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A study has been made of the thermal stresses reulting near the
joint of a cylinder and internal bulkhead due to arbitrary temperature
distributions in the configuration and to the consequent compatability
forces and moments at the joint, The method is general enough to permit
the inclusion of joint thermal resistance but certain limitations are placed
on the form of the axial temperature distribution in the cylinder,

An approximate method to determmine the transient temperatures for
completely general heating programmes is also proposed,
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1. Introduction

The purpose of this note is to develop formulae for the thermal ro-
stress distributions in thin cylindrical shells and internal stiffening
bulkheads which arise as a consequence of the restraint forces at the
cylinder-bulkhead joint due to differential expansion of the two components,
The physical nature of the prdblem can easily be visualised and one obvious
application occurs in the kinetic heating of any typical missile or aircraft
fuselage,

Because the thin shell attains a higher temperature quicker than
the thicker, internal bulkhead, differential expansion will result. A
system of self-equilibrating forces and moments must therefore be applied
to the two components at the joint in order to meke the resultant deformations
of shell and bulkhead compatible,

Przemieniecki (Ref,1) has already considered this problem and
presented same very useful results, The approach in Ref, 1 was to assume
a rather restricted flight programme i,e, constant height, instantaneous
acceleration and then to derive exactly expressions for the transient
temperature distributions in the bulkhead diaphragm, The main assumptions
made in the structural analysis were that bulkhead spacing was so large
that restraint effects at any one joint did not influence conditions at
other joints, and that the cylinder temperature was constant axially at any
time,

The former assumption regarding bulkhead spacing should be valid
for most practical configurations, since the discontinuity stresses introduced
at the joints are extremely localised; and this assumption will also be made
in the present note, The latter assumption cannot be easily Justified
since it is known that heavy internal members attached to the shell act as
heat sinks thereby lowering the local shell temperature. To remedy this
therefore the thermal stress problem will now be solved for arbitrary
temperature distributions in both shell and bulkhead, Suitable approximations
to realistic temperature distributions will then be made yielding
convenient thermal stress formulee,




L Theory

For the configuration shown in Fig. 1 it will be assumed that the
temperatures in shell and bulkhead are constant through their thickness
but vary axially and radially respectively.

The veriation along the cylinder will be T = F(x) and in the

bulkhead Ty = £(r).

2,1, Thermal expansion effects in the cylinder

Consider the cylinder separated from the bulkhead and consider a
small ring element, dx, separated from the rest of the cylinder., The radial
expansion of the ring due to a temperature change T a is equal to &, RT ot

It produces no stress in the ring,
Tmagine now an external pressure p which is applied to the ring

to restore it to its original diameter, The contraction due to p must
equal the éxpansion due to Toe Hence,

@
R
¥ = CCCRTC »
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and therefore Y w BRY 3 (1)
b 5 - o ik |

Since T = F(x), pressure p is also a function of x and prodices a hoop

stress in the ring, The remaining analysis follows that of Ref. 2 (p.423)
exactly. Since there is no actual applied pressure on the complete cylinder
a pressure of ~p must be applied to the now-undisturbed cylinder, which will
cancel the hoop pressure due to p but introduce longitudinal bending
stresses as the sole equivalent of the axial temperature distribution,

The stresses produced by ~p can be found if the deformetion mode
of the cylinder shell is kmown, The skin deflection, w, (positive inwards
towarcl)s the axis) is given by the differential equation (Ref. 2 p,392
€q.230),
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Substituting from eq,(1),

ale E a Tt
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The general solution of this equation is,

w = ‘B { cos PBx & K sin ﬁx] -bx E{BCosﬁ’x + K sinﬁx] KT (L)
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where K1 veseoK, are unknown constants depending on the boundary conditions

A

at the ends of the cylinders, and
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It should be noted that in assuming w = -—KBTC to be the particular integral

of eq,(3) it is implicitly assumed that the function T, = F(x) =
L

ZO Fm Xm, In other words if F is a polynomial in x it cannot be of
m=

higher order than a cubic.

For a cylinder with moderately high bulkhead spacing the boundary
conditions at bulkheads distant from x = 0 will not influence the conditions

existing at x = O, In other words K1 = K2 = 0 and
W o= e P LK cos fBX KLFsin px | - K5’I‘C (5)

To debtermine 1{5, K 4t is convenient to assume for the moment

that the cylincer has a free edge at x = O and therefore
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From eq. (5)
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Where Tgo is value of Tg at x = O ete,
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Therefore eq.(5) becomes
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,and at x = O,
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2,2, Thermal Expansion Effects in the Bulkhead

If the temperature distribution in the bulkhead is exi-symmetric .

and given by the function T_ = f(r) it can be shown that the radial expansion
of the bulkhead at the ocuter circumference is given by
Wy e . Ty rdr , (9)
)

and because it has been assumed that the temperature is constant through
the thickness of the bulkhead no curvature of the bulkhead will result,
and hence no change in slope at the circumference,

2,3, Compatibility of Deformations

Having now considered the deformations in both shell(2,1) and
bulkhead (2,2) due to thermal expansion it is necessary to determine the
system of internal equilibrating forces and moments that will make the
overall defomations of shell and bulkhead compatible,

To this end we assume that conditions in the cylinder on both sides
of the bulkhead in Fig, 1 are identical., Hence if the bulkheads are spaced
far enough apart, the results of Ref. 2 (p.393 eq.232) can be applied directly,

Therefore,

3%

e

05>

W =

E?Mo( sinfx = cosfx) = roosﬁxl (10)

expresses the deflection mode for the right-hand portion of Fig, 1 due to
applied bending moments, MO, and shearing forces QO distributed uniformly
along the circumferential eédge x = 0, (For sign cénvention see Ref. 2

P.392).

If the radial shear force recaction on the bulkhead in Fig. 1 is 4
P, then by symmetry Q_ = = B/2 and the value of dw) is given by,
dx
. o
(gg) - —— [eu, - %27 . (11)
co 26D

To calculate the moment M_ which appears in eq, (11) the boundery condition
for the shell at the joint is used viz, that the net slope at x = O must
be zero,




Therefore from eqs, (8) and (11),

4 (T” Tgo> A g
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Substituting eq. (13) into eq.(10) gives

'*,BX. TI T” Tlll
w = —--%—— [(sin,@x ~cosfx) { + ﬁBDK [ + GC 021 }Ecouﬁﬁj (14)
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which added to eq,(7) gives the overall deformation mode of the shell,

Hence,
pF P Tgo
' ' (sinfx + cospx) +,6’3 DK {sinﬁx( A + ---3-> ~cosfx
2,55 5 op

<T’ Z;) }— K, (45)

Therefore at x = 0 the shell deformation is

2/9313 L - FIK { o+%-9 —%ﬂ (16)

Similarly, for the bulkhead, the resultant rad ial displacement due to the
applied force P and the thermal expansion is,

- _{:PM ~ V)R 2a, '/R T } (17)

E, 4 *+* R B

Equating egs. (16) and (17) the value of P can be determined, which on
rearrangement yield the result ’
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2¢4. Thermal Stresses in Cylindrical Shells

From egs, (14) and (15) it is now possible to determine the values
of the various stress resultants and stress couples in the shell,
Eq. (15) is the sum of the two equations, eq.(7) and eq.(44). The former
represents the deformation mode of a. free ended cylinder and is a function
of axial temperature distribution only, The latter derives from the
compatability relationships between cylinder and bulkhead and is a function
thercfore of the external forces and moments applied to the end of the
eylinder (x = 0),

Since thermal expension effects in the free cylinder do not
introduce hoop stresses (sce Sect. 2.1), the eq,(7) is not considered in
calculating the circumferential stress resultant N¢ , Hence eq.(1L) gives
N¢ directly, To determine the remaining stress resultants and stress
couples eq,(15) is used, Hence,

Al (19)

X

T/ T i
(¥16] CcO CcO
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7 [z ot s sinﬂx(%) ,,cosﬁx(gg;)}] .5 g;é') (21
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Mp = v M » (23)
Ec ccc'b
where K, = 55 end P is given by eq, (18)
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2,5, Thermal Stresses in Circular Bulkhead

The stress dAistributicn in a circular bulkhead of uniform
thickness subjected to arbitrary axi~symmetrical distributin of temperature
is given by (Ref, 3, p.366)

%

and O'Qr are the radial and circumferential stresses resp'ectively

R

"rTF“isEﬁs[i‘szTBrdr"%zerBrdr] (24)
- ;aBEB{~TB,12 fRTBrdr+ i—z !rTBrdr} (25)

0

where O
Tp

due to temperature alone, In addition to these stresses there is a uniform
stress field throughout the bulkhead due to the transverse shear in the shell.
This uniform stress is given by P and is added to both equations (24) and

d

(25) to give total values of o, and Og .



3¢  Thermal Stresses for Arbitrary Temperature Distributions

In section 2 farmulae have been developed giving the thermal stress
distributions in a bulkhead and cylinder combination in terms of arbitrary
temperature distributions radially in the bulkhead and a ially in the
cylinder,

It is possible therefore to use the formulae with either experimental
or theoretical temperature distributions. In either case the axial temperature
distribution in the cylinder should be expressed as a polynomial. in x
up to the third power, even if the true variation is of a higher order
(see Sect, 2.1), To minimise any errors in approximating the exact, arbitrary
distribution to a polynomial of the form

T, :B‘-(x):FO.;.Fx.;.FZXZ.;.FBJ?, (26)

1

the choice of constants FO eveoeol, should be such as to satisfy conditions
at the joint with the true ‘cemperaéure distribution,

R Uo 2 T M
2
F'l = Tc:o
2FZ - Tgo 4 (27)
- 2
6F3 = D2

In this way no errors will be introduced into egs., (13), (16) and
(18) and in Sect. 2.4 the only errors introduced into the various stress
resultants and stress couples will be those in the functicn T away from the
Joint, Since the greatest restraint thermsl stresses are exp%ctecl at the
joint with a rapid diminution as x increases, the errors should therefore
be small,
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L., Assumed Temperature Distribution

In a recent paper (Ref,)) Biot showed that by assuming arbitrary,
but realistic, temperature distribution modes in skin-web cambinations,
fairly simple snnlyses enabled the complete temperature time histaries of -
such conmbinations to be obtained, He assumed that the temperature distribution
in the web should be parabolic and the skin temperature would be constant
except in the vicinity of the internal menmber which caused a local parabolic
variation,

Without eny justification such distributions will be assumed here
for the analogous case of a cylinder with a bulkhead,

There are two phases in the heating of the configuration shown
in Fig., 1, Initially the heat penetrates radially into the bulkhead ami
the temperature at the centre has not yet begun to rise. The penetration
depth at any time is denoted by q and the corresponding assumed temperature
distributions are shown in Fig, 2. It will be noticed that a temperature
drop is considered over the cylinder bulkhead joint.

The corresponding temperature distributions during the second
phase of heating, i,e, after the temperature at the centre has begun to
rise, are shown in Fig, 3. This phase begins after a time 'b1 known as the
"transit" time,

Biot assumed that for the first heating phase l= q and he did not
consider the second heating phase in detail, In this analysis the parameters
1, q will retain their separate identities during both heating phases,

The temperature distributions shown in Figs, 2 and 3 can be expressed
thus,

3
)

=Ty = (T, =T, “%)2 far x < 1 } (28)

:TO for x 5 1

. i "
R=ger &
iy 5 L q ] forr>R - g

‘ :} for'i:,O<'l:‘1 }
=0 for r<R = q

T | Y
3+ (T2—T3)<§> far > %, }

0
I

(29)
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The boundary condition at the bulkhead cylinder joint, where a
drop in temperature of T‘I - ’l‘2 is assumed, can be written,

k omm = Hy(T, ~T,) , T =R, (30)

where Hj is the thermal conductance of the joint and kB is the thermal

conductivity of the bulkhead material, Using eq, (29) the boundary
condition gives,

T2 T1 /(1.;.—21-{—19-) fort(t‘l | \\

B,
Jq

' 2 RH.
T /<1+——k-—b-> + T /<1+-—-i> for t >t 3.
1 HJ-R 3 Zk.b 1/

Equation (31) can be generalised to give

1

(31)

I

B T, 8
Ty s e (32)
(1+ '._;l’) (1 .,.(—;l)

where n = g and € is the non-dimensional parameter known as the relative

and in the first phase n <1, T, = 0; whilst

R
thermal resistance <- —21%3) 3

- HJ.R !
in the second phase, n = 1, ’I‘3 £ 0O,
It is seen that two extreme values of the parameter € can be
considered, corresponding to,
(a) Zero joint thermal resistance or 6 = 0
(b) Infinite joint thermal resistance or & = a .
Using the foregoing formulae it can be shown that the values of

the parameters necessary to determine P (eq,(18)) and hence solve the
thermal stress problem are :~-

R I = n2
fTbr dr = ""Té"') R (T, + T3) (33)
5 .
T T o
co S
134 = 2(r -7 )
co -1 o) 1
" = (34)
lIco D __iQ<To - T1)
iod s 0
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Hence the thermal stress problem can be solved if the values of the
temperatures T '""TB’ and the parameter q are known as functions of
time, Biot!s analysis”has been developed for this purpose for the analogous
case of the skin-web combintation (Ref, 5) end will be similarly developed
here in Appendix 1,

5., Possible Modifications to The Theory

5.1, Assumption of Simply Supported Edge Conditions on the Shell
at the Joint

In the analysis of section 2,3 it was assumed that clamped edge
conditions existed at the cylinder - bulkhead joint. Such conditions could
result from the method of attachment and/or the fact that the cylinder is
continuous over the joint, If however the cylinder is discontinucus at the
joint and depending on the method of attachment, simply-supported edge
conditions may pertain,

The effect of this modification on the analysis of Sect. 2.3
is to neglect the compatability of slopes at the joint and to remove the
distributed moment M_, Hence eq.(1) becomes

-x
W Q_ cos pBx, (35)
dgfop. 40). ©

Using the fact that Q_ = -% the addition of egs, (8) and (35) gives

the following equation far the resultant shell defoarmation, at x = O

Wco=';'jﬁ‘3; L—E -%Ks{zmcoz—zg-%} (36)

On equating the shell deformations and bulkhead deformations at x = O
the following value of P is obtained.

R
foo _Too| _ 1B
P =20E300— _2_!?2_ 2@3] R2 [ %;‘dr
2 R 2(1 = v) '
[Egt— . ]

The values of the stress-couples, stress resultants in the shell

and stresses in the bulkhead follow from equations (37) end (35) in the
same mammer as in Sectg, 2.4 and 2,5,

(37




Comparing eqs, (37) and (18) it can be seen that the former
equation gives the lower value of P and hence the lower thermal stresses,

5.2, Use of Circular Frames (See Ref. 1)

If circular frames are used as internal stiffening members instead
of eircular bulkheads the soluticn is obtained by comparing radial dis-
placements of the joint between the frame and the shell, Assuming AF

to be the cross-sectional area of the frame with a mean frame temperature
of T% and a mean radius of RF then the frame radial displacement at the
joint is

vv:-&c%%+f%ﬂ%%1. G@

Equating eqs, (38) and (16) yields the result
4 /4

T T
_ co _ _co 2 o T
2, oot % "5 |-—EETF
P = ‘ (39)

; 2
BR 2R
[ Bt ¥ s
© R Agl
<< 21 - VB-‘)

e

Since, in general, 2 RF
(cf. eq,(18))

ard, acTco = aFTE% , the value of P in eq,(39)
R

should be small and severe thermal stresses should not result from frame
stiffening,

5.3. Use of a Cylindrical Shell Stiffened by Longitudinal Stiffeners
(See Ref,1)

The preceding analyses which have been developed for thin isotropic
cylindrical shells is also applicable to shells with longitudinal stiffeners,
The main effect is to neglect flexural rigidity in the circumferential
direction and to let D = E I/b where I is the moment of inertia of the
stringer-skin combination and b is the stringer pitch, With this
modification the previous analyses are identical except that M¢ = o,
and P is replaced by Y , where Y= D ‘bc

) TR®

P———
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6, Conclusions

The general problem of the thermal stresses resulting in a cylinder
pulkhead configuration due to arbitrary temperature distributions has been

" considered and suitsble formulae derived., The method is restricted in that
the axial temperature variaticn in the shell must be a polynomial of
positive order n less than or equal to three; but it is general enough to
permit the inclusion of joint resistance. An approach has been suggested
for minimising errors incurred in approximating any arbitrary tenperature
distribution to satisfay the above restriction,

The method ideally awaits the development of a concise theory
to predict the transient temperature distributions in both cylinder and
bulkhead, One approximate method based on the assumption of parab olic
temperature distributions is presented in the Appendix giving formulae
sufficient to determine the complete transient temperature distributicns.
The accuracy of this method has not been assessed by comparison with either
experimental or more precise theoretieal results. It is considered that
the results of the Appendix can be safely applied in project design studies
at least.
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8. Notation

Frame cross-secticnal area

Stringer pitch in stiffened shell

2
Heat Parameter = -t GB/km

o C"h__j!>.

=2 29 o

c Specific heat/unit volume
Bulkhead thickness
Shell flexural rigidity
Youngs modulus
f(r) Radial temperature distribution funetion in bulkhead

F(x) ,F'm Axial temperature distribution functions in shell

G Heat flow per unit length into the shell, from the boundary
layer, at the joint (eq, A,5)

h Convective heat transfer coefficient

Hj Jjoint thermal conductance

3 Moment of inertia of the skin-stringer cambinaticn

k thermal conductivity

K, Parometers defined in Text (eq.(L4); egs,(20~(22))

p ¢ Temperature distribution parameter

m Power of x in polynomial expression for F(x)

MX,M;S Bending moments per unit length about 4 and x axes respectively

n (= ¥R)

Nx’N 4 Stress = resultants in x and 4 directions respectively
P hypothetical pressure (eq. (1))

P Radial reaction between the shell and bulkhead or frame

Penetration depth of temperature rise in bulkhead

Q

Qx Transverse shear force in shell per unit length



B

O‘:c" ©
€

Suffices

co

031 ,2’3

Hs

"G =

Radial co=ordinate in bulkhead

Radius of cylinder

Mean radius of Frame

Shell thickness; to=‘cime H t1=transit time
Temperature rise above the initial value
Adiabatic wall temperature

Radial displacement

Go=ordinate measured along shell axis

Coefficient of expansion 1
3(1- v8)]"

Shell parameter =| Sl
R2 t2

Stefan-Boltzman Radiation constant
Poissons ratio ‘
2l
Relative thermal resistance (= TR
' J

Angle denoting position on shell' penphery

Aoy (T aT5) (4en)

Heat sink parameter due to bulkhead <= 1 % 5% o T >
c1

Radial and tangential stresses on the bulkhead respectively

Emmissivity

Cylinder

Bulkhead

Frame

at x = 0 in cylinder

refer to Temperatures in configuration (Figs. 2,3)
refers to differentiation with respect to time

refers to differentiation with respect to x
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APPENDIX 1.

Prediction of Transient Temperaturd Distributions in Cylinder-
Bulkhead Conficurations

Tn Ref, 1 Przemieniecki smalysed exactly the transient temperature
distributions in a cylinder-bulkhead configuration for the case of
convective heating of the cylinder for constant values of the heat transfer
coefficient, stagnation temperature and axial temperature distribution in
the cylinder, Since these assumptions do not allow of a completely general
study the amalysis of Ref, 1 will not be adopted here, nor will it be
extended to meke it more general since the results of such a study would be
tedious to obtain and inconvenient to incorporate into the main analysis
of this note,

Recourse will therefore be had to an approximate method of heat
flow analysis based on an extension of Ref, 4, The basic method of Ref. 4
will not be discussed here ard the main extension introduced will be in
allowing the shell temperature T_ to be a completely arbitrary function of
time, This extension has already been applied to the analogous skin-web
problem of an aircraft wing in Ref, 5.

The results of the amalysis were as follows.

A,1. PFirst Heating Phase in Bulkhead

The parameter q can be expressed as a function of the temperature
T, as follows (see Fig, 2),

5I12 632(6._11)
nh T2(13 - 3n) + i = 24
: -
2R
wvheren:-gf,B= CB,
: 5

thermal conduetivity bulkhead material respectively

2
B

(7 + n) A1,

and where CB kB are specific heat and

The above equation can be solved for g using the boundary condition
‘tha'tq:n:O attozo.

Hence it is possible to find the value of to-_-t, which mekes n = 1,

Equation A,1 has not in fact been solved and it is proposed to use the
result qicted by Timoshenko, (Ref, 3 p.370) for the problem with
T2= const,, by exact analysis which gave
2 ' a

Y o= #0BRG oy =,025 B, 824

_E;- 1

See also Refs, 6, 7,
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s B
Biot showed in Ref, 4 that q «a tg therefore if it is assumed

that - 6.3l k.Bt : A3,
y kY < : ,

Ingersoll’s(naxact result is obtained for t =1t y when q = R.

Although this does not follow from eq. A,1 it is considered to be accurate
enough for most practical problems,

A,2, Second Heating Phase in Bulkhead

In this phase, if the generalised cowordinate is taken as T,, the
temperature at the bulkhead centre, the following differential equatéon
is obtained, using the temperature distribution of Fig. 3.

B('f3+ 5 By of Lo, w2y Ay

A.,3, First Heating Phase in The Cylinder

In this analysis, the local heat-sink effect of the bulkhead is
considered and the temperature distributions of Fig. 2 are assumed except

that 1 1is assumed equal to g, the penetratlon depth into the bulkhead.
The subsequent analysis yields the result

i L _n :
G @ tc°T1+2chT2(‘l 4) : 4,5,

where G1 is the heat per unit length to have flowed through the boundary
layer into the skin at the joint station,

IfG,i = tc T v,
' dczB
2
% AT (4-n) oo

A,L, Second Heating Phase in the Cylinder

The result is obtained.

“

Rl

to T, +% ch(T +T)

CB(TZ + TB) Aa?o
8tec T
c 1

o 1 = 1 %



A,5, BShell Temperatures

For the shell away from the joint (x > 1) the temperature 2
nbeys the differential equation
N

bo,2, = h(TS-TO)-e,BSTO

.A. 8.

where € 1is emissivity
ﬁs is Stefan=Boltzman Constant
h is convective heat transfer coefficient
Ts is Stagnation temperature,
The carresponding value of HO is t 0y To.
Therefore, an equation of the form of eq, A.8 will define the temperature

variation of T, also, provided the parameter t % is factored by Vv ,
which may be gléneralised as

- d o (T, + Tj)(#- n)

8% a. T 4 A.9.
e %

v o=1

A.6, Procedure

The procedure necessary to determine the transient temperature
distribution in the shell and bulkhead is as follows :

(a2) Using eq. A.8 determine T, as a function of time

(b) Using eq. A3 or A4 determine q as a function of time
(¢) For the two distinct phases of heating the temperatures T1T2T3
are determined from the following three equations solved simultaneously,

2 L
’cchT1 = h(TS—T1)-eﬁsT1 A,10
B(T3+2T—2_)=42T2-12T3 AL
B -
U T, o, T5 6
(1-1*'%) (1 + 8) (32)

where ¢ is given by eq., A.9 and depends on the value of n ,

For a completely arbitrary flight programme it should be easier to solve
the equations above (possibly by numerical integration) than to solve the
exact equations of heat flow in the shell and bulkhead,
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FIG. 2. TEMPERATURE DISTRIBUTIONS DURING FIRST
HEATING PHASE.
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FIG. 3. TEMPERATURE DISTRIBUTIONS DURING SECOND
HEATING PHASE.



