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Abstract. We introduce an abstract analogue-digital model of computation that couples
Turing machines to oracles that are physical processes. Since any oracle has the potential to
boost the computational power of a Turing machine, the effect on the power of the Turing
machine of adding a physical process raises interesting questions. Do physical processes add
significantly to the power of Turing machines; can they break the Turing Barrier? Does the
power of the Turing machine vary with different physical processes? Specifically, here, we
take a physical oracle to be a physical experiment, controlled by the Turing machine, that
measures some physical quantity. There are three protocols of communication between the
Turing machine and the oracle that simulate the types of error propagation common to
analogue-digital devices, namely: infinite precision, unbounded precision, and fixed precision.
These three types of precision introduce three variants of the physical oracle model. On fixing
one archetypal experiment, we show to classify the computational power of the three models
by establishing the lower and upper bounds. Using new techniques and ideas about timing,
we give a complete classification.

1 Introduction

Loosely speaking, by an analogue-digital system we mean a system that makes physical measure-
ments in the course of a digital computation; equivalently, we the term hybrid system may be used.
The digital computation can be of any complexity, though some embedded systems can be mod-
elled by hybrid systems based upon finite automata. Actually, many processes perform an analogue
measurement that is used in a digital computation of some kind. For example, models of analogue
computation also involve digital elements: this is found in the construction of the analogue recur-
rent neural net model (ARNN) (see [1])#; in the optical computer model (see [2]); and in the mirror
system (see [3]).

* Corresponding author

4 In the ARNN case, a subsystem of about eleven neurones (variables) performs a measurement of a real-
valued weight of the network up to some precision and resumes to a computation with advice simulated
by a system of a thousand rational neurones interconnected with integer and a very few rational weights.
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Computational dynamical systems that are able to read approximations to real numbers also
behave as analogue-digital systems: they perform digital computations, occasionally accessing some
external values. At the moment of access, the “computer” executes some task on the analogue
device, such as a test for a given value of a quantity. In the perfect platonic world, this test cab be
performed with infinite or arbitrary precision, in the sense that the machine can obtain as many
bits of the real number as needed; or, less ideally, with a fixed finite precision provided by the
equipment in use.

To analyse the computational capabilities of analogue-digital systems, we introduce an abstract
analogue-digital model of computation that couples Turing machines to oracles that are physical
processes. Thus, we consider Turing machines with the ability of making measurements. The Turing
machines considered are deterministic, but in fact they can use the oracle both to get advice and
to simulate the toss of a coin.

Interacting with physical processes takes time. There are cost functions of the form 7' : N — N
that gives the number of time steps to perform the measurements that the Turing machine allows.
In weighing using a balance scale — as, indeed, in most measurements — the pointer moves with an
acceleration that depends on the difference of masses placed in the pans. It does so in a way such
that the time needed to detect a mass difference increases exponentially with the precision of the
measurement, no matter how small that difference can be made. This means that the measurement
has an exponential cost that should be considered in the overall complexity of the analogue-digital
computation.’

A possible objection to such a model is that it is not limited in precision; for even if it is
sufficiently precise, it sooner or later finds the obstacle of the atomic structure of matter. However,
measurement has its own theoretic domain and can only be conceived as a limiting procedure; see
[8,9,5,4,6]. It means that measurement is like complexity and can only be conceived asymptotically.
Once we limit, in absolute terms, space or time resources of a Turing machine, its complexity
vanishes, since all (now finite) sets can be decided in linear time and constant space®

A measurement can be fundamental or derived. Measuring distance is fundamental, but measur-
ing velocity is derived. Commonly, according to Hempel [8], fundamental measurement is based on
a partial order of comparisons that, taken to the limit, generates a real number. Comparisons in the
sense of Hempel are based on events in the experimental setup. The most common measurement
of some concept y — position, mass, electric resistance, etc. — consists of performing the experiment
with a test value z, for which we could test one or both of the comparisons “z < y” and “y < z7;
experiments allowing such comparisons are called two-sided.

Experiments in physics provide intuitions about abstract measurements, namely (a) that they
result from comparisons, (b) that they have a cost, (c¢) that they come with errors, and (d) that
they are stochastic. Coupling a Turing machine with a physical experiment, we construct a specific
type of analogue-digital machine.

Since any oracle has the potential to boost the computational power of a Turing machine, the
effect on the power of the Turing machine of adding a physical process is an interesting area to
investigate. Do experiments add significantly to power to the Turing machine, and break the Turing
Barrier? Does the power of the Turing machine vary with different experiments?

5 In contrast, in the ARNN model, the time of a measurement is linear due to the fact that the activation
function of each neuron is piecewise linear instead of the common analytic sigmoid.

5 In the same way, we could also say that tapes of Turing machines can have as many cells as the number
of particles in the universe, but in such a case no interesting theory of computability can be developed.
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We classify computational power. In Section 2, from a number of physical experiments, the so-
called smooth scatter machine, first seen in [13], is selected as representative of the analogue-digital
of machines of interest. In Section 3, we summarise the analogue-digital model. Section 4, we begin
by summarising the theory of non-uniform complexity classes, which allows us to formalise a real
number value for a parameter, by encoding an advice function of some class F*, and reading it into
the memory of the machine. The section continues with lower bound (starting subsection 4.3) and
upper bounds (starting subsection 4.7).

The role of precision of data has been explicated in our earlier papers, but the role of precision in
time has been less clear. The notion is subtle: there is time in the physical theory, time that manages
the oracle queries, and the runtime of the computation. In addition to explaining the model and its
properties, we develop some new techniques and results to explore the nature of timing. In Section
5, we use a technique, based on knowing time exactly, to lower the upper bounds.

All the concepts will be defined in due course. Among the results proved in this paper are:

Theorem 1. The classification of the computational power of the analogue-digital model in the
absense and presence of errors is as follows:

1. If B is decidable by a smooth scatter machine with infinite precision and exponential protocol,
clocked in polynomial time, then B € P/ log®*.

2. B is decidable by a smooth scatter machine with infinite precision and exponential protocol
T(k) € 2(2%), clocked in polynomial time, if, and only if, B € P/ logx.

3. If B is decidable by a smooth scatter machine with unbounded or fized precision and exponential
protocol, clocked in polynomial time, then B € BPP//log”«.

4. B is decidable by a smooth scatter machine with unbounded or fixed precision and exponential
protocol, clocked in polynomial time, and having access to exact physical time if, and only if,
B € BPP//logx.

Moreover, we will argue that such bounds are, to a large extent, really independent of the
analogue system considered.

This paper offers an overview of the development of the analogue-digital model with technical
details and new results. Here we have the first complete analysis of the analog-digital machine having
access to two-sided measurements, including the full proofs of the lower and upper computational
bounds for the polynomial time case.

2 Physical oracles

The substrate of a real computation is a physical process executed by a machine; the input data
is in many cases obtained by a physical measurement process. During a computation, the machine
may have access to external quantities. For example,an analogue-digital device controlling the tem-
perature in a building “solves” differential equations while “calling” thermometers to check the
values of the temperature through time.

This idea that both computation and data are in some way physical processes motivates the
theoretical quest for the limits of computational power of a physical process. We propose the
coupling of a Turing machine with a physical oracle. The idea is to replace the standard oracle,
which is just a set, by a physical experiment that allows the machine to perform a measurement.

A Turing machine coupled with such an oracle becomes a hybrid computation model, having
an analogue component — the experiment — combined with a digital component — the Turing
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machine. As the standard Turing machine with oracle, the Turing machine with physical oracle will
use the information given by the physical oracle in its computations.

Fig. 1. Threshold Can only measure a < x. Can give a sequence of tests approximating x from below.

2.1 Types of physical oracles

The physical oracles that we will be considering are physical processes that enable the Turing
machine to measure quantities. As far as we have investigated (see [7]), measurements can be
classified in one of the three types: one-sided — also called threshold measurement — two-sided
measurement and vanishing measurement.

\ z
Fig. 2. Two-sided Measure both y < z and z < y. A bisection method can be used to find y. Measure
both y < z and z < y. Assume continuity.

z

Fig. 3. Vanishing Can only measure (y < z or z < y). A modified bisection method will work. Assume
monotonicity on each side of y.
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An one-sided experiment is an experiment that approximates the unknown value y just from
one side, i.e., it approximates an unknown value y either with values z from above or with values
z from below, checking either if y < x or if < y, but not both (see Figure 1).

A two-sided experiment is an experiment that approximates the unknown value y from two
sides, i.e., it approximates the unknown value y with values z from above and with values z from
below, checking if y < z and z < y (see Figure 2).

A vanishing experiment is an experiment that approximates the unknown value y from the
physical time taken by the experiment (see Figure 3).

Note that this type of experimental classification is neither in Hempel’s original work in [§],
nor in the developed theory synthesised in [9], since, in a sense, these authors only consider the
two-sided experiments.

In this paper we deal only with the two-sided measurement. Threshold experiments were con-
sidered in [10] and vanishing experiments in [11].

We now illustrate this category with a gallery of two-sided experiments of measurement, em-
phasising the experimental time.

Balance experiment The balance experiment is intended to measure the (gravitational) mass of
some physical body. To perform the experiment we put the unknown mass m 4 of body A in one of
the pans and we approximate its value by placing another body, B, in the other pan. Body B can
have a known mass, mp, bigger or smaller than m 4. After placing the body B, the balance can
display one of the behaviors explained in the right hand side of Figure 4.

B Input: The masses ma (unknown) and mp (test mass)

if ma > mp then the pan containing A goes up;
if ma < mp then the pan containing B goes down
else both pans will stand side by side;

Fig. 4. The balance experiment.

Accordingly to the behavior of the balance, we can change the mass of B in order to approximate
my, using linear search. Repeating the experiment a number of times and considering bodies with
masses each time closer to m 4 we get the desired approximation of the unknown value. The time
needed to detect a move in the pointer of the balance scale is exponential in the number of bits of
precision of the measurement.

Elastic collisions The collision experiment can be used to measure the (inertial) mass of a body.
This experiment was already studied as a physical oracle in [12]. To perform the experiment, we
project a test body B with known mass mp and velocity vp along a line towards the body A at
rest with unknown mass m 4. The mass of B, mp, can be bigger or smaller than m4. After the
collision the bodies acquire new speeds, accordingly to their relative masses. After the collision we
can have one of the behaviors explained in the right hand side of of Figure 5. According to the
behavior of the particles, we can change the mass of B in order to approximate m4, using linear
search. Repeating the experiment a number of times and considering masses each time closer to
ma, we get an approximation of the unknown value. The time needed to detect a possible motion
of body A is exponential in the number of bits of precision of the measurement.



6 Téania Ambaram, Edwin Beggs, José Félix Costa, Diogo Pogas, John V Tucker

BEFORE THE COLLISION

UB
B— @
Input: The masses m4 (unknown) and mp (test mass)

if ma > mp then the test body B moves backwards;
if ma < mp then the test body B moves forwards;
else the test body B comes to rest and A is projected

AFTER THE COLLISION forward with speed vp;
5 @

Fig. 5. The collision experiment.

The Foucault’s pendulum The construction of this gedankenexperiment is based on the principles
of classical mechanics (see Figure 6). The motion of the pendulum exhibits two coupled harmonic

components:
l
T=2my4/—,
g

corresponding to the classical period of the pendulum of length £ for small amplitude oscillations.

1. A periodic motion of period

2. Another periodic motion of period
24 hours
T=—
| sin A
corresponding to a complete rotation of the plane of oscillation at latitude A. Moreover, the
rotation of the plane of oscillation of the pendulum is clockwise to the north of equator and
counterclockwise to the south of equator.

This two-sided experiment can be designed to locate the equator. The time needed for the
pendulum to cross the angular distance of 1° of arc is given by

1

th=——— s,
A7 15[ sin Al s

that, for small values of the angle ), is of the order of

; 1
= — 8§ 3

AT 1

going to infinity as the angle A approaches 0. In the case of a dyadic value A, this time is exponential
in the size of A\. The time needed to detect the equator is exponential in the number of bits of
precision.
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90°

plane of oscillation
w rads™!

Input: The latitudes A\g = 0° (equator) and A (test)
if A > 0 then plane of oscillation crosses the flag P ;
if A < 0 then plane of oscillation crosses the flag P~

pendulum else the plane of oscillation does not rotate ;

-1
w rads Pt counterclockwise flag

180°

0° start here

P~ clockwise flag

270°

Fig. 6. Foucault’s machine experiment.

2.2 The smooth scatter experiment

We now introduce the measurement experiment that we take as a generic example throughout this
paper.

The smooth scatter experiment (SmSE for short), considered in [13], is a variation of the sharp
scatter experiment introduced in [14,15]. As the sharp scatter experiment, it measures the position
of a vertex but it has a slightly different experimental apparatus. In the sharp case we considered
a vertex in a sharp wedge and in the smooth case we are considering a vertex in a rounded wedge
(see Figure T7), where the shape of the wedge is given by a smooth symmetric function.

RIGHT COLLECTING BOX

Input: The position z
if z > y then the particle is detected in the right box;
if z < y then the particle is detected in the left box;
cannon 1 else the particle is not detected in any of box
v m/s
tm Iy sample trajectory z
0

L limit of traverse of cannon

h}nzt _OJ; tv}lver&se cannon aims at dyadic z €]0, 1]

of point of wedge

LEFT COLLECTING BOX

Lm

Fig. 7. The smooth scatter experiment.
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In order to measure the vertex position y, the smooth scatter experiment sets a cannon at some
position z, shoots a particle from the cannon, and then waits some time until the particle is captured
in a detection box. We consider that y can take any value in |0, 1[. The fire and detection phases
define one run of the experiment. After the shooting, we can have one of the behaviours explained
in the algorithm of Figure 7 (right). By analyzing in which box the particle is detected, it is possible
to conclude the relative position of y and z, i.e., whether the vertex is in the right or left side of the
cannon. Then, repeating this procedure, by resetting the cannon position and executing one more
run of the experiment, we can better approximate the vertex position.

The physical theory. The SmSE is governed by a fragment of Newtonian mechanics, consisting
in the following laws and assumptions:

1. Particles obey Newton’s laws of motion in the two dimensional plane;

. Collisions between barriers and particles are perfectly elastic, that is, kinetic energy is preserved;
. Barriers are rigid and do not deform upon impact;

. Cannon projects a particle with a given velocity and direction;

. Detectors are capable of telling if a particle has crossed them; and

. A clock measures the time.

S UL W N

The experimental clock that measures the physical time 7 : [0,1] — R is very important in
analysing the cost of accessing the oracle. When the Turing machine accesses the oracle it must
wait until the end of the experiment in order to continue with its computation, so this means that
accessing the oracle no longer takes one computation step but “t steps”, where ¢ is a function of
the precision of the query.

The time The access to the SmSFE will cost more than one computation step as the physical
experiment takes some intrinsic time ¢ to be performed, designated as physical time. As explained
in [13,16], the time required to run the SmSE is given by the following proposition:

Proposition 1. Consider that g(z) is the function describing the shape of the wedge of a SmSE.
Suppose that g(x) is n times continuously differentiable near x = 0, all its derivatives up to (n—1)-
th vanish at x = 0, and the n-th derivative is nonzero. Then, when the SmSE, with vertex position
y, fires the cannon at position z, the time needed to detect the particle in one of the boxes is t(z),
where:

A <t(z) < B

Ty —2nt

(1)

ly — 21
for some A, B >0 and for |y — z| sufficiently small.

Looking at Equation 1, we conclude that we cannot bound the physical time, as it goes to
infinity when 2z and y become close. Without loss of generality, we will assume from now on that
n = 2, that is, g(z) € C?, since the results are essentially the same for values of n > 2.

3 The smooth scatter machine

We now fix the smooth scatter experiment as paradigmatic of two-sided measurement experiments
and will proceed with the developing of our theory of analogue-digital computation.
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A Turing machine coupled with the smooth scatter experiment as oracle is called a smooth
scatter machine (SmSM ). This machine was introduced in [13]. The SmSM communicates with the
SmSFE using the query tape. During a computation, the SmSM performs its standard transitions
and, whenever necessary, it consults the oracle. The oracle is an experiment that allows the Turing
machine to measure an approximation to the vertex position of the scatter and use this value in the
computation. In order to initialize the experiment, the Turing machine writes in the query tape the
parameters for the experiment, e.g., the position of the cannon. After some time, the machine will
be in other state according to the outcome of the experiment. To guarantee that our machine does
not wait unbounded time for the answer, we will add to the Turing machine a time constructible
schedule T : N — N. The schedule depends on the size of the query.

Therefore, after some time not exceeding T'(n), where n is the size of the query, if the particle is
detected in the right box, then the next state of the Turing machine is ¢,; if the particle is detected
in the left box, then the next state is g;; and if the particle is not detected in any box, then the next
state is ¢;. The machine resumes the computation. The states ¢,, ¢;, and ¢; replace the standard
states yes and no of an oracle Turing machine. Note that, during the consultation of the oracle, the
Turing machine waits for the oracle answer but keeps counting the running time in parallel.

3.1 Communicating with the smooth scatter experiment

The Turing machine communicates with the SmSE when necessary. The communication is made
through the query tape, where the Turing machine writes the parameters of the experiment, in this
case the position of the cannon. We consider that the position provided by the Turing machine is
written in binary and denotes a number of the form n/2*, where n is a non-negative integer in
]0,2%[ and k is a positive integer. The query z corresponds to the dyadic rational

|2l
z = ZQ‘iz[i], (2)

where z[i] denotes the i-th bit of z. After processing z, the apparatus should set the position of the
cannon and execute the experiment. Note that by Equations 1 and 2, with the vertex at y € ]0, 1],
the experimental time grows exponentially with the size of the query, for values of z approaching y.

We consider that our experiment can set the cannon’s position in three ways, inducing different
computational powers. The three protocols are:

Protocol 1 Given a dyadic rational z in the query tape, the experiment sets the position of the
cannon to z' = z. In this case we are working with an error-free SmSE or with an infinite precision
SmSE — the protocol is Prot_IP(z). A Turing machine coupled with this oracle is called an error-
free smooth scatter machine.

Protocol 2 Given a dyadic rational z in the query tape, the experiment sets the position of the
cannon to z' € [z — 2-12l 2 4 2_‘Z|], chosen uniformly. In this case we are working with an error-
prone SmSE with unbounded precision — the protocol is Prot UP(z). A Turing machine coupled
with this oracle is called an error-prone smooth scatter machine with unbounded precision.

Protocol 3 Given a dyadic rational z in the query tape, the experiment sets the position of the
cannon to z' € [z—e€, z+€|, chosen uniformly, for a fired e = 271, for some positive integer q. In this
case we are working with an error-prone SmSE with fixed precision — the protocol is Prot_FP(z).
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A Turing machine coupled with this oracle is called an error-prone smooth scatter machine with
fixed precision.

Algorithm 1: General communication protocol.

Data: Dyadic rational z (possibly padded with 0’s)

Set cannon’s position to 2’ = Prot(z, mode) ;

Wait T'(]z|) units of time ;

if The particle is detected in the right box then
‘ A transition to the state ¢, occurs ;

end

if The particle is detected in the left box then
‘ A transition to the state ¢; occurs ;

end

if The particle is not detected in any boxr then
‘ A transition to the state ¢; occurs ;

end

We can describe all the protocols in the Algorithm 1.

The procedure Prot used in Algorithm 1 assigns a value to 2z’ according with the protocol, i.e.,
using infinite precision (Prot(z,inf) = z), unbounded precision (Prot(z,unb) € [z—2712l z+2712]),
or fixed precision (Prot(z, fiz) € [z — €,z + €]).

Definition 1. Let A C {0,1}*. We say that an error-free SmSM M, clocked with runtime T :
N — N, decides A if, for every w € {0,1}*, M accepts w in at most T(|w|) steps if w € A and M
rejects w in at most T(|w|) steps if w & A.

Definition 2. Let A C {0,1}*. We say that an error-prone SmSM M, with unbounded or fized
precision, clocked in runtime 7 : N — N, decides A if there exists v, 1/2 < v < 1, such that, for
every w € {0,1}*, M accepts w in at most 7(|w|) steps with probability v if w € A and M rejects
w in at most T(|w|) steps with probability v if w & A.

3.2 Measurement algorithms

The measurement of the vertex position depends on the protocol, so that different protocols may
originate different measurement algorithms. From now on we denote by m|, the first ¢ digits of m,
if m has ¢ or more than ¢ digits, otherwise it represents m padded with k zeros, for some k such
that |m0¥|= ¢. The pruning or the padding technique is used to control the time schedule during
the measurement process. For the infinite precision we have the measurement Algorithm 2.

In Algorithm 2 we have no errors associated with the protocol since the cannon’s position is
always set to the desired position. Thus, doing this search around the vertex, we can approximate
it up to any precision with no errors. The following result was already proved in [13] and [10].
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Algorithm 2: Measurement algorithm for infinite precision.

Data: Positive integer ¢ representing the desired precision

9 =0;
1‘1:1;
z2=0;

while x1; — 29 > 2= do

z=(ro+21)/2;
s = Prot_IP(z|) ;
if s == “g,” then
‘ Tr1 =z,
end
if s == “¢;” then
‘ To=2;
else
Ty = %2 ;
Tr1 =z,
end
end

return Dyadic rational denoted by xg

Algorithm 3: Measurement algorithm for unbounded precision.

Data: Positive integer ¢ representing the precision

xo=10;
.1‘1:1;
z2=0;

while z; — z¢ > 2=t do

z=(xo+21)/2;
s = Prot UP(z|e) ;
if s == “q,” then
‘ Tr1 =z,
end
if s == “¢;” then
‘ Ty = 2;
else
Zo zZ5
A zZ5
end
end

return Dyadic rational denoted by xg

Proposition 2. Let s be the result of Prot_IP(z|s), y the vertex position of the SmSE, and T the
time schedule. If s = “q;”, then z|,< y; if s = “q.”, then z|y> y; otherwise |y — z]¢|< %, for

some constant C > 0.
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Proof: The first two cases are obvious. In the third case we have

C
—— =1t(zl) > T(0),
PEERIAA
for some constant C' > 0. Whence, |y — z|¢|< %. O

Unbounded precision requires the measurement Algorithm 3.

In the Algorithm 3 we have errors associated with the protocol since the cannon’s position is
set to a value uniformly chosen in the closed interval [z — 2-lel 2 4 2*|Z‘]. But, according to the
definition of Prot_UP (see Protocol 2), the interval that is considered could be increasingly smaller
by increasing the precision, and so the error will be increasingly smaller too.

We proved in [10] and [14] the following result, where ¢ is such that [z, —27¢, 2|, +27¢] €]0, 1].

Proposition 3. Let s be the result of Prot UP(z].), y the vertex position of the SmSE, and T
the time schedule. If s = “q;”, then z|,;< y + 27¢, if s = “q,”, then z|;> y — 27¢, otherwise
ly — zle| < % +27¢, for some constant C > 0.

Proof: Let 2’ be the position uniformly chosen by the Prot_UP(z|,). Thus 2’ € [z], —27¢, 2|, +27]
and 2]y —2/| < 27¢. From this it follows that, if s = “g]’, then 2’ < y and therefore z|, < y + 27%

if s = “¢/, then 2z’ > y and therefore z|, > y — 27%; otherwise, |y — 2/| < %7 for some constant
C > 0. Therefore |y — z]¢ | < % +27¢ O

Proposition 4. Given a SmSM with unbounded or infinite precision, vertex position at y and
time schedule T'(¢) = C2¢,

1. The time complezity for the measurement algorithm for input £ is O(LT(¢));

2. The output of the algorithm, for input £, is a dyadic rational z such that |y — 2| < 271,

Proof: Statement (1) comes from the fact that the call to the protocol is repeated ¢ times, each taking
O(T(¢)) steps. To prove statement (2) note that: (a) in the infinite precision case, the execution
of the algorithm halts when |y — 2| < %; (b) in the worst case of the unbounded precision, the
execution of the algorithm halts when [y — z| < 755 +27¢, i.e,, [y — 2| < 27/*'; in both cases we
have |y — 2| < 271 O

For the fixed precision protocol the measurement algorithm is different from the previous two.

Assume that initially we have a SmSE with vertex at any real number s € |0, 1[. We consider
another SmSFE with vertex at position y = 1/2 — ¢ + 2se and repeat £ times the Prot_F P protocol
with input 2/ = 1, i.e., with the vertex at position 1/2. Consider a fixed precision ¢ = 279, for
some ¢ € N, and physical time given by the Equation 1. Consider also a Turing machine coupled
with this SmSFE with a fixed schedule T. Then we will have three possible outcomes after running
the experiment: ¢,, q;, or g:. If n represents the position of the cannon where the time schedule
exceeds the limit, for some precision ¢, we have that the output ¢, occurs for cannon positions in
the interval [y 4+ n,1/2 + €], the output ¢; occurs for cannon positions in the interval [y — n, y + 7]
and the output ¢, occurs for cannon positions in the interval [1/2 — €, y —n]. Therefore we have that
each outcome occurs with the following probability:

1. For the output ¢, we have p, = (1/2+ € —y — 1)/(2¢).
2. For the output ¢; we have p; = (y +n —y +n)/(2¢).
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3. For the output ¢; we have p; = (y —n — 1/2 4+ €)/(2¢).

So, our experiment can be modeled as a multinomial distribution with three categories of success,
each one with the stated probabilities. Let o, 8, and v be random variables used to count outcomes
qi, gr, and gz, respectively, and consider a new random variable X = %. The expected value of
X is

%= 2B[a] + E[§] _ —1+42y+2e  4se _
N 26 N 4e o de
The variance of X is
1\2 14\2 1 1
Var(X) = (g) Var(a) + (i) Var(8) + 2(5) (z—g)Covar(a,(s) .
Simplifying we get
—4se+4s%e+n _ 4se(l—s) 1
X)=— < <-.
Var(X) A€ =7 g T

Using the Chebyshev’s Inequality, for A > 0, we get:

— Var(X
PIX - X| >A4)< A(2 )
1
_ <
P(X —s| > A4) A

For precision A > 1/2¢, we get
2

P(X —s| >1/2% < z

If we consider

for h € N — {0}, then we get & > 2247,

Finally, we get the Algorithm 4 for the fixed precision case, where h is a positive integer chosen
in order to get the error less than 27",
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Algorithm 4: Measurement algorithm for fixed precision.

Data: Integer £ representing the precision

c=0;
1=20;
5 — 92(+h :
while i < £ do
s = Prot_FP(1],) ;
if s == “q;” then
‘c:c+2;
end
if s == “¢;” then
‘ c=c+1;
end
i+ ;
end

return c/(2¢)

The following statements have been proved in [10].

Proposition 5. For any real number s € 10,1[, fized precision e = 271 for q € N, error probability
27" for h € N — {0}, vertex position at y = 1/2 — € + 2se, and time schedule T,

1. The time complezity of the measurement algorithm for fized precision with input £ is O(2%T(¢));
2. The output of the algorithm is a dyadic rational m such that [y —m| < 27

Proof: Statement (1) derives from the fact that the procedure calls the oracle 22" times. Statement
(2) is justified by observing that an approximation to y & 2~¢ with error probability less than 27"
requires 22/ /27" calls to the oracle. (]

We are now ready to investigate the computational power of analogue-digital machines clocked
in polynomial time, using (without loss of generality) the smooth scatter machine. Note that, on
input £, all the measurement algorithms output a value with ¢ bits of precision, or a value with the
maximum number of bits of precision (< ¢) allowed by the schedule.

4 Computational power of the smooth scatter machine

The three types of SmSM obtained in the Section 3 express different computational powers. In
this section, we first recall some concepts of nonuniform complexity classes (see [17] and [18]).

4.1 Nonuniform complexity classes

An advice function is a total map f : N — {0,1}* and a prefiz advice function is an advice function
with the extra condition that f(n) is a prefix of f(n + 1). These functions have an important role
in nonuniform complexity as they provide external information to the machines that depend only
in the input size. We recall the definition of nonuniform complexity class.
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Definition 3. Let C be a class of sets and F be a class of advice functions. We define C/Fx as the
class of sets B for which there exists a set A € C and a prefix advice function f € F such that, for
every word w € X* with size less or equal to n, w € B iff (w, f(n)) € A.

We consider deterministic Turing machines clocked in polynomial time and logarithmic prefix
advice functions (see [18]), obtaining the nonuniform complexity classes

P/logx and P/log®.

We also consider probabilistic Turing machines clocked in polynomial time. Thus, based on the
Definition 3, we get the following:

Definition 4. BPP/logx is the class of sets B for which a probabilistic Turing machine M, a
prefix advice function f € log and a constant v < 1/2 exist such that, for every word w with size
less or equal to n, M rejects (w, f(|w|)) with probability at most v if w € B and accepts (w, f(|w]))
with probability at most v if w ¢ B.

The above definition is too restrictive forcing the advice function to be chosen after the Turing
machine (see Appendix A). Thus we choose to use a more relaxed definition where the Turing
machine is chosen after the advice function.

Definition 5. BPP//logx is the class of sets B for which, given a prefiz advice function f € log, a
probabilistic Turing machine M and a constant v < 1/2 exist such that, for every word w with size
less or equal to n, M rejects (w, f(|w|)) with probability at most v if w € B and accepts (w, f(|w|))
with probability at most v if w ¢ B.

Similarly we define the nonuniform class BPP// log®*, just changing the class of advice func-
tions.

At this point we know that the Turing machine has an oracle that measures approximations
of the vertex position. Since we are talking about nonuniform complexity classes, the information
given by the advice is codified in the position of the vertex of the SmSE.

4.2 The Cantor set C3

The Cantor set Cs is the set of w-sequences x of the form

“+ o0
T = Zka_gk ,
k=1

for xp € {1,2,4}. This means that C3 corresponds to the set of elements composed by the triples
001, 010, or 100. This set is often used to codify real numbers. For example, in [19], the Cantor
codification with base 4 and 9 is used to codify the real weights of neural net.

This type of codification is required in order to be able to distinguish close values. For example,
in order to describe the first bit of 011---1 and 100---0, we must read the whole number. To
enforce gaps between close values, we encode the binary representations of the values in elements
of the cantor set Cs.

We will work with prefix advice f : N — {0,1}*, such that f € log. We denote by ¢(w), with
w € {0,1}*, the binary sequence obtained from the binary representation of w where each 0 is
replaced by 100 and each 1 is replaced by 010. Given f, we denote its encoding as a real number
by y(f) = limy(f)(n) recursively defined as follows:
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L y(£)(0) = 0.¢(f(0));

21 0 1) = fas, e s 1) = (AN et oot

By means of this definition, y(f)(n) is logarithmic in n and the encoding function returns a
word of size O(f(n)). Note that separators are added only at positions that are a power of 2. If we
want to decode f(|w|), such that 2™~ < |w| < 2™, we need to read y(f) in triplets until we reach
the (m+1)-th separator. To reconstruct f(2™), we eliminate the separators and replace each triplet
for the corresponding value. Since |c¢(f(2™))|= am + b, for some constants a and b, the number of
binary digits needed to reconstruct f(2™) is linear in m.

Note that we considered a prefix advice function instead of an advice function, otherwise the
encoding would not be logarithmic in the size of the input.”

As first proved in [10] and [14], these Cantor sets have the following property (see Appendix B):

Proposition 6. For every y € C3 and for every dyadic rational z € 10,1[, such that |z| = m, if

ly — 2| < 1/217°, then the binary expansion of y and z coincide in the first i bits and |x — z| >
1/27(m+10) .

4.3 Lower bound for the infinite precision

We specify smooth scatter machines that decide the sets of some suitable nonuniform complexity
class.

Theorem 2. If B € P/logx, then there exists an error-free SmSM, clocked in polynomial time,
that decides B.

Proof: If B € P/logx, then there exists a set A € P (i.e.,A is decided by a deterministic Turing
machine M 4 clocked in polynomial time p4) and a prefix advice function f € log, such that w € B
iff (w, f(|w|)) € A. We can thus compute the pairing of w and f(|w|) in polynomial time p, and
check in polynomial time p 4, using Turing machine M 4, if such a pair belongs to A.

To get f(|w|), M reads some binary places of the vertex position y(f) using the SmSFE (Algo-
rithm 2) with an exponential schedule T'(¢) = C2¢. Since |w| may not be a power of 2 the Sm.SM
reads f(n), where n > |w| and n = 2M°81*ll. We have that |f(|w|)| < alog(Jw|) + b, for some
constants a,b € N. Consequently |f(n)| < a[log(|w])] + b, so that M reads

¢ = 3(aflog(Jw])] +b) + 3([log(|w|)] + 1)

binary places of the vertex, where 3([log(|w|)]41) denotes the number of bits used in the separators.
Using Algorithm 2 on ¢+ 5 — 1, by Proposition 4, the algorithm returns a dyadic rational m
such that |y(f) —m| < 27¢75. Hence, by Proposition 6, y(f) and m coincide in the first ¢ bits.
Again, by Proposition 4, we know that the time complexity of the Algorithm 2 is O(¢T'(¢)).
Since £ is logarithmic in the size of the input word and T is exponential in the size of the query
word we find that the Algorithm 2 takes polynomial time p, in the size of the input word. We
conclude that the total time for the whole computation is O(p, +p+ pa), that is polynomial in the
size of the input. O

7 We would get y(f) = 0.c¢(f(0))001c(f(1))001--- and since each ¢(f(i)) has a logarithmic size in 4, the
sequence y(f)(n) would have a size O(n x log(n)).
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4.4 Smooth scatter machine as a biased coin

To prove the lower bounds for an error-prone SmSM with unbounded or fixed precision we need
some preliminary work. The first two statements — proved in [15], [12] and [13] — explain how the
SmSE can be seen as a biased coin. The third statement — already proved in [14] and [16] — state
that, given a biased coin it is possible to simulate a sequence of fair coin tosses.

Proposition 7. Given an error-prone smooth scatter machine with unbounded precision, vertex
position at y, experimental time t, and time schedule T, there is a dyadic rational z and a real
number § €]0, 1] such that the outcome of Prot UP on z is a random variable that produces q; with
probability §.

Proof: Consider an error-prone SmSM with unbounded precision, vertex position y, experimental
time ¢ and time schedule T'. Fix a positive integer £ such that ¢(0) < T'(¢) and ¢(1) < T'(¢), this
means that if we run the experiment in the position 0], or if we run the experiment in the position
1|¢, we will get an answer within 7°(¢) units of time.

Given y and T'(¢) we know that there exists y’ < y such that t(y’) = T(¢). Consider now a
dyadic rational 2’ such that |[2'| = £ and 0 < 2/ — 27% < 3/ < 2/. Observe that 0 <y’ <y < 1 and
so 0 < 2z’ < 1 (See Figure 8). The value of ¢ is fixed once and for all; however, it is supposed that ¢
can be fixed to a value large enough to get z’ —27¢ > 0. This restriction is easy to satisfy since we
only require t(0) < T'(¢) and (1) < T'(¢), which is obviously true for a large £ since the schedule is
exponential.

If we run the Prot UP on 2’ it will choose a value z € [2/ —27¢, 2’ + 27¢] uniformly. Thus, the
probability that the protocol returns ¢; is

y/_zl_|_2—£ 1 z’—y’

T2t (=276 2 2x2°(°

Therefore 0 < § < 1 and the probability that the protocol returns ¢; or ¢, is 1 — 4. |

RIGHT COLLECTING BOX RIGHT COLLECTING BOX

Z—€
The schedule limit 7°(¢)

LEFT COLLECTING BOX LEFT COLLECTING BOX

Fig. 8. The SmSE with unbounded precision as a  Fig. 9. The SmSE with fixed precision as a coin.
coin.

8 In this case the position 0]¢ or 1], means 0.0---0 and 1.0- - -0, respectively, not the dyadic position.
e ad ~—~—
‘ ¢
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Proposition 8. Given an error-prone smooth scatter machine with fixed precision, vertex position
at y, experimental time t, and time schedule T, there is a dyadic rational z and a real number
d € 10,1 such that the outcome of Prot_FP on z is a random variable that produces q with
probability §.

Proof: Consider an error-prone SmSM with fixed precision €, vertex position at y, experimental
time ¢ and time schedule T'. Fix a positive integer ¢ that verifies the following conditions: 27¢ < e,
t(0) < T(¢), and t(1) < T(¢). The last restriction means that if we run the experiment with the
cannon either at 0], or at 1|,, we will get an answer within 7'(¢) units of time.’

Given y and T we know that there exists ¢y’ < y such that ¢(y") = T'(¢). Consider now a dyadic
rational 2’ such that |2/| = £ and 0 < 2’ <y’ < 2/ +27¢ < 1 (Figure 8). The value of ¢ is fixed once
and for all as is the value of y. However, it is supposed that € can be fixed to a value that although
fixed is very small, such that, 2/ —e > 0.

If we run the Prot_FP on z' it will choose a value z € [2/ — ¢,2" + €] uniformly. Thus the
probability of the protocol return ¢; is

y—2Z+e 1 -y

:z’—|—6—(z’—e)_2 2¢

Therefore, 0 < § < 1 and the probability of outcome ¢; or ¢, is 1 — 4. O

Proposition 9. Given a biased coin with probability of heads q €]0,1 — 6, for some 0 < § < 1/2,
and v €]0,1[, we can simulate, up to probability > -y, a sequence of independent fair coin tosses of
length n by doing a linear number of biased coin tosses.

See the proof in Appendix C.

4.5 Lower bound for the unbounded and fixed precisions

Theorem 3. If B € BPP//log*, then there exists an error-prone smooth scatter machine with
unbounded precision, clocked in polynomial time, that decides B.

Proof: If B € BPP//logx, then there exists a prefix advice function f € log, a probabilistic Turing
machine M working in polynomial time p;, and a constant v; < 1/2, such that, for every word w
with size less or equal to |w|, M rejects (w, f(|w])) with probability at most v, if w € B and M
accepts (w, f(|w])) with probability at most v; if w ¢ B.

We compute f(Jw|) from y(f) (the vertex of our SmSM) and use M to decide B. For this
purpose consider o such that v; + 172 < 1/2 and an exponential time schedule T

By Proposition 7 there is a dyadic rational z, depending on y and 7', that can be used to produce
independent coin tosses with probability of heads ¢ € 0, 1[. By Proposition 9, we can use the biased
coin to simulate a sequence of fair coin tosses of size p;(n), with probability of failure ~o.

Similarly to the proof of the Theorem 2, if |w| = n, using Algorithm 3 on input £+ 5 — 1, for
¢ = 3(a[log(n)] + b) + 3([log(n)] + 1), we can extract, by Proposition 4, a dyadic rational m such
that |y(f) —m| < 27¢7°. Hence, by Proposition 6, y(f) and m coincide in the first £ bits, so we can
use M to compute f(2M1°8()1),

9 id.
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Thus, after using the SmSE as oracle in order to compute f(2M1°8(")1) it is used as a generator
of a biased coin and thus as a generator of a sequence of size pi(n) of random coin tosses. Then we
just need to simulate M on (w, f(2M°8(™1)),

The behavior of the smooth scatter machine is the following:

w

[ ]
| |
compute f(|w]) p3(Jwl])
| |
. .

/ \ generate coin tosses p2(|w|)
[ ] [ ]

/ \ simulate M p1(|wl)
| \
o — 0@

72
|

71
|

Fig. 10. Schematic description of the behavior of the SmSM with unbounded precision.

Firstly the SmSM uses the SmSE to compute f(2M°8(")1); then it uses the SmSE as a generator
of a fair sequence of coin tosses (with error probability ~,); finally the SmSM uses this sequence
to guide its computation on (w, f(2/1°8(")1)),

Therefore, if w € A, then the SmSM rejects w if M, guided by the sequence of coin tosses,
rejects (w, f(21°8(1)) situation that happens with probability at most v5y; +v1 < 1/2. Similarly,
the probability that M accepts w, for w ¢ A, is less than 1/2.

We can conclude that the SmSM decides A with an error probability less than 1/2. To see
that it decides A in polynomial time note that Proposition 4 states that the running time of the
measurement algorithm is O(¢T'(¢)). Since £ is logarithmic in input size and 7' is exponential in ¢,
the result is polynomial in the size of the input. Let such time be denoted by ps.

Let ps denote the time needed to encode the pair w with f(|w|), that is O(Jw| + |f(Jw])]), and
that po denote the polynomial time needed to generate the sequence of coin tosses. Then we can
conclude that the total time for the whole computation is O(p; +p2+ps+pa), which is a polynomial
in the size of the input. |

Theorem 4. If B € BPP//log%, then there exists an error-prone smooth scatter machine with
fixed precision €, clocked in polynomial time, that decides B.

Proof: The proof is similar to that of Theorem 3 but instead of Proposition 7 it uses Proposition 8§;
instead of using Proposition 4 it uses the Proposition 5; and instead of using measurement Algorithm
3 it uses Algorithm 4.

Note that in the fixed precision case the Algorithm 3 has an error ~3. Thus, in this case, we
consider v and 73 such that v; + v2 + 73 < 1/2. In these conditions, if w € A, then the SmSM
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rejects w with probability at most v3(y2y1 + 1) + Y271 + 71 < 1/2. Similarly, the probability that
w ¢ A is accepted by M is less than 1/2. d

181

16
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Fig. 11. The boundary numbers.

4.6 Boundary numbers

For the purpose of proving upper bounds, we introduce the boundary numbers.

Definition 6. Let y € |0,1] be the vertex position and T the time schedule for a smooth scatter
machine. For every z € {0,1}*, we define I, and r|,| as the two real numbers in |0, 1] that satisfy
the equation t(l,)) = t(r,)) = T(|z]), with lj,) <y <7y 1°

Suppose that we want to query the oracle with z. If we query the SmSE, with vertex at y,
we have three possible answers: ¢, if z < y and t(2) < T(|z|); ¢, if z > y and t(z) < T(|2]); @
otherwise. We thus arrive to the Algorithm 5.

Therefore we may replace oracle consultation by a comparison of the query word (dyadic ra-
tional) with both [, and 7|.|. As we are going to see, in a sense to be precise later on, knowing
enough bits of the boundary numbers is such like querying the oracle.

10 There are always two boundary numbers satisfying this equation, as Figure 11 shows.
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Algorithm 5: Oracle simulation.

Data: Dyadic rational z representing the query, boundary numbers /|| and 7|,
if z <1}, then
‘ A transition to the state q; occurs ;
end
if 2 > r|;| then
‘ A transition to the state ¢, occurs ;
end
if l|z‘ <2 <y then
| A transition to the state g, occurs ;
end

4.7 Upper bound for the infinite precision

The precision we can get on the measurement of the vertex position determines the computational
bounds of the smooth scatter machine. So far, the time schedule did not interfere in establishing the
computational bounds. Now we apply the simulation technique, replacing the oracle by an advice
function and prove upper bounds that, this time, seem to be sensible to the time schedule.

Theorem 5. If B is decidable by a smooth scatter machine with infinite precision and exponential
protocol, clocked in polynomial time, then B € P/ logg*.

Proof: Suppose that B is decidable by a SmSM M with infinite precision and exponential time
schedule T, clocked in polynomial time. Since T is exponential and M is clocked in polynomial
time, we conclude that the size of the oracle queries grows at most logarithmically in the input size.
This means that for any word w with size n, there exist constants a and b such that, during the
computation, M only queries the oracle with words of size less or equal to £ = a[log(n)]| + b. We
consider a prefix advice function f such that f(n) encodes the concatenation of boundary numbers
needed to answer to all the queries of size £:

Uli#Erii#t ol offral oFf - - - #lel ool o

‘
The prefix advice function f is such that | f(n)| € O(20 +2 3 i) = O(£?) = O(log*(n)).
i=1

Therefore, to decide B in polynomial time, with prefix advice f € log?, we simulate M on
the input word but whenever a transition to the query state occurs and z is written in the query
tape, we compare the query with the boundary numbers relative to |z]), i.e., with /|| and r|;|. The
comparison, as explained in Section 4.6, gives us the same answer as Prot_IP(z), and thus the
machine uses a similar measurement algorithm to approximate the vertex, replacing the call to the
physical oracle by a comparison of the query word with f(n). Since the comparison explained in
Algorithm 5 can be done in polynomial time and M runs in polynomial time too, we can decide B
in polynomial time given the advice in P/log®x. O

If we analyze better the binary expansion of each boundary number, we can change the advice
function considered in the previous proof, which is quadratic in the size of the query word, in order
to obtain an advice function linear in the size of the query word. The main idea of this result is based
on the fact that the boundary number /.41 (|.j+1) can be obtained from [, (r|;|, respectively),
by adding a few more bits of information.



22 Téania Ambaram, Edwin Beggs, José Félix Costa, Diogo Pogas, John V Tucker

Proposition 10. Given the boundary numbers for a smooth scatter machine with time schedule
T(k) € $2(2%) it is possible to define a prefir advice function f such that f(n) encodes all the
boundary numbers with size up to n and |f(n)] € O(n).

Proof: Consider a SmSM with vertex at y. If the time schedule associated with the SmSM is
T(k) € 2(2%), then there exist o and ko in N such that for all k > ko, T'(k) > a2.

The value of the boundary number 7, is such that y < r, < y + 27%%¢, for some constant
c € N and for k > kg. This means that, when we increase the size of k by one bit, we also increase
the precision on y by one bit. Let us write the dyadic rational ry|; as the concatenation of two
strings, ri|x= vg - wg, where wy has size ¢ and vy has size k — c¢. Note that ry, — 27kt <k < gy
e,y — 270 < —27F e < < <y + 270 e, oy, — y| < 27FFC

The same reasoning applies to Ip|x= 2} - Yk, i.e., |z — y| < 27, where y,, has size ¢ and
has size k — c.

We show that we can obtain viy1 from v with just two more bits. Suppose that v ends with
the sequence vy, = - - - 10¢. The only two possibilities for the first k — ¢ bits of y are - -- 10 or - - - 01°.
Thus, vg41 must end in one of the following: vy = ..+10%1 or Vg1 = ..-10%0 or Vg1 = ... 014
or g1 = ---01%0. That is, even though vy is not necessarily a prefiz of vp,1, the latter can be
obtained from vi by appending some information that determines which of the four possibilities is
the case.!’ Suppose now that vy ends with the sequence vy, = ---01%. The only two possibilities for
the first k& — ¢ bits of y are ---01°"'1 or ---01°710. Thus, vy4; must end in one of the following:
Upy1 = ---01%0 or wpyq = ---01°1 or wpyq = ---0147100 or vpy = ---01°7101. In the same way,
vk+1 can still be obtained from vy by appending some information that determines which of the
four possibilities is the case.

Similarly we obtain 41 from x.

We define the advice function inductively as follows: if n < ko, then f(n) = l1]|1#r1|1#1] o 72] 2
#o Al nFrnln; if n = ko, then f(ko) = f(ko — 1)#H @k #Yko #Vko HF Wy ; and if n > ko, then
f(n) = f(n — 1)#br1bio#ynF#boibaa#w,, where the b;;’s denote the bits that distinguish between
T,—1 and z, and between v,,_; and v,,.

Considering f(n), we can always recover ri]x or lg]x, for k < n, because, if k < n < ko, then
the values of 7] and ;| are explicitly in f(n); if K = n = ko, then these values are explicitly in
f(n) and, moreover, the machine knows it is the last fully given boundary numbers 74| and lx]
(with the two ##); and finally, if n > k > ko, to obtain I, and 7y after knowing l;_1 and rx_1 we
only need to recalculate the two final bits of z; and v and concatenate the result with either y
or wy, respectively.

To conclude, since y,, and w, have constant size ¢, the value of |f(n)| is asymptotically linear
in n. ([l

With this different encodings we obtain a different upper bound for the infinite case.

Theorem 6. If B is decidable by a smooth scatter machine with infinite precision and exponential
protocol T(k) € £2(2%), clocked in polynomial time, then B € P/logx.

Proof: Suppose that B is decidable by a SmSM M with infinite precision and exponential time
schedule T'(k) € £2(2%), clocked in polynomial time. Since T is exponential and M is clocked in
polynomial time, we conclude that the size of the oracle queries can grow at most logarithmically

1 The following example helps to clarify the argument. Suppose that y = 0.1100011000. .. The sequence
vg can be taken as follows: v1 = 1, v = 11, v3 = 111, v4 = 1101, v5 = 11001, v¢ = 110010, v7; = 1100100,
vg = 11000111, vg = 110001100, ...
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in the size of the input. This means that for any word w with size n, there exist constants a and
b such that, during the computation, M only queries the oracle with words of size less or equal to
¢ = allog(n)] + b.

By Proposition 10 we can now define a prefix advice function f, encoding the boundary numbers,
such that |f(]z|)| is linear in size of the query |z| € O(¢), i.e., |f(|z])|€ O(log(n)), where n is the
size of the input.

Therefore, to decide B in polynomial time with prefix advice f € log, we can simulate M on
the input word but whenever a transition to the query state occurs and z is written in the query
tape we compare the query with the corresponding boundary numbers, i.e., with /.| and 7|,|. The
comparison, as explained in Section 4.6, provides the same answer as Prot_IP(z), and thus the
machine uses a similar measurement algorithm to approximate the vertex, replacing the call to the
physical oracle by a comparison with f(n).

Since the comparison can be done in polynomial time and M runs in polynomial time too, we
can decide B in polynomial time given the advice. O

The Theorems 2 and 6 allow us to prove the following corollary:

Corollary 1. B is decidable by a smooth scatter machine with infinite precision and exponential
protocol T(k) € £2(2F), clocked in polynomial time, if and only if B € P/logx.

It is an open problem to know if in the above corollary holds if we remove the schedule restriction.

4.8 Probabilistic query trees

The error-prone smooth scatter machine can obtain approximations to the vertex position through
the measurement algorithm. After each run of the SmSFE, the Turing machine is in one of the three
possible states: ¢, ¢; or q;. The oracle consultations of a SmSM can then be seen as a ternary
query tree since its (deterministic) computations are interspersed with calls to the oracle; after each
call the machine is in one of the three above mentioned states.

Definition 7. A query tree is a rooted tree (V, E,v) where each node in V is a configuration of
the Turing machine in the query state (the root v is the configuration of the first call to the oracle)
or in a halting state, and each edge in E is a deterministic computation of the Turing machine
between consecutive oracle calls or between oracle calls and halting configurations. The only nodes
with zero children are the corresponding accepting and rejecting configurations.

Definition 8. A m-ary query tree is a query tree where each node except the leaves has m children.

Since we are not considering now the infinite precision case, we know that the behavior of the
SmSFE is stochastic and thus, after each call to the oracle, the machine is in one of the three states
with some probability. With this idea in mind, we can see all the oracle consultations by a SmSM
on an input w as a probabilistic ternary query tree, i.e., a ternary query tree where each edge is
labeled by a probability. A single computation on w corresponds to a path in the tree, beginning
in the root and ending in a leaf. The leaves of the tree are labeled with an A, if the computation
on input w halts in an accepting configuration and are labeled with an R, if the computation on
input w halts in a rejecting configuration (see Figure 12).

Let Ty, m = (Va,m, Enm, Vn,m) denotes a n-ary probabilistic query tree with depth m.
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Definition 9. We define the set of all assignments of probabilities to the edges of T, as
p(Tom) ={0: Epm — [0,1] : the sum of o’s over the n outcomes of every node is 1} .
Denote by 777, the n-ary probabilistic query tree with depth m and assignment o.

Definition 10. The probability of one single path m of a n-ary probabilistic query tree Ty, with
depth m and assignment o is

m

[Tol)

i=1

where w[i] stands for the i-th edge of the path from the root. The acceptance probability P(T},,) is
the sum of the probabilities of all accepting paths.

1CP

R

Fig. 12. The oracle calls by a smooth scatter machine as a ternary query tree, where iCP means the i-th
cannon position.

We define D(01,02), 01,02 € p(T),m) as the maximum distance between the two probabilistic

query trees T;{}m and Tffm.

Definition 11. For every 01,02 € p(Th,m), we define
D(01,02) = max{| o1(e) —o2(e) |: e € By} -

Now we define the largest possible difference in the acceptance probability for two different
assignments, where the distance between the probabilities is less or equal to a value s.

Definition 12. For any m € N, s € [0,1] and number of outcomes out € N, we define a function
Aout : N x [0,1] — [0,1] as

Aour(m, 8) = sup{|P(TZy;. ) — P(T,

out,m

): 0,0" € p(Tout,m) and D(o,0’) < s} .
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This function satisfies the following relevant property:

Proposition 11. For any m € N, s € [0,1], and any number out € N of children in the tree,
Aout(m, s) < (out — 1)ms.

Proof: The proof follows by induction in m. The result is straightforward for m = 0: we take
P(Tgu0) = P(qu;t,o) = 0 for each rejecting leaf, and P(Ty,, ) = P(Tg’u/tyo) =1 for each accepting
leaf. Let the statement be true for m and consider the probabilistic query tree Tyytm+1 With out
outgoing edges, e1,ea, ..., €out, and depth m + 1. Each edge e; is incident in a node Tyutm (i),
for i = 1,...,0ut, respectively. Consider probability assignments o,0’ € p(Tpus,m+1) such that
D(o,0') < s. We have then

P(Toaut,m-i-l) = U(el)P(Tgut,m(l)) + 0(62)P(Toaut,m(2)) ot O(BOUt)P(Tgut,m(OUt))
P(Toumi1) = 0 (@) P(T5m(1) + 0 (€2) P(T50 (2)) + -+ + 0" (€out) P(Tgy i (0ut)) -
Aso(eput) =1—0(e1)—c(ex)— - —0(eout—1) and o' (epys) = 1—0'(e1)—0c'(e2)—- - — ' (€put—1),
we have that

P(Tutm+1) — P(quiuerl)‘ = [(o(er) = o' () (P(T51m (1) = P(T5s m(out)))
+(o(e2) = 0 (€2))(P(T31,m(2) = P(T3s 0 (0ut)))

(0 (eout—1) = 0 (€out—1)) (P(TGuy 0t — 1)) = P(T5,, . (out — 1))

+0'(e1)(P(T5um(1) = P(T5. (1))
+0"(€2)(P(Tgut.n(2) = (Tt (2)))

+0" (€out) (P(TSys m (0ut)) — P(To0 m (0ut))

Since the difference of any two real numbers in [0, 1] lies in [—1, 1], we conclude that

P(Tgut,erl) - P(Tgilt,erl) S |0(61> - Ul(el)| + | 0(62) - 0/(62) ‘ +--- | O—(eoutfl) - J/(eout71)|
+0'(e1) Aour(m, s) + o' (€2) Aoyt (m, 8) + - -+ 4+ 0" (eout ) Aout (M, 5)
< (out —1)s + Aour(m, s) .

Therefore, using the induction hypothesis,

Aout(m + 1, 5) Aout(m, 8) + (out — 1)s
(out — 1)ms + (out — 1)s

(out — 1)(m+1)s .

IAIA
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4.9 TUpper bound for the unbounded precision

Consider a SmSM with vertex at position y and physical time ¢, and suppose that the SmSM
writes a query z with |z| = k, for kK € N. Then consider the two boundary numbers I;; and rj (see
Sections 4.6 and 4.7) for the schedule T'(k). Since the transition to one of the states ¢, ¢: and ¢; is
probabilistic whenever the SmSM uses the SmSFE with the protocol Prot_UP, we conclude that
approximations to the probabilities involved in these possible transitions are needed in order to
simulate the oracle calls.

Protocol Prot_UP(z) chooses uniformly some position 2z’ € [z — 27% 2 + 27*] from where to
shoot, originating eight possible shooting cases represented in Figure 13. Assuming that we always
have k large enough to obtain the shooting interval inside ]0,1[, we exclude the cases 6 and 8.
Assuming that the protocol is exponential, we can discard also case 7, since the interval |ix, rg|
shrinks faster than the shooting interval. For each one of these cases, from 1 to 5, we will have the
following probabilities:

1.0<z—2"F <l <rp<z+2F <1

lk—z+2_k 1 z —

P(“a”) = - -
(o) = et T2 T ek

T‘kflk Tk*lk'
P“ »” — —
Co’) = o 2k axak
‘. z4+27F —py 1 TR — %
P(g,") = = -k

z2+27F -z 427k 2 2x2

2.0<z—2F<lp<z42F<r, <1

—k
P(tq”) = . +lk27—k27+22+ ok % B 2Z><_2l*k’“
—k
P(%a”) = - j;;?_ Z_Jrlkg—k - % - 212_2*2’“
P(“q") =03
300<lhk<z—2F<rmp<z24+27F <1
P(%q”)=0
k
P(%q”) = > :];jkz_j;i_ ok % B 22><72Tz€k
—k
P(%q") = Z:;f_ ;:l;—k - % B zri;—zk ’

4. 0<z—2F < z427F <,
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5.rp<z—2F<z+27F <1
P( “ql 77) — O
P( “qt”) — 0
P(g")=1.
Looking at the expressions, and considering error propagation, we can conclude that if we know
k + d bits of I, and rj, we can approximate the probabilities within an error less than 27¢.

Fig. 13. Shooting cases.

Theorem 7. If B is decidable by a smooth scatter machine with unbounded precision and erpo-
nential protocol T, clocked in polynomial time, then B € BPP// logg*.

Proof: Suppose that B is decidable by a SmSM M with unbounded precision and exponential
protocol T, in polynomial time O(n?). Since M on w runs in polynomial time in n = |w| and it
has an exponential time schedule T'(k), we can conclude that the size of the oracle queries must be
at most logarithmic in the size of the input, that is, the size of the oracle queries must be less or
equal to b[log(n)] + ¢. The number of queries to the oracle cannot exceed the running time of the
machine, so that the probabilistic query trees of the SmSM have a depth of at most an®, for some
constant «.

Let v be the error probability of machine M and d € N such that 2¢ > 2a/(1/2 — 7). The
probabilities of each outcome of all oracle queries will be truncated up to the precision 2~ 4 @/log(n)],
according with Proposition 11, in order to obtain error probability of acceptance less than 1/2 —~:

A(oma, 2—d—a]'log(n)"|) < 2% an® x 2—d—a]—log(n)]

- 2an®

~ 92d x 9aflog(n)]
2

= 5 <(1/2—7).

Hence, as explained before the statement, to approximate the probabilities of all queries with
precision 2-4~ 2181 we have to know i + d + a[log(n)] bits of I; and r;, for 1 <14 < b[log(n)] +c.
Consider now 8 = maz{a,b} and a prefix advice function f defined recursively as follows:

L. f(O) = llJ d+C#T1J d+c#l2J d+c#r2~l d+c# T #ch d+c#rcj d+c3

2. f(x+1) is obtained by concatenating f(x) with the bits d+c+ 28z + 1 to d + ¢+ 28z + 2 of
l; and r;, for 1 <14 < Bz + ¢; and then by adding the first d + ¢ + 28x + 23 bits of [; and r; for
Br+c+1<i<Px+c+ S. (All the blocks of bits separated by #.)
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Advice f encodes approximations to the boundary numbers [; and r;, for 1 < i < fxr + ¢ a
Turing machine can read 2(8x + ¢) nonsequential blocks of size 26 from f(x), updating at the
same time the approximations of [; and r; for 1 < i < Sz 4 ¢ and 2 nonsequential blocks of size
d+ c+ 2Bx + 273, to get approximations of [; and r;, for fx +c+ 1 < i < Bz + ¢+ B. Thus, a
Turing machine can have access to approximations of I; and r; with d 4+ ¢ + 28z bits of precision.
Analysing the advice function we can conclude that:

T

|f(2)] =2 x (d+c+2Bz) x (c+ Bx) + . 2(Bx + ¢) = O(2?).

=0

Since we only consider  at most logarithmic in the input size, n, we have that |f([log(n)])| =
O(log?®(n)). Thus, the advice function g(n) = f([log(n)]) provide approximations of I; and 7;, for
1 < <b[log(n)] + ¢, with at least i + d + a[log(n)] bits of precision, as desired.

Therefore, to decide B in polynomial time, using the prefix advice f €log?, we construct a Turing
machine M’ that simulates M on the input word but whenever M queries the oracle with z, M’
compares the query z with the corresponding boundary numbers, i.e., with I, and ry, where k = |z|;
checks the shooting cases; and computes the approximations to the probabilities with an error less
than 2-9-elog(M1 Then M’ simulates a path in the probabilistic query tree, that represents the
oracle consultation, by means of the computed probabilities, by tossing a coin d 4 a[log(n)] times.
Note that this probabilistic tree has a depth of at most an® and the edge difference is less than
2—d=aflog(n)] = After simulating this path, the machine M’ proceeds as M. Since the difference in
the probability of acceptance is bounded by 1/2 — v, M’ gives a wrong answer with probability less
than v+ 1/2 —vy=1/2.

Recalling that the SmSM M runs in polynomial time, that comparing query words with bound-
ary numbers and computing probabilities can also be done in polynomial time, we conclude that B
is decidable in polynomial time with advice g(n) = f([log(n)]). O

4.10 Upper bound for the fixed precision

The error-prone SmSM with fixed precision € has also probabilistic computation trees. Thus, once
again, we need approximations to the boundary numbers (see Sections 4.6, 4.7 and 4.9) and to the
probabilities in order to simulate the oracle whenever the SmSM calls the SmSE with the protocol
Prot_FP.

Consider a SmSM with vertex at position y, fixed precision € = 279, for some positive integer
¢, and physical time ¢. Suppose that the SmSM writes a query z with |z| = k for k € N. Then
consider the two boundary numbers I and ry for the schedule T'(k).

Since Prot_F P(z) will choose uniformly some position 2z’ € [z —¢, z+ €] from where to shoot, we
have eight possible shooting cases represented also in Figure 13. As previously discussed in Section
4.9, we assume that we always have k large enough to have the shooting interval inside ]0, 1],
excluding the cases 6 and 8. We also know that the interval |lx, %[ shortens, so that we consider
that the case 7 does not occur also.

For each one of the remaining cases, from 1 to 5, we will have the following probabilities:
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L.LO0<z—e<lp<rp<zH+e<l1
lp —2z+¢€ 1 z— 1

P“ ”) — —
(“a”) z+e—z+c¢ 2 2¢
T — Ik T — Ik
P“ ” — —
(qt) z+e—z+e¢€ 2¢
- z+e—ryg 1 rp—z
P(“q,”) = =c -

T z4e—z4€ 2 2¢

lp —2z+¢€ 1 z—1
Pél 2 — — _
(“a”) z+e—z+e¢€ 2 2¢
z4+e—1g 1 -z
P(“0”) = -
(“a”) z+e—z+c€ 2 2¢
P((Lq’r”) — 0 ;
3. 0<lp<z—e<r<z4+e<l1
P(“ql”):O
rE—2+€ 1 z—rg
P(“g”) = - - - 7
(“a”) z+e—z+c€ 2 2€
z4+e—r1y 1 r—z
P“r” _ _ _ _ :
(“a:") z+e—z+e¢€ 2 2¢
4. 0<z—e<z4e<l
P(“ql” :1
P(uqt” :0
P(“qrﬁ):()7
b.rmp<z—e<z4e<l1
P(“QZ”):O
P(Hqtﬂ)zo
P(“ T”):l

Considering error propagation, we can conclude that if we know ¢ + d bits of I and ry, then
we can approximate these probabilities with an error at most 2~%. (Note that, if we consider a real
valued €, we can also approximate the probabilities within the desired precision by providing the

bits of € t00.)
We can now prove the upper bound for the fixed precision case.

Theorem 8. If B is decidable by a smooth scatter machine with fized precision e = 279, for some
positive integer q, and exponential protocol T, clocked in polynomial time, then B € BPP// log®*.

Proof: Suppose that B is decidable by a SmSM M, with fixed precision ¢ = 279, for some positive
integer ¢, and exponential protocol T', in polynomial time O(n®). Since M has an exponential time
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schedule T'(k), we can conclude that the size of the oracle queries must be at most logarithmic in
the size of the input, i.e., less then or equal to b[log(n)] + ¢. Moreover, there exists a constant o
such that the number of queries does not exceed an® and, consequently, the probabilistic query
trees of the SmSM will have a depth of at most an®.

Let v be the error probability of machine M and d € N such that 2¢ > 2a/(1/2 — «). The
probabilities of each outcome of all oracle queries will be truncated up to the precision 2~ 4—@/log(n)]
according with Proposition 11, in order to obtain error probability of acceptance less than 1/2 —~:

A(ana72—d—a]—log(n)"|) < 2% an® x 2—d—a]—log(n)]

B 2an®

~ 9d y 9a[log(n)]
20

= 2 <(1/2—7).

Hence to approximate the probabilities of all queries with precision 2~4~¢M°2(")1 we have to know
q + d + a[log(n)] bits of I; and r;, for 1 < i < b[log(n)] + ¢. Consider the prefix advice function f
defined recursively as follows:

L f(0) = q#lil gra#rilgrattlel gra#tralgra#t - - - #le| qra#trel g+as
2. f(xz + 1) is obtained by concatenating f(x) with the bits ¢+ d+ax +1to ¢+ d+ ax +a

of I; and r;, for 1 < i < bz + ¢; then by adding the first ¢ + d + ax + a bits of I; and r; for
br 4+ c+1<i<bx+ c+0b. All the blocks of bits are separated by #.

From advice f(z) a Turing machine has access to the value ¢ (and then compute ¢), and to the
approximations of the boundary numbers [; and r;, for 1 < i < bx + ¢ by doing the following: the
machine reads 2(bx + ¢) nonsequential blocks of size a from f(x), updating at the same time the
approximations of [; and r;, for 1 <14 < bx + ¢, and 2b nonsequential blocks of size ¢ + d + ax + a,
to get approximations of I; and r;, for bx +c+1 < i < bx + ¢+ b. Thus, given advice f(x), a Turing
machine can approximate [; and r; with ¢ + d 4+ az bits of precision, for 1 < i < bx + c.

Analyzing the advice function we can conclude that:

x
[f(z)| <2x (g+d+az) x (br+c)+ D 20bx+c) = O(a?) .
i=0

Since we only consider x at most logarithmic in the input size, n, we have that |f([log(n)])| =
O(log*(n)). Thus, the advice function g(n) = f([log(n)]) provide approximations of I; and r;, for
1 < <b[log(n)] + ¢, with at least ¢ + d + a[log(n)] bits of precision, as desired.

Therefore, to decide B in polynomial time on help by a prefix advice f € log?, we construct a
Turing machine M’ that simulates M on the input word but whenever M queries the oracle with
z, M’ compares the query with the corresponding boundary numbers, i.e., with /.| and 7|,|; checks
the shooting cases; and computes the approximations to the probabilities with an error less than
2—d—aflog(n)] Then M’ simulates a path in the probabilistic query tree, that represents the oracle
consultation, by means of the computed probabilities, by tossing a coin d + a[log(n)] times. Note
that this probabilistic query tree has a depth of at most an® and that the edge difference is less
than 2—4-allog(®)] After simulating this path the machine M’ proceeds the computation as M.

Turing machine M’ gives a wrong answer with probability less than y+1/2—~ = 1/2. Recalling
that the SmSM M runs in polynomial time, that comparing query words with boundary numbers
and computing probabilities can also be done in polynomial time, we conclude that B is decidable
in polynomial time with advice g(n) = f([log(n)]). O



An Analogue-digital Model of Computation 31

5 Upper bound with explicit time technique

As we have seen in the previous sections, the use of boundary numbers raises the question of
whether we really can achieve the upper bound of BPP// 1og2*. We can equally ask, under what
circumstances is the upper bound actually BPP//logx? Here we consider a special case where the
upper bound does reduce to BPP//logx.

Using the physical time explicitly means that, given an exact expression for the experimental
time for a SmSM, we take good use of it to compute the boundary numbers. We assume that we
have an exact expression for the experimental time ¢(z) = f(z — y) for cannon position z As usual,
the vertex position y is unknown, but we have the explicit form of the function f. Of course, this
approach can cost a lot of computational resources since the the function f may be computationally
difficult to compute.

In order to understand better the explicit time idea note that, in the unbounded precision case,
we use the advice function to encode approximations of the boundary numbers allowing to simulate
the oracle answers and to compute approximations to the probabilities. The simplest formula for
an explicit time consistent with our assumptions in (1) would be, for some constant C' > 0,

e
ly — 2|

t(2) (3)
To make use of this formula, we need C' to be computable, but also we need bounds on how quickly
we can compute approximations to C. To further simplify matters, we shall assume that C' = 1.

Suppose that the SmSM writes a query z with |z| = k for & € N. Then consider the two
boundary numbers I, and r for the schedule T'(k). If we consider the explicit time, as the boundary
numbers satisfy the property ¢(ly) = t(rx) = T'(k), we have

1

lk:yiﬁk‘) y TE=YF

1
Thus, given approximations to y, we can obtain approximations of [ and 7. We consider that
the schedule T is internal to the Turing machine, i.e. the Turing machine is capable of computing
it up to any precision. Thus, by looking at the expressions and considering the error propagation
rules, we conclude that if we have d + 1 bits of precision of y and A = 1/T'(k), we can compute the
boundary numbers with an error less than 27¢.

Theorem 9. If B is decidable by a smooth scatter machine with unbounded precision and expo-
nential protocol T, clocked in polynomial time, then, considering explicit time in the form (8) with
C =1, B € BPP//logx.

Proof: We resume to the proof of Theorem 7, providing now the advice function that solves the
problem in BPP//logx. All variables and constants are as in the proof of Theorem 7.

Consider a SmSM M running in polynomial time and with schedule T'(k), exponential in k. By
Theorem 7, we know that B can be decided by a probabilistic Turing machine, M’ in polynomial
time with access to an advice function f of size O(log®(n)), which contains the first d + ¢ + 28z
bits of I; and r; for 1 <i < Bz + c.

We consider another function g, defined recursively as follows: ¢(0) is the concatenation of the
first d+c bits of y; g(x+1) is the concatenation of g(x) with the bits d+c+28z+1 to d+c+28x+20
of y. We can use g(z) to get the first d + ¢ 4+ 28z bits of y, therefore, by the previous reasoning,
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we can use the approximations of y in order to compute the approximation of all I and ry, for
1 <k < bzx+c, with d+ c+ 28z bits of precision as the Turing machine can compute in polynomial
time A with d 4 ¢ + 28 bits of precision.

Analyzing g(x) we conclude that |g(z)| = (d + ¢+ 28z) + (z + 1) = O(x). As in our case as x
will be at most logarithmic in the size of the input we conclude that |g([log(n)])| = O([log(n)]).

Thus, we define a probabilistic Turing machine M” that on input w simulates M’ on w but
instead of using the advice f(Jwl|), uses the advice g(|w]). Since we can recover the information of
f from g in polynomial time and M’ runs in polynomial time too, we conclude that our Turing
machine runs in polynomial time and decides B. |

Using Theorems 3 and 9 we can trivially state the following corollary.

Corollary 2. Considering explicit time in the form (3) with C = 1, B is decidable by a smooth
scatter machine with unbounded precision and exponential protocol T, clocked in polynomial time,
if and only if B € BPP//logx.

Theorem 10. If B is decidable by a smooth scatter machine with fized precision e =279, for some
positive integer q, and exponential protocol T, clocked in polynomial time, then, considering explicit

time in the form (3) with C =1, B € BPP//logx.

Proof: We resume to the proof of Theorem 8, providing now the advice function that solves the
problem in BPP//log*. All variables and constants are as in the proof of Theorem 8.

Consider a SmSM M running in polynomial time, with fixed precision ¢ = 277 for some
positive integer ¢, and a schedule T'(k), exponential in k. By Theorem 8, we know that B can be
decided by a probabilistic Turing machine M’ in polynomial time with access to an advice function
f of size O(log?(n)), which contains the first ¢ + d + az bits of I; and r; for 1 < i < bz + ¢ and the
the value q.

We consider another function g, defined recursively as follows: ¢g(0) is the concatenation of ¢
with the first ¢ + d bits of y; g(x + 1) is the concatenation of g(x) with the bits ¢ + d + 1 + ax to
g+d+14ax+a of y. We can use g(z) to get € and to get the first ¢ + d + ax bits of y. Therefore,
by the previous reasoning, we can use the approximations of y to compute the approximation of all
I and ri for 1 < k < bx + ¢ with ¢ 4+ d + az bits of precision, as the Turing machine can compute
in polynomial time A with ¢ + d + ax bits of precision.

Analyzing g(x) we conclude that |g(z)| = (¢+d+azx)+ (x +2) = O(x). As in our case as x will
be at most logarithmic in the size of the input we conclude that |g([log(n)])] = O(log(n)).

Thus, we define a probabilistic Turing machine M" that on input w simulates M’ on w but
instead of using the advice f(Jwl|), uses the advice g(|w]). Since we can recover the information of
f from ¢ in polynomial time and M’ runs in polynomial time too we conclude that our Turing
machine runs in polynomial time and decides B. O

Using Theorems 4 and 10 we can trivially state the following corollary:

Corollary 3. Considering explicit time in the form (3) with C = 1, B is decidable by a smooth
scatter machine with fized precision € = 279, for some positive integer q, and exponential protocol
T, clocked in polynomial time, if and only if B € BPP//logx.
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6 Conclusion

In the past two decades there was a growing of interest in non-conventional models of computation
inspired by the natural processes in biology, physics and chemistry. Some of these models explore
parallel processing, some others see advantage in analogue components translated into real numbers,
appearing as parameters in the systems. In this paper we explored an abstraction of the last category
of models, studying an analogue-digital (hybrid) model of computation where the Turing machine
is coupled with a physical oracle.

Abstracting from other models, the model we propose is introduced as a laboratory, where the
computational power can be studied depending on the protocol between the Turing machine and the
analogue component — being it infinite precision, unbounded precision and fixed precision, and still
open to other forms of communication. The physical oracle itself is a measurement that the Turing
machine performs in the physical world as an abstract scientist. The communication between the
Turing machine and the physical oracle is made through a query tape where the parameter needed
to initialize the experiment is written. The consultation of the analogue oracle has a cost that is
not just one time step of computation as a consequence of the unavoidable time costs inherent to
the physical process.

We considered a particular physical oracle, the smooth scatter experiment or SmSE. This
experiment is a symmetric two-sided measurement of distance and it is governed by elementary
Newtonian mechanics. The SmSFE belongs to the class of physical oracles with exponential physical
time ¢ (the intrinsic time of the experiment) characterized by the following axioms:

1. Real values — The experiment is designed to find a physical unknown parameter y € 10, 1[;

2. Queries — Each query is a binary string 225 - - - 2z denoting a dyadic rational z = 0.2125 - - - 2g;

3. Finite output — The outcome is either y < z, y > z, with possible mistakes, or timeout;

4. Protocol timer — There is a time schedule T': N — N, so that the time given to any query of
length k is bounded by T'(k);

5. Sufficiency of the protocol — If |y — z| > 2~ 12l then the result is not timeout;

6. Repeatability — Identical queries will result in identical results including identical timeouts.

This particular set of oracles led to a conjecture, already discussed in [20] and [5], stating that
for all “reasonable” physical theories and for all measurements based on them, the physical time of
the experiment is at least exponential, i.e., the time needed to access the n-th bit of the parameter
being measured is at least exponential in n.

6.1 The computational power of the analogue-digital machine

Using different protocols we get different ways of communication between the Turing machine and
the analogue device — the SmSEFE in the present case (see Section 3). Different protocols relate
with different measurement algorithms (see Section 3.2), defining three different types of smooth
scatter machine or SmSM.

Codifying in the vertex of a SmSFE enough information, we were able to use the oracle to
both generate sequences of non-biased coin tosses and, performing a measurement, solving decision
problems of a suitable nonuniform complexity class. To measure the position of the vertex, we
considered a bound for the consultation time — a time schedule —, exponential in the precision
(number of bits) of the query. Note that, although the lower bounds were proved for a specific
analogue-digital machine — the SmSM —, they are the same for every oracle we studied (see [7]).
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Infinite] Unbounded Fixed
Lower Bound| P/ logx BPP//logx BPP//logx
Upper Bound| P/logx| BPP//log”* BPP//log®

Exponential schedule|Exponential schedule

Upper Bound| — BPP//logx BPP//logx

Explicit Time Exponential schedule|Exponential schedule

Table 1. Main non-uniform complexity classes relative to the different protocols of the analogue-digital
machine clocked in polynomial time.

Then we constructed advice functions encoding enough information to simulate SmSE queries
and established upper bounds, namely we proved that logarithmic squared size advice suffice to
encode approximations to the so-called boundary numbers (see Section 4.6) as in [10]. Afterwards,
again as in [10], we used an explicit time technique to reduce logarithmic squared advice just to
logarithmic advice. Since boundary numbers exist, at least for the two-sided oracles with exponential
physical time, we also conclude that the upper bounds are common to all two-sided physical oracles
with such physical times.

Our statements on the computational power of the analogue-digital machine clocked in polyno-
mial time are summarized in the table of Figure 1.

6.2 Open problems

We have two non-trivial open problems related to oracles with exponential consultation time: (a) in
the infinite precision case, to know if the lower and the upper bounds can be made to coincide
without assumptions on the time schedule and (b) in the error-prone cases, to know if the lower
and the upper bounds can be made to coincide without using the explicit time technique, namely, it
is not known if there exists a set not belonging BPP//log*, decidable by a smooth scatter machine
(or any other equivalent two-sided machine) in polynomial time.

Acknowledgements. To Bill Tantau for the use of pgf/TikZ applications. We thank Andrew
Adamatzky for inviting this paper to the commemorative volume of the 10th Anniversary of the
International Journal of Unconventional Computing.
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Appendix A: Nonuniform complexity classes

A nonuniform complexity class is a way of characterising families {C,, } nen of finite machines, such
like logic circuits, where the element C,, decides a restriction of some problem to inputs of size n.
Nonuniformity arises because for n # m, C,, may be unrelated to C,,; eventually, there is a distinct
algorithm for each input size (see [17]). The elements of a nonuniform class can be unified by means
of a (possibly noncomputable) advice function, as introduced in Section 4, making up just one
algorithm for all input sizes. The values of such a function provided with the inputs add the extra
information needed to perform the computations (see [18]).

The nonuniform complexity classes have an important role in the Complexity Theory. The class
P /poly contains the undecidable halting set {0": n is the encoding of a Turing machine that halts
on input 0}, and it corresponds to the set of families decidable by a polynomial size circuit. The
class P/log also contains the halting set defined as {02”: n is the encoding of a Turing machine
that halts on input 0}.

The definition of nonuniform complexity classes was given in Section 4. Generally we consider
four cases: C/F, C/Fx, C//F, and C//Fx. The second and the fourth cases are small variations of
the first and third, respectively. To understand the difference, note that C/F is the class of sets B
for which there exists a set A € C and an advice function f € F such that, for every w € {0,1}*,
w € Biff (w, f(Jw|)) € A. In this case, the advice function is fixed after choosing the Turing machine
that decides the set A. As it is more intuitive to fix the Turing machine after choosing the suitable
advice function, we considered a less restrictive definition, the type C//F: the class of sets B for
which, given an advice function f € T, there exists a set A € C such that, for every w € {0, 1}*,
w € B iff (w, f(Jw])) € A.

The following structural relations hold between the nonuniform classes used throughout this
paper:

P/logx C BPP/logx C BPP//logx .

This result is trivial since we can just use the same Turing machine and the same advice function.

Appendix B: The Cantor set

We prove Proposition 6 (see [10] and [12] for further details). This proposition allows us to frame
the distance between a dyadic rational and a real number. Recall that a dyadic rational is a number
of the form n/2*, where n is an integer and k is a positive integer. If such a number belongs to Cs
then it is composed by triplets of the form 001, 010 or 100.

Proposition 12. For every x € C3 and for every dyadic rational z € 10,1 with size |z|= m, if
|o — z| < 1/27F5 then the binary expansion of x and z coincide in the first i bits and |x — z| >
1/27(m+10) .

Proof: Suppose that  and z coincide in the first ¢ — 1 bits and differ in the i-th bit. We have two
possible cases:

z < x: In this case z; = 0 and z; = 1 and the worst case for the difference occur when the binary
expansion for z after i-th position begins with a sequence of 1s and the binary expansion for x after
i-th position begins with a sequence of 0s.
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i lower bound of |z — z|
z .. 011111 - - -
x(case i =3 0) |---100100- - - > 9—(i+3)
z(case i =3 1) |--.100001- - > 9—(i+5)
x(case i =3 2) |---100010- - - > 9—(i+4)

z > x: In this case z; = 1 and z; = 0 and the worst case for the difference occur when the binary
expansion for z after i-th position begins with a sequence of Os and the binary expansion for x after
i-th position begins with a sequence of 1s:

i lower bound of |z — 2|
z ..-1000- - -
x(case i =3 0) | ---0100--- S 9—(i+2)
z(case i=31) | ---0101--- S 9—(i+2)
z(case i =32) | ---0110--- > 9—(i+3)

We can conclude that in any case |z — 2| > 2705, Thus, if |z — 2| < 2705 then z an z
coincide in the first i bits.

The binary expansion of z after some position m is exclusively composed by 0s and since z € Cs,
it has at most 4 consecutive Os after the m-th bit. Thus, supposing that z and z coincide up to
m-~th position, after this position they can coincide at most in the next 4 positions so they cannot
coincide in m + 5 bits. Therefore, by the first part of the statement, |z — z| > 2~ (m+10), O

Appendix C: Random sequences

Propositions 7 and 8 show how the SmSFE with unbounded or fixed precision could be seen as a
biased coin. Given a biased coin, as stated by Proposition 9, we can simulate a fair sequence of coin
tosses. Herein, we present the proof of such a statement.

Proposition 13. Given a biased coin with probability of heads § € 10,1[ and a constant v €]0, 1],
we can simulate, up to probability > v, a sequence of independent fair coin tosses of length n by
performing a linear number of biased coin tosses.

Proof: Cousider that we have a biased coin with probability of heads § € |0, 1[. To simulate a fair
coin toss we perform the following algorithm: Toss the biased coin twice and,

1. If the output is HT then output H,;
2. If the output is TH then output 7T
3. If the output is HH or TT then repeat algorithm.
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As the probability of HT is equal to T H, we have the same probability of getting a H and a T
and thus we simulate a fair coin. The probability that the algorithm halts in one run is r = 2¢(1—q)
and the probability of run it again is s = 1 —4§. We want to run the algorithm until we get a sequence
of fair coin tosses with size n. To get this sequence we may need to run the algorithm more than n
times and thus we will study the total number of coin tosses required by considering the variable
T, denoting the number of runs until we get n fair coin tosses. The value T}, is a random variable
that is given by the negative binomial distribution

T, £ NB(n,s) .
In this case we have the following mean and variance:
n
u=—+n=—, v =—.
r r

Now, using the Chebyshev’s inequality, we get

v
P(‘Tn_ﬂ|2t)§tj~
And thus, by considering t = an, for some a, we get
ns 1

P(T, > < < .
(Tn 2 p+ am) < r2(an)? ~ r2a2n

Since the worst case is for n = 1, in order to get the probability of failure less than 1 — v we need

1
r/(1=7)

Noticing that T,, > u + an, we find that the total number of runs is

a >

L 1 " n (1 N 1 )
— 4+ ——XxXn=— — .
roory/(1=7) r vi=v
Since we toss a coin two times in each run, we get that the total number of coin tosses is linear in n

n

5(1—5)<1+\/1177>‘




