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Abstract

Flexible behaviour allows organisms to respond
appropriately to changing environmental and social
conditions. In the subsocial beetle Nicrophorus
vespilloides, females tolerate conspecifics when
mating, become aggressive when defending re-
sources, and return to social tolerance when
transitioning to parenting. Given the association
between octopamine and aggression in insects, we
hypothesized that genes in the octopaminergic
system would be differentially expressed across dif-
ferent social and reproductive contexts. To test this in
N. vespilloides, we first obtained the sequences of
orthologues of the synthetic enzymes and receptors
of the octopaminergic system. We next compared
relative gene expression from virgin females, mated
females, mated females alone on a resource required
for reproduction and mated females on a resource
with a male. Expression varied for five receptor genes.
The expression of octopamine 8 receptor 1 and octo-
pamine B receptor 2 was relatively higher in mated
females than in other social conditions. Octopamine
receptor 3 was influenced by the presence or absence
of a resource and less by social environment.
Octopamine « receptor and octopamine/tyramine
receptor 1 gene expression was relatively lower in
the mated females with a resource and a male. We
suggest that in N. vespilloides the octopaminergic
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system is associated with the expression of resource
defence, alternative mating tactics, social tolerance
and indirect parental care.

Keywords: aggression, mating strategies, octopa-
mine, resource defence, social tolerance, tyramine,
quantitative real-time PCR.

Introduction

The hallmark of adaptive behaviour is its flexibility, so that
the appropriate behaviour is expressed at the appropriate
time (West-Eberhard, 1989; Zayed & Robinson, 2012).
For example, aggression towards a competitor is probably
appropriate whereas aggression toward offspring or a
mate is not. Such flexibility often leads to confusion and
debates over nature and nurture, as variation in behaviour
must reflect a genetic influence to evolve yet can change
rapidly in response to current social and environmental
conditions (Boake et al., 2002; Zayed & Robinson, 2012).
It is increasingly apparent that some of this flexibility is
associated with differential gene expression, especially
when behavioural changes are rapid and reversible
(Robinson et al., 2008; Bell & Robinson, 2011). Here,
we investigate the possible changes in gene expression
underlying behavioural flexibility in a subsocial beetle,
Nicrophorus vespilloides, as it progresses through differ-
ent adult life-history stages associated with reproduction.
Changes in social behaviour are essential for successful
reproduction in this species. To reproduce, an individual
female must show flexibility in the timing of aggression, be
able to express alternative mating tactics, develop social
tolerance towards a mate and offspring, and switch to
parental care at the appropriate time and place (Eggert &
Mdller, 1997; Scott, 1998).

Nicrophorus vespilloides has an unusual insect life
history in that elaborate and extensive biparental or
uniparental care by either a female or a male is required
for successful reproduction (Eggert & Mdller, 1997; Scott,
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1998). After finding a vertebrate carcass, a potential
parent buries the carcass, removes the external integu-
ment (hair, feathers, or scales) and forms the partially
digested carcass into a ball. Throughout the period of
parental care, the parent inhibits microbial growth on this
resource by excreting antimicrobial solutions on the
carcass (Scott, 1998) and removes fungus with its mouth;
these behaviours are essential for successful reproduc-
tion and are considered ‘indirect’ parental care (Walling
et al., 2008). The prepared carcass provides the sole food
source for the developing offspring. For the first 24 h,
N. vespilloides parents directly provision larvae with pre-
digested carrion (direct care; Eggert & Muller, 1997; Scott,
1998; Walling et al., 2008). After 24 h, the offspring gradu-
ally transition to self-feeding (Smiseth et al., 2003) and
disperse when the carcass is consumed. We hypothesize
that the parental care of N. vespilloides involves the evo-
lutionary elaboration and co-option of genes influencing
three behavioural pathways: reproduction, mate and
resource guarding, and food acquisition. This hypothesis
derives from the prediction that parental care evolves in
response to selection for the defence of offspring, to
counter environmental adversity and to defend or supply
essential resources to offspring, such as food (Tallamy,
1984; Tallamy & Wood, 1986; Clutton-Brock, 1991; Costa,
2006; Royle et al., 2012).

To begin elucidating the genetic controls underpinning
behavioural flexibility in this beetle, we chose to charac-
terize the octopaminergic system under several different
social and reproductive contexts that vary greatly in their
expectation for aggression, social tolerance and parental
care. We chose the octopaminergic system because it is
often involved in behaviours that require flexibility in their
expression. The biogenic amine octopamine is an ancient
and important control molecule that influences many
aspects of arthropod life, including aggression and mating
(Blenau & Baumann, 2001; Roeder, 2005; Verlinden et al.,
2010a; Farooqui, 2012). It is synthesized through a two-
step enzymatic process (tyrosine decarboxylase converts
tyrosine to tyramine and tyramine 3 hydroxylase converts
tyramine to octopamine) and exerts its influence through
six G protein-coupled receptors belonging to three classes
(Verlinden et al., 2010a; Farooqui, 2012). The three recep-
tor classes, o, B (with three subtypes), and octopamine/
tyramine (tyr; with two subtypes) are categorized by their
affinities for octopamine and tyramine, intracellular signal-
ling properties after activation and homology to vertebrate
receptors (Verlinden etal, 2010a; Farooqui, 2012).
Tyramine can also function as a neurotransmitter in addi-
tion to its role as a precursor molecule for octopamine
synthesis (Lange, 2009).

We predicted that the octopaminergic system would be
associated with the behavioural transition from aggres-
sion (defence) to social tolerance (mating, transition to

parenting) and would respond to the presence or absence
of a resource. We characterized both ligand and receptor
components of this system given that both can influence
behaviour. There is a well-established, taxon-wide posi-
tive association between octopamine and aggression
(eg Adamo et al., 1995; Stevenson et al., 2005; Hoyer
et al., 2008). Octopamine influences behavioural plasticity
expressed through development, such as division of
labour in honey bees (Schulz efal., 2002; Liang et al.,
2012). Each class of octopaminergic receptors also influ-
ences more rapid behavioural flexibility. oo and 3 receptors
are associated with processes necessary for learning
(Burke et al., 2012; Kim et al., 2013), changes in sociality
(Verlinden et al., 2010b) and transitions to aggression
(Rillich et al., 2011). B and tyr receptors are thought to
play a role in olfaction and appetite, which suggests that
their expression should change with the presence or
absence of a resource (Kutsukake et al., 2000). Given the
behavioural changes expressed by N. vespilloides as it
transitions from mating to resource defence to parenting,
we hypothesized that both the enzymes and receptors
of the octopaminergic system would be differentially
expressed under these different social and reproductive
contexts.

To test our hypothesis that the octopaminergic system is
involved in changes in N. vespilloides behaviour, we first
identified eight orthologues of enzyme and receptor genes
in this species: tyrosine decarboxylase (tdc), tyramine
B hydroxylase (tBh), octopamine J receptor 1 (octfri),
octopamine B receptor 2 (octfBr2), octopamine B receptor
3 (octpr3), octopamine o receptor (octar), octopamine/
tyramine receptor 1 (tyrr1) and octopamine/tyramine
receptor 2 (tyrr2). We next examined gene expression in
four social/reproductive contexts: isolated, virgin females
(providing baseline gene expression levels), mated
females (social experience of mating), mated females
given a reproductive resource (resource defence), and
mated females given a reproductive resource and a male
partner (reduced defence because of the presence of a
social partner). These four contexts therefore provide the
social and reproductive conditions under which we expect
transitions to states where different appropriate behav-
iours can be expressed. We predicted that mating would
not greatly influence the gene expression of the enzymes
tdc or tfh as a single prior social experience should not
change aggressiveness and there is no resource present.
We predicted that mating might alter receptor gene
expression because of octopamine’s role in mating and
reproduction. We predicted that genes involved with
octopamine synthesis would be up-regulated when
females were guarding a resource because of the need to
express aggression in the context of resource defence.
However, when females were paired with males on a
resource, we predicted that the expression of octopamine
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synthesis enzyme genes would be lower to reflect
increased social tolerance and the abdication of resource
defence to the males. Simultaneously examining expres-
sion of all receptor genes allowed us to assess which
responded, and differences in responses, to each of the
social/reproductive contexts. This allows us to propose
alternative hypotheses for gene function in this system.

Results

Sequence analysis of octopamine enzymes
and receptors

As octopamine itself has been associated with the control
of behaviour (eg Adamo et al., 1995; Stevenson et al.,
2005; Hoyer et al., 2008), we obtained full sequences for
two enzymes involved in the synthesis of octopamine,
fdc and tBh. The tdc sequence found was more similar
to the neurally expressed tdc (DmTdc2) of Drosophila
melanogaster than the peripherally expressed tdc
(DmTdc1), 72 vs. 57% identity, respectively (Fig. 1). The
{Bh sequence showed high similarity to other functionally
characterized Bhs (Fig.2). We also identified full
sequences for six of the expected octopamine receptors
and follow the receptor nomenclature of Verlinden et al.
(2010a). These sequences shared high similarity to other
octopaminergic receptors. A boxshade analysis of all six
receptors with representatives from multiple lineages
showed a highly conserved portion of all of these recep-
tors in the 3" end of the proteins (Fig. 3). Phylogenetic
analysis of the receptor sequences agreed with the
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assignments of identity based on BLAST searches of the
National Center for Biotechnology Information (NCBI;
Fig. 4). We have deposited all sequences in GenBank
(accession numbers: tdc- KJ152556, tfh- KJ152557,
octpri- KJ152558, octfr2- KJ152559, octfr3- KJ152560,
octar- KJ152561i tyrr1- KJ152562, tyrr2- KJ152563).

Gene expression

We first examined gene expression of the enzymes
involved with octopamine synthesis. Neither tdc (Fszs =
1.325, P=0.281) nor tBh (F33 = 1.584, P=0.210) were
differentially expressed across the different social and
reproductive contexts (Fig. 5). This suggests that the syn-
thesis of octopamine is not influenced by these social
contexts.

We next examined the gene expression of octopamine
receptors (Fig. 6; Table 1). Overall, the social and repro-
ductive contexts influenced most receptor gene expres-
sion levels, but there was not a consistent effect for any
particular context. Compared to virgin females, there was
significantly increased expression of octfri in mated
females, but scientifically lower expression in solitary
females with a resource and females with a resource and
male (overall F335 = 10.434, P < 0.001; significant contrast
— virgin vs. mated P=0.008; Fig. 6A). The same pattern
was seen in octfr2 (overall F3z = 4.418, P =0.01; signifi-
cant contrast — virgin vs. mated P=0.006; Fig. 6B). For
octpr3, there was a significant change in expression in the
different contexts, with expression increasing in the pres-
ence of a resource (overall F33 =4.645, P=0.008), but
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Figure 1. Boxshade of tyrosine decarboxylase (Tdc) proteins. Proteins were aligned with the ClustalW alignment algorithm on the Mobyle @ Pasteur web
portal with default settings and the boxshade was produced with JALVIEW (v. 2.8). Shading is determined by the conservation of a residue at a position
by percentage; dark blue = 100% of residues share identity, medium blue = 75% of residues share identity, light blue = 50% of residues share identity.
The number at the end of each line of each protein sequence is the number of residues that a protein has up to the end of that line. Dm, Drosophila
melanogaster, Nv, Nicrophorus vespilloides; Tc, Tribolium castaneum. GenBank accession numbers are provided in the Appendix.
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Figure 2. Boxshade of tyramine B hydroxylase (#3h) proteins. See Figure 1 legend for methods. Dm, Drosophila melanogaster, Nv, Nicrophorus
vespilloides; Pa, Periplaneta americana; Tc, Tribolium castaneum.
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none of the specific pairwise a priori comparisons with

virgins were statistically significant (Fig. 6C). Expression Discussion

of octar was significantly different across social contexts We had two main objectives with this study. First, we
(overall Fs36=3.489, P=0.025) with expression signifi- sought to identify the sequences of the genes in the
cantly lower when females were on a resource with a male octopaminergic system for the burying beetle, N.
compared to virgin females (P=0.016; Fig. 6D). The vespilloides. Second, we characterized expression of the
same pattern was seen for tyrr1, with significant differ- two enzyme and six receptor orthologues under different
ences across social contexts (overall Fs3=3.18, social and reproductive contexts. We tested hypotheses
P =0.036) driven by significantly lower expression when about the role of the octopaminergic system in aggres-
on a resource with a male (P=0.032; Fig. 6E). The sion, resource defence, social tolerance, and mating
expression levels of one receptor gene, tyrr2, was not associated with the behavioural flexibility need for suc-
significantly associated with the different social and repro- cessful reproduction in this species. These behavioural
ductive contexts (overall F335 = 1.187, P =0.328; Fig. 6F). traits are associated with gene expression in the

Table 1. Overall change in octopaminergic system gene expression in females under different social/reproductive contexts. Each cell indicates the P
value comparing the expression level either across all treatments with an analysis of variance or that treatment compared with expression in the virgin
treatment using Dunnett’s method. Significant P-values followed by {+} indicate increased expression, those followed by {-} indicate decreased
expression

Social/reproductive context

Gene Overall model Mated Mated + Resource Mated + Resource + Mate
Enzymes tdc P=0.281 P=0.249 P=0.998 P=0.862

tBh P=0.210 P=0.939 P=0.113 P=0.790
Receptors octpr1 P < 0.001 P=0.008 {+} P=0.306 P=0.195

octpr2 P=0.010 P=0.006 {+} P=0.628 P=0.957

octfBr3 P=0.008 P=0.272 P=0.122 P=0.757

octar P=0.025 P=0.973 P=0.301 P=0.016 {-}

tyrr1 P=0.036 P=0.994 P=0.221 P=0.032 {-}

tyrr2 P=0.328 P=0.996 P=0.471 P=0.871

octar, octopamine « receptor, octfr1-3, octopamine 3 receptor 1-3; th, tyramine 3 hydroxylase; tdc, tyrosine decarboxylase; tyrr1-2, octopamine/
tyramine receptor 1-2.
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Figure 3. Continued.

octopaminergic system in various insects (Kutsukake
etal., 2000; Verlinden etal., 2010b; Ishida & Ozaki,
2011; Koon et al., 2011; Burke et al., 2012; Liang et al.,
2012; Zhou et al., 2012; Kim et al., 2013; Rein et al., 2013;
Zhang etal, 2013) and are predicted to have been
co-opted in the evolution of parental care (Tallamy, 1984;
Tallamy & Wood, 1986; Clutton-Brock, 1991; Costa, 2006;
Royle et al., 2012). Examining expression of these genes
under controlled social conditions in N. vespilloides, a
subsocial beetle that provides care to its young, therefore
provides a novel test of the association between the
octopaminergic system and several behaviours mediating
successful social interactions.

Our experimental treatments were designed to reflect
different social conditions that should have differing influ-

ences on the octopaminergic system as a female transi-
tions through the stages associated with successful
reproduction: mating, defence of resources, preparation of
the resource, and providing parental care. First, we pre-
dicted that a brief mating experience alone represents
minimal social interactions and would have little influence
on the gene expression of the octopamine synthesis
enzymes but might alter octopaminergic receptor gene
expression. Second, we predicted that the enzymatic
genes of the octopaminergic system would be up-
regulated to promote resource defence or guarding
(aggressive) behaviour when females were alone on a
resource compared with virgins. Third, we predicted that
the enzymatic genes of the octopaminergic system would
be down-regulated to promote social tolerance between
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Figure 4. Phylogenetic tree showing the relationship of Nicrophorus vespilloides octopamine receptors to other known or putative octopamine receptors
in insects. The tree was constructed with CLC SEQUENCE VIEWER software using the ClustalW alignment algorithm and a neighbour-joining tree
construction method with 10 000 bootstraps. Drosophila melanogaster FMRFamide receptor was used as an outgroup to root the tree. Bm, Bombyx mori;
Dm, Drosophila melanogaster; Nv, N. vespilloides; Tc, Tribolium castaneum. Scale bar represents substitution rate of amino acids per position. GenBank

accession numbers are provided in the Appendix.

partners when females were on a resource with a male.
Moreover, females are less likely to defend resources
when males are present, which should also lower expres-
sion of enzymatic genes. Characterizing all of the recep-
tors also allowed for potential specialization of these
receptors to be assessed under these social and repro-
ductive contexts.

Our results, although correlational, suggest a very indi-
vidualized and subtle role for each octopaminergic gene in
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N. vespilloides across these social and reproductive con-
texts. We found changes in gene expression of multiple
receptors, but not for genes transcribing the enzymes
in the octopamine synthesis pathway. Patterns in gene
expression were receptor specific, differing both in context
and direction of change. Using virgin females as the a
priori comparison treatment across the entire study,
expression of two genes, octfr1 and octfr2, was up-
regulated by mating alone. One gene, octfr3, was
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Figure 5. Normalized relative expression of enzyme genes in the octopaminergic system under different social and reproductive contexts. Bars are
mean + SEM (N = 10/treatment). Significance of each context compared with virgins was assessed using Dunnett’s method. Neither (A) tyrosine
decarboxylase (tdc) nor (B) tyramine B hydroxylase (th) were differentially expressed over the social and reproductive contexts assayed here.
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Figure 6. Normalized relative expression of octopaminergic system receptor genes under different social and reproductive contexts. Bars are
mean + SEM (N = 10/treatment). Significance of each context compared with virgins was assessed using Dunnett’'s method. Asterisks denote significance
for P< 0.5 (*) and P<0.01 (**). (A) Relative expression of octopamine j receptor 1 (octBr1). (B) Relative expression of octopamine 8 receptor 2 (octfr2).

(C) Relative expression of octopamine 3 receptor 3 (octpr3). (D

) Relative expression of octopamine o receptor (octar). (E) Relative expression of

octopamine/tyramine receptor 1 (tyrr1). (F) Relative expression of octopamine/tyramine receptor 2 (tyrr2).

up-regulated when a female was on a resource, both
alone and with a male. Two genes, octar and tyrr1, were
down-regulated when a female was on a resource with a
social partner. The diversity of responses suggests poten-
tial specialization of the receptors in N. vespilloides, such
as that seen with Drosophila serotonin receptors (Johnson
et al., 2009; Becnel et al., 2011).

There are several described roles for octopamine 3
receptors in a variety of behaviours and processes rel-

evant to our social/reproductive contexts. Depression of
Octpr's activity extends lifespan in male Drosophila,
which suggests a role in resource allocation regulation
(Spindler et al., 2013). octfr2 has been linked to neural
and behavioural plasticity, as well as memory reinforce-
ment, in Drosophila (Koon etal., 2011; Burke etal,
2012). This receptor is also up-regulated in honey bees
that seek novel food sources (Liang et al., 2012). Block-
ing B receptor activity does not depress aggression in
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variety of situations in crickets (Stevenson et al., 2005;
Rillich et al., 2011; Rillich & Stevenson, 2011), suggesting
a reduced role of these receptors in regulating aggres-
sion. Finally, an octfrin desert locust is also up-regulated
when individuals transition from a solitary to social phase
(Verlinden etal., 2010b). In our study, we found that
octfr1 and octfr2 had increased expression in mated
females, but not in females with a reproductive resource.
A mated female without a resource is an ecologically
relevant social condition for N. vespilloides, as females
will mate even when there is no resource present (Eggert
& Miller, 1997). The altered expression of octfr1 and
octpr2 may reflect changes associated with adopting an
alternative mating tactics associated with the lack of a
resource required for breeding as female N. vespilloides
off a resource are more choosey of mates and less tol-
erant of males (Beeler et al., 2002; House et al., 2007).
It is also possible that these receptor genes are
up-regulated to increase resource-seeking behaviour
and then down-regulated once a resource is found. In
Drosophila, octfr3 has recently been shown to influence
food-seeking behaviour (Zhang et al., 2013). Given that
we found octBr3 was more highly expressed whenever
females were on a resource, this suggests there may be
an association amongst the shift to indirect parental care,
the expression of behaviours associated with preparation
of food resources and the expression of this gene in
N. vespilloides.

The octopamine o receptor also has several described
roles. It influences behavioural changes through a role in
memory formation, reinforcement and conditioning in
Drosophila (Burke etal., 2012; Zhou et al., 2012; Kim
et al,, 2013). The expression of octor also directly regu-
lates neural activity to influence behavioural plasticity in
honey bees (Rein et al.,, 2013). However, octar was not
differentially expressed when a solitary desert locust was
grouped with other locusts (Verlinden et al., 2010b). In
another nonsocial insect, blocking o receptor activity
depressed aggression in crickets under several different
contexts (Stevenson et al., 2005; Rillich et al., 2011). We
found that octar was expressed at significantly lower
levels in females when they were on a resource with a
male. In Nicrophorus, lone, mated females on a resource
can reproduce but there is considerable competition for
these resources and males that help defend the resource
are tolerated (Muller et al., 2003). This suggests a poten-
tial association with octar, behavioural flexibility and a
reduction of aggressive behaviour in N. vespilloides when
a male is present to help defend the resource. Female
N. vespilloides on a resource with a male are less likely to
engage in aggressive encounters and are more often
engaged in preparation of the carcass, a form of indirect
parental care (Smiseth et al., 2005; Walling et al., 2008).
They are more socially tolerant in general with a resource
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present. For example, females will accept and care for any
larvae that arrive at the appropriate time (Muller & Eggert,
1990; Oldekop etal., 2007), accept males with little
aggression (House et al., 2007; Trumbo, 2007) and rec-
ognize co-breeding males (Muller etal., 2003; Steiger
etal.,, 2009). The potential for aggression and resource
defence by females does exist, as they will readily and
violently attack any intruding females (House et al., 2007;
Hopwood et al., 2013).

Tyramine is a neurotransmitter with distinctive effects
from octopamine, a role that has only recently been gen-
erally appreciated (Lange, 2009). tyrr1 in Drosophila has
been linked to olfaction (Kutsukake et al., 2000) and a
tyramine receptor in blowflies has been suggested to
influence appetite (Ishida & Ozaki, 2011). Blocking activity
of tyramine receptors does not reduce aggression in
crickets (Rillich et al,, 2011; Rillich & Stevenson, 2011).
Here, we found that tyrr1 gene expression was down-
regulated in females with a resource and male in
N. vespilloides. It may be that females are eating less for
themselves when preparing the resource, which would be
consistent with the suggested role of appetite regulation
in blowflies. However, females do feed from the resource
although it is not clear if they reduce their overall food
intake. Carcass preparation, however, is a part of the
indirect parental care that females provide to offspring
(Walling et al,, 2008). Overall, our results suggest that
expression of fyrr1 and octar are associated with the tran-
sition to parental care.

The octopaminergic system reflects behavioural
changes associated with different social conditions in the
burying beetle N. vespilloides. Although the associations
are not as simple as we predicted, associated with more
than just the propensity for aggression, multiple different
associations with behavioural changes is consistent with
the known roles for the different octopamine receptors
in a variety of insects. In particular, the octopaminergic
system in N. vespilloides appears to be associated with
resource defence, alternative mating tactics and transi-
tions to social tolerance and parenting. A more fine-scale
study looking at specific subpopulations of octopam-
inergic neurones within the brain might help to refine
some potential functions of the differentially expressed
receptors as the same biogenic amine receptor can have
different expression profiles within different neuronal
subpopulations even within the same anatomical brain
region (McQuillan et al., 2012), which is variation that our
study did not capture. To test the specific hypothesized
roles for the octopaminergic system in N. vespilloides will
require the demonstration of a causal association and
thus the development of additional genetic tools and
manipulations. It may be that there is specialization of
octopamine receptors associated with or facilitating the
evolution of subsociality.
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Experimental procedures

Insect colony and husbandry

We obtained an outbred colony of N. vespilloides founded from a
recently derived, outbred population maintained at the University
of Exeter, Cornwall, UK (Head et al., 2012). The beetles were
kept in a common, constant temperature room set at 22 £ 1 °C,
under a 15:9 light : dark cycle, and fed decapitated mealworms
(Tenebrio sp.) ad libitum once a week after adult eclosion. We
housed beetles individually at dispersal in 9-mm-diameter and
4-mm-deep circular biodegradable plastic deli containers (Eco
products, Boulder, CO, USA) filled with 2.5 cm of moist soil (Pure
Organic Potting mix; Jungle Growth LLC, Statham, GA, USA).

Sequence analysis

We extracted total RNA from whole heads of virgin N. vespilloides
collected into liquid nitrogen using a Qiagen RNeasy Lipid mini-kit
(Qiagen, Valencia, CA, USA). Tissues were first powdered in
liquid nitrogen with a mortar and pestle followed by hand-held
motorized pestle homogenization (Kimble Chase, Vineland, NJ
USA) after submersion into the QIAzol lysis buffer. We quantified
RNA with a Qubit 2.0 fluorometer (Invitrogen Corporation,
Carlsbad, CA, USA) according to the manufacturer’s instructions.
We synthesized cDNA with Quanta Biosciences qScript reverse
transcriptase master mix (Quanta Biosciences, Gaithersburg,
MD, USA) following the manufacturer’s instructions from 500 ng
total RNA. RNA was stored at —80 °C and cDNA was stored
at —20 °C.

We identified putative genes belonging to the octopaminergic
system by interrogating an unpublished draft genome and three
separate unpublished transcriptomes with known or predicted
proteins sequences of the genes of interest (GOls) from
Drosophila and Tribolium using the tBLASTn (v2.2.25+) search
algorithm (Altschul et al., 1997). Briefly, the draft genome was
assembled from a next-generation sequencing (NGS) data set
from a single inbred larva. The three transcriptomes were assem-
bled from NGS data sets following standard RNA-Seq and ChlP-
Seq protocols assessing differences across behavioural states in
a breeding cycle (virgin, mated, caring, postcaring). tdc, tBh,
octfri, octpr2, octBr3, octar, tyrr1 and tyrr2) all had putative
candidate loci identified. This process was also carried out for
several widely used endogenous control genes: elongation factor
1o (effa), glyceraldehyde 3-phosphate dehydrogenase (gapdh)
and tata-box binding protein (tbp).

We ran 50 ul PCR reactions using Phusion polymerase
(Thermo Scientific, Pittsburgh, PA, USA) according to the man-
ufacturer's recommendation with the addition of 1.5 pl dimethyl
sulphoxide and a target of 100 ng of cDNA template per reaction.
We used a touchdown PCR temperature profile with an initial
5-min 95 °C denaturation step followed by eight cycles of dena-
turation at 95 °C for 30 s, an annealing step that descended by
1 °C each cycle starting at 63 °C, and an elongation time of 60 s
per 1 kb of a target amplicon at 72 °C. This was followed by 35
cycles of amplification with the same settings except that the
annealing temperature was kept constant at 55 °C. We separated
PCR products on 1% agarose gels and stained with ethidium
bromide. We purified correctly sized products with a Qiagen
QIlAquick PCR purification protocol or with a QlAquick gel purifi-
cation protocol after size selection if multiple bands were present
following the manufacturer’s instructions. Purified products were

sequenced with a Sanger capillary sequencing protocol. We
assembled individual sequencing runs with SEQUENCHER (v. 5.01,
http://genecodes.com) using default settings. We then compared
our sequences against NCBI's nonredundant protein database
(http://blast.ncbi.nim.nih.gov) for all insects to determine identity
using the BLASTx algorithm.

If putative GOI sequences were incomplete, we used the con-
sensus PCR-validated sequences to re-interrogate the four
genomic resources available for N. vespilloides with the BLASTn
(v. 2.2.25+) algorithm (Zhang et al., 2000). From the collection
of contigs and PCR sequences, we assembled putative full
sequences for all eight GOls. To visualize high conservation
portions of the proteins across multiple lineages, we aligned the
predicted Tribolium castaneum sequence of each protein with the
functionally characterized sequences from D. melanogaster. We
obtained raw alignment files of the proteins with the ClustalW
algorithm with the Mobyle @Pasteur web portal (http://mobyle
.pasteur.fr) and imported these into JALVIEW (v. 2.8) (Waterhouse
et al., 2009) to produce boxshades.

To further establish the identity of the putative octopaminergic
system receptor genes of N. vespilloides, we constructed a
phylogenetic tree with our translated putative gene sequences
and known or predicted receptor protein sequences (Verlinden
et al., 2010a). We aligned sequences with the ClustalW algorithm
and constructed the tree with the neighbour-joining method
as implemented in CLC SEQUENCE VIEWER (v. 6.8.2, http:/
www.clcbio.com) using the default settings with 10 000 boot-
straps to estimate the stability of the relationships.

Gene expression analysis

To test the hypothesis that octopaminergic gene expression is
influenced by social or reproductive context, we created four
treatment groups that were all harvested at 13 days post-adult
eclosion. a priori, we chose virgin females (Virgin) as the treat-
ment that we would compare to the other social/reproductive
treatments. This treatment held individual beetles in isolated con-
tainers from larval dispersal until tissue collection. These animals
had no social encounters, no ability to reproduce and no oppor-
tunity to reproduce. Our second treatment was mated females
(Mated). These females had a single mating encounter with a
male when they were 10 days post-adult eclosion in a mating
box (17.2 x 12.7 x 6.4 cm; Pioneer Plastics, Dixon, KY, USA)
filled with ~1 cm of soil. The males were 10-14 days post-adult
eclosion and the encounter lasted 4 h, which is more than suffi-
cient time for a female to obtain a lifetime supply of sperm (House
et al., 2008). We returned both the females and males to their
original containers after this 4-h period until tissue collection. This
treatment therefore represents a relatively brief social encounter,
providing the ability, but not opportunity, to reproduce. With the
third treatment, mated females on a reproductive resource
without a male (Mated + Mouse), we gave females the resource
required to reproduce but insufficient time for larvae to hatch. We
treated the females as in the Mated treatment, but 24 h following
mating we placed the females in a new mating container half filled
with moist soil and with a 20-24 g mouse carcass present. Thus,
these animals had a brief social encounter and an opportunity to
reproduce under uniparental conditions. Finally, the fourth treat-
ment consisted of a mated female on a reproductive resource
with a male (Mated+ Mouse + Male). Again, we treated the
females as in the Mated treatment. The following day, we placed

© 2014 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of The Royal Entomological Society, 23, 391-404



the same female-male mating pair into a new mating container
half filled with moist soil and with a 20-24 g mouse carcass
present. Thus, these animals had a brief social encounter fol-
lowed by an extended social encounter, and an opportunity to
reproduce under biparental conditions. There were 10 replicates
of each treatment.

We collected females at 13 days post-adult eclosion regardless
of treatment and dissected out brains submerged in ice-cold 1x
phosphate-buffered saline (National Diagnostics, Atlanta, GA,
USA). We submerged samples into 100 ul RNAlater (Ambion,
Grand Island, NY, USA) on ice and then followed the manufactu-
rer’s protocol for storage at —20 °C until RNA extraction.

We extracted total RNA from single dissected brains using a
Qiagen RNeasy micro kit following the manufacturer’s instruc-
tions with the addition of 700 ul QlAzol (Qiagen) as the lysis
buffer and 150 ul chloroform (J.T. Baker, Center Valley, PA, USA)
after homogenization. We also treated samples with DNase |
(Qiagen) on column according to the manufacturer’s instructions
to help ensure minimal genomic DNA contamination. We quanti-
fied RNA with a Qubit 2.0 fluorometer according to the manu-
facturer's instructions. We synthesized cDNA with Quanta
Biosciences qScript reverse transcriptase master mix following
the manufacturer’s instructions from 500 ng total RNA. We gen-
erated multiple no-template controls for each social/reproductive
context following the same protocol as experimental samples,
except that RNAse-free water was substituted for gScript master
mix during the cDNA synthesis step. RNA was stored at —-80 °C
and cDNA was stored at —20 °C.

We designed quantitative real-time PCR (qRT-PCR) primers
from the PCR-validated consensus sequences of each of our
GOls and several endogenous control genes (effe, gapdh and
tbp) using PRIMER3 (v. 4.0.0; Untergrasser et al., 2012). Multiple
primer pairs (18-23mers) for each gene were designed to
produce similarly sized amplicons (90—-110 bp) and to flank exon
boundaries using the draft genome of N. vespilloides as a refer-
ence. Primer pairs were then validated by estimating PCR effi-
ciency and the number of amplicons generated from each pair
was assessed with a disassociation curve from a gRT-PCR run.
PCR efficiency was estimated with a four-point, four-fold serial
dilution series using a pool of common cDNA, which had been
generated using the same protocol as the experimental samples.
This dilution series produced a linear dynamic range encompass-
ing the experimental variation in threshold cycle (Cr) values of all
target amplicons. It also ensured that primer pairs with efficien-
cies close to two were used to meet the assumptions of the AACy
method. To further ensure that a single amplicon per primer pair
was produced, we separated one qRT-PCR reaction on a 1%
agarose gel stained with ethidium bromide.

We ran gRT-PCR with Roche LightCycler 480 SYBR | Green
Master Mix using a Roche LightCycler 480 (Roche Applied
Science, Indianapolis, IN, USA). We ran triplicate technical rep-
licates (N = 10 of each treatment) using 10 pl reactions containing
5ul SYBR mix, 2 ul cDNA diluted 1:10 with qRT-PCR grade
water, and 3 ul of a primer stock containing both the forward and
reverse primers at 1.33 umol/l. We set the temperature profile
according to the manufacturer’s instructions for an enzyme acti-
vation step, followed by 45 cycles of amplification at 60 °C and a
dissociation curve step to assess the number of amplicons gen-
erated with each reaction.

To establish the stability of endogenous control genes, we ran
replicates of samples from the different social/reproductive con-
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texts while controlling for input cDNA amount. Single-strand
cDNA was quantified with a Qubit 2.0 fluorometer according to
the manufacturer’s instructions after treating samples with
RNaseH. cDNA was diluted so that each technical replicate con-
tained 1.5 ng cDNA. We assessed the stability of endogenous
control gene amplicons by visual inspection of Cr values and
found that tbp did not vary across social contexts. Even when
aliquoting cDNA from a diluted pool rather than aliquoting a
standard amount of cDNA, there was no statistically significant
difference in tbp expression across our social and reproductive
contexts (Fs36=0.286, P=0.836). On the experimental qRT-
PCR plates, we ran multiple no-template controls. Additional
information suggested by the Minimum Information for Publica-
tion of Quantitative Real-Time PCR Experiments (MIQE) guide-
lines can be found in the Appendix.

We used the AACr method (Livak & Schmittgen, 2001) to
convert raw expression data to normalized relative expression
values, using the virgin treatment as our comparison group. All
values were normally distributed. Data were visually inspected for
outliers. We tested for the effect of social/reproductive context
using an analysis of variance, followed by Dunnett’s method
(Dunnett, 1955) for multiple a priori comparisons using virgins as
the control group. We used JMP PRO (v. 10.0.1, http://jmp.com)
for all statistical analyses.
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Appendix

Additional information about the quantitative real-time
PCR protocol and Figs 1-4

|. Additional information suggested in the Minimum Infor-
mation for Publication of Quantitative Real-Time PCR
Experiments (MIQE) guidelines not already provided in
paper.

A. Quantitative real-time PCR (gqRT-PCR) primer

sequences

tde-
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forward: GTCATACGGTTTTGCGCTGT
reverse: AATAATTCGCTGGCATATTCTGTT
tBh-
forward: CAGAGATGGCATCGAGTTA
reverse: GCATCACCCGGTAGAACTTT
octfri-
forward: GGCATCATCGTGTCCGCTTT
reverse: ACGGATGGTGGACTGTAGCA
octprz-
forward: TTCGCCATGACCTTCAA
reverse: CGAATTCCAGACGTCGCACA
octpr3-
forward: CAACACCGCCCTAAACACGA
reverse: CCCTCCAGCTCTTCGACTGT
octor-
forward: CGCAGGTCAAACGCTTCAGA
reverse: GGTGAAGAAGGGTAGCCAGC
tyrri-
forward: CGGATCCCATAAACTACGCGC
reverse: GGCCAATCGTTCCAACCGAT
tyrr2-
forward: GTGTGGATAAGTTCGGCGCT
reverse: CGTAGCCCGTGTTCTTGTTGT
tbp:
forward: CACCCATGACTCCAGCAGAT
reverse: ACGTGCATGCAGAGCTATCTT
Primers were manufactured by Integrated DNA Tech-
nology (IDT, Coralvill, IA, USA) and purified with IDT’s
standard desalting technique.
B. gRT-PCR validation
Primer efficiency
tdc: 2.01 (fzcalibration curve=0-993)
fﬁh: 2.10 (’gcalibration curve=0-993)
OCtﬂf7.' 1.98 (fzcalibration Cur\,e:O.ggO)
OCtﬁf?.' 1.96 (fzcalibration curve:0-997)
OCt,BI’3.' 1.93 (fecalibration curve:0-965)
octar: 1.97 (rzcalibration curve:O-994)
tyrr1: 1.94 (’anlibration curve:O-976)
tyrr2: 1.96 (,anlibration curve=0-996)
tbp 2.16 (fecalibration curve=0-989)
C. Data analysis
No Template Control samples
9/10 samples had no amplification; 1/10 samples had
inconsistent amplification >5 cycles after experimental
values.
Il. GenBank accession numbers for non- Nicrophorus
vespilloides protein sequences used in the boxshade and
phylogenetic tree figures
Figure 1. Tyrosine decarboxylase
Tribolium castaneum: EFA10348.1
Drosophila  melanogaster.  Tdc1-A1Z6N2, Tdc2-
A1Z6N4
Figure 2. Tyramine-B-hydroxylase
Tribolium castaneum: XP_974169.1
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Drosophila melanogaster. Q86B61
Periplaneta americana: 17CTE1

Figures 3 and 4. Octopaminergic receptors
If available, sequence from Verlinden etal. (2010a)
were used.

Octpri

Tribolium castaneum: XP_974265.1
Drosophila melanogaster. Q9VCZ3
Bombyx mori: XP_004922133.1

Octpr2

Tribolium castaneum: XP_974214
Drosophila melanogaster. Q4LBB9
Bombyx mori: NP_001171666.1

OctPr3

Tribolium castaneum: XP_974238

Drosophila melanogaster. Q4LBB6.4
Octor

Tribolium castaneum: EFA10678
Drosophila melanogaster. ACC17442
Bombyx mori: NP_001091748.1

Tyrrd

Tribolium castaneum: NP_001164311.1
Drosophila melanogaster. AAA28731
Bombyx mori: CAA64865

Tyrr2

Tribolium castaneum: EFA_10716.1
Drosophila melanogaster. NM_142844
Bombyx mori: BAI52937

FMRFamide Receptor (used only in phylogenetic tree)
Drosophila melanogaster. NP_647758
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