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TELEMETRY CASE REPORT

Identification of behaviours 
from accelerometer data in a wild social primate
Gaelle Fehlmann1* , M. Justin O’Riain2, Phil W. Hopkins3, Jack O’Sullivan1, Mark D. Holton4, Emily L. C. Shepard1 
and Andrew J. King1

Abstract 

Background: The use of accelerometers in bio-logging devices has proved to be a powerful tool for the quantifica-
tion of animal behaviour. While bio-logging techniques are being used on wide range of species, to date they have 
only been seldom used with non-human primates. This is likely due to three main factors: the long tradition of direct 
field observations, a difficulty of attaching bio-logging devices to wild primates and the challenge of decipher-
ing acceleration signals in species’ with remarkable locomotor and behavioural diversity. Here, we overcome these 
aforementioned obstacles and provide methodology for identification of behaviours from accelerometer data of wild 
chacma baboons (Papio ursinus) in Cape Town, South Africa.

Results: We apply machine learning techniques to process complex accelerometer data, collected by bespoke 
tracking collars to quantify a range of behaviours (focusing on locomotion and foraging behaviour). We successfully 
identify six broad state behaviours that represent 93.3% of the time budget of the baboons. Resting, walking, running 
and foraging were all identified with high recall and precision representing the first classification of multiple behav-
ioural states from accelerometer data for a wild primate.

Conclusion: Our ‘end to end’ process—from collar design and build to the collection and quantification of accelera-
tion data—provides advantages over gathering data by traditional observation, not least because it affords data col-
lection without the presence of an observer which may affect an animal’s behaviour. Furthermore, our methodology 
and findings open new possibilities for the fine-scale study of movement and foraging ecology in wild primates, and 
in particular our baboon study population which is in conflict with people.
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Background
The development of animal-attached devices that pro-
vide data on animal movement, behaviour or physiol-
ogy (without the need to directly observe the animal) 
has proved a powerful way to quantify animal behaviour 
[1, 2]. In particular, three-dimensional accelerometers 
have been used to reconstruct animal behaviour [1, 3]. 
The use of accelerometers has been used most widely in 
studies of marine mammals and birds [3, 4], but recent 
advances in bio-logging technologies have made devices 
smaller, cheaper and longer-lasting, drawing interest 

from researchers working with a wider diversity of spe-
cies [5]. Behaviours identified from acceleration data can 
range from simple active–inactive behaviour [6, 7] to the 
dynamics of prey capture [8] or even the classification of 
‘internal state’ [9].

Bio-logging techniques are seldom used on non-human 
primates, probably due to the long tradition of direct 
observation by researchers in the field [10, 11, 12]. How-
ever, bio-logging can provide information on elusive or 
out of sight behaviours that are difficult to record [13, 
14] and reduce potentially negative outcomes associated 
with observer presence [15], or habituation to obser-
vation [16, 17]. To date, only a handful of studies have 
used accelerometer data to infer behaviours in primates, 
but these analyses have been limited to broad levels of 
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activity, rather than specific behavioural states (rhesus 
monkeys, Macaca mulatta [18], vervet monkeys, Chlo-
rocebus pygerythrus [19] and owl monkeys, Aotus azarai 
[20]). To our knowledge, the only study that has used 
accelerometers to identify specific behaviour was under-
taken by Sellers and Crompton [21] where they success-
fully identified locomotion events in captive red-ruffed 
lemur (Varecia variegata rubra). Therefore, unlike other 
terrestrial species [22–25] no acceleration ethogram (a 
catalogue of different acceleration footprints produced 
by different behaviour of an animal) exists for any non-
human primate.

An acceleration ethogram would be particularly useful 
to collect fine-scale behavioural data with high tempo-
ral resolution. Among many applications, such methods 
could be used to document situations where primates 
are in conflict with people in species ranging from chim-
panzees (Pan troglodytes) [26] to macaques (Macaca 
mulatta) [27] allowing us to quantify the occurrence of 
such events and their spatial–temporal dynamics. One of 
the most high-profile non-human primate–human con-
flict occurs with people and baboons in the Cape Penin-
sula, South Africa, with baboons raiding bins, properties 
or taking food directly from people themselves daily [28]. 
We are particularly interested in using acceleration data 
to document baboons’ behaviour in this environment to 
understand baboons’ behavioural responses to anthropo-
genic change, but in order to complete this later goal (not 
developed in the present work), we first need to define a 
reliable method to assess behaviour through acceleration.

A key challenge that is common to all studies involving 
the use of accelerometer data lies in the analysis of the data. 
This is particularly pertinent for datasets that extend over 
weeks or even months, which are typically extremely large. 
To infer behaviour from acceleration data, researchers 
manually annotate the signal by expert interpretation [3], 
or ‘label’ behaviours in the acceleration signals, ideally using 
time-matched behavioural observation, to teach machine 
learning algorithms [29–31]. The broad approaches can be 
applied across taxa, although the specific selection of vari-
ables is likely to vary with and reflect characteristic move-
ment modes, behavioural categories and habitat types of a 
particular species or population.

Here, we aim to describe a reliable ‘end to end’ pro-
cess to quantify major behavioural states from tri-axial 
acceleration, applied here to baboons, but potentially 
transferable to other primates or contexts. We equipped 
n = 10 adult male baboons in the Cape Peninsula, South 
Africa, with three axial accelerometers and used video 
footage of the collared baboons ranging in their natural 
environment to generate a labelled dataset. We then used 
random forest models [32] to match behaviour and accel-
eration in the dataset with a focus on the identification of 

locomotion gaits and foraging behaviour [12]. Finally we 
compared the model predictions to our observations to 
test its accuracy and validate our procedure.

Methods
The general workflow of the methods is summarised in 
Fig. 1. All data processing and analyses were conducted 
in R (R version 3.2.2, R Core Team (2015). R: A language 
and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria. URL https://
www.R-project.org/.), and all codes used are provided in 
Additional file  1 (Computation of acceleration variables 
for behavioural identification) [22, 30].

Study site and subjects
We studied the ‘Constantia’ baboon troop that ranges in 
a varied landscape at the edge of the City of Cape Town 
(S −34.0349, E 18.4156) (for more details see [33]) for 
30 days from mid-May to mid-June 2015. The troop com-
prised 13 adult males, 25 adult females, 4 subadult males 
and approximately 30 juveniles of both sexes.

Acceleration data (Fig. 1a)
Ten adult males were fitted with SHOAL group in-house 
constructed collars (F2HKv2 collars, see Additional file 2, 

a Acceleration 
data from collars

b Video of 
collared subjects

e Time matching video 
and acceleration data

Labelled dataset

Validation dataset (40%) Training dataset (60%)

h Random Forest Models

d Analyses of 
acceleration data

c Processing of 
video data

g Model building 

f 

i Validation: test model precision and recall

Fig. 1 General workflow. Process for identification of behaviours 
from accelerometer data in a wild social primate
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Baboon collar development). Each collar contained a tri-
axial accelerometer (‘Daily Diary’ sensor [31]) recording 
acceleration in each axis at 40  Hz which allows for the 
study of behaviours of most terrestrial animals whose fast-
est movements range between 0.5 s to 1 s. Baboons were 
cage-trapped in accordance with the local ‘baboon man-
agement team’-approved protocol before being sedated 
by a certified veterinary surgeon and fitted with the col-
lar. Collars weighed less than 3% of the body mass of the 
baboons and were approved for use by Swansea Univer-
sity Ethics Committee (Swansea University IP-1314-5). Of 
the 10 collars fitted to the baboons, one baboon dispersed 
before we were able to collect video data (see below) and 
so our sample is based on n = 9 individuals.

Video data (Fig. 1b)
Baboons were habituated to close (≤10 m) human obser-
vation and could thus be followed on foot by one or 
two observers without affecting their behaviour. Collar 
equipped individuals were video recorded using an AEE 
SD100 camera (PNJ SARL, Paris, France) for 15.3  h in 
total with a mean ±  standard deviation of 1.7 ±  0.96  h 
per individual.

Video processing (Fig. 1c)
Footage was time-stamped to allow synchronisation 
with the accelerometer, and the signal was annotated 
using Framework4 [31]. We labelled behaviours at time 
steps of one second, relevant for most behaviours (mean 
duration of one behavioural bout (±SD) =  33  s ±  62  s, 
median  =  12  s) [22, 34], leading to a sample size of 
33,619  s. This created a dataset with n  =  18 labelled 
behaviours (Tables  1, 2) for a total of 9.3  h. All rare 
behaviours with less than 100  s of observations (repre-
senting in total 7.3% of their time budget) were discarded 
from further analysis, bringing the labelled sample down 
to 33,387  s, i.e. 9.2  h (on average 1.2 ±  1.3  h (SD) per 
behaviour and on average 1.0 ± 0.6 h (SD) per individual, 
Table 2). 

Analyses of acceleration data (Fig. 1d)
There are essentially two main types of variables that can 
be derived from tri-axial acceleration data that are rel-
evant to the identification of behaviour. These are static 
acceleration, which is dependent on gravity and describes 
the posture of the animal, and dynamic body accelera-
tion, which reflects the body movement of the animal. 
These variables can be measured in each of the three-
dimensional axes (with X for ‘surge’, Y for ‘sway’ and Z for 
‘heave’; Fig. 2). Data from the three axes can also be com-
bined to give a general index of body motion.

In order to match our behavioural sampling frequency 
(1  Hz) and identify behaviours at this frequency, we 

computed mean values over one second for a total of 25 
variables that describe both static (Fig. 1b) and dynamic 
(Fig. 1c) acceleration data across our individuals. The list 
that follows summarises each of these variables, which 
are numbered 1–25 in round parentheses: (1–3) tri-axial 
static acceleration [1]; (4–5) pitch and roll [1]; (6) vecto-
rial dynamic body acceleration (VeDBA); (7) smoothed 
vectorial dynamic body acceleration (VeDBAs) [35, 
36]; (8–10) tri-axial partial dynamic body acceleration 
(PDBA) [1]; (11–13) the tri-axial PDBA-to-VeDBA ratio. 
In addition to these descriptive statistics, we processed 
the dynamic part of the acceleration further by comput-
ing its (14–16) tri-axial power spectrum density (PSD); 
(17–19) maximum frequencies associated with the tri-
axial PSDs; (20–22) the second maximum frequencies 
associated with the tri-axial PSDs; (23–25) the associated 
frequency for each axis. We provide a full description for 
each of these variables (1–25), in turn, below.

(1–3) The static (st) component of acceleration for each 
axes stX, stY and stZ is directly influenced by the ori-
entation of the logger with respect to gravity and there-
fore indicative of the posture of the animal [1, 37]. The 
tri-axial static acceleration was calculated from the raw 
acceleration with a running mean of 3  s [38]. From the 
resulting 3D-static acceleration, the angles (4) pitch and 
(5) roll were calculated, converting the 3D orientation 

Table 1 Ethogram of baboon behaviours

Behaviours observed in 9.3 h of video data for n = 9 baboons. The behaviours 
selected for further analysis are highlighted in italics; see Table 2 for details of 
sample sizes

Behaviour Description

Aggressive display Threatening body postures (stare, open mouth) 
accompanied by ground slaps or shaking 
vegetation with forelimbs

Body shake Fast whole body movement from side to side

Climbing downward Motion downwards from trees or buildings

Climbing upward Motion upwards in trees or buildings

Complex locomotion Pivoting/spinning while walking

Foraging Actively handling or consuming food

Grooming (actor) Picking at or looking through fur of self (auto-
grooming) or conspecific (allogrooming)

Grooming (receiver) Being groomed by a conspecific

Inspecting female Touching and/or inspecting female genitals

Jumping Jumping off a high feature such as a building 
or post

Mating Mounting and/or copulating with female

Resting (lying) Lying down in any postures (dorsal, ventral or on 
the side)

Resting (sitting) Sat motionless

Running Moving on the ground with galloping gait

Scratching Self-scratching with hind legs

Standing Stationary in quadrupedal posture

Walking Moving on the ground with a walking gait
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towards gravity (measured in g), to two angles (in 
degrees) using the plane and upright position as Ref. [1]. 
Pitch was calculated as the arcsine of stX and roll as the 
arcsine of stY [1].

Tri-axial dynamic body acceleration (DBA), which rep-
resents overall body movement [1, 35], was calculated as 
the difference between raw and static acceleration from 
each axis. We note that centripetal acceleration can also 
affect the acceleration signal (e.g. when an animal ‘pulls g’ 
by cornering); however, this is unlikely to be a main factor 
affecting the acceleration signal in baboons. (6) The vec-
torial dynamic body acceleration (VeDBA) was computed 
using the dynamic components of the signal to assess the 
‘activity level’ of the individual, bringing the three axes (x, 
y, z) together as given by Eq. 1.

To allow for a general estimation of activity, reducing 
the impact of short high-amplitude burst of activity, we 
(7) smoothed the VeDBA using a running mean of 3  s, 
that is, ‘smoothed VeDBA’. (8–10) Partial dynamic body 
acceleration [1] was also calculated in each different axis 
in order to describe the amplitude of the movement, cal-
culated as the absolute dynamic acceleration values for 
each axis (11–13). The PDBA-to-VeDBA ratio provided 
an estimation of contribution of each axis to the VeDBA, 
calculated by the ratio of PDBA to the VeDBA in each of 
the three axes.

To characterise the oscillations in the dynamic body 
acceleration for each axis, we computed (14–16) power 

(1)VeDBA =

√

X2 + Y 2 + Z2

spectrum densities (PSDs) and their associated frequen-
cies using Fourier analysis [21, 39]. Fast Fourier analysis 
decomposes the signal into frequencies and amplitude. 
It can therefore be used to indicate at which frequency 
the signal varies the most, providing an overview of large 
body movements and ignoring signal associated with 
small body movements. For each second, we defined (17–
19) maximum PSD and (20–22) second maximum PSD 
together with their (23–25) associated frequencies, at an 
interval of 3  s (1  s after and 1  s before, this in order to 
sample enough oscillations to define a frequency even for 
slow cyclic behaviour such as walking).

Time matching (Fig. 1e) and building datasets (Fig. 1f)
Acceleration variables were time-matched with our 
video-based behavioural data to obtain a labelled data-
set. Of this dataset, 60% was used as a training dataset 
(20,111 s, 5.6  h) and 40% as a validation dataset which 
we later used to test the success of our model predictions 
(13,276 s, 3.7 h, Fig. 1e).

Model fitting via random forest models (Fig. 1h; Fig. S1)
To be able to assign behaviours according to the 25 
descriptive variables (see above), we used random forests. 
Random forests are based on classification trees and, in 
summary, build many trees using a random subset of the 
data each time, and a random subspace of variables for 
each classification step. Thanks to the great number of 
iterations (here 500) and two ‘layers of randomness’ [40], 
this model has the advantage of being more powerful 

Table 2 Observed baboon behaviours and sample sizes

Sample sizes (frequency of observed behaviour, seconds) for behaviours observed during the training sample (T.S.) and the validation sample (V.S.) video footage, for 
each baboon (M). Behaviours selected for further analysis are highlighted in italics and descriptions of those behaviours are provided in Table 1

M1 M2 M3 M4 M5 M6 M7 M8 M9 Total Event T. S. V. S.

Aggressive display 0 0 15 0 0 0 0 0 0 15 1 0 0

Body shake 0 7 3 0 0 0 1 2 1 14 9 0 0

Climbing downward 0 7 14 0 0 0 0 0 0 21 2 0 0

Climbing upward 17 12 5 0 0 0 0 0 0 34 3 0 0

Complex locomotion 0 0 12 0 0 0 0 0 0 12 1 0 0

Foraging 936 778 2793 0 1085 699 2097 849 1025 10,262 220 5590 3816

Grooming (actor) 0 212 0 0 0 0 0 0 0 212 4 118 94

Grooming (receiver) 0 544 0 0 0 0 0 0 6 550 8 324 226

Inspecting Female 0 9 0 4 8 0 4 0 0 25 4 0 0

Jumping (post/fence) 4 0 0 0 0 0 0 0 0 4 2 0 0

Mating 5 10 19 0 8 0 3 0 9 54 8 0 0

Resting (lying) 0 0 189 0 47 0 1355 0 133 1724 17 1005 711

Resting (sitting) 590 2449 2732 741 1045 1032 2099 322 689 11,699 141 6743 4615

Running 73 25 13 20 0 0 65 0 2 198 25 114 84

Scratching 3 35 1 0 0 0 0 3 11 53 11 0 0

Standing 347 306 90 0 91 63 278 39 804 2018 186 1185 790

Walking 1021 1622 841 352 321 541 745 320 961 6724 412 3875 2529
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than the classical classification trees, limiting the risk of 
overfitting and of being more able to cope with unbal-
anced dataset [40].

The first step of the random forest is to sample the ini-
tial training set randomly with replacement (such that 
one observation can be drawn many times), resulting 
in several bootstrapping sets with the same number of 
observations as the initial training set (Additional file 3: 
Fig. S1). Due to replacement, not all observations are rep-
resented in every bootstrapping set.

From one of these artificial sets of data, the model 
builds one classification tree which aims to classify the 
full set of observations into different classes (here, behav-
iours) by building a set of hierarchical decision rules 
based on the given variables (Additional file  3: Fig. S1 
[32]). At each node (a set of observations, represented 
by a circular graph when two branches split in Addi-
tional file 3: Fig. S1), the model will aim to split this set 

of observations into two smaller and ‘purer’ subsets, i.e. 
each subset contains a fewer number of different classes 
(here, behaviours). A subset is considered as pure when it 
only contains one kind of behavioural classes. This purity, 
or its absence, is quantified with the Gini impurity index 
(Eq. 2) which will tend to zero when only one class is rep-
resented in a subset.

where n is the number of behavioural classes and pi is 
the proportion of each class in the set of observations. At 
each step of the classification, the model uses a random 
selection of the total variables available and tests each of 
them with different thresholds to define a rule that will 
minimise the Gini index in the two descendent subsets 
(Additional file  3: Fig. S1). This process continues until 

(2)G =

n
∑

i=1

pi(1− pi)

Fig. 2 Schematic of baboon with a collar and acceleration data example. a Schematic of a male baboon wearing the GPS/acceleration collar. The 
three axes measured by the accelerometers are indicated by the arrows. b Example of labelled acceleration signal from three axes. Sections are 
coloured (and labelled) according to the observed behaviours (upper section) and predicted behaviours (lower row)
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no more rules can be found to split the dataset into purer 
subsets. The local importance of a variable is calculated 
by the index of the parent set of observations minus the 
Gini indexes of the two descendent subsets. We classified 
the variables according their overall importance and per-
formed Kruskal–Wallis tests to compare the mean of the 
most discriminating variables according to the different 
behaviours.

When using random forests, the model will simply 
grow many trees, each built from a different random 
portion of the training set (60% of our initial dataset). 
Because the advantages of random forests come from 
the high number of iterations, we built 500 trees. We 
tested post hoc the minimum number of trees required 
to obtain the best classification and found that the best 
results were reached above 300 trees (Additional file  4: 
Fig. S2).

Model validation (Fig. 1g, i)
Once we built our model, we used it to predict the behav-
iour of our validation dataset. All analyses were con-
ducted in R environment (version 3.2.2) with the package 
random forest [41]. Each time unit is therefore classified 
according the 500 trees, each assigning one behavioural 
class to the time unit, ending in 500 predictions (Addi-
tional file  3: Fig. S1). Then, the most frequent predic-
tions across all trees were selected as the final prediction 
(Additional file  3: Fig. S1). We then compared the pre-
dicted behaviour with the observed behaviour and built a 
confusion matrix to assess the recall and the precision of 
the model [30] (Fig. 1h) as described in Eqs. 3 and 4:

where TP is true positive, TN true negative, FP false posi-
tive and FN false negative for each behaviour.

Results
Acceleration ethogram (model fitting)
Of the variables calculated from our acceleration data, 
static acceleration on all axes, X, Y and Z (which pro-
vides information on the ‘posture’ of the baboon) were 
the most important for distinguishing behaviours, stX, 
stY, stZ being ranked 1st, 6th and 13th and pitch and 
roll being ranked 2nd and 12th in our model (Fig.  3a). 
The static acceleration for the X axis (stX) were differ-
ent between resting (sitting, median [1st and 3rd quar-
tile]: 0.62 g [0.50 g–0.73 g], Additional file 5: Table S1) and 
behaviours in standing postures such as locomotion and 
foraging (median [1st and 3rd quartile]: 0.01 g [−0.29 g–
0.23  g], Additional file  5: Table S1, Kruskal–Wallis Chi-
squared = 20,264.87, df = 7, p value <0.001, Fig. 3b).

(3)Precision = TP/(TP + FP)

(4)Recall = TP/(TP + FN )

Power spectrum densities (PSDs) were the next most 
important class of variables, with four out of six of these 
measures ranked in the top ten. The PSD2 on the X axis 
and PSD1 on the Z axis was, as expected, the highest for 
running behaviour (PSD1Z median [1st and 3rd quar-
tile]: 0.5870 [0.2614–0.6792]; PSD2X median [1st and 3rd 
quartile]: 0.0405 [0.0220–0.0586], Additional file 5: Table 
S1), indicating high-amplitude movements happening 
on a regular frequency. Walking behaviour was repre-
sented by intermediate values for these variables (PSD1Z 
median [1st and 3rd quartile]: 0.0157 [0.0092–0.0268]; 
PSD2X median [1st and 3rd quartile]: 0.0025 [0.0043–
0.0075], Additional file 5: Table S1) while foraging behav-
iour, with low-amplitude movements was represented 
with lower values (PSD1Z median [1st and 3rd quartile]: 
0.0008 [0.0004–0.0016]; PSD2X median [1st and 3rd 
quartile]: 0.0007 [0.0004–0.0016], Additional file 5: Table 
S1). Overall we found significant differences between the 
three behaviours on these variables (Kruskal–Wallis Chi-
squared 22,773.87, df = 7, p value <0.001, Fig. 3). In con-
trast, the ratio and frequency measures did not contribute 
much to the model’s ability to classify behaviours (Fig. 3).

Model accuracy (validation procedure)
The random forest model reached an average precision 
of 88.3% (±8.5%) and a mean recall of 70.7% (±29.3%) 
across all behaviours (Fig.  3c; Table  3). The recognition 
(or extraction) of foraging, resting, running and walk-
ing shows a high precision and recall (>85%), while lying 
and grooming (both when focal is actor and receiver) 
have high precision (>85%) but lower recall (>60% for 
lying and grooming [receiver] and >20% for grooming 
[actor]); the missing instances being principally classi-
fied in other low-amplitude behaviours (Fig. 3c; Table 3). 
The extraction of standing behaviours was poor (recall: 
38.9%, precision: 67.9%), and instances of standing that 
were misclassified tended to be labelled as foraging and 
resting.

Discussion
We have successfully used acceleration data to identify 
six behaviours performed by adult male chacma baboons. 
These behaviours represented 93.3% of the time budget 
recorded from video observations and the first ethogram 
from acceleration data for a wild non-human primate. 
Behaviours relevant to raiding behaviours (foraging, run-
ning, walking and resting), which are important with 
respect to the study population [33], were successfully 
identified with good precision and recall (>85%). We dis-
cuss the variables calculated from our accelerometer that 
contributed to identification of these behaviours in turn.

Static acceleration and the smoothed vectorial 
dynamic body acceleration (VeDBA) were among the 
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most important variables and were found to be differ-
ent between active and inactive behaviours. Differentiat-
ing between active and inactive behaviours is commonly 
done with variables such as VeDBA or VeDBAs [1, 7, 
18, 24]. Interestingly, static acceleration metrics are not 
always included as discriminators in machine learn-
ing algorithms [30] and so our findings suggest that this 
could be an important factor for other primate research-
ers to include in their models.

The performance of our model varied when it came 
to the different inactive behaviours, while resting was 
extracted with a high recall and precision, standing 
behaviour was less accurately described. A standing pos-
ture is adopted within a range of other behaviours (dur-
ing locomotion, or foraging, for example), and this may 

explain the difficulty in identifying resting or vigilance 
when standing, particularly when other activities are exe-
cuted slowly. Differentiating non-active behaviours has 
proved difficult in other species too; for example, in vul-
tures static acceleration was not useful for differentiating 
between different types of passive flights behaviour, such 
as gliding, thermal soaring or slope soaring [25]. This 
problem is therefore not unique to the baboons and sug-
gests there is an inherent problem in using acceleration 
data to classify behaviours which involve subtle move-
ments and especially when these movements are adopted 
with similar postures [25]. Nevertheless, the identifica-
tion of a broad inactivity category is likely sufficient for 
most researchers and questions. For instance, the identi-
fication of inactivity could enable us to identify habitats 

Fig. 3 Random forest model results. a Variable importance for the identification of baboon behaviour. Variables are ordered according to the mean 
decrease in Gini index (see “Methods” for more details). b Density histogram plots for major behaviours as a function of mean static acceleration, 
stX, which scored the highest mean decrease in the Gini index (i.e. was most important to classification of behaviours). c Precision and Recall for all 
identified behaviours

Table 3 Confusion matrix

Comparison of the predicted behaviour (from our model) and observed behaviour (from video recording) showing the quality of extraction of different behaviours. 
Observed behaviours are organised in columns and predicted behaviours are in rows. values in italics represent the true positives correctly classified by our model 

Foraging Grooming 
(actor)

Grooming 
(receiver)

Resting 
(lying)

Resting 
(sitting)

Running Standing Walking Tot. pred.

Foraging 3805 14 8 38 100 0 240 122 4327

Grooming (actor) 0 12 0 0 0 0 1 0 13

Grooming (receiver) 1 3 125 0 6 0 3 0 138

Resting (lying) 5 0 25 490 9 0 11 0 540

Resting (sitting) 116 28 42 134 4472 0 181 4 4977

Running 0 0 0 0 0 66 1 4 71

Standing 56 20 5 30 60 0 369 4 544

Walking 83 0 0 1 11 7 44 2524 2670

Tot obs. 4066 77 205 693 4658 73 850 2658 13,280
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that can be used as refuges. More generally, in the case 
of our baboon research in the Cape Peninsula, identifying 
inactivity before and after a raiding event, or short inac-
tive pauses while travelling, could indicate periods of vig-
ilance and can overall be used to explore how and when 
baboons adopt ‘sit and wait’ raiding (foraging) strategies 
[12]. Similarly, identification of inactivity can provide 
interesting insights into energy expenditure and recovery 
time in other systems [24, 19, 42].

Locomotion (walking and running) were the best 
identified behaviours by our model (92% of the misclas-
sifications occurring in running were composed of walk-
ing—either running segments classified as walking or 
walking segments classified as running). This efficiency 
in the recognition of locomotion has been observed in 
other species and reflects a regular signal in the heave 
channel [1, 3, 23] and/or frequency of the general accel-
eration [1, 21, 43]. This result is also consistent with the 
importance of the 1st maximum power spectrum density 
peak in the Z channel (PSD1Z) describing the amplitude 
of the sinusoidal pattern during locomotion on the Z axis 
(Fig.  2). Because locomotion is generating the patterns, 
we frequently describe by the use of GPS data and math-
ematical models of animal movement [44–46], accu-
rately describing locomotion phases versus sedentary 
phases via acceleration can allow the user to correct GPS 
errors and investigate movements which are happening 
between fixes. Combining GPS and acceleration data will 
therefore increase the reliability of both data streams that 
are at the basis of burgeoning field of movement ecology 
[44]. In the context of our larger programme of research 
on baboons, locomotion’s precision and recall will enable 
us to explore the dynamics of forays into urban areas by 
raiding baboons [12], such as the speed of the approach 
or the sinuosity of trajectories [46].

Our model was extremely successful at extracting 
foraging, despite the fact that a wide diversity of ‘types’ 
of foraging behaviours are exhibited by baboons [47]. 
Indeed, our model successfully extracted most foraging 
events (recall =  93.5%) which is particularly important 
for the study of a short lived behaviour such as raid-
ing behaviour [12]. Foraging in baboons is almost never 
performed in isolation of other behaviours, as it can 
take place while being stationary (sitting, or standing, 
i.e. stationary foraging [48]) or while walking (i.e. travel 
foraging [48]). Interestingly, the 2nd maximum power 
spectrum density peak in the X axis (PSD2X), the fourth 
most important variable, was important for quantify-
ing a sinusoidal pattern in the secondary amplitude. As 
such, PSD2X was important for identifying behaviours 
of smaller amplitude that co-occur during other activi-
ties of higher amplitude such as chewing (foraging); 
which can occur while walking, for example (Fig. 2). We 

therefore suggest that this variable can be of interest for 
accelerometer users looking at the foraging ecology of 
primates or species sharing a similar foraging behaviour. 
Indeed, researchers have had success identifying foraging 
in other terrestrial species [23, 43, 49, 50], in birds using 
location clues, for example, from GPS or pressure sensors 
[8, 39, 51] and in sea mammals using, for example, man-
dible accelerometers [52, 53]. This suggests that ‘complex’ 
foraging behaviours in fact lend themselves to identifica-
tion from acceleration (and other bio-logger) signals, and 
offers a useful avenue for further research.

While the main focus of our study was locomotion and 
foraging behaviours, we also identified grooming from 
our collar data. The maintenance of social affiliation  by 
baboons is mostly mediated through grooming, espe-
cially for females [12, 11, 54]. As such, grooming has been 
studied in various contexts across primates [54], and it 
constitutes one of the most used metrics to build social 
networks [54, 55]. Grooming behaviour is traditionally 
identified by direct observation only and is therefore 
limited by the number of observers available to witness 
it and their ability to recognise individuals’ identity, and 
thus recording only one or a few interactions at a time. 
We were able to identify grooming with  >60% of recall 
and precision when the focal individual was receiver and 
>20% when the focal individual was the actor. Further 
work would be needed to confirm this extraction since 
our model included grooming events from two baboons 
with few independent events, which could have led to 
overfitting in the model. Because adult males rarely if 
ever groom one another, by collaring females that spend 
a high proportion of their time grooming each other [56], 
it is likely that grooming behaviour (active and passive) 
could be resolved with greater confidence (since the dyad 
would be stationary and grooming one another). To iden-
tify even a fraction of grooming events remotely using 
tracking collars could transform our ability to explore 
the spatial–temporal dynamics of social relationships in 
baboons (and other grooming species) [57]. In the future, 
grooming data identified through acceleration would 
afford researchers opportunity to comprehensively inves-
tigate questions relating to ‘biological market theory’ [56, 
58], or enhance our understanding of decision processes 
in movements and leadership [59, 60], for example.

Conclusion
Overall our study shows that the use of accelerometers 
can document foraging strategies and social behaviour 
in wild primates. Such methodology provides advantages 
in gathering data with limited direct observation [15, 16] 
and offers an alternative to habituation of wild primates 
[17]. We hope that researchers interested in primate 
behavioural ecology will be inspired by the ‘end to end’ 
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process that we have described here. This paper offers a 
full protocol—from collar design and construction to the 
identification of behaviours from accelerometers—for 
any researcher working with a medium- to large-sized 
primate. We hope that researchers in the fields of both 
primatology and biotelemetry make the most of these 
exciting new opportunities.
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