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Abstract 

The role of viral infections in adverse pregnancy outcomes has gained interest in recent 

years. Innate immune pattern recognition receptors (PRRs) and their signalling pathways that 

yield a cytokine output in response to pathogenic stimuli have been postulated to link 

infection at the maternal-fetal interface and adverse pregnancy outcomes. The objective of 

this study was to investigate the expression and functional response of nucleic acid ligand 

responsive Toll-like receptors (TLR3, 7, 8 and 9), and retinoic acid-inducible gene 1 (RIG-

I)-like receptors (RIG-I, MDA5 and LGP2) in human term gestation-associated tissues 

(placenta, choriodecidua and amnion) using an explant model. Immunohistochemistry 

revealed that these PRRs were expressed by the term placenta, choriodecidua and amnion. A 

statistically significant increase in interleukin (IL)-6 and/or IL-8 production in response to 

specific agonists for TLR3 (Poly(I:C); low and high molecular weight), TLR7 (Imiquimod), 

TLR8 (ssRNA40) and RIG-I/MDA5 (Poly(I:C)LyoVec) was observed; there was no 

response to a TLR9 (ODN21798) agonist. A hierarchical clustering approach was used to 

compare the response of each tissue type to the ligands studied and revealed that the placenta 

and choriodecidua generate a more similar IL-8 response, while the choriodecidua and 

amnion generate a more similar IL-6 response to nucleic acid ligands. These findings 

demonstrate that responsiveness via TLR3, TLR7, TLR8 and RIG-1/MDA5 is a broad 

feature of human term gestation-associated tissues with differential responses by tissue that 

might underpin adverse obstetric outcomes. 

 

 

  



Introduction 

Cytokine production at the materno-fetal interface is a part of normal pregnancy and the 

changes that occur with adverse obstetric outcomes might offer therapeutic targets 
1, 2

.  The 

relationship between bacterial infection and preterm rupture of the membranes (PROM) and 

preterm birth (PTB) has been given much attention 
3
 but recent years have seen the 

emergence of epidemiological evidence linking viral infection and adverse pregnancy 
4, 5

. 

These viral infections include human papillomavirus, hepatitis virus, herpes virus and 

cytomegalovirus which have been identified in both gestational tissues and amniotic fluid, 

and linked to increased risk of chorioamnionitis and spontaneous preterm birth 
6
. Therefore, 

better understanding of the response of gestation-associated tissues to viruses is required. 

 

Pattern recognition receptors (PRRs) are evolutionary conserved germline encoded receptors 

which recognise pathogen associated molecular patterns (PAMPs) from various 

microorganisms. Recognition of viral infections by the innate immune response occurs via 

nucleic acid responsive toll-like receptors (TLRs) 3, 7, 8 and 9, and retinoic acid-inducible 

gene (RIG)-1-like receptors (RLRs) RIG-I, MDA5 and LGP2 
7-10

. These receptors are 

located intracellularly where they are best positioned to encounter and respond to viruses 
11

. 

Better understanding of the expression and function of viral responsive PRRs at the materno-

fetal interface is required for our fundamental understanding of pregnancy immunology and 

for translating this to the development of new therapeutic approaches for adverse obstetric 

outcomes. There are no published studies of RLR expression in gestation-associated tissues. 

For TLRs 3, 7, 8 and 9 only the placenta has been investigated with transcripts and/or protein 

for all of these reported with functional responses observed to TLR3, TLR7 and TLR7/8 but 

not TLR9 agonists 
12

. Therefore, we investigated the expression and activity of nucleic acid 

ligand responsive TLRs (TLR3, 7, 8 and 9) and RLRs (RIG-I, MDA5 and LGP2) in human 

term placenta, choriodecidua and amnion using an explant model to better mimic the cellular 

heterogeneity that occurs in utero. A hierarchical clustering approach, as previously 

described for cytokine data 
13

, was implemented to better compare the response between 



different tissues and ligands. It is our hypothesis nucleic acid ligands will induce an 

inflammatory response in gestation associated tissues and that utilisation of hierarchical 

clustering to examine cytokine production by the placenta, choriodecidua and amnion in 

response to these PAMPs will highlight distinct differences in their responsiveness not 

revealed in previous studies. 

 

 



Materials and Methods 

Samples 

Placenta and fetal membrane samples were collected from healthy term newborns (>37 

weeks of gestation) delivered by ECS at Singleton Hospital, Swansea, UK. Written consent 

was obtained from all study participants following recruitment at the antenatal day 

assessment unit. Ethical approval for this study was given by Wales Research Ethics 

Committee 6 (REC No. 11/WA/0040).  

 

Explant Cultures 

Placenta. Placental explant cultures were prepared as described previously 
12

. The decidua 

basalis overlaying the maternal side of the placenta was removed and 1 cm
3
 pieces of 

placental tissue were extracted from various sites across the placenta, avoiding the fetal 

membranes, and placed into sterile calcium and magnesium free phosphate buffered saline 

(PBS; Life Technologies, UK). Tissue was washed repeatedly with PBS to remove 

contaminating blood. Tissue was then minced into smaller pieces and washed further. Pieces 

of tissue (1mm
3
 pieces to a total of 0.2 g) were transferred into the appropriate number of 

wells of a standard 12-well tissue culture plate (Greiner Bio-one, Germany) containing 1ml 

UltraCULTURE™ medium (Lonza, Switzerland), supplemented with 2 mM GlutaMAX™ 

(Life Technologies, UK) and 2 mM penicillin, streptomycin, fungisone (PSF; Life 

Technologies, UK).  

 

Membranes. Membranes were detached from the placenta. Choriodecidua and amnion were 

separated from each other by blunt dissection and placed individually and washed repeatedly 

in sterile Ca
2+ 

/ Mg
2+

 free phosphate buffered saline (PBS; Life Technologies) to remove 

blood. Explants were cut with an 8-mm biopsy punch (Stiefel): two discs of choriodecidua 

placed into 0.5ml Advanced RPMI supplemented with 2mM Glutamax, 2mM Penicillin 

streptomycin fungizone (PSF), 5mM 2-mercaptoethanol (2-ME; all Life Technologies) and 

2% fetal bovine serum (FBS; Hyclone) and 5mM 2-mercaptoethanol; and four discs of 



amnion placed into 0.5 ml Advanced DMEM (Life Technologies) supplemented with 2mM 

Glutamax, 2mM PSF and 2% FBS.  

 

Explant cultures were exposed to different stimuli; an unstimulated control was always 

included. Optimal levels of all agonists were determined by dose course studies on gestation-

associated tissues explants and the following final concentrations were used: Poly(I:C)LMW 

(TLR3, 25 μg/ml), Poly(I:C)HMW (TLR3, 25 μg/ml), Imiquimod (TLR7, 1 μg/ml) 

ssRNA40 (TLR8, 1 μg/ml), Poly(I:C)LyoVec (RIG-I/MDA5, 1 μg/ml) (all from Invivogen, 

USA), ODN21798 control or ODN21798 (TLR9, 1 µM; both Miltenyi Biotec, UK). All 

treatments were performed in duplicate. Cultures were incubated for 24 hours at 37°C in 5% 

CO2. Tissue free supernatants were collected by centrifugation for 7 minutes at 4°C, 515 x g 

and stored at -20°C for analysis using cytokine specific ELISAs. 

 

Cytokine production 

IL-6 and IL-8 in the tissue free supernatants of placenta, choriodecidua and amnion explant 

cultures collected after 24 h were measured using commercially available ELISA kits 

(DuoSet, R&D Systems) as per manufacturer’s instructions. 

 

Immunohistochemistry 

Immunohistochemistry was performed on formalin fixed, paraffin embedded sections (4 µm) 

of placenta and fetal membranes using the Ventana ULTRA automated staining instrument. 

The Optiview detection system was used without A/B blocker or amplification (except for 

anti-TLR9). Antigen retrieval was carried out in CC132 buffer for TLR3, RIG-I and MDA5 

and CC124 buffer for TLR7, TLR8 and LGP2. Primary antibodies, rabbit polyclonal anti-

TLR3 (5 µg/ml for 24 minutes), rabbit polyclonal anti-TLR7 (10 µg/ml for 36 minutes), 

rabbit polyclonal anti-TLR8 (5 µg/ml for 32 minutes), rabbit polyclonal anti-TLR9 (10 

µg/ml for 44 minutes), rabbit polyclonal anti-RIG-I (10 µg/ml for 32 minutes), rabbit 

polyclonal anti-MDA5 (5 µg/ml for 36 minutes), and rabbit polyclonal anti-LGP2 (5 µg/ml 



for 36 minutes) (all LifeSpan BioSciences, Inc, USA) were incubated at 36°C or, for anti-

TLR8, at room temperature. For control slides, primary antibody was replaced with 

polyclonal rabbit IgG (Biolegend) at a corresponding concentration. A tissue reported to 

express the receptor of interest was used for optimisation of staining and included as a 

positive control: tonsil (TLR3, TLR8, RIG-1, MDA5, LGP2), lung (TLR7), liver (TLR9). 

 

Data analysis 

All experiments were performed a minimum of three times. Cytokine production in untreated 

versus treated tissue was evaluated by paired two-tailed Student t-test or repeated measures 

one-way ANOVA with Dunnett’s multiple comparison test. A p-value of ≤ 0.05 was 

considered significant. Statistical significance was calculated using GraphPad Prism 

(Version 6, GraphPad Software Inc, USA). Heatmaps were constructed for each cytokine 

using the mean values generated by ELISA, corrected for baseline constitutive levels, with 

the 'heatmap.2' function in the 'gplots' R package 
14, 15

. Hierarchical clustering was performed 

using a ‘euclidean' distance method.  

 

 

 

 

 

 

 

 

 



Results 

Localization of TLR3, TLR7, TLR8 and TLR9 in human non-laboured gestation associated 

tissues 

Immunohistochemistry was used to determine which cells within the placenta and fetal 

membranes expressed TLR3, 7, 8 and 9 (Figure 1). In the placenta, expression of all four 

TLRs by trophoblast was a common feature with strong expression for both TLR3 and TLR8 

in the trophoblast and villous stromal cells. In the fetal membranes, amnion epithelial cells, 

chorionic trophoblasts and decidual cells all exhibited strong expression of TLR3 and TLR8. 

Expression of TLR7 was primarily localised to the chorion with weak staining in the amnion 

Intermittent expression of TLR9 was also observed.  

 

Functional response of term non-laboured gestation associated tissue to specific TLR3 

TLR7, TLR8 and TLR9 agonists 

TLR3. Functionality of TLR3, a receptor involved in the recognition of dsRNA, was 

investigated using a synthetic dsRNA analogue Poly(I:C) (Polyinosine-polycytidylic acid; 

both 25 µg/ml, n=9). Both a  high molecular weight (HMW, 1.5-8kb) and a low molecular 

weight (LMW, 0.2-1kb) version of the poly(I:C) were utilised based on reports of differences 

in activation efficacy determined by molecular weight 
16

. For the placenta and amnion, IL-8 

production was elevated significantly upon stimulation with both LMW and HMW Poly(I:C) 

whereas IL-6 was only elevated significantly upon stimulation with LWM Poly(I:C). For the 

choriodecidua HMW and LMW Poly(I:C) resulted in a significant increase of both IL-6 and 

IL-8 (Figure 2). HMW poly(I:C) gave a greater cytokine response than LMW poly(I:C) 

which was significant in all cases except for IL-6 production in the amnion.  

 



TLR7 and TLR8. TLR7 and TLR8 functionality were studied using imiquimod (R837) and 

ssRNA40/LyoVec each at 1 µg/ml (Figure 3; n=9). Imiquimod is small synthetic antiviral 

molecule in the imidazoquinoline family specific to TLR7, while ssRNA40/LyoVec, is a 

single stranded uridine-rich oligonucleotide derived from HIV-1 complexed with the 

transfection reagent LyoVec and is specific for TLR8 
17, 18

. The TLR8 agonist ssRNA40 

caused an increase in IL-6 and IL-8 in placenta, choriodecidua and amnion which was 

significant in all cases except for IL-8 in the amnion (Figure 3). In contrast, the TLR7 

agonist imiquimod induced a significant increase in IL-8 from all three tissues but only from 

the amnion for IL-6 (Figure 3).  

 

TLR9. The function of TLR9 was investigated using a synthetic P-class 

oligodeoxyribonucleotide containing unmethylated CpG motifs (ODN 221798) at 1 µM 

(Figure 4; n=7). A sequence control was also included. There was no significant effect of 

ODN221798 on either cytokine in any tissue. 

 

Localization of RIG-I, MDA5 and LGP2 in human non-laboured gestation associated tissues 

Immunohistochemistry was used to determine which cells within the placenta and fetal 

membranes expressed RIG-I, MDA5 and LGP2 (Figure 5). In the placenta, trophoblasts 

showed strong expression of all three RLRs with expression of MDA5 and LGP2 also in the 

villous stroma. In the fetal membranes, expression of RIG-I, MDA5 and LGP2 was observed 

on chorionic trophoblasts, decidual cells and amnion epithelial cells. 

 

Functional response of term non-laboured gestation associated tissue to a RIG-I/MDA5 

agonist 

RIG-I/MDA5 functionality was determined using Poly(I:C)/LyoVec, a complex between the 

transfection reagent LyoVec and HMW poly(I:C) at 1 µg/ml (Figure 6; n =9). Transfected 

Poly(I:C) is recognised by RIG-I/MDA5 unlike naked Poly(I:C) which is recognised by 



TLR3 
19, 20

. In all three tissues a significant increase in both IL-6 and IL-8 was observed in 

response to Poly(I:C)LyoVec.  

 

Hierarchical clustering of the response to nucleic acid sensing TLRs/RLRs 

Heatmaps were drawn to better visualise and enable a comparison of the cytokine response 

by each of the tissues and each of the ligands (Figure 7). Each row represents a tissue and 

each column represents a ligand with light grey representing high production levels and dark 

grey/black low.  Hierarchical clustering of the three tissues revealed that for IL-6 production 

the choriodecidua and amnion clustered together compared to the placenta whereas for IL-8 

production the placenta and choriodecidua clustered together compared to the amnion. When 

examining the response of the tissues to treatment with nucleic acid PAMPs two primary 

clusters for each cytokine were evident. For IL-6, the response of TLR3 activation by LMW 

poly(I:C) clustered with TLR8, independent of the TLR3/HMW poly(I:C), TLR7 and RIG-

I/MDA5. For IL-8, the response to TLR7/8 activation clustered independently of TLR3 (both 

LMW and HMW Poly(I:C)) and RIG-I/MDA5.  

 

 

 



Discussion 

This study reports for the first-time expression and function of RLRs by the placenta, 

choriodecidua and amnion. Additionally, we note distinct differences in TLR3, TLR7 and 

TLR8 function in these tissues compared to previous studies relating to the different agonists 

used. Furthermore, we provide a novel comparison of the cytokine producing capacity of the 

placenta, choriodecidua and amnion in response to nucleic acids. 

 

Protein expression of TLRs 3, 7, 8 and 9 was observed within placental trophoblast, amnion 

epithelium, chorionic trophoblasts and the decidua. There was variability in expression: most 

notably TLR9 showed lowest levels of staining and TLR7 expression was negligible within 

the decidua. Immunoreactivity  of TLR3, 7 and 8 has been reported previously in placental 

syncytiotrophoblasts and cytotrophoblasts of both normotensive and preeclampsia placentas 

21
. Our findings confirm this and extend this observation to the fetal membranes where 

immunoreactivity was also found. Broadly, patterns of immunoreactivity corresponded to the 

functional output apart from TLR9 where no functional output was observed.  

 

While a functional response to the TLR3 ligand poly(I:C) has been observed in both 

placental and fetal membrane explants, the efficiency of TLR3 activation has been reported 

to be influenced by the size of the dsRNA used 
16, 22

. Here we note TLR3 activation by LMW 

poly(I:C) induced a higher cytokine response than HMW poly(I:C) possibly due to better 

penetration into the cell of smaller RNAs. This highlights the importance of considering the 

size of poly(I:C) used when examining TLR3 function in gestational tissues, possibly 

offering an explanation for why no IL-8 production was observed in fetal membrane explants 

following poly(I:C) treatment 
6
. 

 

While TLR7 and TLR8 are phylogenetically related and both recognise ssRNAs, the 

cytokine response resulting from activation of TLR8 by both the placenta and fetal 

membranes is more robust than that of TLR7 apart from IL-8 production by the amnion. This 



might be related to the greater expression of TLR8 than TLR7 revealed by our 

immunohistochemical analysis. Previous functional investigations of TLR7 and TLR8 in 

gestational tissues have typically utilised dual synthetic agonists or ssRNAs 
6, 12

, noting both 

IL-6 and IL-8 production by the placenta 
12

 and IL-8 production by the fetal membranes 
6
 in 

response to treatment. These discrepancies likely reflect the model of investigation used, i.e. 

total fetal membrane explants 
6
 versus explants of choriodecidua and amnion as here. Tissue 

processing for ex vivo investigations can impact on cytokine measurements with punch 

biopsies of amnion or choriodecidua, as used here, typically making greater amounts of 

cytokines than dual compartment transwells 
23

. Furthermore, the activation of TLR7 and 

TLR8 by synthetic agonists results in differences in target cell selectivity and cytokine 

profile 
24

. 

  

We have previously reported that the human term placenta does not elicit either pro-

inflammatory (IL-6, IL-8 and TNFα) or anti-inflammatory (IL-10) cytokines in response to 

an A-class CpG ODN 
12

. However, several classes (A, B, C and P) of CpG ODN are 

available with C-class combining features of A-class and B-class, while P-class activates at a 

higher efficiency than C-class 
25, 26

. Therefore, we chose to use a P-class ODN for this study. 

Again, we report no functional response by any tissues to P-class CpG ODN despite TLR9 

immunoreactivity within placental trophoblasts and, more weakly, in various cells of the 

fetal membranes. To the best of our knowledge this is the first report of TLR9 protein 

localisation in the placenta and fetal membranes. Limited expression of TLR9 might offer an 

explanation as to why no functional response to CpG was observed corresponding to 

observations of expression versus function in monocytes and natural killer cells 
27

. However, 

measurement of a wider array of cytokines/chemokines could reveal TLR9 functionality. 

Increased MCP-1 and decreased G-CSF, IFNγ, MIP-1α, MIP-1β, RANTES and VEGF in 

response to Class-A CpG ODN by human fetal membrane explants has been reported 
28

. 

However, it is likely that TLR9 activity at the materno-fetal interface is tightly regulated 

rather than non-functional to minimise placental inflammation from endogenous signals. 



Hypomethylated fetal DNA, found in the placenta and maternal circulation with circulating 

levels increased in preeclampsia 
29

, can activate TLR9 signalling in human peripheral blood 

mononuclear cells (PBMCs) in vitro with elevated IL-6 production 
30

. Placental derived 

mitochondrial DNA is associated with TLR9 activation and vascular dysfunction in 

preeclampsia 
31

 and TLR9 expression is elevated on circulating plasmacytoid dendritic cells 

(pDCs) of preeclamptic versus healthy pregnant women and is accompanied by a lesser 

cytokine output in response to TLR9 activation 
32

.  

 

The cytoplasmic RNA helicases of the RLR family play a major role in host anti-viral 

defence. They detect viral RNA ligands in the cytoplasm, triggering activation of 

transcription factors and leading to production of type I IFNs and expression of other anti-

viral genes 
33

. Our knowledge of RLR expression and function in human gestation associates 

tissues is relatively limited. Here we demonstrate for the first-time immunoreactivity for 

RIG-I, MDA5 and LGP2 in the placenta and fetal membranes. Both RIG-I and MDA5 were 

localised to the placental trophoblasts, chorionic trophoblasts, decidual stromal cells and 

amnion epithelial cells. A corresponding functional output was observed with the dual 

agonist for these receptors. Further work is required to determine the relative contribution of 

RIG-I and MDA5 to this response. Recognition of dsRNAs by RIG-I and MDA5 is reported 

to be length dependent 
34

. As RIG-I selectively recognises short dsRNA and MDA5 long, 

given HMW dsRNA was used in our study the response is most likely MDA5-dependent but 

further work is required to confirm this. LGP2 shared its expression pattern with RIG-I and 

MDA5. This is not surprising given that LGP2 is a negative regulator of RLR signalling 
7
. 

This negative feedback takes place on many levels including competition for dsRNA, 

interaction with the adaptor molecule ISP-1, or direct binding of RIG-I 
35

. LGP2 regulatory 

function of RLR within gestation-associated tissues remains to be determined. 

 

Our investigation of the responsiveness of gestation-associated tissues to nucleic acid PRRs, 

namely TLR3, 7, 8 and 9, and RIG-I and MDA5 provides further insight into inflammatory 



responses at the materno-fetal interface. Protein expression of these PRRs and LGP2 was a 

broad feature of human term gestation-associated tissues yet there were subtle differences in 

functional responses. Hierarchical clustering enabled elucidation of these key differences 

between tissues and treatments to be highlighted. This approach revealed that the placenta 

and choriodecidua respond to nucleic acid ligands more similarly than the amnion regarding 

the production of IL-8. IL-8 is a key chemokine in the recruitment and activation of 

neutrophils 
36

 which have a role in anti-viral immunity 
37

. Neutrophil infiltration of both the 

placenta and decidua occurs during bacterial infection 
38, 39

 and this might also be the case 

during viral infection. In contrast, hierarchical clustering revealed that in the regards to IL-6 

production, the choriodecidua and amnion share a greater functional similarity.  

 

The clustering approach utilised here has highlighted some key differences between tissues 

in relation to their responsiveness to nucleic acids PAMPs but this has limitations. This is a 

study of heterogeneous tissue explants so the relative numbers of responsive cells in each of 

the tissues will differ. This is evident by the constitutive production of both cytokines by 

each tissue and we have corrected all comparisons for this. However, normalisation of 

cytokine production to total protein content prior to baseline corrections would form the 

basis of future investigations. Furthermore, we have only applied this approach to the 

production of IL-6 and IL-8, based on the expectation that these would most likely yield 

responses to viral ligands 
40, 41

 and have been implicated in anti-viral defence 
42

. While these 

are key cytokines in the physiology and pathophysiology of labour, other cytokines including 

IL-1β, IL-10 and TNFα have also been implicated (2). Therefore, an extensive examination 

of other pro- and anti-inflammatory cytokine perhaps after multiplex analysis would provide 

a more detailed insight into the inflammatory response of gestational tissues. 

 

While the focuses of this study has been TLRs and RLRs, other nucleic acid sensing innate 

immune receptors have been described, namely the cytosolic DNA sensors (CDS), 

alternatively known as the absent in melanoma 2 (AIM2)-like receptors (ALRs) 
43

. Several 



CDS have been described including DAI, LRRFIPI, IFI16, DDX41, cGAS and AIM2. To 

date, little is known about either the expression or function of these cytosolic DNA sensors 

in gestational tissues apart from IFI16, which is associated with non-necroptotic 

programmed cell death of human trophoblasts following dsDNA exposure 
44

. Furthermore, 

placenta expression of IFI16 is significantly elevated in women with preeclampsia and this 

can be mimicked in vitro by treating placental trophoblasts with poly(dA:dT) 
45

. This 

implicates IFI16 and possibly other CDS and the DNA sensing receptors studied herein in 

preeclampsia and highlights the importance of understanding the potential dysfunction of 

these receptors and their signalling pathways in pregnancy. 
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Figure 1. Immunolocalisation of nucleic acid sensing TLRs in human gestation associated 

tissues. Negative (isotype match) and positive (TLR3 & TLR8 – tonsil; TLR7 – lung; TLR9 

- liver) controls are also shown. A representative example of 7 is shown. Original 

magnification x40. 

 

Figure 2. TLR3 agonist induced cytokine response by the term non-laboured placenta, 

choriodecidua and amnion. IL-6 and IL-8 production (ng/ml ± SEM) by the (A-B) placenta, 

(C-D) choriodecidua (E-F) amnion following stimulation with Poly(I:C)LMW and 

Poly(I:C)HMW (both 25 µg/ml; n=9). Statistically significant differences compared to 

unstimulated control are shown: * p< 0.05, ** p<0.01. 

 

Figure 3. TLR7 and TLR8 agonist induced cytokine response by the term non-laboured 

placenta, choriodecidua and amnion. IL-6 and IL-8 production (ng/ml ± SEM) by the (A-B) 

placenta, (C-D) choriodecidua, and (E-F) amnion following stimulation with imiquimod 

(TLR7) and ssRNA40/LyoVec (TLR8) (both 1 µg/ml; n=9).  Statistically significant 

differences compared to unstimulated control are shown: * p< 0.05, ** p<0.01, *** p< 

0.001. 

 

Figure 4. TLR9 agonist induced cytokine response by the term non-laboured placenta, 

choriodecidua and amnion. IL-6 and IL-8 production (ng/ml ± SEM) by the (A-B) placenta, 

(C-D) choriodecidua, and (E-F) amnion following stimulation with ODN21798 control or 

ODN21798 (both 1 μM; n=7). No statistically significant differences were observed. 

 

Figure 5. Immunolocalisation of RLRs in human gestation associated tissues. Negative 

(isotype match) and positive (all tonsil) controls are also displayed. A representative example 

of 7 is shown. Original magnification x40. 

 



Figure 6. RIG-1/MDA-5 agonist induced cytokine response by the term non-laboured 

placenta, choriodecidua and amnion. IL-6 and IL-8 production (ng/ml ± SEM) by the (A-B) 

placenta, (C-D) choriodecidua, and (E-F) amnion in response to Poly(I:C)LyoVec (1 µg/ml; 

n=9). Statistically significant differences compared to unstimulated control are shown: * p< 

0.05, ** p<0.01. 

 

Figure 7. Comparison of nucleic acid induced cytokine production by the placenta, 

choriodecidua and amnion. Heatmap generated using the mean levels of (A) IL-6 and (B) IL-

8 production as measured by ELISA, the production level was standardised by correction for 

background levels of cytokine from unstimulated tissues. Greyscale is used with white 

signifying highest production and black lowest. Hierarchical clustering was performed on 

both the rows (by tissue) and columns (by receptor).  
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FIGURE 5
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FIGURE 6 

 

 

 

 

 

 

 

 

U n s tim P o ly ( I:C )L y o V e c

0

1 0

2 0

3 0

4 0

IL
-6

 n
g

/m
l 

(m
e

a
n


 S

E
M

)

**

U n s tim P o ly ( I:C )L y o V e c

0

5 0

1 0 0

1 5 0

IL
-8

 n
g

/m
l 

(m
e

a
n


 S

E
M

)

*

U n s tim P o ly ( I:C )L y o V e c

0

5

1 0

1 5

2 0

IL
-6

 n
g

/m
l 

(m
e

a
n


 S

E
M

)

**

U n s tim P o ly ( I:C )L y o V e c

0

5 0

1 0 0

1 5 0

IL
-8

 n
g

/m
l 

(m
e

a
n


 S

E
M

)

**

U n s tim P o ly ( I:C )L y o V e c

0

1

2

3

4

5

IL
-6

 n
g

/m
l 

(m
e

a
n


 S

E
M

) *

U n s tim P o ly ( I:C )L y o V e c

0

1 0

2 0

3 0

4 0

5 0

IL
-8

 n
g

/m
l 

(m
e

a
n


 S

E
M

)

*

A

C

E

B

D

F



FIGURE 7

A B



 1 


