect sensor and development workstation

The Kinect sensor, utilized as a part of the proposed tele-
operation system, is an arrangement of sensors created as
a fringe device along with the Xbox video game device.
Kinect is produced by Microsoft and generally utilized as
a part of human motion 3D following, for example, non-
verbal communication, motions and so on through its
profundity camera in Cheok (2010). Besides, a RGB cam-
era and a double infrared profundity sensor are located
in front of the Kinect in Henry, Krainin, Herbst, Ren, and
Fox (2012). Utilizing image and profundity sensors, Kinect
can distinguish developments of a client. It does not
require people to wear any additional interfaces. The
image and profundity sensors are mounted on a base

with an engine, which permits it to change orientation for
all the sensors, as in Figure 3.

From the Figure 3, the depth detector of the Kinect is
contained within two units, which are the monochrome
CMOS sensor and the infrared projector(label 1, Figure 3).
They are working together, which is the basis of motion
capture in Reddivari et al. (2014).

The image depth and RGBdata collected fromKinect is
illustrated in Figure 4. Human body can be rearranged by
arranging several straight lines together to showhuman’s
positions and poses in 3D space. Kinect collects the statis-
tic during the teleoperation process, such as human joint
positions, speeds, and then sends them to the robot, by
doing this, human–robot cooperation is achieved pro-
gressively. Compared to the traditional motion following
device with complex programming, high cost and incon-
venient setup, Kinect can be implanted in the control
system working with open source (Sucipto, Harsoyo, &
Rusmin, 2012).

Figure 3. Image of Kinect sensor: 1. Depth sensors, 2. RGB camera, 3. Motorized base. Modified from Reddivari et al. (2014).
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Figure 4. Image of depth and RGB sensor data collected from Kinect.

Numerous programming projects are accessible to be
used with Kinect, such as OpenKinect, OpenNI, Microsoft
Kinect for windows SDK (Boulos et al., 2011). OpenKinect
is designed free for equipping the Kinect with computers
and other devices in Villaroman, Rowe, and Swan (2011).
OpenNI is able to support a large amount of different
devices apart fromKinect inVillaromanet al. (2011),which
utilizes NITE to get the skeleton information of the oper-
ator, according to Bolíbar (2012). Microsoft Kinect for
windows SDK is another commonly used platform pro-
duced by Microsoft in Bolíbar (2012). SimpleOpenNI is an
OpenNI andNITEwrapper for Processing in Ronchetti and
Avancini (2011).

The utilization of programming software is impera-
tive and ought to be relied on: (a) capacity of separating
skeletal information; (b) similarity with different operat-
ing systems, for example, Windows and Linux; (c) clear
documentation; and (d) straightforwardness for quick
confirmation of calculations. After appropriate examina-
tion, Processing programming software which fulfils all
the prerequisites is utilized. Operators can program via
Kinect with SimpleOpenNI wrapper for OpenNI and NITE,
according to Jean (2012), and skeleton information can
be collected on both Windows and Linux platform in
Zhou, Chang, and Li (2009). Processing is based on Java,
hence fundamentally the same syntax canbeused. All the
functions utilized in this paper are given below:

PVector: A class to depict as a few dimensional vectors,
particularly the Geometric vector. However, the statis-
tic stores the parts of the vector (x, y for 2D, and x, y, z
for 3D). The magnitude and direction can be obtained
using the methods mag () and heading (), according to
Ramos (2012).

pushMatrix() and popMatrix(): They can transfer the
present transformation matrix into the matrix stack.
The pushMatrix() can record the current coordinate sys-
tem information to the stack and popMatrix() restores
them. The pushMatrix() capacity and popMatrix() capac-
ity are utilized in conjunction with other transformation

functions and might be used to control the extent of the
changes (Ramos, 2012).

2.3. Robot Operating System and Rospy

Robot Operating System (ROS) is an adaptable operation
system for the programming of robot. It is gathering the
tools, conventions and libraries, which expects to rear-
range the complicated task of robot activities to be more
simple, according to Calo (2011). And the ROS can be
setup under multiple platforms.

Rospy is a related Python customer library for ROS.
TheRospy customerAPI empowers Python software engi-
neers to rapidly interact with parameters, services and
topics of ROS. The plan of Rospy requires usage speed
(i.e. designer time) over runtime execution, hence cal-
culations can be immediately prototyped and examined
inside ROS. It is additionally perfect for the particular
codes which have no critical path, for example, codes for
initialization and configuration. A large amount of the
ROS instruments are composed in Rospy script to develop
the introspection abilities. A large number of the ROS
devices, for example, Rostopic and Rosservice, are based
on top of Rospy (Cousins, 2010).

2.4. User Datagram Protocol

User Datagram Protocol (UDP) is one of the central indi-
viduals from the Internet convention suite (the arrange-
ment of system conventions utilized for the Internet).
Through this, PC software can send information, under
this situation according to datagrams, to different PCs
with an Internet Protocol (IP), by doing this, the unique
transmission channels or information paths can be estab-
lished without earlier interchanges. UDP is reasonable
for purposes where the error is small enough and can
be ignored or performed for the software, instead of the
overhead of such handling at the system interface level.
According to Tawfik et al. (2014), UDP was frequently
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utilized for time sensitive applications owing to the fact
that dropping packets are desirable to wait for delayed
packets, where it is difficult to appear an alternative in a
constant system.

2.5. MYO armband

MYO armband (shown in Figure 5) is a wearable device
created by the Thalmic Labs. When the operator wears
MYO armband on his/her arm, it can communicate with
system through the function of Bluetooth. In addition, it
has been built in eight EMG sensors and one IMU sensor
with nine axis, hence the hand posture and arm motion
can be detected. When people move their arm muscles,
the eight EMG sensors can distinguish their hand ges-
tures. Because every user has distinctivemuscle size, type
of skin and so on, the sensors can create information by
electrical driving forces from arm muscles of operators.
Critically, calibrating process is necessary for every user
before using MYO armbands. Hence, the MYO armband
can identify the motions and gestures of human limbs in
a more accurate way.

2.6. Baxter research robot

In the experimental stage of the research, we utilized the
simulated Baxter robot. The Baxter robot comprises of
one torso, one 2-DOF head and two 7-DOF arms, which
are shoulder joint: s0, s1, elbow joint: e0, e1 and wrist
joint: w0, w1, w2, respectively (Cousins, 2010). There are
also coordinated cameras, torque sensors, encoders and
sonar with the Baxter robot. Researchers can directly pro-
gramme Baxter using open source, such as a standard
ROS interface and so on. Seven Serial Elastic Actuators
drive all joints of the Baxter robot arm, which gives pas-
sive consistence tominimize the constrain of any effect or
contact (Cousins, 2010). Commonly, people teleoperate

and program the Baxter robot using ROS through Bax-
ter RSDK running on the platform Ubuntu 12.04 LTS,
wherein, ROS is an open source system with libraries,
module devices and correspondences (Cousins, 2010). It
improves the task of displaying and programming on a
various types of automated platforms (Cousins, 2010).

The installation of the simulated Baxter robot in this
research is demonstrated in Figure 1.

2.7. Kalman Filter

KFmethod is used to fuse the real-timedynamic low-level
extra sensor data,which recursively decides statistical sig-
nificance of the optimal fusion data combinationby using
the statistical characteristics of the measurement model.
If the systemhas a linear dynamicmodel, the systemnoise
and sensor noise can be represented by a white noise
model with Gaussian distribution, KF would provide the
unique statistically optimal estimate for the fusion data.
The recursive nature of KF makes processed unnecessar-
ily. The KF is divided into the continuous time KF and the
discrete KF.

The actual physical system is usually continuous, as a
consequence, the description of discrete systems often
cannot completely replace the continuous time system.
The mathematical model of the continuous system can
be shown by the following formula fromDavari, Gholami,
and Shabani (2016),

ẋ(t) = A(t)x(t) + B(t)u(t) + G(t)ω(t),

y(t) = H(t)x(t) + v(t),
(1)

where x and u are n-dimensional state variables; y is
dimension measurement vector; A is n × n-dimensional
system matrix; G and B are n × r-dimensional sys-
tem voice matrix; H is m × n-dimensional measurement

Figure 5. Image of MYO Armband.
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Figure 6. Working principle of continuous time KF.

matrix; ω is the zero-mean white noise vector of the r-
dimensional continuous system; v is the continuous zero-
mean value of the m-dimensional measurement of the
white noise vector.

The continuous time KF equation, according to Särkkä
and Solin (2012) is as follows:

˙̂x(t) = A(t)x̂(t) + B(t)u(t) + K(t)[y(t) − H(t)x̂]

K(t) = P(t)HT(T)r−1(t)

Ṗ(t) = P(t)HT(t) + A(t)P(t)

− P(t)Ht(t)r−1H(t)P(t) + G(t)s(t)GT(t),

(2)

where K is the filter gain matrix, x̂ is the estimated value
of x and P is the estimated covariancematrix. Continuous
time KF is based on the measured values of the continu-
ous timeprocess, and itsmethodof solving thematrix dif-
ferential equation is used to estimate the time continuous
value of the system state variable, hence, this algorithm
loses recursion. Its working principle is demonstrated in
Figure 6.

3. Motion capture by Kinect

3.1. General calculation

Commonly, the motion capture calculations for upper
limb depend on distances, locations and joint angles.
The length between two specified points with two- and
three-dimensional points can be obtained given by the
following equations:

d2D =
√

(x2 − x1)2 + (y2 − y1)2, (3)

d3D =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2, (4)

where (x1, y1) and (x2, y2) are points in 2D space, d2D
is the distance between these two points, (x1, y1, z1)
and (x2, y2, z2) are points in 3D space, d3D is the length
between these two points.

The angles at all the joints are obtained by the law
of cosines. The most extreme calculable angle is 180

Figure 7. Mathematical principle description.

degrees. While computing the angles among the joints,
an extra point is required to define at 180–360 degrees.
After collecting the motion capture statistics, a triangle is
drawn by utilizing any two joint points. From the other
twopoints, the thirdpoint of the triangle canbeobtained.
Under this case, the coordinated statistics for every point
of the triangle is known,we are able to find out the length
of every side, instead of the value of each angle, which is
still unknown. As shown in Figure 7, themagnitude of any
coveted point can be calculated by applying the law of
cosines.

Computations for the points of joint illustrate the
length of sides a,b,c. Similarly, we can also calculate the
angles of triangle using the law of cosines.

3.2. Vector approach

Kinect can identify every single joint with coordinate data
of human body and supply with feedback about its statis-
tics. All these directions are transformed into vectors and
the particular angles of the joints can be obtained.

The coordinates of human body joints collected from
Kinect in this strategy are under the Cartesian space, addi-
tionally, the particular angles from arms are computed.
After mapping process by Kinect sensor, they are sent to
teleoperate the Baxter as indicated by our requirement.

The five points Shoulder Pitch, Yaw and Roll as well as
Elbow Pitch and Roll, shown as seen from Figure 8, are
computed from the arm positions data that are extracted
from the Kinect.

The computation of vectors is illustrated in Figure 9.
According to Reddivari et al. (2014), the intense lines CO
and CD illustrate left upper and ahead part of arm for
human separately. Intense line BO represents the dis-
tance from left hip to left shoulder, and AO represents
the length between right shoulder and left shoulder. The
directionswith coordinated data BX+, BY+ and BZ+ shows
the axis system of Kinect in Cartesian space, where the
point B is the origin.
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Figure 8. Demonstrationof all related angles in Vector Approach:
Shoulder Pitch, Yaw and Roll, Elbow Pitch and Roll.

Figure 9. The principle of vector approach inmathematical com-
puting (Reddivari et al., 2014).

Methodology for Computing Shoulder Pitch and Elbow
Pitch: As in Figure 9, according to Reddivari et al. (2014),
the angle ∠BOC (Shoulder Pitch) is obtained by the dis-
tance of two points from vectors OB to OC. The comput-
ing methodology is then able to be defined by utilizing
the three specified joints’ position, which are shoulder
(point O), elbow (point C) and hip (point B). Delivering
these three points using the angle Of() function gives
feedback of the value for angles, which are sent to Bax-
ter directly. The ∠OCD (Elbow Pitch), which is the angle
among CD and OC, can be computed through sending
hand, elbow and shoulder values into the angle Of() for
working as well (Reddivari et al., 2014). In this methodol-
ogy,wecanuse theangleOf() command in theProcessing
software to calculate any angles between two vectors.

Methodology for computing Shoulder Yaw: As we can
see from Figure 9, according to Reddivari et al. (2014),
the angle ∠EBF (Shoulder Yaw) is obtained by a similar
methodby utilizing both shoulder point and elbowpoint,
which are point A, O and C, respectively, where the vec-
tors OC and OA are grouped together. However, the two
above mentioned vectors OC and OA need to be antic-
ipated into the plane XZ. By doing this, we are able to
obtain the vectors BF and BE. Angle∠EBF (Shoulder Yaw)
is the value of angle among BF and BE, which can be
computed by utilizing angle Of() command in Processing.

Methodology for computing Elbow Roll and Shoulder
Roll: The Elbow Roll is the angle between plane OCD
and CDI, which can be calculated by angle Of() function.
According to angular estimations, Shoulder Roll is most
difficult to be calculated (Reddivari et al., 2014). As the
computing is not straightforward and all the points are
given in 3D plane, hence, the similar computing method
utilized above cannot be accessible here.

In order to calculate the required angles, the point
made by the vectors from elbow to hand, where its plane
is opposite to the one from shoulder to elbow. It is going
through the shoulder joint as well. The reference vector
must be stably concerning the body. As a result, the refer-
ence vector can be computed by the intersecting point of
vectors from shoulder to shoulder and shoulder to elbow.

For this situation, according to Reddivari et al. (2014),
the normal line from that intersecting point of two vec-
tors is used for continuous calculation. The vector OM can
be obtained by verifying the intersecting point between
vectors OC and OA. The vector OM is vertical to the plane
obtained from the vectors OA and OC. Clearly, vector OM
and vector OC are vertical from each other.

Along these lines, the normal line vector CG can be
decided via intersecting point of vectors CD and OC,
which is additionally vertical to vector OC. At this point,
we can obtain the vector OH by deciphering vector CG
along the vectorCO topointO. Theangle∠MOHbetween
vectors OH and OM is defined as Shoulder Roll (Reddivari
et al., 2014).

The orientation angles sent by the Kinect can be sep-
arated by utilizing PMatrix3D with Processing software.
The PMatrix3D outputs the required rotation matrix as
well, where the current coordination framework is well
given the backup into the stack. It is then delivered to the
shoulder joint, additionally, the rotation matrix is utilized
to transform into the coordination systemdata. Every sin-
gle computation in this capacity will be decided within
the obtained coordination framework.

After the computation of Shoulder Roll and Elbow Roll
angles, the rotation matrix from the stack can be recov-
ered to obtain the initial coordination framework. The
right Shoulder Roll is additionally computed with the
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Figure 10. Error of vector approach.

similar method. Furthermore, a small change has been
applied to the vectors coordination system.

As the functionused to calculate roll angles is not accu-
rate, the error needs to be corrected. Every value changes
of Shoulder Roll is alongwith the value changes of Shoul-
der Yaw. After that the statistics are plotted in to the
MATLAB, as seen in Figure 10. From several times’ trials
and the above method, the error is mostly revised by the
equations demonstrated as follows:

γs = −γs − βs/2 − 0.6, (5)

where we define the angle of left Shoulder Roll is γs

and the angle of left Shoulder Yaw is βs. Presently these
returned values of angles are sent to Baxter development
platform for further advanced work utilizing UDP proto-
col. The data packets createdby the server is sent through
the function introduced above. So far, every single angu-
lar value is sent to teleoperate the Baxter robot with the
Python script based on the KF sensor fusion.

4. Measurement of angular velocity byMYO
armband

The joint angles are obtained by computing the integral
of angle velocity. Any positions of human operator’s arms
can be used as the initial position, where the joint angles
are assumed to be zero, according to Yang et al. (2016).
When the operator moves his arm to a new pose P, the
rotation angles(joint angles) are the pose P with respec-
tive point to the initial pose in Yang et al. (2016).

As shown in Figure 11, the frame (X1, Y1, Z1) represents
the orientation of MYO armband in the initial position.

The frame (X2, Y2, Z2) represents the current orientation
of the MYO. From the first MYO armband worn on the
upper arm, we can obtain three angles’ angular velocity
v1x , v1y , v1z , which represent Shoulder Roll, Pitch and
Yaw, respectively.

From the second MYO armband worn on the forearm,
we can get the angles’ velocity v2x , v2y , which represent
Elbow Roll and Pitch.

Existing in the joint angular velocity measured by the
joint angle, there will be errors, however here the errors

Figure 11. The orientation of the MYO in the initial pose and the
current pose.
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will be superimposed. The shoulder joint error will be
superimposed on the elbow joint, resulting in a greater
elbow error. In addition, the integration time problem
also leads to the existence of errors. Although the sam-
pling frequency of IMU in the MYO is 50Hz, the resulting
angle will have a large difference in value when the joint
angle is calculated from the angular velocity integral in
theprogram inYanget al. (2016). Here, themethod for the
angular velocity was extended from the method of mea-
surement for the angles usingMYOarmbandsmentioned
inprevious research (Yanget al., 2016). In summary, in this
paper, MYO armband is used tomeasure angular velocity
of each joint, and Kinect is used to get the angles of each
joint.

5. KF-based sensor fusion

The KF method has two basic assumptions: (1) a suffi-
ciently accurate model of the information process is a
linear (or time-varying) dynamic system excited by white
noise; (2) the measurement signal contains additional
white noise components for each time. When the above
assumptions are satisfied, a KF method can be applied. In
this paper, all the data collected from Kinect sensor and
MYO armbands fulfilled the above requirement, hence
the continuous time KF is used to fuse the data from
different sensors.

The equation (mentioned in the previous section) is
for the continuous time KF, wherein, x0, ω and v are not
related to each other, according toDavari et al. (2016) and
Särkkä andSolin (2012),which is demonstrated as follows:

E{x(0)} = mx(0); E{ω(t)} = 0; E{v(t)} = 0

E{[x(0) − mx(0)][x(0) − mx(0)]T} = P(0)

E{x(0)ωT(t)} = 0; E{x(0)vT(t)} = 0

E{ω(t)vT(t)} = 0; E{ω(t)ωT(τ )} = s(t)δ(t − τ)

E{v(t)vT(τ )} = r(t)δ(t − τ),

(6)

where s is the system noise variance intensity matrix of
continuous system; r is the array of measured noise vari-
ance intensity;Mx(0) andP(0) are the initialmeanvalueof
x and the initial covariancematrix, respectively; δ(t − τ) is
the Dirac δ function.

We assume that every single joint of human arms is
taken into account separately to research, which gives
that all the KF factors are the first order, hence, here
A=0, B=1, G=1 and H=1. Then the KF equations are
simplified as below,

ẋi = ui + ω

yi = xi + v,
(7)

Figure 12. Demonstration of experiment at the different positions.
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where in this special case, yi is the angular position of
the number of i joint collected from the Kinect sensor.
And ui is the angular velocity of the number of i joint of
operator’s armmotion.

˙̂xi = ui + k(yi − x̂i)

k = pr−1

ṗ = p − pr−1p + s,

(8)

where k is the filter gain matrix, p is the estimated covari-
ance matrix, x̂i is the required (satisfied) data obtained
from KF-based sensor fusion, which is also the statistic
that needs to be sent to development workstation via
UDP.

6. Experimental analysis and results

The indoor experiment environment is of sufficient illumi-
nation. One operator stands in front of Kinect at the dis-
tanceabout2 m.Aswedemonstrated inprevious section,
we choose the Shoulder Pitch, Shoulder Yaw, Shoulder
Roll, Elbow Pitch and Elbow Roll to apply in this experi-
ment. Following the experimental data collection, a sim-
ulated Baxter robot in MATLAB was used to teleoperate
with the operators.

6.1. Experimental set-up

An operator worn a pair of MYO armbands faces to the
Kinect sensor (as seen in Figure 12) with different arm
movements. The operator wore one MYO armband near

Figure 13. Graphical result after the Kalman Filter-based sensor fusion ( Shoulder Pitch, Shoulder Roll, Shoulder Yaw, Elbow Pitch, Elbow
Roll).
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the centre of the upper arm and wore the other near the
centre of the forearm. The former measures the orienta-
tion and angular velocity of Shoulder Pitch, Yaw and Roll.
The latter predicts the orientation and the angular veloc-
ity of Elbow Pitch and Roll. Before the experiments, it is
significant to calibrate the MYO armband and warm up
theEMGsensors, in order to recognizedifferent handpos-
tures better for the MYO armband. The operator should
not move even any short distances, under this case, only
both arms of operator can freely move with a small and
stable speed.

6.2. Experimental results

Figure 13 illustrates the graphical results of the five
selected DOFswith different trajectory after the KF-based
sensor fusion between Baxter and the operator. The
Kinect sensor gives us the position difference between
robot’s real trajectory and the base point and the MYO
armbands gives us the angular velocity of those five
angles accordingly. Then theywere fused together via KF.
Here, the experimental data of the operator’s armmotion
from Kinect and MYO, and the optimum output from
Kalman filter-based sensor fusion and the angular statis-
tics of the simulated Baxter robot were taken, respec-
tively for the test. From the graph, it is concluded that
the total performanceofmotion capture systembecomes
improved by applying the KF-based sensor fusion.

The method of using Kinect and MYO armband after
KF-based sensor fusion to teleoperate a Baxter robot
was developed and validated. The experimental results
shown in Table 1 demonstrate a series of ratios, which
are the different values of the five angles between those
obtained by KF and those directly collected by Kinect.
Because the values obtained via KF are optimum, and
the noises during the teleoperation process have been
removed. Hence, that ratio is approximately defined as
the efficient improvement, which is denoted as re as
defined in (8) below. The ratios shown in Table 1 aver-
agely at 3.158%, 4.086%, 3.442%, 3.269% and 3.673% for
the angular positions of Shoulder Pitch, Shoulder Roll,
Shoulder Yaw, Elbow Pitch and Elbow Roll, respectively.

re = pKF − pKinect
pKinect

, (9)

where pKF and pKinect are the experimental data of dif-
ferent angular positions obtained from the KF-based

Table 1. Table for efficient improvement of different angular
positions.

Data
Shoulder
Pitch

Shoulder
Roll Shoulder Yaw

Elbow
Pitch

Elbow
Roll

Ratio 3.185% 4.086% 3.442% 3.269% 3.673%

sensor fusion and directly collected from the Kinect,
respectively.

7. Conclusion

In this paper, a KF-based sensor fusion is applied to obtain
an improved performance. In order to do this, a Kinect
sensor is utilized to capture the motion of operator arm
with vector approach. The vector approach can precisely
calculate the angular data of human arm joints, by select-
ing five out of seven joints on each arm. Then, the angular
velocity of human operator’s arm can be measured by a
pair of MYO armbands worn on the operator’s arm. The
continuous time KF method output the designed data
with less error, after that, the data will be applied to
the joints of the simulated Baxter robot, respectively for
teleoperation.

The MYO armband is utilized in this research owing
to its portability and its accurate computation of the val-
ues for angular velocity of shoulder and elbow motion.
It worked together with Kinect, which aims to apply
Kalman filter-based sensor fusion providing a way with
users to enhance the accuracy of the teleoperation pro-
cess. Several experimental works have illustrated the
great accuracy and efficient improvement of the rec-
ommended designed techniques, averagely at 3.158%,
4.086%, 3.442%, 3.269%and3.673% for theparameters of
Shoulder Pitch, Shoulder Roll, Shoulder Yaw, Elbow Pitch
and Elbow Roll, respectively. More research needs to be
done with focus on the practical usage of different types
of sensors for the future work, even different types of
algorithms, for example the fuzzy logic (Luo,Wang, Liang,
Wei, & Alsaadi, 2016) and (Lin, Chen, & Wang, 2016), to
replace KF to carry out the sensor fusion in a promoted
way.
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