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Highlights

• A surrogate based multi-fidelity framework for RDO is proposed.

• The first approach is highly efficient and requires very few actual simulations.

• Second approach yields highly accurate result from slightly increased simulation.
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Abstract

Robust design optimization (RDO) is a field of optimization in which certain measure of

robustness is sought against uncertainty. Unlike conventional optimization, the number

of function evaluations in RDO is significantly more which often renders it time consum-

ing and computationally cumbersome. This paper presents two new methods for solving

the RDO problems. The proposed methods couple differential evolution algorithm (DEA)

with polynomial correlated function expansion (PCFE). While DEA is utilized for solving

the optimization problem, PCFE is utilized for calculating the statistical moments. Three

examples have been presented to illustrate the performance of the proposed approaches. Re-

sults obtained indicate that the proposed approaches provide accurate and computationally

efficient estimates of the RDO problems. Moreover, the proposed approaches outperforms

popular RDO techniques such as tensor product quadrature, Taylor’s series and Kriging. Fi-

nally, the proposed approaches have been utilized for robust hydroelectric flow optimization,

demonstrating its capability in solving large scale problems.

Keywords: robust design optimization, polynomial correlated function expansion,

differential evolution algorithm, stochastic computation

1. Introduction1

Design, construction and maintenance of engineering systems involve decision making at the2

managerial as well as technological level. The two primary goals of such decision are to3

minimize the effort required and to maximize the desired profit. In order to achieve the4
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Preprint submitted to Applied Mathematical Modelling March 21, 2017



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

goals, techniques capable of finding the designs which meet the requirements specified by5

goal functions or objective functions, are needed. This process of finding the appropriate6

design parameters is termed as optimization. Apart from the objective function, a typical7

optimization also have to account for the design constraints imposed on the design variables.8

Such constraints are modelled by inequalities and/or equalities restricting the design space.9

Mathematically, an optimization problem can be stated as10

arg min
x∈R

y0 (d)

s.t yl (d) 6 0, l = 1, 2, . . . nc

dk,L 6 dk 6 dk,U , k = 1, . . . , nv

(1)

where d denotes the design variables, y0 : R → RM denotes the objective function and yl :11

R→ RM , l = 1, . . . , nc, 1 6 nc <∞ denotes the constraints. dk,L and dk,U are, respectively,12

the lower and upper bounds of the kth design variable. However, Eq. (1) optimized in the13

classical sense is often very sensitive to small changes in design variables and may yield14

erroneous result due to the presence of significant uncertainties in the geometric and material15

properties, such as elastic modulus, cross-sectional area, density, residual strength etc. In16

order to overcome this issue, [1] introduced the concept of robust design optimization (RDO).17

RDO establishes a mathematical framework for optimization in which certain measure of18

robustness is sought against uncertainty. The primary aim of RDO is to minimize the19

propagation of uncertainties from input to output variables and thus results in an insensitive20

design. Over the last decade, RDO has gained vast popularity in the field of aerospace21

engineering [2], automotive engineering [3] marine engineering [4] and civil engineering [5, 6].22

The objective and/or constraints in a RDO often involve determination of the first two23

statistical moments of responses. Therefore, solution of a RDO problem necessitates un-24

certainty quantification of the response and its coupling with an optimization algorithm.25

Consequently, RDO demands a greater computational effort as compared to conventional26

optimization. The concern regarding accuracy and efficiency of existing RDO techniques is27

mainly two-fold.28

• Firstly, most of the methods for RDO utilizes gradient based optimization (GBO).29

Although easy to implement, GBO often yields local optima. Alternatively, if explicit30
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functional form for objective function is not available, the gradient of objective function31

is calculated by employing finite difference method. This renders the optimization32

process computationally expensive.33

• Secondly, the popular methods for uncertainty quantification such as perturbation34

method [7, 8], point estimate method [9], simulation based approach [10, 11], Kriging35

[12–17], polynomial chaos expansion [18, 19], moving least square method [20, 21] and36

radial basis function [22–24] often yields erroneous results. For example, perturbation37

method yields erroneous result for highly nonlinear system. This may be attributed38

to the fact that since perturbation method utilizes a second order Taylor’s series ex-39

pansion, it fails to capture the higher order of nonlinearity. Similar arguments hold40

for point estimate method. In fact some of the most popular methods for uncertainty41

quantification, viz., Kriging, radial basis function, moving least square and PCE, suf-42

fers from the curse of dimensionality. As a consequence, these methods may not be43

applicable for problems involving large number of random variables. Even for lower44

dimensional problems, the number of sample points required for Kriging is signifi-45

cantly large. Simulation based approach, such as the crude Monte Carlo simulation46

(MCS) is computationally expensive. Thus, stochastic methods, that are efficient as47

well accurate, should be investigated.48

This paper presents two novel approaches for solving RDO problems. The proposed ap-49

proaches utilize polynomial correlated function expansion (PCFE) [25–31] for stochastic50

computations and differential evolution algorithm (DEA) [32–35] for optimization. While51

the first approach, referred to here as low-fidelity PCFE based DEA, yields a highly efficient52

estimate of the RDO problems, the second variant, namely high-fidelity PCFE based DEA,53

provides a highly accurate estimate for the RDO problems. Compared to exiting techniques54

for RDO, the proposed approaches have certain desirable advantages.55

• DEA is a global optimization tool and does not results in the local minima. Moreover,56

it has already been established in previous studies [33] that DEA has rapid convergence57

rate.58
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• DEA is a gradient-free optimization technique. Therefore, it is equally applicable to59

both differentiable and non-differentiable functions.60

• PCFE is an efficient uncertainty quantification tool capable of dealing with high di-61

mensional problems. Thus, using PCFE to determine the statistical moments renders62

the procedure highly efficient.63

The rest of the paper is organised as follows. After describing the RDO problem in Section 2,64

Section 3 describes the DEA utilized in this paper. In Section 4, a brief description of PCFE65

has been provided. Section 5 introduces the proposed approaches for RDO. In Section 666

the proposed approach has been implemented for solving three examples. Section 7 presents67

RDO of hydroelectric flow by using the proposed approaches. Finally, Section 8 provides the68

concluding remarks.69

2. Problem setup70

RDO is the process of designing in the presence of uncertainty. It takes into account not only71

the nominal value of input variables but also the uncertainties in those parameters whose72

value is imprecisely known or is intrinsically variable. Mathematically, RDO is the process of73

selecting the design variables while maximising the expected objective/goal function and/or74

reducing its variance.75

Suppose x := (x1, x2, . . . , xN) be an RN valued input vector defined in probability space76

(Ω,F ,P) and d to be the design parameters. Then one possible description of RDO is [36]:77

min
d⊂D∈RN

c0 (d) := fo (E (y0 (x,d)) , var (yo (x,d)))

s.t. cl (d) := fl (E (yl (x,d)) , var (yl (x,d))) 6 0, l = 1, 2, . . . , nc

di,L 6 di 6 di,U , i = 1, 2, . . . , nv

(2)

where E (•) and var (•) denote mean and variance. It is evident from Eq. (2) that the objec-78

tive function c0 in RDO framework is represented as a function (fo (•)) of mean and standard79

deviation of the objective function y0 in deterministic/conventional optimization framework.80

Similarly, the the constraints cl in RDO are represented as a function (fl (•)) of mean and81

standard deviation of the constraints yl in deterministic/conventional optimization frame-82
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work. The above defined system is having nc constraint function and nv design variables.83

di,L and di,U are, respectively, the lower and upper limits of ith design vector.84

In most applications, Eq. (2) is reformulated as [36, 37]85

min
d⊂D∈RN

c0 (d) := β
E (y0 (x,d))

E(y0 (x,d))∗
+ (1− β)

√
var (yo (x,d))

σ∗y0

s.t. cl (d) := E (yl (x,d)) + κl
√

var (yl (x,d)) 6 0, l = 1, 2, . . . , nc

di,L 6 di 6 di,U , i = 1, 2, . . . , nv

(3)

where β ∈ [0, 1] represents the weight. E(y0 (x,d))∗ and σ∗y0 are non-zero and real valued86

scaling factors [36]. κl, l = 1, 2, . . . , nc are constant coefficients associated with constraint87

functions. The focus of this work is to present the applicability of the proposed approaches88

for solving the RDO problem described in Eq. (3).89

3. Differential Evolution90

Differential evolution algorithm (DEA) is a stochastic direct search method that optimizes91

a problem by iteratively trying to improve a candidate solution with respect to a given92

measure of quality. Unlike gradient based optimization, DEA does not use the gradient93

of the problem and is thus equally applicable to both differentiable and non-differentiable94

problems. Furthermore, DEA make few or no assumptions regarding the problem being95

optimized and searches very large spaces of a candidate solution.96

DEA utilizes nP D-dimensional parameter vectors xi,G, i = 1, 2, . . . , nP as a population for97

each generation G. The initial vector population is considered to be uniformly distributed98

over the entire parameter space. DEA generates new parameter vectors by adding the99

weighted difference between the two population vectors to a third vector. This operation is100

known as mutation. In the next step, the trial vector is obtained by mixing the parameter101

vectors obtained after mutation with the target vector. This step is known as crossover.102

If the magnitude of objective function obtained corresponding to the trial vector is smaller103

compared to the target vector, trial vector replaces the target vector. This step is known as104

selection. Note that each population vector must serve once as the target vector in order to105

increase the competitions. Next, different steps of DEA have been described.106
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3.1. Mutation107

For each target vector xi,G, i = 1, 2, . . . , nP , where G denotes generation, a mutant vector108

vi,G+1, for the G+ 1th generation, is generated as:109

vi,G+1 = xk1,G + F · (xk2,G − xk3,G) (4)

where k1, k2, k3 ∈ {1, 2, . . . , np} are random integers that are mutually different. It is further110

ensured that k1, k2, k3 are different from the running integer i. F is a real constant which111

controls the amplification of the differential variation (xk2,G − xk3,G). For further details,112

interested readers are referred to the work by [33].113

3.2. Cross-over114

The primary aim of this step is to increase the diversity of the perturbed parameter vectors.115

The trial vector ui,G+1 = (u1i,G+1, u2i,G+1, . . . , uDi,G+1), having D candidates is formed, where116

117

uji,G+1 =





vji,G+1 if rj 6 cR or j = ρi

xji,G if rj > cR and j 6= ρi

j = 1, 2, . . . , D

(5)

In Eq. (5), rj is the jth uniform random number with outcome ∈ [0, 1] and ρi is the randomly118

chosen index ∈ 1, 2, . . . , D. ρi ensures that ui,G+1 gets at least one parameter from vi,G+1.119

cR is the crossover parameter and resides in [0, 1]. The value of cR is to be provided by the120

user. For further details, readers may refer to the work by [33].121

3.3. Selection122

The final step of DEA is the selection. This step decides the suitability of trial vector. In this123

step, the trial vector ui,G+1 is compared to the target vector xi,G. If the value of objective124

function corresponding to ui,G+1 is lower compared to that obtained using xi,G, then xi,G+1125

is set to be ui,G+1. On contrary if, the value of objective function corresponding to ui,G+1126

is greater compared to that obtained using xi,G, then the old value of xi,G is retained. A127

flowchart depicting the procedure of DEA is shown in Fig. 1128
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Figure 1: Flowchart for DEA

4. Foundation of PCFE129

Polynomial correlated function expansion (PCFE) [25, 26] is a general set of quantitative130

model assessment and analysis tool for capturing high dimensional input-output system be-131

haviour. In literature, this method is also referred as generalised ANOVA [38] or generalised132

HDMR [39]. In this section, the mathematical formulation of PCFE has been discussed.133

Let i = (i1, i2, . . . , iN) ∈ NN
0 be a multi-index with |i| = i1 + i2 + · · ·+ iN , and let N > 0 be134

an integer. Now considering x = (x1, x2, . . . , xN) to be the random inputs, we express the135
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response of interest g (x) as a series having finite number of terms as shown in Eq. (6)136

g (x) =
N∑

|i|=0

gi (xi) (6)

Definition 1: The univariate terms in Eq. (6) are termed as first order component functions.137

Similarly, the bivariate terms, denoting cooperative effect of two terms acting together, are138

termed as second order component function.139

Definition 2: Assume, two subspace R and B in Hilbert space are spanned by basis {r1, r2, . . . , rl}140

and {b1, b2, . . . , bm} respectively. Now if (i) B ⊃ R and (ii) B = R⊕R⊥ where, R⊥ is the or-141

thogonal complement subspace of R in B, we term B as extended basis and R as non-extended142

basis. [39]143

Now considering ψ to be a suitable basis of x and utilizing definition 2, Eq. (6) can be144

rewritten as [25–28]145

ĝ (x) = g0 +
N∑

k=1





N−k+1∑

i1=1

· · ·
N∑

ik=ik−1

k∑

r=1

[ ∞∑

m1=1

∞∑

m2=1

· · ·
∞∑

mr=1

α(i1i2...ik)ir
m1m2...mr

ψi1
m1
. . . ψir

mr

]}
(7)

where α’s are the unknown coefficients associated with the bases and g0 is a constant (termed146

as zeroth order component function). From practical point of view, the expression for PCFE147

provided in Eq. (7) needs to be truncated. Considering up to Nt
th order component function148

and sth order basis yields:149

ĝ (x) = g0 +
Nt∑

k=1





N−k+1∑

i1=1

· · ·
N∑

ik=ik−1

k∑

r=1

[
s∑

m1=1

s∑

m2=1

· · ·
s∑

mr=1

α(i1i2...ik)ir
m1m2...mr

ψi1
m1
. . . ψir

mr

]}
(8)

Definition 3: Eq. (8) is termed as Nt
th order PCFE expression. A Nt

th order PCFE consists150

of all the component functions up to Nt
th order, i.e., while first-order PCFE consists zeroth151

and first order component functions, a second-order PCFE consists zeroth, first and second152

order component functions. Therefore, adding all the Nt
th order component functions to an153

existing (Nt − 1)th order PCFE would yield the Nt
th order PCFE expression.154

As already illustrated in previous studies [26, 27], a second-order PCFE with third order155

basis yield satisfactory results for most practical cases. Hence, substituting Nt = 2 and156
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s = 3 in Eq. (8) yields:157

g (x) =g0 +
∑

i

∑

k

α
(i)i
k ψi

k (xi) +
∑

16i<j6N

{
3∑

k=1

α
(ij)i
k ψi

k (xi) +
3∑

k=1

α
(ij)j
k ψj

k (xj)+

3∑

m=1

3∑

n=1

α(ij)ij
mn ψi

m (xi)ψ
j
n (xj)

} (9)

Rewriting Eq. (9) in matrix form158

Ψα = e (10)

where Ψ consists of the basis functions and159

e = g − ḡ (11)

where g = (g1, g2, . . . , gNS
)T is a vector consisting of the observed responses at NS sample160

points and ḡ = (g0, g0, . . . , g0)
T is the mean response vector. Pre-multiplying Eq. (10) by161

ΨT , one obtains162

Bα = C (12)

where B = ΨTΨ and C = ΨTe. Close inspection of Ψ reveals identical columns. Thus,163

B has identical rows. These rows are redundants and can be removed. Removing identical164

rows of B and corresponding rows of C, one obtains165

B′α′ = C′ (13)

where B′ and C′ are respectively, B and C after removing the redundants.166

Remark 1: An essential condition, associated with Eq. (13) is the hierarchical orthogonality167

of the component functions. This condition requires a higher order component function to168

be orthogonal with all the lower order component functions. To determine the unknown169

coefficients α while satisfying the orthogonality criteria, homotopy algorithm (HA) [40–43] is170

employed. HA determines the unknown coefficients associated with the bases by minimizing171

the least-squared error and satisfying the hierarchical orthogonality criteria.172

4.1. Homotopy algorithm173

Consider B′ to be a p×q matrix. Since the system described by Eq. (13) is underdetermined,174

there exists an infinite number of solution given by175

α (s) = (B′)
−1

C′ +
[
I− (B′)

−1
B′
]
v (s) (14)
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where (B′)−1 denotes the generalized inverse of B′, v (s) is an arbitrary vector in Rq and I176

represents an identity matrix. One choice of (B′)−1 in Eq. (14) is (B′)†, which is the the177

generalised inverse of B′ satisfying all four Penrose conditions [44]. The solution of α (s)178

after replacing (B′)−1 by (B′)† is given as179

α (s) = (B′)
†
C′ +

[
I− (B′)

†
B′
]
v (s)

= (B′)
†
C′ + Pv (s)

(15)

It is noted that P is an orthogonal projector and satisfies180

P2 = P, PT = P (16)

All the solutions of α obtained from Eq. (15) compose a completely connected submanifold181

M⊂ Rq. Homotopy algorithm searches for the best solution by considering an exploration182

path α (s) within M with s ∈ [0,∞), which satisfies183

dα (s)

ds
= Pv′ (17)

where v′ = dv/ds. The free function vector v′ may be chosen freely to enable broad choices184

for exploring α (s) and provide the possibility to continuously reduce the predefined cost185

function.186

The cost function in homotopy algorithm is defined as187

O =
1

2
αTWα (18)

where W is the weight matrix which is symmetric and non-negative definite. Minimizing188

the cost function is the additional condition that is imposed on homotopy algorithm. Con-189

sidering,190

v′ = − ∂O

∂a (s)
(19)

and noting that P is an orthogonal projector, we obtain191

∂O

∂s
=

(
∂O

∂α (s)

)(
∂α (s)

∂s

)
=

(
∂O

∂α (s)

)
Pv′

= −
(

P
∂O

∂α (s)

)T (
P

∂O

∂α (s)

)

6 0

(20)

From Eq. (20), it is obvious that the objective function O is minimized as s → ∞. The192

11
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solution of Eq. (17), obtained using homotopy algorithm is given as193

αHA =
[
Vq−r

(
UT

q−rVq−r
)−1

UT
q−r

]
α0 (21)

where α0 is the solution obtained using least-squares regression. Uq−r and Vq−r are the last194

q − r columns of U and V obtained from singular value decomposition of matrix PW.195

PW = U


 Ar 0

0 0


VT (22)

Eq. (21) is the key formula for determining the optimal solution of α from homotopy algo-196

rithm. A detailed derivation of the same can be found in [25, 27, 39].197

Remark 2: An important aspect for HA is the formulation of weight matrix. A detailed198

description of weight matrix, based on the hierarchical orthogonality criteria, is provided in199

Appendix A.200

A step-by-step procedure for PCFE is shown in Algorithm 1.201

5. Proposed approach for robust optimization202

PCFE, described in previous section, provides an efficient means to approximate the objective203

and constraint functions. However, there exists multiple alternatives for coupling PCFE, into204

the framework of an optimization algorithm (DEA in this case). Two such alternatives are205

presented in this section.206

5.1. Low-fidelity PCFE based DEA207

This approach involves a straightforward integration of PCFE into DEA. However, instead208

of generating a PCFE model at each design step, a single PCFE model is generated at the209

onset and the same model is utilized for all the iterations of DEA. As a consequence, the210

computational effort involved in this step is minimal. The steps involved in low-fidelity211

PCFE based DEA are outlined below.212

Step1: Determine lower limit and upper limit of the design variables. Suppose di,l and di,u213

be the bounds of the design variables. Also assume, δ to be the coefficient of variation.214

12
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Algorithm 1: Algorithm of PCFE

1. INITIALIZE: Provide distribution type and distribution parameters of the input

random variables. Identify bounds of random variables.

2. Input order of PCFE

3. Input number (num) of sample points;

4. Obtain responses at sample points

5. g0 ← 1
num

∑
s
g (xs) where num is the number of sample points

6. for i = 1 : num

ei ← g (xi)− g0
end for

7. Ψ←
[
ψ
(
x1
)

ψ
(
x2
)
· · · ψ

(
xN
) ]T

where

ψ(xr)T ←
[
ψ1
1 (xr1) ψ1

2 (xr1) · · · ψ1
k (xr1) ψ2

1 (xr2) · · ·

ψ1
1 (xr1) · · · ψN−2

m

(
xrN−2

)
ψN−1
m

(
xrN−1

)

ψN−1
m

(
xrN−1

)
ψN
m (xrN )

]

8. e←
[
e1 e2 · · · en

]T

9. [B′,C′]← remove redundants (B,C)

10. W← form weight (ψ)

11. Utilize HA to determine the unknown coefficients

12. Obtain statistical moments of the response

Then the lower limit di,ll and upper limit di,ul are defined as:215

di,ll = di,l (1− γδ)

di,ul = di,u (1 + γδ)

For present study, γ = 3 has been considered. Similarly, set the lower limit and upper216

limit of other stochastic variables (apart from the design variables).217

Step 2: Using Algorithm 1, formulate a PCFE model ∈ [di,ll, di,ul] for the objective function218

y0. Similarly, formulate PCFE model(s) for constraint function(s) yl as well. Formulate219

objective and constraint functions for the RDO problem by substituting y0 with
^
y0220

13
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and yl with
^
y l in Eq. (3), where

^
y0 and

^
y l are PCFE models representing y0 and yl221

respectively.222

Step 3: Optimize the RDO problem defined in Step 2 using DEA.223

5.2. High-fidelity PCFE based DEA224

Although the low-fidelity PCFE based DEA is highly efficient, it may yield erroneous result225

specifically for problems involving higher order of nonlinearity, either in objective function226

or in constraints. One possible alternative is to generate PCFE models for the objective and227

constraint functions at each iteration. However, such an approach renders the procedure228

computationally expensive, making it unsuitable for large scale problems. In this work, an229

alternative high-fidelity approach has been presented. The proposed approach memorizes230

the previously generated PCFE model and utilizes them in the optimization step. The steps231

involved in the proposed high-fidelity PCFE based DEA are outlined below.232

Step 1: Following the steps for low-fidelity PCFE based DEA, generate PCFE models for233

the objective and constraint functions.234

Step 2: Define error tolerance ε. Also select an initial design vector. Set i = 0 and jl =235

0, l = 1, 2, . . . , nc.236

Step 3: Compute the objective function y0 and constraint functions yl at the design point.237

Using the PCFE models, compute
^
y0,0 and

^
y l,0 at the design points.238

Step 4: temp = 0239

for k = 0 : i240

if

∣∣∣∣
y0−^

y 0,k

y0

∣∣∣∣ 6 ε241

In Eq. (3), replace y0 with
^
y0,k242

else243

set temp=temp + 1244

end if245

if temp=i+ 1246

set i = i + 1. Generate a local PCFE based model for the objective function
^
y0,i,247
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anchored around the design point.248

In Eq. (3), replace y0 with
^
y0,i.249

end if250

end for251

Step 5: for l = 1 : nc252

temp1 = 0253

for k = 1 : jl254

if

∣∣∣∣
yl−^

y l

yl,k

∣∣∣∣ 6 ε255

In Eq. (3), replace yl with
^
y l,k256

else257

set temp1=temp1+1258

end if259

if temp1=jl + 1260

set jl = jl + 1. Generate a PCFE model for the constraint
^
yl,jl , anchored about the261

design point.262

In Eq. (3), replace yl with
^
yl,jl .263

end if264

end for265

end for266

Step 6 Obtain updated design vector. If solution is converged, stop. Else go to Step 3.267

A flowchart depicting the two proposed approach are shown in Fig. 2.268

6. Numerical Examples269

In this section, three examples are presented to illustrate the proposed approaches for RDO.270

While a mathematical function has been considered in Example 1, Example 2 illustrates271

the implementation of DEA-PCFE for RDO of a simple truss. In example 3, RDO of272

a transmission tower has been performed. For all the problems, the population size and273

the generation size in DEA are considered to be 50 and 100 respectively. The cross-over274
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Figure 2: Flowchart for the proposed approaches

parameter is considered to be 0.5. The mutation parameter F is considered to be 0.8. The275

sample points required for PCFE are generated using Sobol sequence [45, 46]. However, it276

is worth mentioning that DEA-PCFE is equally applicable with both uniformly and non-277

uniformly distributed sample points.278

For ease of understanding, high-fidelity PCFE based DEA has been denoted as HF DEA-279
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PCFE. Similarly, low-fidelity PCFE based DEA is denoted as LF DEA-PCFE.280

6.1. Example 1: optimization of a mathematical function [47]281

This example illustrates the performance of DEA-PCFE for RDO of an explicit mathematical282

function [47]. The problem involves two independent Gaussian random variables X1 and X2283

and two design variables d1 = E (X1) and d2 = E (X2). The RDO problem reads284

min
d∈D

cO (d) =
σd (y0 (X))

15

s.t. ck (d) = 3σd (y1 (X))− E (y1 (X))

1 < d1, d2 < 10

(23)

where the two functions y0 (X) and y1 (X) are given as285

y0 (X) = (X1 − 4)3 + (X1 − 3)4 + (X2 − 5)2 + 10 (24)

and286

y1 (X) = X1 +X2 − 6.45 (25)

The standard deviation of both X1 and X2 is 0.4.287

The proposed approaches have been utilized for solving this problem. Table 1 shows the opti-288

mum design obtained using the proposed approaches. Results obtained have been compared289

with results presented in [47] and Kriging. It is observed that DEA-PCFE (cO (d∗) = 0.074)290

outperforms popular RDO techniques, such as tensor product quadrature (TPQ) (cO (d∗) =291

0.086), Taylor’s series (TS) (cO (d∗) = 0.090) and Kriging (cO (d∗) = 0.076). Moreover,292

number of actual simulation required using the proposed approaches (Ns = 76/84) are sig-293

nificantly less as compared to TPQ (Ns = 162), TS (Ns = 90) and Kriging (Ns = 256).294

Another interesting aspect observed from Table 1 is that both the proposed approaches,295

i.e. LF DEA-PCFE and HF DEA-PCFE yields identical result. This is because in all the296

iterations, the initial PCFE model is found to yield satisfactory results. The additional297

sample points required in HF DEA-PCFE is because of the additional simulations required,298

at each iteration, to verify the accuracy of the initial PCFE model.299

6.2. Example 2: 2-bar truss300

In this example, a 2-bar truss element, as shown in Fig. 3, has been considered [47]. The301

system is having five independent random variables, namely cross-sectional area X1, the302
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Table 1: Optimized parameters for Example 1

Methods d1
∗ d2

∗ cO (d∗) N#
s

TPQ1 3.45 5.00 0.086 162 (81+81)

TS2 3.50 4.99 0.090 90 (45+45)

Kriging 3.37 5.00 0.076 256 (128+128)

DEA-PCFE
LF 3.35 4.99 0.074 76 (52+24)

HF 3.35 4.99 0.074 82 (56+28)

1Tensor product quadrature, 2Taylor’s series

#The two numbers in bracket indicates simulations required for

approximating y0 and y1 respectively.

horizontal span (half) X2, material density X3, load X4 and tensile strength X5. The details303

of random variables are provided in Table 2. The design variables are d1 = E (X1) and304

d2 = E (X2). The objective of this problem is to minimize the second moment properties of305

mass of the structure given limiting stresses in both members are below the material yield306

stress. Consequently, the RDO problem is formulated as:307

min
d∈D

cO (d) = β1
E (y0 (X))

10
+ (1− β1)

σ (y0 (X))

2

s.t. c1 (d) = 3σ (y1 (X))− E (y1 (X)) 6 0

c2 (d) = 3σ (y2 (X))− E (y2 (X)) 6 0

0.2 cm2 6 d1 6 20 cm2, 0.1 m 6 d2 6 1.6 m

(26)

where y0, y1 and y2 are respectively mass of the structure, stress in member 1 and stress in308

member 2.309

Table 3 shows the RDO results obtained using DEA-PCFE, TPQ, TS and Kriging. It is310

observed that LF DEA-PCFE (cO (d∗)=1.189, Ns = 320) outperforms TPQ (cO (d∗)=1.239,311

Ns = 7722) and Kriging (cO (d∗)=1.37, Ns = 1280), both in terms of accuracy and efficiency.312

HF DEA-PCFE and TS yields the best results (cO (d∗)=1.174). However, number of function313

evaluations using HF DEA-PCFE (Ns = 640) is less, as compared to TS (Ns = 648).314
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Figure 3: 2-bar truss structure considered in Example 2

Table 2: Properties of random variables

Variable Mean COV type

X1 d1 0.02 Gaussian

X2 d2 0.02 Gaussian

X3 10000 0.2 Beta∗

X4 800 0.25 Gumbel

X5 1050 0.24 lognormal

∗For beta distribution, both parameters are 5.

6.3. Example 3: a transmission tower315

In this example, the performance of the proposed approaches in robust design optimization316

of a transmission tower [48, 49] has been illustrated. Fig. 4 shows a schematic diagram of317

the transmission tower. The structure is modelled using truss elements. It is subjected to318

lateral and vertical loads. The location of the loads are shown in Fig. 4. The first four319

nodal forces, namely P1, P2, P3 and P4 are having magnitude −1.0 × 104. The other two320

loads are considered to be random. Apart from the two loads, the material and geometric321

properties are also considered random. As a consequence, the system is having fourteen322

random variables. Group membership of the twenty five members and the parameters of the323
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Table 3: Robust design of Example 2

Methods d1
∗ d2

∗ cO (d∗) N#
s

TPQ1 11.567 0.3767 1.239 7722 (594+2×3564)

TS2 10.957 0.3770 1.174 648 (108+2×270)

Kriging 12.783 0.3770 1.37 1280 (256+2×512)

DEA-PCFE
LF 11.087 0.3810 1.189 320 (64+2×128)

HF 10.958 0.3770 1.174 640 (128+256+256)

1Tensor product quadrature, 2Taylor’s series

#The three numbers in bracket indicates simulations required for

approximating y0, y1 and y2 respectively.

random variables are shown in Table 4 and Table 5, respectively. In accordance with [48],324

all the random variables are assumed to be normally distributed. The design variables are325

assumed to be bounded in [0.05, 10].

(a) (b)

Figure 4: Schematic diagram of transmission tower : (a) dimensional details along with node and element

numbers, (b) loading details

326
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Table 4: Group members for the transmission tower

Group number Members

I 1

II 2,3,4,5

III 6,7,8,9

IV 10,11,12,13

V 14,15,16,17,18,19,20,21

VI 22,23,24,25

Table 5: Random variables for the transmission tower

Sl Variables Type Mean SD COV

1 - 5 EI − EV Normal 1.0× 107 2.0× 105

6 EVI Normal 1.0× 107 1.5× 106

7 P5 Normal 500 50

8 P6 Normal 500 50

9 - 14 AI − AVI Normal 0.05

The optimization problem reads327

min
d⊂D∈R6

c0 (d) := β
E (y0)

E (y0)
∗ + (1− β)

√
var (y0)

σ∗y0

s.t. ci (d) := E (|si|) + 3σsi 6 smax, i = 1, 2, . . . , 25

c26 (d) := E (w) 6 750

0.05 6 d = [AI, AII, . . . , AVI] 6 10

(27)

where y0 denotes the structural compliance
(
PTU

)
and si denotes the stress generated in the328

ith member. β and w, respectively, denote weighing factor for RDO and the structural weight.329

P and U in the expression of elastic compliance denote the force vector and displacement330

vector respectively. smax denotes the maximum allowable stress in the truss members and σ331

denotes the standard deviation. In accordance with the actual problem definition provided332

by [48], smax = 5000 has been considered.333

The proposed approaches have been utilized to solve the problem. The cross-over parameter334
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and the mutation parameter F are considered to be 0.5 and 0.8, respectively. Benchmark335

solution for this problem has been generated by coupling MCS with DEA. Table 6 depicts336

the results obtained using various methods. Case studies by considering different values of337

β has also been reported. For all the cases, the benchmark solution obtained using DEA-338

MCS and the proposed HF DEA-PCFE are in close proximity. On the other hand, results339

obtained using LF DEA-PCFE deteriorate from the benchmark solution. This is because a340

single PCFE model fails to capture the second moment properties of the response. Kriging341

is also found to yield erroneous results.342

Results reported in [48] are significantly different from those obtained in this study. This343

is because, the optimum design variables reported in [48] violates the stress constraint in344

member 13. Similar observation has also been stated in [50].345

As for the computational cost associated, LF DEA-PCFE is the most efficient followed by346

HF DEA-PCFE and Kriging. This is because while LF DEA-PCFE operates based on a347

single PCFE model, HF DEA-PCFE builds several local PCFE models.348

Next, in order to allow the solutions obtained by Doltsinis and kang [48] to be valid,349

smax = 12, 5000 has been considered [50]. The solutions obtained with this setup are re-350

ported in Table 7. It is observed that the proposed HF DEA-PCFE yields excellent results351

outperforming Kriging based RDO and method proposed in [48]. In fact, LF DEA-PCFE352

also yields satisfactory results and that to from significantly reduced computational cost.353

7. Application: robust hydroelectric flow optimization354

Over the last decade or so, several hydropower generation models have been investigated by355

scientists. While some of the models were analytical, others were constructed from robust356

system models showing the dynamic characteristics. A detailed account of various models of357

hydro plant and techniques used to control generation of power has been shown in [51, 52].358

7.1. Model definition359

Considering ft (i) and Si (i) to be the flow through turbine and storage level of the reservoir360

at the ith hour, the electricity produced at the ith hour is computed as:361

E (i) = ft (i− 1) [0.5k1 {S (i) + S (i− 1)}+ k2] (28)
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Table 6: Robust designs of transmission tower. smax = 5000 has been considered

β Methods AI AII AIII AIV AV AVI E (y0) σy0 N∗s

0

DEA-MCS 0.05 0.05 4.48 2.16 0.79 7.04 5547.7 347.4 1.64× 106

Kriging# 2.24 2.11 2.86 1.98 1.57 4 6249.9 467.94 2500

Past work# [48] 0.147 0.672 3.465 0.566 0.822 8.048 6196 295 -

DEA-

PCFE

LF 0.05 0.05 4.16 3.96 0.95 5.45 5914.8 422.5 1024

HF 0.05 0.05 4.49 2.16 0.79 7.03 5550.7 347.73 2432

0.25

DEA-MCS 0.05 0.05 4.48 2.15 0.79 7.04 5547.7 347.4 1.64× 106

Kriging# 0.28 0.75 3.48 1.23 1.26 6.39 5685.4 339.86 2500

Past work# [48] 0.114 0.558 3.685 0.575 0.925 7.704 6036 297 -

DEA-

PCFE

LF 0.05 0.05 4.16 3.96 0.95 5.45 5914.8 422.5 1024

HF 0.05 0.05 4.48 2.16 0.79 7.04 5550.7 347.73 2432

0.5

DEA-MCS 0.05 0.05 4.48 2.10 0.89 6.81 5499.2 349.7 1.64× 106

Kriging# 0.05 0.05 4.43 1.53 1.23 6.23 5476.8 347.01 2500

Past work# [48] 0.05 0.207 4.28 0.628 1.15 6.94 5775 304 -

DEA-

PCFE

LF 0.05 0.05 5.16 2.43 1.15 5.15 5504 411.21 1024

HF 0.05 0.05 4.48 2.09 0.90 6.78 5496.30 350.33 2168

0.75

DEA-MCS 0.05 0.05 4.91 2.02 0.98 6.26 5386.30 363.27 1.64× 106

Kriging# 0.05 0.05 5.05 1.58 1.13 5.98 5362.6 360.3 2500

Past work# [48] 0.05 0.075 4.88 0.95 1.18 6.33 5478 330 -

DEA-

PCFE

LF 0.05 0.05 4.76 2.47 1.13 5.56 5502.3 391.85 1024

HF 0.05 0.05 4.91 2.01 0.99 6.24 5286.3 363.76 1986

1.0

DEA-MCS 0.05 0.05 5.62 1.62 1.05 5.71 5333.30 387.46 1.64× 106

Kriging# 0.05 0.05 5.62 1.62 1.05 5.71 5327.9 386.27 2500

Past work# [48] 0.05 0.05 5.74 1.718 1.054 5.574 5328 384 -

DEA-

PCFE

LF 0.05 0.05 6.14 2.38 1.02 4.76 5526.5 444.59 1024

HF 0.05 0.05 5.6 1.96 1.03 5.61 5333.3 387.46 1668

∗No. of actual simulations

#Constraints not satisfied
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Table 7: Robust designs of transmission tower. smax = 12, 500 has been considered

β Methods AI AII AIII AIV AV AVI E (y0) σy0 N∗s

0

DEA-MCS 0.36 0.97 2.50 0.40 1.07 7.91 6498 291.69 1.64× 106

Kriging# 0.27 1.12 2.87 0.36 1.09 8.14 6056 275.39 2500

Past work [48] 0.147 0.672 3.465 0.566 0.822 8.048 6196 295 -

DEA-

PCFE

LF 0.29 0.86 2.75 0.41 1.15 7.55 6351 293.65 1024

HF 0.31 0.85 2.63 0.42 1.10 7.83 6452 291 2218

0.25

DEA-MCS 0.20 0.58 3.41 0.47 1.20 7.19 6045 295.15 1.64× 106

Kriging 0.14 0.42 3.58 0.49 1.24 7.10 6012 296.08 2500

Past work [48] 0.114 0.558 3.685 0.575 0.925 7.704 6036 297 -

DEA-

PCFE

LF 0.18 0.55 3.35 0.52 1.22 7.1 6064 300.44 1024

HF 0.19 0.53 3.49 0.48 1.22 7.20 6001 294.21 2072

0.5

DEA-MCS 0.05 0.10 4.44 0.55 1.27 6.62 5769 303.88 1.64× 106

Kriging 0.05 0.06 4.48 0.55 1.29 6.57 5769 304.35 2500

Past work [48] 0.05 0.207 4.28 0.628 1.15 6.94 5775 304 -

DEA-

PCFE

LF 0.05 0.1 4.46 0.57 1.25 6.48 5804 310.41 1024

HF 0.05 0.12 4.46 0.55 1.28 6.59 5746 304 1854

0.75

DEA-MCS 0.05 0.05 5.02 1.11 1.08 6.41 5435 337.87 1.64× 106

Kriging# 0.05 0.05 5.03 1.13 1.14 6.33 5389 337 2500

Past work [48] 0.05 0.075 4.88 0.95 1.18 6.33 5478 330 -

DEA-

PCFE

LF 0.05 0.05 4.97 1.12 0.99 6.28 5591 349.28 1024

HF 0.05 0.05 5.02 1.10 1.09 6.39 5438 337.28 1648

1.0

DEA-MCS 0.05 0.05 5.67 1.66 1.05 5.67 5324 379.51 1.64× 106

Kriging# 0.05 0.05 5.70 1.64 1.10 5.72 5252 373.01 2500

Past work [48] 0.05 0.05 5.74 1.718 1.054 5.574 5328 384 -

DEA-

PCFE

LF 0.05 0.05 5.73 1.72 1.04 5.58 5338 385.53 1024

HF 0.05 0.05 5.67 1.66 1.04 5.67 5327 379.79 1442

∗No. of actual simulations

#Constraints not satisfied
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where k1 = 0.00003 is termed as K-factor coefficient and k2 = 9 is termed as K-factor offset362

[53]. The hourly storage level S (i) is again computed as:363

S (i) = S (i− 1) + ∆t [fi (i− 1)− fs (i− 1)− ft (i− 1)] (29)

where fi (•) and fs (•), respectively, denote the in-flow and flow through spillway. Once364

the hourly electricity generated is computed using Eq. (28) and Eq. (29), hourly revenue365

generated from the dam is computed as:366

Ri = E (i)P (i) (30)

where Ri is the hourly revenue generated and P (i) denotes the hourly electricity price. Now367

if R is the total revenue generated by the dam, then368

R =
∑

i

Ri (31)

From Eq. (28) - Eq. (31), it is clear that electricity generation using a hydroelectric dam369

is primarily governed by the hourly water supplied through the turbine and the water level370

in the reservoir. It is quite obvious that due to environmental variations, large amount of371

uncertainties are associated with a hydroelectric dam. Moreover, hourly cost of electricity372

(Pi) is also influenced by various factors. Hence, it is of utter importance to consider the373

presence of uncertainties while optimizing (maximising) the overall revenue (R) of a hy-374

droelectric dam. Fig. 5 shows a schematic diagram of hydroelectric dam considered in the375

present study. Conventional optimization of the above mentioned hydroelectric dam can be376

found in [53].377

Various uncertainties are associated with any hydroelectric dam. For instance, the flow378

through spillway (fs) and turbine (ft) are generally controlled by some machine operated379

gates. However, it is not possible to exactly control the flow with such machineries and380

this results in some uncertainties. On the other hand, the in-flow (fi) to the reservoir is381

uncontrolled and hence large sources of uncertainties is associated with this. Moreover,382

market price of electricity depends on various factors and is highly uncertain. It is to be383

noted that fs, ft, fi and market price Pi are generally monitored on an hourly basis. In the384

present study, the simulation is run for 12 hours and hence, the system under consideration385

involves 48 random variables. A detailed account of the involved uncertain variables have386
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Figure 5: Schematic diagram of hydroelectric dam

been provided in Table 8.

Table 8: Statistical parameters of the uncertain inputs

Sl. No. Variable Distribution Mean COV/SD

1 - 12 hourly in-flow Normal 1070 CFS 0.05

13 - 24 hourly electricity price Normal 45 CFS 0.3

25 - 36 hourly flow through turbine Lognormal - 100∗ CFS

37 - 48 hourly flow through spillway Lognormal - 0.02

∗ indicates standard deviation

CFS = cubic feet per second

387

7.2. Problem definition388

The electricity produced in a hydroelectric dam depends on two primary parameters, namely389

amount of water flowing through the turbine and the reservoir storage level. The storage of390

reservoir again depends on the three factors: (a) in-flow, (b) flow through turbine and (c) flow391

through spillway. As the flow through turbine increases, the water in the reservoir decreases.392

Therefore, it is necessary to compute the optimum flow through the turbine and spillway that393

maximises the electricity production. Moreover, certain constraints needs to be considered394
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while solving the optimization problem. First, both reservoir level and downstream flow395

rates should be within some specified limit. Secondly, maximum flow through the turbine396

should not exceed the turbine capacity. Finally, the mean reservoir level at the end of the397

simulation should be same as that at the beginning. This ensures that the reservoir is not398

emptied at the end of the optimization cycle. The RDO problem reads:399

arg min −βµR + (1− β)σR

s.t. µft(i) − 3σft(i) > 0, ∀i

µft(i) + 3σft(i) 6 25000, ∀i

µft(i) − 3σft(i) + µfs(i) − 3σfs(i) > 500 ∀i
∣∣(µft(i) + 3σft(i) + µfs(i) + 3σfs(i) − µft(i−1) + 3σft(i−1) − µfs(i−1) + 3σfs(i−1)

)∣∣ 6 500, ∀i

µS(i) − 3σS(i) > 50000, ∀i

µS(i) + 3σS(i) 6 100000, ∀i

µS(end) = 90000

(32)

where µ (•) and σ (•), respectively, denote the mean and standard deviation. β in Eq. (32)400

in the weight factor. The objective of this work is to the determine ft and fs the minimizes401

the objective function defined in Eq. (32).402

7.3. Results and discussion403

The proposed approaches have been utilized to solve the optimization problem given in404

Eq. (32). Since generating benchmark solution using the MCS based DEA requires consider-405

able time (approximately 35 days on a system with Xeon processor with 24 cores and 48 Gb406

ram), the proposed approach has been validated only at β = 0.5. Table 9 shows the results407

obtained using the proposed approaches. While the high fidelity PCFE based DEA overpre-408

dicts the mean revenue at β = 0.5 by 0.01%, low fidelity PCFE based DEA underpredicts409

the same by 2.07%. As for the standard deviation of revenue at β = 0.5 , high fidelity PCFE410

based DEA and low fidelity PCFE based DEA underpredicts the result by 3.2% and 6.01%411

respectively. As for the computational cost, while high fidelity PCFE based DEA requires412

1500 actual simulations, the low fidelity PCFE based DEA requires 1200 actual simulations.413

For generating the benchmark solution, 3 × 106 (the solution converges at 200 (objective414
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function call)×15000 (number of function call for MCS)) number of actual simulations are415

required.416

One interesting aspect observed in Table 9 is that the flow through spillways are almost zero.417

This indicates that the problem in hand can be simplified by setting flow through spillway418

to be zero. That way, the reduced problem will have 12 design variables and 36 random419

variables. However, this observation may not be true for all hydroelectric dam models and420

hence, one must be careful before considering such simplifications.421

In order to have a better outlook in the problem, the hydroelectric dam optimization has422

been carried out corresponding to various values of β. For all the cases, high fidelity PCFE423

based DEA has been employed due to its superior performance. Fig. 6 shows the variation424

of mean and standard deviation of revenue. As expected, increase in β results in increase425

of both mean and standard deviation of revenue. This is logical because of the presence426

of negative sign (indicating maximization of the mean revenue) in the objective function427

(Eq. (32)). It is further observed that increase in β beyond 0.5 has no effect on the results428

(optimum values corresponding to β = 0.5 and β = 0.6 are identical). Hence, results beyond429

β = 0.6 have not been computed.

(a) mean revenue (b) standard deviation of revenue

Figure 6: Variation of optimum mean and standard deviation of revenue generated with β.

430
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Table 9: Validation of the proposed approaches for hydroelectric dam optimization

Variable DEA-MCS LF DEA-PCFE HF DEA-PCFE

ft (1) 800 1001.685 800.47

ft (2) 800 802.38 806.1148

ft (3) 800 800.02 800.139

ft (4) 800 800.09 817.10

ft (5) 800 800.85 801.39

ft (6) 800 800.04 800.02

ft (7) 840.69 999.39 878.535

ft (8) 1040.69 967.97 1028.078

ft (9) 1240.69 1167.952 1228.078

ft (10) 1440.69 1367.93 1428.078

ft (11) 1640.69 1567.92 1628.078

ft (12) 1840.69 1767.92 1828.077

fs (1) 2.53× 10−10 1.40× 10−14 9.88× 10−8

fs (2) 1.36× 10−10 1.51× 10−7 8.43× 10−8

fs (3) 7.89× 10−10 5.66× 10−12 2.87× 10−7

fs (4) 4.75× 10−12 6.36× 10−12 8.88× 10−20

fs (5) 2.32× 10−10 3.53× 10−9 2.61× 10−7

fs (6) 1.62× 10−11 3.47× 10−9 9.75× 10−14

fs (7) 2.53× 10−14 1.41× 10−16 1.44× 10−20

fs (8) 1.53× 10−11 2.44× 10−9 1.92× 10−19

fs (9) 1.11× 10−11 4.50× 10−9 8.86× 10−19

fs (10) 1.66× 10−10 1.05× 10−7 1.93× 10−8

fs (11) 3.07× 10−10 2.43× 10−8 2.44× 10−9

fs (12) 3.55× 10−10 2.53× 10−10 1.36× 10−8

µR 510.032 499.43 510.088

σR 61.48 57.78 59.51
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8. Conclusion431

In this work, two novel approaches for robust design optimization (RDO) have been pre-432

sented. Both the methods presented utilize polynomial correlated function expansion (PCFE)433

to estimate the second moment properties of response and differential evolution algorithm434

(DEA) for solving the optimization problem. The first approach, referred to here as low-435

fidelity PCFE based DEA, is highly efficient and can be utilized to obtain an initial estimate436

for the RDO problems. On contrary, the second approach, referred to here as, high-fidelity437

PCFE based DEA, provides an accurate estimate for the RDO problems.438

The proposed approaches have been utilized for solving three benchmark RDO problems.439

Results obtained have been compared with other popular RDO techniques. It is observed440

that for both the problems, the proposed approaches outperforms the popular techniques,441

both in terms of accuracy and efficiency. Finally, the proposed approach has been utilized442

for RDO of a hydroelectric dam, demonstrating its capability in solving large scale problems.443
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Appendix A. Formulation of weight matrix447

The weight matrix (W) is formulated based on the hierarchical orthogonality of the com-448

ponent functions which requires the higher order component function to be orthogonal with449

all the lower order component function. Thus, a first-order component function should be450

orthogonal to the zeroth-order component function (g0). The orthogonality between first-451

and zeroth-order component function requires452

∫
g0

(∑

k

α
(i)i
k ψi

k (xi)

)
$idxi = 0 (A.1)

where $i represents the PDF of xi. Note that g0 is the mean response and may not be zero.453

Thus,454 ∫ (∑

k

α
(i)i
k ψi

k (xi)

)
$idxi = 0 (A.2)
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Eq. (A.2) can be represented as455

1

N

N∑

n=1

∑

k

α
(i)i
k ψi

k (xni ) = 0 (A.3)

Rewriting Eq. (A.3) in vectorial form456

G1(xi)
Tαi

1 = 0, ∀i (A.4)

Therefore, the objective function for first-order PCFE is457

Oi
1 =

1

2

(
α1

i
)T

Wi
1

(
α1

i
)

(A.5)

where458

Wi
1 = [G1 (xi)] [G1 (xi)]

T (A.6)

Similarly, the second-order component function needs to be orthogonal to both zeroth- and459

first-order component function. The same can be achieved by setting the second-order com-460

ponent function orthogonal to all the basis contained in lower order component function.461

The orthogonality of the second-order component function and g0 is represented as462

∫ (∑

k

α
(ij)i
k ψi

k (xi) +
∑

k

α
(ij)j
k ψj

k (xj) +
∑

l

∑

m

α
(ij)ij
lm ψi

l (xi)ψ
j
m (xj)

)
$ijdxidxj = 0

(A.7)

where $ij is the joint PDF of xi and xj. Rewriting Eq. (A.7) as463

1

N

N∑

p=1

(∑

k

α
(ij)i
k ψi

k (xpi ) +
∑

k

α
(ij)j
k ψj

k

(
xpj
)

+
∑

l

∑

m

α
(ij)ij
lm ψi

l (xpi )ψ
j
m

(
xpj
)
)

= 0 (A.8)

Writing Eq. (A.8) in vectorial notation464

[
Gij

0

]T [
αij

2

]
= 0 (A.9)

Let us assume ψi
r (xi) to be the basis of first-order component function. Thus, the orthogo-465

nality between second-order component function and ψi
r (xi) is given as466

∫
ψi
r (xi)

(∑

k

α
(ij)i
k ψi

k (xi) +
∑

k

α
(ij)j
k ψj

k (xj) +
∑

l

∑

m

α
(ij)ij
lm ψi

l (xi)ψ
j
m (xj)

)
$ijdxidxj = 0

(A.10)
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Again expressing Eq. (A.10) as a summation series467

1

N

N∑

p=1

(∑

k

α
(ij)i
k ψi

r (xpi )ψ
i
k (xpi ) +

∑

k

α
(ij)j
k ψi

r (xpi )ψ
j
k

(
xpj
)
)

+
1

N

N∑

p=1

∑

l

∑

m

α
(ij)ij
lm ψi

r (xpi )ψ
i
l (xpi )ψ

j
m

(
xpj
)

= 0

(A.11)

Writing in vectorial notation468

[
Gij

ir

]T [
αij

2

]
= 0 (A.12)

Performing similar operation on the basis of component function and second-order compo-469

nent function470

[
Gij

jr

]T [
αij

2

]
= 0 (A.13)

Combining Eq. (A.9), Eq. (A.12) and Eq. (A.13), the objective function for second-order471

component function is given as472

Oij
2 =

1

2

[
αij

2

]T [
Gij

2

] [
Gij

2

]T [
αij

2

]

=
1

2

[
αij

2

]T [
Wij

2

] [
αij

2

] (A.14)

The combined objective function for second-order PCFE is given as473

O =
∑

i

Oi
1 +

∑

16i<j6N

Oij
2

=
1

2
αTWα

(A.15)

where474

W =




W1
1 0 · · · 0 0 · · · 0

0 W2
1 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · WN
1 0 · · · 0

0 0 · · · 0 W12
2 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · 0 0 · · · W
(N−1)N
2




(A.16)
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